
Expressive Pointcuts for Increased Modularity

Klaus Ostermann and Mira Mezini and Christoph Bockisch

Darmstadt University of Technology, D-64283 Darmstadt, Germany
{ostermann,mezini,bockisch }@informatik.tu-darmstadt.de

Abstract. In aspect-oriented programming, pointcuts are used to describe cross-
cutting structure. Pointcuts that abstract over irrelevant implementation details
are clearly desired to better support maintainability and modular reasoning.
We present an analysis which shows that current pointcut languages support lo-
calization of crosscutting concerns but are problematic with respect to infor-
mation hiding. To cope with the problem, we present a pointcut language that
exploits information from different models of program semantics, such as the
execution trace, the syntax tree, the heap, static type system, etc., and supports
abstraction mechanisms analogous to functional abstraction. We show how this
raises the abstraction level and modularity of pointcuts and present first steps
toward an efficient implementation by means of a static analysis technique.

1 Introduction

In aspect-oriented programming (AOP for short), pointcuts are predicates that identify
sets of related points in the execution of a program, where to execute behavior pertain-
ing to crosscutting concerns. Given an aspect that modularizes a crosscutting concern,
its pointcuts serve as the interface between the crosscutting concern and the rest of the
system. As such, the abstraction level at which these predicates are expressed directly
affects the robustness of the design in the presence of change. Separation and localiza-
tion of concerns into individual units is a major feature of modular design - providing
interfaces that absorb local changes is another, equally important, feature.

It has been indicated elsewhere that a pointcut that merely enumerates relevant
points in the execution by their syntactic appearance in the program code is fragile w.r.t.
changes in the code [15, 20]. In this paper, we investigate the issue in more depth: We
compare object-oriented (OO for short) and aspect-oriented (AO for short) designs of
an exemplary problem with respect to their capability to remain stable in the presence
of change. We observe that with current pointcut languages one can indeed separate
crosscutting concerns into their own modular units, but the resulting design does not
actually perform much better in terms of absorbing changes than the OO design which
does not modularize the crosscutting concerns. This reduces the power of aspects to
merely supporting pluggability of crosscutting concerns, leaving out of the reach an-
other important modularity principle: Information hiding [30].

To cope with the problem, this paper proposes a pointcut language that allows to
specify pointcuts at a high-level of abstraction by providing (a) differentrich models of
the program semanticsand (b)abstraction mechanismsanalogous to functional abstrac-
tion. The key insight is that various models of program semantics are needed to enable

reasoning about program execution. For example, the abstract syntax tree (AST) alone
is not a very good basis for high-level pointcuts because it is a very indirect represen-
tation of the program execution semantics that makes it intractable to specify dynamic
properties.

We propose to base the pointcut language on acombinationof models of the pro-
gramm’s semantics. In this paper, we concentrate on four such models: The AST, the
execution trace, the heap, and the static type assignment; if needed, other models such as
a profiling or a memory consumption model could be added. Pointcuts in our approach
are logic queries over the aforementioned models.

We have implemented a prototype of this approach as an interpreter for a small
statically typed AO language, called ALPHA1. Pointcuts in ALPHA are logic queries
written in Prolog [36]; they operate on-line over databases representing the aforemen-
tioned models of the program semantics. We show how AO designs expressed in this
language can be made robust against various kinds of changes.

We also present a technique for an efficient implementation of our approach that is
based on the notion ofjoin point shadows[17]. The shadow of a dynamic join point is a
code structure (expression, statement or block) that statically corresponds to an execu-
tion of the dynamic join point. The idea is to compute the shadows of pointcuts off-line
by a static analysis of pointcuts and to evaluate or extend dynamic semantic models
only at these statically computed shadows. Our analysis is different from previous ap-
proaches in this direction [17, 28, 35] in that it works on a much more powerful and
open pointcut language.

Some concepts used in our approach have also been discussed elsewhere. For exam-
ple, logic queries have been used in other approaches [15, 19, 37]. The unique contri-
bution of our proposal compared to related work is twofold. First, we present a detailed
study of the disadvantages of most current pointcut languages. Second, the openness of
the pointcut language, the ability to combine different program models, and the incor-
poration of the execution trace and heap together with the abstraction mechanisms of a
Prolog-like language is also unique. We will give a detailed account of the contribution
of this paper and the relation to other works after the technical presentation.

The remainder of the paper is organized as follows. Sec. 2 motivates the need for
better pointcut languages by a study of the robustness of aspect-oriented programs.
Sec. 3 introduces the ALPHA programming language. Sec. 4 presents some examples
in ALPHA and analyzes them in the light of the problems identified in Sec. 2. Sec. 5
describes the static analysis technique. Sec. 6 elaborates on the contribution of this
paper in comparison to related work. Sec. 7 describes future work and concludes. The
appendix contains different specifications of Prolog constructs that are used in various
places but whose specification is not necessary to follow the paper.

2 Pointcuts and Modularity

In this section, we identify the limitations of current pointcut languages by means of an
example problem. We focus on AspectJ’s pointcut-advice mechanism [21] first; other

1 Source code is available at [2].

pointcut languages will be discussed in the section on related work. We present an
object-oriented (OO) and an aspect-oriented (AO) solution to the problem and compare
them w.r.t robustness in the presence of change.

2.1 Example problem and its OO and AO solutions

The example problem is about modeling a hierarchy of graphical objects like points and
lines which can be drawn on display objects; each display has a list of figures shown in
it. The solution should ensure that the state of figure elements and their corresponding
views on active displays is kept synchronized by having displays be updated when the
state of figure elements changes.

An OO solution for the problem that applies the observer pattern [14] is schemat-
ically shown in Fig. 12. To avoid unnecessary updates, the solution supports what we
call object precisionandfield precision. By object precision we mean that an update to
a figure element triggers a repaint only on those displays on which the figure element is
visible; in general, there are multiple different display objects active, whereby every fig-
ure element is visible only on a (possibly empty) subset of all displays. For this purpose,
each figure in Fig. 1 maintains an observer list with the displays it is shown in, if any;
when a figuref is added to a display, the display is added to the list off ’s observers as
well as to the observer lists off ’s children; e.g., showing a line on a display will cause
the display to be an observer of the line as well as of its start and end points. If a figure
f1 is not anymore a child of another figure,f2 , the observers thatf1 inherited fromf2

are removed from the list off1 ’s observers3.
By field precision we mean that only changes of the fields that contribute to the

graphical representation of a figure element should trigger display updates. The set of
the fields affecting the draw behavior generally depends on the dynamic control flow
and cannot be determined statically. Hence, it is not always easy to ensure field precision
especially if the system is complex. In theLine class in Fig. 1, it is easy to see that the
field name is never involved in the drawing behavior and thatenable , start andend

are potentially read in the control flow ofdraw . Of the latter variables, onlyenabled

is always read - hence, a change to it always triggers a notification of the observers;
fields start andend are only read ifenabled is true. Hence, changes tostart or
end trigger a notification only ifenabled is true (see comments on the methodsnoti-

fyObserversUnconditional() , notifyObservers() andsetEnabled(...) in
classFigureElement , andLine.setEnd(...) in Fig. 1).

A functionally equivalent AO solution of the problem is schematically shown in
Fig. 2. This solution factors the observer management fields and methods out of the
figure element classes into the aspect using the inter-type declaration mechanism of
AspectJ4. The aspect defines three pointcuts. The pointcutaddFigure captures any call

2 Complete code for all examples and our ALPHA interpreter are available at [2].
3 If figures are shared by several parent-figures, reference counters are associated with observers

and an observer is actually removed from an observer list, only if its reference counter is zero.
4 The observer implementation proposed by Hannemann and Kiczales [16] uses hashtables in-

stead of introductions in order to increase the reusability of aspects, but this does not affect the
discussion in this paper.

Display

+drawAll()
+draw(FigureElement)
+addFigure(FigureElement)
...

FigureElement

-enabled : boolean
-name : String

+draw(Display)
+setEnabled(boolean)
+addObserver(Display)
#notifyObservers()
#notifyObserversUnconditional()
...

-figures

*
*

Point

+draw(Display)
+setX(int)
...

-x : int
...

Line

+draw(Display)
+setEnd(Point)
...

-start
-end

2 *

-children

*

*

-observers

Adds itself to the figure's
observers and calls drawAll()
on itself if the figure is enabled.

Sets the field enabled to the
passed value and calls
notifyObserversUnconditional().

Adds the display to its own observers, as
well as to its children's.

Calls draw(this) on all observers if
enabled is true.

Calls draw(this) on all observers.

Paints itself on the display if the figure is enabled.

Removes its own observers from the old end's observers,
sets the field end to the passed value, adds its observers
to the new end, and calls notifyObservers().

Calls drawAll() on itself.

Fig. 1.OO implementation of a precise version of the display updating

to the methodDisplay.addFigure(FigureElement) ; the after-advice associated
with this pointcut establishes a subject-observer relation between the receiver and the
argument.

