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Abstract
The abilities to extend a software module and to integrate a soft-
ware module into an existing software system without changing
existing source code are fundamental challenges in software en-
gineering and programming-language design. We reconsider these
challenges at the level of language expressiveness, by using the lan-
guage concept of type classes, as it is available in the functional
programming language Haskell. A detailed comparison with re-
lated work shows that type classes provide a powerful framework in
which solutions to known software extension and integration prob-
lems can be provided. We also pinpoint several limitations of type
classes in this context.

Categories and Subject Descriptors D.2.13 [SOFTWARE ENGI-
NEERING]: Reusable Software

General Terms Design, Languages

Keywords Software extension, Software integration, Haskell, Type classes,
Object adapter, Tyranny of the dominant decomposition, Expression prob-
lem, Multiple dispatch, Family Polymorphism, Framework integration

1. Introduction
Software extension and integration are fundamental and well-
known challenges in software engineering and programming-
language design. We refer to software extension as the act of ex-
tending a software module without modifying it, and to software
integration as the act of integrating a software module into an exist-
ing software system. Extension and integration are related to mod-
ularity; only those properties of a system that are implemented in a
modular way can be refined or replaced without modifying existing
source code — this is a premise that dates back to Parnas [48].

Although the ability to extend software used to be a prime moti-
vation for class inheritance when the OO paradigm was conceived,
it is well understood by now that both class and interface inheri-
tance are not flexible enough to express several kinds of extensions.
There exist formulations of extension or integration problems such
as the expression problem [58, 60, 57, 36], the framework integra-
tion problem [37], the problem of independent extensibility [54, 55],
the tyranny of the dominant decomposition [20, 56], scattering and
tangling [29], or the component integration problem [23, 40]. These
documented problems have been used in the past to illustrate limita-
tions of OO languages and to motivate various language extensions
or encoding schemes.
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In the present paper, we revisit the challenges for software ex-
tension and integration while putting to work the language con-
cept of type classes [27, 59, 18], as available in the functional pro-
gramming language Haskell. It turns out that type classes provide
a powerful modularity mechanism that can be used to address sev-
eral of the aforementioned extension and integration problems. It is
worth stressing that our use of type classes directly targets software
extension and integration; we do not detour through encodings of
OO features such as mutable objects or object-type inheritance in
Haskell — even though type classes are known to be useful in this
context, too [31].

Contributions (i) We provide a new look on type classes from
the perspective of software extension and integration. There is
little or no related work that furnishes such a view; a noteworthy
exception is Siek et al.’s work on generic programming [17, 52, 51].
(ii) We explain the advanced modularity that is provided by type
classes. (iii) We describe concrete, type-class-based solutions for
some well-known modularity problems. (iv) As a byproduct, we
identify some aspects of type classes that limit their usefulness for
software extension and integration. (v) We reveal the relevance of
Haskell (and its type classes) for expressiveness problems mainly
studied in the OO research community.

Road-map Sec. 2 and Sec. 3 discuss various well-known ex-
tension and integration problems. Sec. 2 facilitates conventional
single-parameter type classes, while Sec. 3 also employs multi-
parameter type classes. Sec. 4 analyzes the characteristics of type
classes at a more abstract level.

2. Single-parameter type classes at work
After a short introduction to type classes, we will look at well-
known problems that require only basic Haskell 98-based type-
class expressiveness dating back to 1988-89 [27, 59]. That is, we
use single-parameter type classes with types as parameters. It is
surprising to see (for these authors anyhow) how far we can get
with such folklore expressiveness.

2.1 Introduction to type classes
Type classes were originally developed to deal with ad-hoc poly-
morphism such as operator overloading in a less ad-hoc man-
ner [27, 59]. A type class defines a signature for a family of func-
tions that every member of the type class must implement. For in-
stance, the following type class, Eq, comprises one member func-
tion (==), which is meant to be a predicate for equality:

class Eq a where
(==) :: a −> a −> Bool

This class is parameterized in a single type, a. A type becomes a
member of a type class by an instance declaration that implements
the functions declared in the type class. For instance, consider the
following datatype for Peano naturals (0, successor of 0, ...):



data Nat = Zero | Succ Nat

The type Nat becomes a member of the type class Eq as follows:

instance Eq Nat where −− Structural equality
Zero == Zero = True
Zero == (Succ ) = False
(Succ ) == Zero = False
(Succ x) == (Succ y) = x == y

Any use of ‘overloaded’ function symbols (such as (==)) in a
program is subject to instance selection. The selection happens at
compile time, if argument and result types are sufficiently instan-
tiated; it may be deferred to run-time otherwise, e.g., by compila-
tion to explicit dictionary passing style. Type classes of a certain
form are part of the standardized Haskell-98 language [49]; several
more elaborate type-class features have been in use for some years
now [9, 24, 50, 25, 12], and several of them are likely to get into
the emerging Haskell′ standard.