The setSubFigure pointcut captures points in the execution, where parent-child
associations are changed - these are assignments on any field of typeFigureElement

or a subtype thereof (denoted by the ”+”), declared inFigureElement or any of its
subclasses. The before and after advice associated with this pointcut make sure that the
observer lists are updated accordingly. Thechange() pointcut captures assignments
to those fields of figure element objects that affect the draw behavior - the set of rel-
evant fields includes any field declared inFigureElement or one of its subclasses,
excluding the fieldsFigureElement.name , FigureElement.observers andfig-

ureElement.children (the latter two are introduced by the aspect). The advice as-
sociated with this pointcut ensures that notifications are sent to relevant observers.

2.2 Comparison of the OO and AO solutions

The main advantage of the AspectJ solution over the OO counterpart is that the display
updating protocol is made explicit andlocalizedin one module. Due to this separation
changes to the display update protocol are localized within the aspect. For example,
assume that we decide to modify the protocol as follows. The display update signaling
currently performed within methods that change the state of figure elements, should
happen at caller sites of these methods (e.g., the because the caller object should be
logged, which is not possible at execution site). Changes needed to introduce the modi-
fied protocol are localized within the aspect code in the AO solution (alternatively a new
aspect can be implemented); the same changes are not localized in the OO solution. Fur-
thermore, the separation makes the display updating logic pluggable. The advantages
resulting from the separation of crosscutting concerns are discussed elsewhere [22, 16]
and are not in the focus of this paper.

Similar to
their equiva-
lents in the
OO solution.

Adds d to f's observers and calls drawAll() on d.

Removes p's observers from c.

Adds p's observers to c.

Calls notifyObserversUnconditional(), if
field enabled changed, else
notifyObservers() on f.

FigureElement

-enabled : boolean
-name : String

+draw(Display)
+setEnabled(boolean)
...

-figures

* *

Point

+draw(Display)
+setX(int)
...

-x : int
...

Line

+draw(Display)
+setEnd(Point)
...

-start
-end

2 *

<<aspect>> DisplayUpdate

FigureElement.getChildren()
FigureElement.children : List;
…
FigureElement.addObserver()
FigureElement.observers : Hashtable;
…
FigureElement.notifyObservers()
FigureElement.notifyObserversUnconditional()

addFigure(FigureElement f, Display d) :
 call(void Display.addFigure(FigureElement)) &&
 args(f) && target(d)
setSubFigure(FigureElement f, FigureElement newValue) :
 set(FigureElement+ FigureElement+.*) &&
 target(f) && args(newValue);
change(FigureElement f) :
 set(* FigureElement+.*) && target(f) &&
 !(set(Hashtable FigureElement.observers) ||
 set(List FigureElement.children) ||
 set(String FigureElement.name))
...

after(f : FigureElement, d : Display) : addFigure(f, d)
before(p : FigureElement, c : FigureElement) : setSubFigure(p, c)
after(p : FigureElement, c : Figureelement) : setSubFigure(p, c)
after(f : FigureElement) : change(f)
...

Only sets the field enabled to the passed value.

in
tro

d
u

ctio
n

s
p

o
in

tcu
ts

a
d

vice
Display

+drawAll()
+draw(FigureElement)
+addFigure(FigureElement)
...

Fig. 2.First AO implementation of the precise display updating

Physical separation and localization of concerns, while important, is only one aspect
of modularity. Another, equally important aspect of modularity is about the interface
that controls the interaction of the separated logic with the rest of the system, thereby
employing abstraction mechanisms to hide implementation details. The interface of the
separated observer protocol to the rest of the system is defined by pointcuts in the aspect
in Fig. 2. A recent paper by Kiczales and Mezini [23] argues that this explicit interface
makes modular reasoning in the presence of change easier in an AO setting compared
to an OO setting, where there is no explicit interface between these two concerns.

In this paper, we go one step further and investigate the ability of the AO interfaces
to absorb change by means of information hiding. Unfortunately, interfaces supported
by current pointcut technology fall short in this respect. The set of points in the exe-
cution of figure elements where to update appropriate display objects are not defined
intentionally by some common semantic property, say, as points where”changes occur
on fields that were previously read in the control flow of the lastdrawAll call” . Rather,
the pointcuts in our example mostly describe these points by their syntax, thus, expos-
ing implementation details of the figure element hierarchy to the aspect. The following
comparison of the OO and AO solutions from Fig. 1 and Fig. 2 shows that the lack of
proper support for information hiding makes the separated display update protocol ba-
sically as fragile w.r.t changes as the OO solution. The comparison is organized around
the change scenarios presented in Fig. 3, which also summarizes the robustness of the
AO and OO solution related to these change scenarios.

First, both scenarios are fragile with respect to scenariosCh1 and Ch3. In both
solutions, moving parts of a figure element’s state to a helper class will cause changes

name description example OO AO

Ch1 Object graph change: Outsource part
of the drawing relevant state of a fig-
ure element to a class that is not in the
FigureElement hierarchy.

Use an object of typePair to store the
coordinates of aPoint .

– –

Ch2 Class hierarchy change: Inserting a
new type into the hierarchy ofFig-
ureElement s.

Adding the classCircle extends
FigureElement .

+/– +/–

Ch3 Control flow change: Change the con-
dition under which a display update is
necessary.

Renaming the fieldenabled to visi-
ble , or adding a fieldhidden .

– –

Ch4 Class definition change: Inserting/re-
moving a field whose change makes
display update necessary.

Adding the field color to the class
FigureElement .

– +

Ch5 Class definition change: Inserting/re-
moving a field whose change does not
affect display.

Adding the field changeHistory to
the classFigureElement .

+ –

Fig. 3.Change scenarios with comparison of AO and OO solution

to those fields to escape observation, although they might have had effect on the drawing
behavior. Hence, they break w.r.t.Ch1. Also, renaming the fieldenabled , or adding a
new field which also controls when figure elements are displayed, sayhidden , will
break both the AO and OO protocols. This is because the names of such fields are
hard-coded in the implementation ofnotifyObservers() , which is the same in both
solutions. Hence, both solution fail to absorbCh3.

The AO solution is more robust w.r.tCh4. The OO protocol breaks in the sense that
the display update signaling for the field being added, needs to be adopted, respectively
encoded anew. The AO protocol that uses wildcards for pattern matching on names of
fields that affect drawing behavior carries over automatically. However, the AO solution
is less robust than the OO solution w.r.tCh5. This is because thechange pointcut in
Fig. 2 enumerates each field to exclude from the observation explicitly. Adding (or
removing) a field which does not influence the graphical representation of a figure will
break field precision of the aspect: Changes to these fields will cause the display to be
updated.

Finally, with regard to the scenarioCh2, we argue that both solutions perform more
or less the same under the assumption that the new class, in general, introduces both
fields that affect the drawing behavior as well as fields that do not affect drawing. The
AO solution performs better for fields that affect drawing: The protocol established by
the aspect automatically applies to the new class. This is not true for the OO solution:
The whole logic concerning children and field change should be manually coded in the
new class. However, the opposite is true for fields that do not affect drawing and, hence,
need to be excluded explicitly in the AO solution.

The use of wildcards for pattern matching on names might at first sight appear to
support some sort of abstraction by providing a means to identify relevant execution
points by some commonality. However, pattern matching on names only allows to ab-

stract over syntax, which is not always sufficient. Our investigation shows that wildcards
do not actually increase the ability to absorb change, beyond simple cases, where there
are no exceptions to be made from the rule defined by wildcards. As for our example,
we could as well have used an AO solution that does not use wildcards but enumerates
the relevant points. This solution would exhibit the same robustness w.r.t the change
scenarios as the OO solution5.

The discussion suggests that without more powerful mechanisms for information
hiding the potential of AO mechanisms for improving modularity cannot fully be un-
leashed. This has been the motivation for us to work on a pointcut language that en-
ables better modularity and information hiding. This language will be presented in the
following section. Please note that the question is not whether AO mechanisms provide
better modularity than OO mechanisms; the question is rather how to further improve
the power of the modularity of AO mechanisms. As mentioned in the beginning of this
sub-section, AO does support better modularity by separating and localizing the display
update logic [22, 16] and by providing an explicit interface [23]. The point we want to
improve is that the focus of pointcuts should bewhen(under which conditions) a point-
cut should be triggered rather thanwhere(lexically) the corresponding places in the
code are.

3 The ALPHA language

ALPHA is an AO extension of a toy OO core language implemented as an interpreter in
Java. The OO core of ALPHA is based on L2 [12] - a simple object-oriented language
in the style of Java. The formal syntax, semantics, and type system of L2 are described
in [12]. Here we present the OO core of ALPHA informally by means of the example in
Fig. 4 - a simplified variant of the example from the previous section. ALPHA supports
classes and single inheritance and has a standard static type system.

3.1 Pointcuts and advice

Every class in ALPHA may define fields and methods and may also define pointcuts and
associate advice with them. Pointcuts are Prolog queries over a database of both static
and dynamic information about the program or program execution. A Prolog query is
a sequence of primitive queries combined by theand operator “, ”. A simple pointcut
that denotes “all assignments to fields of objects of type point” is shown in the class
DisplayUpdate in Fig. 5.