2.2 Object adapter
As a warm-up, we consider the ‘adapter problem’, i.e., the problem
of adapting an object type so that it implements the interface that
is required by a given client. This problem is addressed by the OO
design pattern adapter. Fig. 1 shows the example used by Gamma
et al. [16]. The class TextShape in Fig. 1 is an object adapter that
wraps objects of type TextView and provides an implementation of
the boundingBox method in terms of TextView’s protocol.

Fig. 2 shows the type-class-based solution of the adapter prob-
lem. The declaration data TextView declares an algebraic datatype
that corresponds to the OO class TextView. The functions origin
and size correspond to the methods of the TextView class. The in-
terface Shape is transcribed to a type class in Haskell. The type
class Shape comprises one method, boundingBox, whose first ar-
gument type is the type parameter of the class. The declaration
instance Shape TextView makes TextView an instance of the Shape
type class; an appropriate implementation of boundingBox is pro-
vided; it calls out to TextView-specific functions origin and size .

The function circumference (at the bottom of the figure) il-
lustrates type-class-bounded polymorphism, which roughly corre-
sponds to OO interface polymorphism. The function takes a pa-
rameter whose type must be an instance of Shape (denoted by the
constraint Shape s in front of the => sign). Here is an expression
that applies the polymorphic circumference function to a text view:

circumference (TextView ”foo” 0 0 10 10)

Assessment The strength of the type-class-based solution is that
it does not need any wrapper type such as TextShape in the OO ap-
proach. Instead, the adaptee type TextView is equipped with a Shape
implementation by means of the instance declaration. Wrapping is
known to cause object schizophrenia due to confusion between the
identity of the wrapper and the wrappee. Also, when an adaptee is
aggregated by an object, then one cannot invoke the adapter inter-
face directly; cf. Fig. 3.

The type-class-based approach comes with an arguable restric-
tion: the adapter must not require data extension, i.e., it must be
‘stateless’. One may take the position that an adapter is not sup-
posed to carry state. Then, this restriction is still a hint at potential
limitations with regard to design patterns other than adapter.

2.3 Tyranny of the dominant decomposition
Our next problem is the one of the ‘tyranny of the dominant de-
composition’ [56], which is essentially about the OO programming
limitation that one has to choose a fixed decomposition of a sys-
tem in the design of a class hierarchy, although other decomposi-
tions are appropriate, too. A standard example is the classification

Figure 1. Adapter example from [16]

−− A datatype for the TextView class
data TextView = TextView String Int Int Int Int
origin (TextView x y ) = (x,y)
size (TextView x y) = (x,y)

−− A datatype for the Point class
data Point = Point Int Int

−− A type class for the OO interface of shapes
class Shape s where boundingBox :: s −> (Point, Point)

−− The TextShape adapter
instance Shape TextView where

boundingBox t = (Point x1 y1, Point (x1+x2) (y1+y2))
where (x1,y1) = origin t ; (x2,y2) = size t

−− A polymorphic function on shapes
circumference :: Shape s => s −> Int
circumference s = 2 ∗ ((x2−x1) + (y2−y1))
where (Point x1 y1, Point x2 y2) = boundingBox s

Figure 2. Type-class encoding of the adapter example

data ImageTextView = ImageTextView Image TextView
data Image = ... −− details elided
leftupper :: Image −> (Int, Int)

instance Shape ImageTextView where
boundingBox (ImageTextView im tv) = (Point x1 y1, p2)

where (x1,y1) = leftupper im
(p1,p2) = boundingBox tv

Figure 3. An aggregated adaptee — The datatype ImageTextView has
a text view as one of its components and is itself adapted to the Shape type class. In
order to calculate the bounding box of an image text view, we would like to use the
bounding box of the aggregated text view. In the OO version, we cannot directly invoke
boundingBox on the aggregated object; we end up creating a transient TextShape
object that wraps the TextView object.

of trees and plants from the perspective of a lumberjack and a bird,
respectively [56, 20]. A lumberjack would classify trees into cate-
gories like hard wood and soft wood trees; a bird is more interested
in properties like whether a plant provides nectar or insects, hence
his decomposition of the system would be very different.

Fig. 4 shows an encoding of the two independent hierarchies
using type classes. The => operator in the class declaration,
cf. class Plant p => NectarPlant, has the same purpose as in a
function declaration: it restricts the set of admitted instances of
NectarPlant to those types that are instances of Plant. This use of
=> is similar to OO interface inheritance.

Let us now consider a concrete tree, namely a cherry tree, which
is a hardwood tree according to the lumberjack’s view, and a nectar
plant according to the bird’s view. Fig. 5 shows a model of cherry
trees as a standard algebraic datatype with properties such as its



−− View of the lumberjack
class Tree t where assessedValue :: t −> Integer
class Tree t => HardWood t
class Tree t => SoftWood t

−− View of the bird
class Plant p where foodValue :: p −> Integer
class Plant p => NectarPlant p where sweetness :: p −> Integer
class Plant p => InsectPlant p

Figure 4. Separate classification hierarchies

−− A cherry tree has a size
data Cherry = Cherry Integer

−− Mapping to lumberjack ’ s view
instance Tree Cherry where assessedValue (Cherry s) = s ∗ 42
instance HardWood Cherry

−− Mapping to bird ’ s view
instance Plant Cherry where foodValue (Cherry s) = s ∗ 23
instance NectarPlant Cherry where sweetness (Cherry s) = 99

Figure 5. Classifying a cherry tree

size; the two independent decompositions of the tree domain are
described by corresponding type-class instances.

Assessment The type class solution is easy to extend in a modular
way: Consider a third decomposition of the tree domain from the
point of view of a lawyer. This view may classify trees according
to applicable taxes or laws. No code has to be changed to add such
an additional decomposition. The perspective of the lawyer can
be specified in one module; the instance declaration, which maps
the cherry tree to the perspective, can be specified in yet another
module.

The type-class-based addition of a new perspective is surpris-
ingly convenient, when compared to the approaches that were
designed to address the problem of the tyranny of the domi-
nant decomposition, i.e., subject-oriented programming or hyper-
spaces [20, 47, 56]. That is, these approaches require an explicit
merger of the relevant parts of the original system that is supposed
to incorporate the new perspective. With type classes, there is no
distinction between two versions of the code that coexist (the ver-
sion without the additional perspective vs. the new version). The
type-class instances for a new perspective can be imported by any
module and are henceforth part of the ‘global instance pool’.

However, type classes do not cover the full spectrum of expres-
siveness in subject-oriented programming or hyperspaces. In par-
ticular, type classes are not readily useful in merging the behaviors
of different perspectives. With Hyper/J, one can use different rules
such as ‘merge by name’, which means that all methods with the
same name in two perspectives are combined such that both method
bodies are always executed if one of the methods is called.

2.4 The expression problem
The ‘expression problem’ [58] is the problem of achieving exten-
sibility in both of the dimensions data and operations. In the case
of OO, extensibility in the data dimension is straightforward due
to the mechanism of class inheritance; extensibility in the opera-
tions dimension (read as ‘new methods’) is not admitted by the
basic notion of closed classes. Conversely, functional program-
ming readily admits the introduction of new operations on exist-
ing datatypes, while the introduction of new data variants is not
admitted by the basic notion of closed algebraic datatypes. The ex-

−− A closed datatype for expression forms
data Exp = Lit Int | Add Exp Exp

−− An operation for evaluation
eval :: Exp −> Int
eval (Lit i ) = i
eval (Add l r) = eval l + eval r

−− Another operation − for printing
print :: Exp −> IO ()
print (Lit i ) = putStr (show i)
print (Add l r) = do print l ; putStr ” + ” ; print r

Figure 6. Extensibility in the operation dimension

−− An open type class for expression forms
class Exp x

−− Concrete expression forms
data Lit = Lit Int
data (Exp x, Exp y) => Add x y = Add x y
instance Exp Lit
instance (Exp x, Exp y) => Exp (Add x y)

−− An evaluation operation
class Exp x => Eval x where eval :: x −> Int
instance Eval Lit where eval (Lit i ) = i
instance (Eval x, Eval y) => Eval (Add x y) where

eval (Add x y) = eval x + eval y

Figure 7. Extensibility both of data and operations

pression problem and related language expressiveness have been
studied in depth [58, 60, 57, 36].