In contrast to AspectJ and similar to Caesar [29], aspects in ALPHA become ef-
fective only after they aredeployed. Further discussion of this strategy is available at
[29]. What matters is to note that the advice ofDisplayUpdate will have semantic
effect once an instance ofDisplayUpdate is deployed. For illustration, consider the
use of the aspectDisplayUpdate within themain() method of classMain in Fig. 5
- here, the advice ofDisplayUpdate will be effective only during the execution of
doSomething() .

5 In [2], the reader can also find code for an AspectJ solution of the example problem that does
not uses wildcards.

1 class FigureElement extends Object{
2 String name;
3 void draw(Display d){}
4 }
5 class Point extends FigureElement{
6 int x, y;
7 boolean enabled;
8 void draw(Display d){
9 if (this .enabled) d. paintPoint (this .x, this .y);

10 }
11 }
12 class Line extds FigureElement{
13 Point start , end;
14 void draw(Display d){
15 if (this .enabled) d. paintLine (this . start , this .end);
16 }
17 }
18 class Display extends object{
19 FigureElement f1 , f2 ;
20 void drawAll() { this . f1 .draw(this); this . f2 .draw(this);}
21 void draw(FigureElement fe){ print (” display update :”); print (fe); this .drawAll ();}
22 void paintPoint (int x, int y){ ... }
23 void paintLine (Point start , Point end){ ... }
24 }

Fig. 4.Figure elements in ALPHA

In order to explain the pointcut in Fig. 5, it is necessary to understand the basic
structure of the database. The database contains both static and dynamic information
about the program organized in a set of relations. A very simple relation is the unary
relationnow, denotednow/1 . This relation has only one fact that contains the current
timestamp. These timestamps are necessary in order to reason about temporal relations
between events. The querynow(ID) in Fig. 5 retrieves the current timestamp and binds
it to the variableID . In Prolog, all names starting with uppercase letters are considered
variables, whereas all names starting with lowercase letters or enclosed by single quotes
(’) are considered constants.

class DisplayUpdate extends Object{
Display d;
after now(ID), set (ID, , P, ,), instanceof (P, ’Point ’){ this .d.draw(P);}

}

class Main extends Object{
Display d; DisplayUpdate du;
void main() {

this .d = new Display (); this .du = new DisplayUpdate();
this .du.d = this .d;
deploy(this .du){ this .doSomething()}

}
void doSomething(){ ... }
...

}

Fig. 5.Simple advice in ALPHA

The second part of the query,set(ID, , P, ,) , queries a relationset/5
that stores all assignments in the current execution. The first element of this relation is
the timestamp of this event, the second one is a reference into the syntax tree of the
program and denotes the expression in the syntax tree that corresponds to this event.
The third element is the object that contains the field, the fourth is the fieldname, and
the fifth is the value assigned to the field. By using the nameID for the first element
in the queryset(ID, , P, ,) , we specify that this pointcut will match only
if the assignment has happened right now and not in some time in the past because a
variable (ID in this case) must be bound to the same value in all places where it is used.
The wildcard ” ” is used for anonymous variables that are not interesting; in the set part
of the pointcut in Fig. 5 the ”” wildcards are used to denote that the pointcut matches
for any expression as well as for any field name and value being assigned. By using
the nameP for the receiver element of theset/5 relation, we bind the receiver object
of each matching assignment toP. In the third part of the pointcut,instanceof(P,
’Point’) , we constrain the set of eligible assignments even further by requiringP to
be an instance of the classPoint .

Variables in a pointcut can be used both as constraints during the unification process
and as a means to make context available in the advice. In our example, we useP in the
advice body6. The form of advice is similar to AspectJ [21].

The kind of data in the database is obviously an important variation point of our
approach. In our prototype, the database contains four different program models: a rep-
resentation of the abstract syntax tree, a representation of the object store (heap), a rep-
resentation of the static type of every expression in the program, and a representation of
the trace of the program execution. These four structures are a natural choice, since they
represent the main entities used for interpreting a program. However, it would not inval-
idate our approach to add or remove other entities, e.g., add a model about resource con-
sumption or remove the object store model. In the example above, theset/5 relation
belongs to the execution trace model, whereas theinstanceof/2 relation belongs
to the object store model and the static type model. A full reference of the relations in
the database is available in the appendix in Fig. 14. The basic idea is that each of these
models represents a partial view of the program semantics. By making as much infor-
mation available to the pointcut programmer as possible, the programmer can choose
the program model to be used to express his intention as directly and conveniently as
possible.

The escape symbol@can be used to evaluate an expression inside a query, such that
object-specific constraints involving values from the enclosing object can be expressed.
Fig. 6 shows a refined version of the display update aspect whose pointcut will match
only if the target of the assignment isthis.p .

3.2 Pointcut abstraction and pointcut libraries

The expressiveness of our pointcut language is due to the rich program modelsand its
abstraction mechanisms. Due to Prolog, it is easy to define new predicates that abstract

6 We use type inference to determine a static type for every variable inside a query, which is
used to type-check the advice body. We elaborate on this in Sec. 5.

class DisplayUpdate extends Object{
Display d; Point p;
after now(ID), set (ID, , @this.p, ,) {

this .d.draw(this .p);
}

}

Fig. 6. Inserting context into a pointcut

over the primitive generated predicates. Fig. 7 shows an excerpt of the standard pointcut
library building on this feature. Line 2 shows - by the example of the primitiveset
predicate - how to define convenient abbreviations of the generated primitive execution
trace predicates for the case that we are not interested in past events or in the syntactic
location of the event. With these abbreviations the pointcut in Fig. 6 can be written more
conveniently asset(@this.p, ,) .

Lines 6-9 demonstrate the usefulness of having the complete history of execution7.
The cflow query specifies under which conditions a join pointID0 is or has been in
the control flow of another join pointID1 . Reasonably, this other join point may only
be a method call. Thus,ID1 must be the timestamp of a method call. Method calls are
stored in the database as pairs ofcalls/5 andendcall/3 facts denoting the beginning
respectively the end of a method call. Thebefore/2 relation is a part of the execution
trace model and can be used to compare events w.r.t. their temporal order. The first
rule of thecflow query, applies when theID1 call has completed (i.e., a corresponding
endcall fact is available). The second rule applies whenID1 is still on the call stack;
it uses the special control predicate\+ , which succeeds, if the goal cannot be proven
(a.k.a.negation as failure).

Please note that thiscflow construct is much more powerful than the AspectJ point-
cut designator with this name, since the AspectJ variant can only be used to refer to
control flows that are currently on the call stack (corresponding to our secondcflow

rule), whereas ourcflow also applies to control flows in the past8.

The pointcut library contains a set of other pointcut predicates that are only sketched
in Fig. 7. We have defined predicates to determine whether an object is reachable from
another object following a path of links in the object graph (reachable/2) and to
determine the class of an object (instanceof/2). Other predicates provide convenient
access to the AST (class/2 , method/3 , field/3 , within/3 , subtypeeq/2).

Thepcflow/3 predicate predicts the control flow of a method based on the AST,
basically building the call graph of the method. This is achieved by computing the
transitive hull of all outgoing method calls, whereby all method implementations in all
subtypes are considered in order to take late binding into account.

7 Due to the optimizations discussed in sec. 5 only parts of the execution history are recorded
that are relevant for the pointcuts in the program.

8 Note, however, that the main purpose of this paper isnot to propose new control flow pointcut
designators. Thecflow pointcut designator is just an illustration of the extensibility of our
pointcut language.

1 % abbrevations if we are only interested in the current event
2 set (Receiver , Field , Val) :− now(ID), set (ID, , Receiver , Field , Val).
3 % abbreviations for new, calls , get similarly
4

5 % is ID0 in the control flow of ID1?
6 cflow(ID0, ID1) :− calls (ID1, , , ,), before (ID1, ID0),
7 endcall (ID2, , ID1,), before (ID0, ID2).
8 cflow(ID0, ID1) :−
9 calls (ID1, , , ,), before (ID1, ID0),\+ encall (, , ID1,).

10

11 % is Obj2 reachable from Obj1 in the object graph?
12 reachable (Obj1,Obj2) :− ...
13

14 % is Obj an instance of C?
15 instanceof (Obj, C) :− ...
16

17 % convenient access to AST: query classes , methods, and fields
18 class (Name, CDef) :− ...
19 meth(CName, MName, MDef) :− ...
20 field (CName, FName, FDef) :− ...
21

22 % is Expr within method MName of class CName
23 within (Expr, CName, MName,) :− ...
24

25 % is C1 subtype of C2?
26 subtypeeq(C1, C2) :− ...
27

28

29 % is Expr in the statically predicted control flow of CName.MName?
30 pcflow(CName, MName, Expr) :− ...
31

32 % find the most recent event matching a pattern X
33 mostRecent(ID,X) :− ...