Fig. 6 recalls the standard example for the expression problem;
the figure actually shows the basic Haskell version that is not
extensible in the data dimension. Fig. 7 illustrates the type-class-
based recipe for extensibility in both of the dimentions data and
operations; the recipe is easily summarized as follows:1

• Each data variant of an extensible datatype is modeled as a
separate datatype which is polymorphic in the recursive occur-
rences of the extensible datatype; cf. the constructor Add for
binary addition that carries two type parameter accordingly.

• The extensible, nominal union over all data variants is modeled
as a type class; cf. the type class Exp that comprehends all
expression forms. This type class also serves as a bound for
the aforementioned type parameters.

• Each extensible operation on the extensible datatype is mod-
eled as a type class that subclasses the type class of the exten-
sible datatype on which to dispatch; cf. the type class Eval for
expression evaluation with instances for Lit and Add.

Assessment Extensibility in the data dimension is straightfor-
ward: first add the designated datatype for the data variant, then
add the variant to the union with an instance. Finally extend some
or all operations to cover the new variant. Extensibility in the op-
eration dimension is straightforward, too: add a new type class for
the operation, then provide instances for some or all data variants
in scope. Both extensibility dimensions are illustrated in Fig. 8.

The approach enables separate compilation; for example, all
definitions in Fig. 7 can be compiled independently of those in

1 This recipe has been around for a while. In particular, the first author had
posted this recipe to haskell.org and comp.compilers previously [33].
Also, see [35] for a more recent discussion.



−− Another expression form
data Exp x => Neg x = Neg x
instance Exp x => Exp (Neg x)

−− The extended evaluation operation
instance Eval x => Eval (Neg x) where

eval (Neg x) = − (eval x)

−− Another operation − for printing
class Exp x => Print x where

print :: x −> IO ()
instance Print Lit where

print (Lit i ) = putStr (show i)
instance (Print l , Print r) => Print (Add l r) where

print (Add l r) = do print l ; putStr ” + ” ; print r
instance Print x => Print (Neg x) where

print (Neg x) = do putStr ”(− ” ; print x; putStr ”)”

Figure 8. Extensions in the data and operation dimensions

Fig. 8. Combination of extensions boils down to module import.
The approach is statically safe in so far that one cannot possibly
invoke operations on variants that are not covered. The incomplete
implementation of an operation is revealed (statically) by any at-
tempt to apply the operation to an uncovered variant. This laziness
may be arguable; one may favor a guarantee of completeness, even
without ‘user code’ that exercises an operation per case.

A weakness of the approach is that term structure is fully rei-
fied at the type level; this challenges the convenience of inferred
types and the performance of classic instance selection; cf. [33].
Also, values of a given extensible datatype cannot be aggregated or
stored in a straightforward manner. Furthermore, the definition of
functions that return values of the extensible datatype cannot adopt
the aforementioned recipe. We reconsider several of these restric-
tions in Sec. 4.

A fundamental disadvantage of the type-class-based solution is
that extensibility has to be enabled by adherence to an anticipating
style, when compared to designated language constructs for exten-
sible (open) datatypes and functions [44, 35].

3. Multi-parameter type classes at work
We have not fully exhausted all Haskell 98-based type-class ex-
pressiveness. In particular, we could have looked for extension and
integration problems that require constructor classes [26]; i.e., type
classes whose parameters are supposed to be type constructors.
This topic may be an interesting future-work item.

In the present section, we have collected solutions to prob-
lems that take advantage of multi-parameter type classes [9, 24,
50]. Thereby, we go beyond the Haskell 98 standard, but multi-
parameter type classes of some form are likely to make it into the
emerging Haskell′ standard, and they are supported by the promi-
nent Haskell implementations for several years now. For most of
this section, we will restrict ourselves to the uncontroversial subset
of the design space for multi-parameter type classes.

3.1 Multiple dispatch
Let us consider the problem of expressing case discriminations that
involve multiple ‘objects’. Languages like Java and C# are limited
in this respect (as of writing); they provide a single dispatch pro-
tocol that uses the receiver type of messages for the case discrimi-
nation based on modularization in OO methods. Generalizations of
single dispatch for virtual methods have been proposed in the form
of multiple dispatch or multi-methods [8, 10].