Fig. 7.Excerpts of the pointcut library

ThemostRecent/2 predicate finds the most recent occurence of an event pattern.
We will use this predicate to express things like “find the most recent occurence of a
call to draw ”.

A very convenient property of Prolog is that these predicates can be used with arbi-
trary instantiation patterns. This means that the predicates can be used in any direction.
For example, thewithin/3 predicate can be used to find an expression within a given
method and class, or the other way around, to find a class and a method that lexically
contain an expression.

The full definition of these predicates can be found in Fig. 15 in the appendix. For
the purpose of this work, the details of their definition are not very important. The inter-
esting point is that ALPHA has anopenpointcut language, whereby new pointcuts can
be added on-demand in adeclarativeway. Simple pointcuts can be combined to more
powerful pointcuts, so we have the same kind of abstraction mechanism for pointcuts
that functional abstraction provides for functions.

We have developed a rudimentary module mechanism for pointcut libraries. Cur-
rently, we have a standard pointcut library, that is always available, and user-defined
pointcut libraries, that must have the same file name as the source file. A pointcut li-
brary can import other libraries using Prolog’s own module mechanism. It would be a

straightforward extension to make this a full-fledged module mechanism with explicit
imports and exports, namespaces, etc.

4 Programming with ALPHA

In this section, we demonstrate how information from different program models can
be combined to increase the abstraction level of pointcuts. Furthermore, we discuss the
implications of our pointcut language on the programming model.

4.1 Expressiveness of pointcuts

The classDisplayUpdate in Fig. 8 shows six different ways to specify a display up-
date pointcut in ALPHA, using different models of the program. We use these six dif-
ferents pointcuts in order to show how we can gradually increase the abstraction level
of the pointcuts by exploiting the available information in the database. The resulting
pointcuts differ in their support forrobustnessandprecision, as discussed below and
summarized in Fig. 9.

1 class DisplayUpdate extends Object{
2 Display d;
3

4 // enum pointcut
5 after set (P, x,); set (P, y,); set (P, ’ start ’,); set (P, ’end’,),
6 instanceof (P, ’FigureElement’){ this .d.draw(P);}
7

8 // set∗ pointcut
9 after set (P, ,), instanceof (P, ’FigureElement’){ this .d.draw(P);}

10

11 // pcflow pointcut
12 after now(ID), set (ID, ExpID1, P, F,), instanceof (P, ’FigureElement ’),
13 pcflow(Display , ’drawAll ’, (, get ((ExpID2,), F))),
14 hastype(ExpID2, ’FigureElement’){ this .d.draw(P);}
15

16 // cflow pointcut
17 after set (P, F,), get (T1, , P, F,), mostRecent(T2, calls (T2,, @this.d ,’ drawAll ’,)),
18 cflow(T1, T2), instanceof (P, ’FigureElement’){ this .d.draw(P);}
19

20 // cflowreach pointcut
21 after set (P, F,), get (T1, , P, F,), mostRecent(T2, calls (T2,, @this.d ,’ drawAll ’,)),
22 cflow(T1, T2), reachable (Q, P), instanceof (Q, ’FigureElement’){ this .d.draw(P);}
23 }

Fig. 8.Six display update pointcuts

The enum pointcut (line 5, Fig. 8) enumerates9 all assignments to fields that po-
tentially effect drawing behavior, namely to fieldsx , y , start , or end of any object
P of type FigureElement . It uses the names of the fields to identify the relevant as-
signments. By precisely enumerating the fields potentially involved with drawing, the
pointcut supports some sort of static field precision: It makes at least sure that changes

9 A semicolon denotes “or” in Prolog

to fields that are never read in any control flow ofdrawAll() do not trigger display
updates. However, it requires the programmer to explicitly encode this knowledge. Fur-
thermore, it does not take into account the actual control flow of the concrete program
execution and, hence, cannot avoid e.g., updates after assignments to fields of disabled
points. Also, object precision is not supported. Precision w.r.t. fields involved in the
drawing behavior only under certain dynamic conditions - for convenience let us call
this dynamic field precision - and object precision require knowledge from dynamic
program models, which this pointcut does not make use of. With respect to robustness,
theenum pointcut exhibits the same behavior as the OO solution in Sec. 2.

Theset * pointcut (line 9) is triggered by assignments toanyfield of aFigureEle-

ment object. Due to the use of thewildcard this pointcut may cover too many execu-
tion points whose signature matches the pattern by accident [15, 20, 13]. As a result, the
pointcut performs poorly w.r.t. field precision: Any assignment to the fieldname which
is not at all involved with drawing will also trigger a display update. Similar toenum,
set * uses only static information, hence, it supports neither dynamic field precision nor
object precision. As far as robustness is concerned,set * exhibits the same behavior as
the AO solution in Sec. 2.

criteria enumset* pcflow cflow cflowreach

static field precision + - + + +
dynamic field precision - - - + +
object precision - - - + +

Ch1 - - - - +
Ch2 +/- +/- + + +
Ch3 - - + + +
Ch4 - + + + +
Ch5 + - + + +

Fig. 9.Evaluation of pointcuts w.r.t. change scenarios from Fig. 3

Thepcflow pointcut (line 12) uses thepcflow predicate to approximate the con-
trol flow of Display.drawAll() based on the AST model and selects field read ex-
pressions in the approximated control flow; only assignments to such fields match the
pcflow pointcut. Similar toenum, this pointcut ensures that changes to fields that are
never read in the control flow ofdrawAll() do not trigger display updates. However,
neither object nor dynamic field precision is supported, since the pointcut only makes
use of the AST and not of the dynamic models of the program. The pointcut is not ro-
bust in the case of scenarioCh1 - outsourcing part of figure element state to external
objects. The pointcut explicitly requiresP to be aFigureElement in order to be able
to pass it to thedraw() method call. So, state outsourced to nonFigureElement
objects escape the observation by this pointcut.

Note that while supporting the same precision asenum, pcflow is much more ro-
bust. This is due to the abstraction capabilities of the pointcut language (including func-
tional composition and higher-order pointcuts), which allows us to compose primitive

pointcuts into more powerful ones, such aspcflow . With a pointcut language that does
not support such abstraction mechanisms, e.g., AspectJ’s pointcut language that only
provides operations on sets - union (||), intersection (&&), negation (!) -, the program-
mer cannot express the intention to ”first identify all field accesses in the control flow of
a certain method and than select set operations to these fields” in terms of a generic de-
scription, if this functionality is not available as a primitive pointcut designator. (S)he is
basically left with the explicit enumeration of such field accesses, as inenum; the only
alternative to enumeration is to describe general rules by wildcards, which is actually
not better with regard to robustness.

Thecflow pointcut (line 17) is similar topcflow in that this pointcut also selects
field reads in the control flow ofdrawAll . The crucial difference is thatcflow is
based on the actual control flow at runtime rather than on a conservative static approxi-
mation of it. As a result,cflow performs better thanpcflow . It supports both dynamic
and static field precision as well as object precision: Only assignments to a fieldF of
an objectP that are read in the control flow of the particular display object denoted
by this.d (see the expression@this.d in the pcflow pointcut) trigger an update.
Changes of any field of any figure element that is not referred to by our active display
denoted bythis.d do not trigger updates. By its use of the dynamic execution model
of the program,cflow significantly improves overpcflow . Note that it would not
be possible to express something similar with the AspectJcflow construct because the
drawAll method call is in the past and not on the call stack. The only problem with
cflow is lack of robustness w.r.t.Ch1.

The cflowreach pointcut (line 21) solves the robustness problem ofcflow
w.r.t Ch1. This pointcut composes thecflow pointcut with thereachable predi-
cate from Fig. 7/Fig. 15. That is, in addition to assignments to objects of typeFig-
ureElement , it also captures assignments to any object that is reachable in the ob-
ject graph from an instance ofFigureElement . The use of the object graph model
makescflowreach robust againstCh1. Since it also inherits all features of thecflow
pointcut,cflowreach fulfills the precision requirements and is robust w.r.t. all change
scenariosCh1to Ch5.

The foregoing analysis demonstrates how our approach enables robust and precise
pointcuts. The pointcutscflow andcflowreach above encode minimal knowledge
about implementation details of the crosscutting structure they describe. They directly
express the semantic properties of the display update structure rather than relying on
implementation details of how the latter syntactically appears in the program code (the
names of the variables involved with drawing are irrelevant for the display update be-
havior).

This is due to the rich models of program semantics underlying these pointcuts as
well as the abstraction mechanisms of the pointcut language. In our approach, the pro-
grammer can, however, choose which models of the program (s)he wants to use to ex-
press a pointcut: from pure syntactic to very dynamic, operational properties, whichever
describe the crosscutting best. In this context, please also note the role of unification in
elegantly expressing relations between join points. This is illustrated e.g., by thecflow

pointcut, where unification together with thecflow predicate is crucial in expressing

the temporal relation between points where variables are read respectively written in
the execution flow ofdrawAll .

4.2 Expressive power, openness, and simplicity

In this section, we reason about the complexity of the programming model of our point-
cut language. We argue that in addition to increasing the expressiveness of the language,
the rich models of program semantics and the powerful abstraction mechanisms such
as Prolog’s unification also decrease the complexity of the programming model.

First, consider the version of ALPHA, call it Fixed- ALPHA with a fixed pointcut
language, including e.g., only the predicates defined in our standard library. The expres-
siveness of this language is increased as compared to AspectJ - all pointcuts in Fig.8
are written in this language. Nonetheless, the programming model is not more complex
than that of AspectJ-like languages [21]. Similar to AspectJ, the programmer needs to
understand the meaning of some predefined pointcuts, such ascflow , within , etc., as
well as the semantics of Prolog operators/unification for composing them.

Now let us consider the full ALPHA language, in which (domain-specific) pointcut
libraries can be defined as outlined in Sec. 3.2. One may argue that this introduces the
complexities of full meta-programming into AOP. Similar to [15], we argue that the
problems with full meta-programming occur only in an imperative type of language
where the programmer is directly involved with some sort of program transformation.

With ALPHA, the programmer only specifies where and what behavioral effect to
apply and is not concerned with how this effect is achieved in terms of operational de-
tails. To support our argumentation, two examples are discussed in the following which
demonstrate that richer program models and more powerful abstraction mechanisms
decrease rather than increase the complexity of the programming model.

First, we review the pointcutscflow andpcflow from Fig. 8. They both identify
assignments involved in the display update crosscutting by their property of accessing
variables previously read in the control flow ofdrawAll . However, the models they
use are different. Thecflow predicate uses a richer model that includes the execution
trace;pcflow ’s model is the AST on top of which it approximates the dynamics.
We already argued in Sec. 4.1 thatcflow specifies the crosscutting structure more
precisely. Nonetheless,cflow is less complex and easier to understand thanpcflow

(see respective definitions in Fig. 15); The approximation of the dynamics of execution
based on the AST model adds accidental complexity topcflow ’s definition.

Second, we compare the ALPHA implementation of display updating using the
cflow pointcut in Fig. 8, with the AspectJ solution shown in Fig. 10. The latter is op-
erationally equivalent to the former: it tries to express the rule”whenever changes are
performed on fields that were previously read in the control flow of the lastdrawAll
call, make an update”by quantifying over the dynamic control flow. However, to com-
pensate for the lack of the needed information about the dynamic execution trace, a
model of the latter is constructed and managed by the programmer within the aspect.
Especially, in lack of more powerful abstraction mechanisms beyond operations on sets,
building this model employs the imperative Turing-completeness of Java.

Concretely, the aspect administers observer lists for individual fields rather than
for whole objects; an instance field of typeHashtable is added into the classFig-

ureElement , whose keys are field names and whose values are the corresponding
lists of observers, i.e.,Display objects. A display is made an observer of those fields
that have been read during the last execution of itsdrawAll() method (see the after
advice associated with the pointcutreads in Fig. 10). The pointcutchange captures
assignments to fields of figure elements binding the receiver object tof ; the after advice
associated with it usesf together with the name of the assigned field to retrieve displays
that observe the field, if any. Before callingdraw on each observer display, the latter is
removed from all observer lists it is in, since different fields might get read during the
next draw (field precision).

Like the cflow -based solution in ALPHA, the implementation in Fig. 10 is ro-
bust w.r.t. all change scenarios (butCh1). However, the aspect schematically shown in
Fig. 10 is very complex as compared to the pointcut-advicecflow in Fig. 8. Instead
of declaratively defining the crosscutting structure employing functional abstraction, as
its ALPHA counterpart does, the aspect employs the imperative Turing-completeness
of Java to build up a complex infrastructure to basically reverse-engineer the dynamic
execution; trying to make it robust w.r.tCh1will further increase the complexity.

<<aspect>> DisplayUpdate

FigureElement.getObserversForField(String) : List;
FigureElement.observersForFields : Hashtable;
…
Display.getObserved() : List;
Display.observed : List;
…

displayDraw(Display d):
 call(void Display.drawAll()) && target(d);
reads(Display d, FigureElement f):
 cflow(displayDraw(d)) &&
 get(* FigureElement+.*) && target(f) &&
 !get(java.util.Hashtable FigureElement.observersForFields);
change(FigureElement f):
 set(* FigureElement+.*) && target(f)

before(Display d): displayDraw(d)
after(Display d, FigureElement f) : reads(d,f)
after(FigureElement f): change(f)

in
tro

d
u

ctio
n

s
p

o
in

tcu
ts

a
d

vice

Management of observer lists for each field of each figure.

A list of the fields per instance observerd by each display.
This is necessary for the reset in the after advice for
pointcut displayDraw.

Denotes the action of drawing a display completely, i.e.,
each figure it knows.

Captures read accesses to any field in the
FigureElement hierarchy. The excluded field
observersForFields is introduced by the aspect.

Caputres write access to any field in the
FigureElement hierarchy.

Removes d from observers of all the fields it observes.

Adds d to the observers of the read field of the figure f.

Calls draw(f) on all observers of the changed field of
figure f.

Fig. 10.More robust AO implementation of the precise display updating

All the above said on the decreased rather than increased complexity of the pro-
gramming model, we would like to add that further investigation is still in place to
judge whether the Turing completeness of Prolog is actually needed. It would clearly
be desirable to have a simpler, but still sufficiently expressive, pointcut language, both
for further decreasing the complexity of the programming model as well as for making
an efficient implementation of the language simpler. We did not, however, want to re-
strict the expressiveness of our language from the very beginning and will consider this
issue in future investigation.

5 Abstract interpretation of pointcuts

A naive implementation of our approach that extends the Prolog database and evaluates
all pointcuts aftereverycomputation step is obviously not acceptable from bothtime
andspaceperspectives.

In this section, we present a new static analysis technique that evaluates pointcuts
statically in order to compute (a) a (small) set of expressions in the AST (i.e., join point
shadows) that will potentially influence the result of a pointcut, and (b) thelifetime
of facts that are generated at these shadows. The interpreter can take advantage of this
information by extending the database and evaluating the pointcuts only if an expression
from the aforementioned pre-computed set is evaluated, and by discarding data in the
database if its lifetime is over. A side-effect of the static analysis is that it also infers
static types for query variables used to type check advice bodies.

Our optimization is based on an abstract interpretation [8] of the pointcuts. Abstract
interpretation of a program uses its denotation to make computations in a universe of
abstract objects so that the result of an abstract execution gives some information on the
actual computation [8].

Domain Static abstraction
Time stamps {now,past }× Expression IDs
Values Types
Execution TraceVirtual Trace
Object Store Virtual Store

Fig. 11.Runtime domains and their static abstractions

In our case, we approximate the runtime domains shown in Fig. 11. The interpre-
tation is done by a special Prolog interpreter (written in Prolog itself) that evaluates
pointcut queries based on our abstract domains and collects data about join point shad-
ows and lifetime during the interpretation.

The virtual trace defines all predicates from the execution trace as rules over the
abstract syntax tree and the static type model. For illustration we will only consider
thecalls/5 predicate. In a similar way, all other predicates of the execution trace are
approximated statically. Their exact definition can be found in the appendix in Fig. 16
and on the project website [2]. Thecall/5 predicate is defined as follows:
1 calls ((Time,ExprID), ExprID, absval (RecTypeC), MName, absval(ArgTypeC))
2 :−
3 within ((ExprID, calls ((Rec,), MName,)), ,),
4 stype(Rec, RecType),
5 subtypeeq(RecTypeC, RecType),
6 meth(RecType, MName, meth(, MName, ArgType,)),
7 subtypeeq(ArgTypeC, ArgType),
8 addshadow((Time, ExprID)).

This rule uses the abstractions defined in Fig. 11 in order to create the virtual trace.
Timestamps are represented by a pair(Time,ExprID) , wherebyTime is either the
constantnow or it is unbound. To achieve this, we fix thenow predicate to the definition

now((now,)) . This means that all queries getting the timestamp via thenow/1 pred-
icate will have their timestamp in the abstraction fixed to the constantnow. All other
queries will have an unbound variable in the first position of the timestamp; an unbound
variable in the first position denotes a query that might refer to the past.

Instead of values, the execution trace uses types of the formabsval(SomeType) .
All method calls (found in the AST viawithin) imply a correspondingcalls predi-
cate, whereby the information from the static type system (stype/2 predicate) is used
in order to infer the type of the receiver. Subtyping is taken into account by correspond-
ing subtypeeq constraints.

Of particular interest is theaddshadow part of the rule. This is a special predicate
that is intercepted by our static analysis. Whenever anaddshadow goal is encountered,
the interpreter adds the corresponding join point shadow (i.e.,ExprID) and its lifetime
(Time) to a list of shadows for the pointcut that is currently analyzed.

The definition of the virtual store is relatively straightforward: It defines thestore

andclassOf predicate in terms of types instead of values. The situation becomes a
bit complicated by taking subtype polymorphism into account. We deal with this by
letting store range over all possible combinations of types in an object – we ignored
performance and favored simplicity in our prototype analysis. The definition of the
virtual store is also available in the appendix (Fig. 16).

Our pointcut interpreter is implemented as a meta-interpreter in Prolog. Meta-
interpreters are a common technique for abstract interpretation of logic programs [7].
Our meta-interpreter is basically the so-calledvanilla meta-interpreter [36, Program
17.5] extended by a loop detection mechanism and an additional parameter that collects
shadows. In order to invoke the pointcut interpreter we first have to substitute the dy-
namic values in the pointcut expressions with their static abstraction. By evaluating the
pointcuts over the abstracted domains with our pointcut interpreter we basically per-
form a constant propagation analysis through the control flow of a pointcut. The code
of the meta-interpreter is available in the appendix (shadows predicate in Fig. 16).
We do not want to discuss its implementation here in detail because it uses some very
Prolog-specific mechanisms.

subtypeeq(D, display),
shadows(

(set (P, F,), get (T1, , P, F,), calls (T2, , absval (D), draw,),
cflow(T1, T2), instanceof (P, figureElement)), ,S)

Fig. 12.Query for shadows ofcflow pointcut (line 17, Fig. 8)

For illustrating the abstract interpretation process, the query to compute the shadows
for thecflowpointcut from line 17, Fig. 8 is shown in Fig. 12. The program expressions
inside the pointcut (e.g., the@this.d expression in Fig. 8) are replaced by an abstract
value that is constrained by its static type via asubtype constraint.

The meta-interpreter computesall solutions of the query on top of the virtual execu-
tion trace and virtual store (thereby collecting shadows triggered byaddshadow goals).
It is important thatall solutions are computed such that the back-tracking evaluation of

queries covers all possible evaluation scenarios at runtime. The abstract values (i.e.,
types) returned by the pointcut interpreter are also used to get a bound for the static
type of pointcut variables, which is then used to type-check advice bodies.

Fig. 13 illustrates the result of computing the shadows for the aforementioned
cflow pointcut (Fig. 8) in terms of the code from Fig. 4 and a sample main class.
The shadows identified by the pointcut-interpreter are framed in Fig. 13. If the life-
time of the produced facts isindefinite (i.e., constantnow has not been found in the
timestamp, the expressions are also underlined, otherwise the lifetime isimmediate .

For example, the call todraw and the field reads are marked as “indefinite lifetime”
because they could be relevant as past events in the evaluation of theget goal in line 17
of Fig. 8. The lifetime of the field assignments is marked asimmediate because they
are only relevant for this query if they are the currentnow event.

1 class Point extends FigureElement{
2 void draw(Display d){
3 if (this.enabled) d. paintPoint (this.x , this.y);

4 }
5 }
6 class Line extends FigureElement{
7 void draw(Display d){
8 this . foo(true);

9 if (this.enabled) d. paintLine (this.start , this.end);

10 }
11 }
12 class Main extends Object{
13 ...
14 void writeSomething(){
15 this .p2.y := false ; this .p1.x := true ;

16 this .p1.enabled := false ;

17 }
18 void main() {
19 this .p1 := new Point (); this .p2 := new Point ();

20 this .p2.enabled := true ;

21 this . l1 := new Line (); this . l1 . start := this .p1;

22 this . l1 .end := new point ;

23 this .d := new Display (); this .d. f1 := this . l1 ;
24 this .d. f2 := this .p2; this .du = new Displayupdate ();
25 this .du.d := this .d;

26 deploy(this .du){ this.d.drawAll() ; this .writeSomething ();}

27 }
28 }

Fig. 13.The result of abstract interpretation

5.1 Results and limitations

The results of the static analysis are directly used in our interpreter in that Prolog facts/
queries are only evaluated at marked shadows. Also, events for shadows that are marked

with lifetime immediate are discarded immediately after the evaluation of the corre-
sponding query. Our interpreter can be run both with and without this optimization.
The performance gain depends directly on the relation between marked shadows and
unmarked shadows. The example in Fig. 8 runs approximately 4 times faster with the
abstract interpretation optimization turned on. In a different example, where the per-
centage of marked shadows to unmarked shadows is smaller, the program runs 300
times faster. This result is not surprising because extending the database and evaluating
queries is very expensive, but it indicates that it is possible to have a very expressive
pointcut language that is expensive only if pointcuts are used that cannot be projected
on a small set of shadows.

Our analysis technique still has several important limitations, though. First, the anal-
ysis itself, as it is presented here, is very slow and would not scale to real systems. It is
also hard to guarantee termination of the static analysis in all cases; a typical problem
of static analysis by meta-circular interpreters [7]. Our primary goal was to show the
feasibility of a static analysis only, so we favored simplicity over performance and com-
pleteness. We think that our analysis can be embedded into the conceptual framework
described by Codish and Søndergaard [7]. They use a different meta-interpreter, a so-
called “bottom-up” interpreter, that has better performance properties and is guaranteed
to terminate. This is part of our future work.

Another limitation is in the existence of theindefinite lifetime because this
means that such facts will never be removed from the database. A more fine-grained
analysis that computes lifetimes of the kind “this fact can be removed after some event
happened” would be desirable in order to remove this limitation. It is of course easy
to construct queries that will inherently require indefinite storage of previous events,
but in these cases the static analysis could be used to detect those queries and signal an
error if the memory requirements cannot be restricted in a reasonable way.

How do we get from our prototype to an efficient implementation in a compiled
language? Besides the limitations mentioned above, our representation of the store is
not easy to implement efficiently. A trivial solution is to drop the store model from
the pointcut language - there are no conceptual dependencies of our approach on the
existence of the store (or any other) model. An alternative would be a database-like
organization of the store, which is actually part of our future work.

In order to make the evaluation of the queries itself more efficient, we plan to use
partial evaluation techniques such as Logen [26] to reduce dynamic pointcut evaluation
to a minimum and to inline the remaining dynamic checks at the computed join point
shadows.

6 Related work

6.1 Pointcut languages

Gybels’ and Brichau’s proposal [15] is related in several ways. Similar to our approach,
they use logic programming and unification for matching pointcuts. The insertion of
dynamic context into a pointcut similar to our@expr expressions is possible by means
of linguistic symbiosis[3]. As in our approach, pointcuts can be made reusable by means

of logic rules. The possibility of user-defined pointcut predicates or pointcut libraries is
not discussed in [15], but this is no conceptual limitation.

The most important difference to our approach is the data model upon which point-
cuts can be expressed. In their approach, the data model consists of a representation
of the current join point, syntax tree, and some special object reifying predicates. It is
hence not possible to encode queries that refer to the execution history or need access
to data from the store. An efficient implementation by computing shadows of pointcuts
is also discussed but the addition of the whole execution trace as in our case makes
the problem much harder. Other works from the same group [19, 37, 4] also use logic
meta-programming but consider only the static syntax of the program as data model.

LogicAJ [32] is an extension to AspectJ that uses logic variables and unification
instead of wildcards in order to make pointcuts more expressive. The data model upon
which the pointcuts operate is unchanged, though.

We have developed an extension of Alpha with which it is possible to refer to future
events [24]. Due to several limitations of the implementation, this extension should be
seen as an experiment to explore the limits of pointcuts and not as a proposal for a
practical programming language.

Walker et al have developed an extension to AspectJ for expressing temporal rela-
tions between join points [38]. These temporal relations can be expressed via context-
free grammars. The program trace is then “parsed” by an automaton for the grammar.
Information about the history of the execution is stored in the state of these automata,
which is an effective solution to reduce the amount of data that has to be stored. This
approach would not be directly applicable to our model because our pointcut language
is more powerful than context-free grammars.

Douence et al have proposed a special pattern matching language for execution
traces based on Haskell [11]. Other models besides the execution trace are not cov-
ered. Many of the issues presented in this paper (integration into the language, context
passing, efficient implementation) are not discussed.

Josh[5] is an AspectJ-like language with an extensible pointcut mechanism, built
on top of Javassist [6]. Josh does not support declarative pointcut specifications. Rather,
new PCDs in Josh are implemented as imperative meta-programs on the abstract syntax
tree using the Javassist library. Josh basically suffers from the problems of an imperative
meta-programming approach, especially with respect to the composability of the PCDs
implemented as meta-programs.

Eichberg et al discussed the usage of the functional query language XQuery as an
extensible pointcut language [13]. The data model in this approach is an XML represen-
tation of the abstract syntax tree. Due to functional abstraction and the module system
of XQuery, it is possible to organize reusable pointcuts in libraries. Other data models
or the integration into a programming language are not discussed.

Sakurei et al. [34] propose a design to extend AspectJ with object-specific aspects
and pointcuts. Ourdeploy statement can be used with a similar effect as theasso-

ciate statement in this approach. Since runtime values can be used directly in our
pointcut language, arbitrary object-specific constraints can be expressed and not just
those that are defined in aperObject clause. On the other hand, the proposal in [34]

has a more a efficient implementation if many instances of the same object-specific
aspect are active simultaneously.

6.2 Weaving and static analysis

Hilsdale and Hugunin have described the weaving mechanism in AspectJ [17]. The
AspectJ weaver also computes shadows for dynamic pointcuts. However, AspectJ has
only a fixed, predefined set of pointcut operators, hence it is easier to compute the set
of join point shadows statically. Due to the structure of pointcuts, only certain dynamic
checks that look at the class of objects or operate on special stacks (forcflow), are
required, such that these dynamic checks can be directly woven into the code.

A more semantics-based compilation model, based on a simplified model of As-
pectJ, can be found in [28]. Using partial evaluation, their model can explain several
issues in the compilation processes, including how to find places in program text to in-
sert aspect code and how to remove unnecessary run-time checks. Sereni and de Moor
describe a static analysis technique [35] for an even more simplified version of the As-
pectJ pointcut language that allows a more efficient implementation of some pointcuts
than the implementation proposed in [28].

Douence et al presented an analysis technique for detecting interactions between
aspects [10]. This is complementary to our static analysis, because we simply assume a
global ordering among aspects and concentrate on computingshadowsof single point-
cuts. Nevertheless, our abstract interpretation implies a primitive interaction analysis for
free, namely in that it becomes trivial to detect whether two pointcuts have intersecting
shadows. However, this is not in the focus of our work.

Codish and Søndergaard [7] describe the usage of meta-interpreters for different
abstract interpretations of Prolog code. In contrast to their “bottom-up” approach, we
use a conventional top-down meta-interpreter with loop-detection. We are not aware of
other works that use abstract interpretation for computing join point shadows.

6.3 Aspects and modularity

Lopes et al. [27] motivate and speculate about future ”more naturalistic” referencing
mechanisms inspired by natural languages, such e.g.,”those (data) read in previous
sentence”, or even”in this last operation”. By means of a simple example they illus-
trate how referencing mechanisms of current programming languages force program-
mers to circumscribe their intentions in terms of operational details of the underlying
machine. They argue that while pointcuts in AOP languages go one important step fur-
ther in supporting more powerful referencing they do not go far enough, e.g., in that they
lack means of temporal referencing. The prototype we presented in this paper provides
a very good basis to experiment with programming models that support more naturalis-
tic referencing mechanisms as those envisaged in [27]. Our prototype can be extended
to collect more and different kinds of information about the program to support more
”types of referencing”.

Aldrich [1] proposes module constructs that export pointcuts as part of the mod-
ule specification. The rationale for this is the lack of modular reasoning if pointcuts
depend on implementation details of a module. He shows that the implementation of

such modules can be changed without affecting the consistency of the whole system.
On the other hand, this approach is also a serious restriction to the programming model
because 1) pointcuts of a module have to be anticipated in its design, 2) the existence of
these pointcuts in the interface establishes an implicit coupling to the aspects that use
the pointcut, and 3) if pointcuts go across modules (as is inherent for crosscutting con-
cerns), the specification of the pointcut interfaces themselves becomes a crosscutting
concern. Our approach also tackles this problem, but with very different means, namely
by making the pointcut language more powerful, such that pointcut specifications can be
made more robust and less dependent on implementation details. On the other hand, we
can give no static guarantees because we cannot enforce implementation-independent
pointcuts.

6.4 Information engineering in program models

There are also some interesting related works outside the domain of programming lan-
guage design. Efficient ways to manage and retrieve dynamic data about the execution
of a program have been discussed by De Pauw et al [9]. Both the works by Lange and
Nakamura [25] and by Richner and Ducasse [33] discuss the design of a static and a
dynamic model of the program semantics as well as the use of logic rules to collect and
combine information from these models in order to improve program understanding
and program visualizations. Abstraction mechanisms to select interesting events in the
execution of a program are also used in the domain ofdebugging, for example in the
work of Jahier and Ducasse [18]. Reiss and Renieris have developed a framework for
processing execution traces by reducing the amount of data as it is collected through
mechanisms such as automata or context-free grammars [31]. These techniques may be
helpful for us in order to further reduce the amount of collected data.

7 Summary and Future Work

In this paper we have presented an analysis which shows that current pointcut languages
support localization of crosscutting concerns but have some problems with respect to
information hiding. And we have described a new pointcut language in the form of logic
queries over different models of the program semantics. Together with the abstraction
facilities of logic programming, it becomes possible to raise the abstraction level of
pointcuts and hence increase the software quality of aspect-oriented code. We have
also presented a static analysis technique that can be the starting point of an efficient
implementation.

Our future work will concentrate on the embedding of our pointcut language into a
real compiled programming language and on further research in efficient implementa-
tion techniques that eliminate the limitations of our current analysis.

Acknowledgments

We would like to thank Gregor Kiczales, Michael Haupt and Michael Eichberg for
comments on drafts of this paper.

This work is partly supported by the European Network of Excellence on Aspect-
Oriented Software Development (AOSD-Europe).

References

[1] J. Aldrich. Open modules: Modular reasoning about advice. InECOOP’05: European
Conference on Object-Oriented Programming. Springer LNCS, 2005.

[2] Alpha project. http://www.st.informatik.tu-darmstadt.de/pages/projects/alpha/.
[3] J. Brichau, K. Gybels, and R. Wuyts. Towards a linguistic symbiosis of an object-oriented

and a logic programming language. InProceedings of the Workshop on Multiparadigm
Programming with Object-Oriented Languages (MPOOL 2002), 2002.

[4] J. Brichau, K. Mens, and K. D. Volder. Building composable aspect-specific languages
with logic metaprogramming. InGenerative Programming and Component Engineering
(GPCE’02). Springer LNCS, 2002.

[5] S. Chiba and K. Nakagawa. Josh: An Open AspectJ-like Language. InProceedings of
AOSD 2004, Lancaster, England, 2004. ACM Press.

[6] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode Transla-
tors. InProceedings of GPCE ’03, Lecture Notes in Computer Science, pages 364–376.
Springer, 2003.

[7] M. Codish and H. Søndergaard. Meta-circular abstract interpretation in Prolog. In T. Mo-
gensen, D. Schmidt, and I. H. Sudburough, editors,The Essence of Computation: Complex-
ity, Analysis, Transformation, LNCS 2566. Springer, 2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. InSymposium on Principles of
Programming Languages. ACM Press, 1977.

[9] W. De Pauw, D. Kimelman, and J. M. Vlissides. Modeling object-oriented program exe-
cution. InECOOP ’94: Proceedings of the 8th European Conference on Object-Oriented
Programming, pages 163–182, London, UK, 1994. Springer-Verlag.

[10] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and resolution
of aspect interactions. InProceedings of the ACM SIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering (GPCE’02), volume 2487 ofLNCS.
Springer-Verlag, 2002.

[11] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. InProc. of the
Third International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns (Reflection 2001), volume 2192 ofLNCS. Springer-Verlag, 2001.

[12] S. Drossoupolou. Lecture notes on the L2 calculus.
http://www.doc.ic.ac.uk/˜ scd/Teaching/L1L2.pdf.

[13] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional queries. InSecond
ASIAN Symposium on Programming Languages and Systems (APLAS). LNCS, 2004.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison Wesley, 1995.
[15] K. Gybels and J. Brichau. Arranging language features for more robust pattern-based cross-

cuts. InProceedings of the 2nd international conference on Aspect-oriented software de-
velopment, pages 60–69. ACM Press, 2003.

[16] J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In
Proceedings OOPSLA ’02. ACM SIGPLAN Notices 37(11), pages 161–173. ACM, 2002.

[17] E. Hilsdale and J. Hugunin. Advice Weaving in AspectJ. InProc. of AOSD’04. ACM Press,
2004.

[18] E. Jahier and M. Ducasse. Generic program monitoring by trace analysis. InTheory
and Practice of Logic Programming Journal, volume 2(4-5). Cambridge University Press,
2002.

[19] D. Janzen and K. De Volder. Navigating and querying code without getting lost. InPro-
ceedings of AOSD’03. ACM Press, 2003.

[20] G. Kiczales. Keynote talk at AOSD ’03, 2003.
[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview

of AspectJ. InProceedings of ECOOP ’01, 2001.
[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-oriented programming. InProceedings ECOOP’97, LNCS 1241, pages 220–242.
Springer, 1997.

[23] G. Kizcales and M. Mezini. Aspect-oriented programming and modular reasoning. In
Proceedings International Conference on Software Engineering (ICSE) ’05. ACM, 2005.

[24] K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over traces. In
Workshop on Foundations of Aspect-Oriented Languages (FOAL) at AOSD’05, 2005.

[25] D. B. Lange and Y. Nakamura. Interactive visualization of design patterns can help in
framework understanding. InOOPSLA ’95: Proceedings of the tenth annual conference on
Object-oriented programming systems, languages, and applications, pages 342–357, New
York, NY, USA, 1995. ACM Press.

[26] M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in
Prolog using a hand-written compiler generator. InTheory and Practice of Logic Program-
ming, volume 4, pages 139–191, 2004.

[27] C. V. Lopes, P. Dourish, D. H. Lorenz, and K. Lieberherr. Beyond AOP: Toward naturalistic
programming. InProceedings Onward! Track at OOPSLA’03, Anaheim, 2003. ACM Press.

[28] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimization model for
aspect-oriented programs. InProceedings of Compiler Construction (CC2003), LNCS
2622. Springer, 2003.

[29] M. Mezini and K. Ostermann. Conquering aspects with Caesar. InProceedings Conference
on Aspect-Oriented Software Development (AOSD) ’03, pages 90–99. ACM, 2003.

[30] D. L. Parnas. A technique for software module specification with examples.Communica-
tions of the ACM, 15(5):330–336, 1972.

[31] S. P. Reiss and M. Renieris. Encoding program executions. InInternational Conference on
Software Engineering, Toronto, Ontario, Canada, 2001. IEEE.

[32] T. Rho and G. Kniesel. Uniform genericity for aspect languages. Technical Report IAI-
TR-2004-4, Computer Science Department III, University of Bonn, Dec 2004.

[33] T. Richner and S. Ducasse. Recovering high-level views of object-oriented applications
from static and dynamic information. InICSM ’99: Proceedings of the IEEE International
Conference on Software Maintenance, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[34] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S. Komiya. Association aspects.
In Proc. of AOSD’04. ACM Press, 2004.

[35] D. Sereni and O. de Moor. Static analysis of aspects. InProceedings of AOSD’03. ACM,
2003.

[36] L. Sterling and E. Shapiro.The Art of Prolog. MIT Press, 1994.
[37] K. D. Volder and T. D’Hondt. Aspect-Oriented Logic Meta Programming. InConf. Meta-

Level Architectures and Reflection, LNCS 1616. Springer, 1999.
[38] R. J. Walker and K. Viggers. Implementing protocols via declarative event patterns. In

Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE-12), 2004.

A Appendix

Format Example
prog(
[class(ClassName, SuperClass,
[field(FieldType, FieldName), ...
[meth(RetType, MethName, ArgType, Expr), ...],
[advice(before, Expr), ...]

] ...
)
where Expr has the form:
(ExprID, if(IfExpr, ThenExpr, ElseExpr)
(ExprID, get(ReceiverExpr, FieldName)
(ExprID, seq(Expr1, Expr2)
...

prog(
[class(point, figureElement,

[field(bool, xx), field(bool, yy),
field(bool, enabled)],

[meth(bool, draw, display),
('9:5', if(('9:13', get(('9:8',this),enabled)),

('10:7', '10:15', seq(
('10:13', get(('10:8', this), xx)),
('10:22', get(('10:17', this), yy)))),

('11:10', true))))],
[]%no advice
)%class point

]%classes
). %prog

stype(ExprID, Type) stype('2:26', bool)

new(ID, ExprID, ClassName, Obj)
calls(ID, ExprID, Receiver, MethodName, Arg)
set(ID, ExprID, Receiver, FieldName, Value)
get(ID, ExprID, Receiver, FieldName)
deploy(ID, ExprID, Obj)
endcall(ID, CallID, ReturnValue)

pred(ID1, ID2) % event ID1 happened
% immediately before event ID2

before(ID1, ID2) % transitive hull of pred
now(ID) % gives the current event ID

calls(3, '53:5', iota1, setP1, iota2)
set(4, '66:14', iota1, p1, iota2)
endcall(5, 3, false)

store(Obj, FieldName, Value)
classof(Obj, ClassName)

classof(iota2, point)
store(iota2, enabled, false)
store(iota2, yy, false)
store(iota2, xx, true)

Fig. 14. Format of the four program models (AST, static typing, execution trace, object store)
available for pointcuts in Alpha

1 % abbrevations if only interested in current event
2 new(ClassName, Obj) :−
3 now(ID), new(ID, , ClassName, Obj).∗
4 calls (Receiver , Method, Arg) :−
5 now(ID), calls (ID, , Receiver , Method, Arg).
6 set (Receiver , Field , Val) :−
7 now(ID), set (ID, , Receiver , Field , Val).
8 get (Receiver , Field) :−
9 now(ID), get (ID, , Receiver , Field).

10 deploy(Receiver) :−
11 now(ID), deploy(ID, , deploy(Receiver)).
12

13 % is ID0 in the control flow of ID1?
14 cflow(ID0, ID1) :−
15 calls (ID1, , , ,), before (ID1, ID0),
16 endcall (ID2, , ID1,), before (ID0, ID2).
17 cflow(ID0, ID1) :−
18 calls (ID1, , , ,), before (ID1, ID0),
19 \+ encall (, , ID1,).
20

21 % is Obj2 reachable from Obj1?
22 reachable (Obj1,Obj2) :− reachablevia (Obj1,Obj2 ,[]).
23 reachablevia (Obj1,Obj2,) :− store (Obj1, , Obj2).
24 reachablevia (Obj1,Obj2,Via) :−
25 store (Obj1, , Obj3), \+ member(Obj1,Via),
26 reachablevia (Obj3, Obj2, [Obj3|Via]).
27

28 % convenient access of AST
29 class (Name, CDef) :−
30 prog(CDefs), member(CDef, CDefs),
31 CDef = class (Name,, , ,).
32 meth(CName, MName, MDef) :−
33 class (CName, class(, , , MDefs,)),
34 member(MDef, MDefs), MDef = meth(,

MName, ,).
35 field (CName, FName, FDef) :−
36 class (CName, class(, , FDefs, ,)),
37 member(FDef, FDefs), FDef = field (, FName).

1 within ((ExprID, Expr), CName, MName,) :−
2 meth(CName, MName, meth(, , , Body)),
3 subExpr(Body, (ExprID, Expr)).
4 subExpr(E, E).
5 subExpr(X, E) :−
6 X =.. [| List], member(E1, List), subExpr(E1, E).
7

8 % static subtype / subclass relation
9 directsubtype (C1, C2) :−

10 class (C1, class (, C2, , ,)).
11 subtypeeq(bool , bool).
12 subtypeeq(C, C) :− class (C,).
13 subtypeeq(C1, C2) :−
14 directsubtype (C1, C3), subtypeeq(C3, C2).
15

16 % add subtyping to static and dynamic types
17 hastype(ExprID, C) :−
18 stype(ExprID, D), subtypeeq(D, C).
19 instanceof (Obj, C) :−
20 classof (Obj, D), subtypeeq(D, C).
21

22 %predicted control flow
23 pcflow(CName, MName, E) :−
24 pcflow1(CName, MName, E, []).
25 pcflow1(CName, MName, E,) :−
26 within (E, CName, MName).
27 pcflow1(CName, MName, E, V) :−
28 within ((, calls ((RecID,), MName1,)), CName, MName),
29 stype(RecID, CName2),
30 (subtypeeq(CName1, CName2); subtypeeq(CName2, CName1)),
31 meth(CName1, MName1,),
32 \+ member((CName1, MName1), V),
33 pcflow1(CName1, MName1, E, [(CName1,MName1)|V]). ∗
34

35 %finding the most recent of an event pattern X
36 mostRecent(ID,X) :−
37 bagof(ID,X,IDs), maxlist (IDs,ID).

Fig. 15.Standard pointcut library

1 % virtual store
2 store (absval (CName), Field, absval (TypeC)) :−
3 subtypeeq(CName, CSuper),
4 field (CSuper, Field , field (Type,)),
5 subtypeeq(TypeC, Type).
6 classof (absval (CName),CName).
7

8 % virtual event trace
9 calls ((Time,ExprID), ExprID,

10 absval (RecTypeC), MName, absval(ArgTypeC))
11 :−
12 within ((ExprID, calls ((Rec,), MName,)), ,),
13 stype(Rec, RecType),
14 subtypeeq(RecTypeC, RecType),
15 meth(RecType, MName, meth(, MName, ArgType,)),
16 subtypeeq(ArgTypeC, ArgType),
17 addshadow((Time, ExprID)).
18 % similarly for set , get ,new,deploy, endcall

1 now(now).
2 before (,).
3 pred(,).
4 % the meta−interpreter
5 shadows(true , [],) :− !.
6 shadows((A,B), Shadows, Trail) :−
7 !, shadows(A, S1, Trail), shadows(B, S2, Trail),
8 append(S1, S2, Shadows).
9 shadows(X, [],) :−

10 predicateproperty (X, built in), !, X.
11 shadows(addshadow((Time,Token)), S,) :−
12 var(Time), !, S = [(Token, indefinite)].
13 shadows(addshadow((now,Token)), S,) :−
14 !, S = [(Token, immediate)].
15 shadows(A, S, Trail) :−
16 loop detect (A, Trail), !.
17 shadows(A, S0, Trail) :−
18 clause (A, B), shadows(B, S0, [A|Trail]).

Fig. 16.Meta-interpreter for computing pointcut shadows