Let us consider a simple example adopted from [10] — an inter-
section method for shapes, where different combinations of shapes
may admit different (more efficient) implementations of intersec-

−− A closed datatype of shapes
data Shape = Rectangle Int Int Int Int | Circle Int Int Int

−− A closed function for intersection
intersect :: Shape −> Shape −> Bool
intersect (Rectangle x1 x2 y1 y2) (Rectangle a1 a2 b1 b2) = ...
intersect ( Circle x y r) ( Circle x2 y2 r2) = ...
intersect ( Circle x y r) (Rectangle x1 x2 y1 y2) = ...
intersect r@(Rectangle ) c@(Circle ) =

intersect c r −− symmetric handling of CxR and RxC

Figure 9. Non-extensible, value-level dispatch

−− Datatypes for different kinds of shapes
data Rectangle = Rectangle Int Int Int Int
data Circle = Circle Int Int Int

−− A type class that comprehends all shapes
class Shape x
instance Shape Rectangle
instance Shape Circle

−− A type class for a multiple dispatch
class (Shape x, Shape y) => Intersect x y where

intersect :: x −> y −> Bool

−− A special case for RxR ( others omitted for brevity )
instance Intersect Rectangle Rectangle where

intersect r r ’ = ...

Figure 10. Extensible, type-level dispatch

tion. We may want to implement these different combinations as
modular contributions to the following (Java) method:

public class Shape {
...
public boolean intersect (Shape s) { ... }

}

There are common approaches to encode multiple dispatch while
only using single dispatch: (i) case discrimination is performed
on the dynamic type of arguments using instanceof checks; (ii)
multiple dispatch is scattered over multiple messages and auxiliary
objects as in the visitor pattern. Both approaches have well-known
disadvantages, in particular extensibility problems; see [8, 10] for
a discussion.

Multiple dispatch (as in MultiJava) supports the modular defini-
tion of methods by allowing the modular contribution of cases that
are specific to receiver and argument types. The idea is that the most
specific method implementation is chosen at runtime. For instance,
the special case for the intersection of two rectangles is defined as
follows (in MultiJava); notice the special syntax Shape@Rectangle,
which restricts the runtime argument type to a Rectangle:

public class Rectangle extends Shape {
...
public boolean intersect (Shape@Rectangle r) {

/∗ efficient code for two Rectangles ∗/
}

}

Fig. 9 shows a trivial Haskell model of the intersection sample
while assuming closed datatypes. There is one equation for each
combination of shapes. Basic pattern matching facilitates (multi-
ple) dispatch at the value level; there is an apparent code modular-
ization (with the modules being the equations), but extensibility is
absent: the datatype Shape and the function intersect are closed.

Fig. 10 shows a type-class-based solution which essentially lifts
multiple dispatch to the type level. Each kind of shape is modeled



as a designated type (just as much as in OO). A multiple dispatch
is captured by the method of a multi-parameter type class. Each
relevant combination of shapes is modeled as a type-class instance.
The instances in Fig. 10 directly encode the equations in Fig. 9.

Assessment The non-extensible, pattern-matching-based ‘solu-
tion’ provided us with strong static completeness checking, if we
assume that exhaustiveness of pattern matching is checked. The
type-class-based solution provides the same lazy completeness
checking as we discussed for the expression problem. This time,
one may argue that such laziness (i.e., checking coverage of actu-
ally attempted cases) is beneficial because it liberates us from the
requirement to cover all combinations or to provide a polymorphic
default as required by MultiJava.

On the design scale of multi-parameter type classes, there is
the controversial concept of overlapping instances, which is nev-
ertheless supported by the prominent Haskell implementations for
several years now. We can use overlapping instances to provide a
generic default — if this is considered useful for the (single or mul-
tiple) dispatch scenario at hand. Suppose we had an (‘inefficient’)
default implementation of intersection for all kinds of shapes:

instance (Shape x, Shape y) => Intersect x y where
intersect s1 s2 = ... −− generic default for SxS

Further suppose that we have the following ‘efficient’ cases:

instance Shape x => Intersect Rectangle x where ... −− RxS
instance Shape x => Intersect x Rectangle where ... −− SxR

The first instance gives a generic default implementation for inter-
section of two shapes; the second and third instance specify more
special cases where the left or the right argument, respectively, are
rectangles. The normal semantics of overlapping instances is such
that the most specific instance is chosen. For instance, if we have
a circle c and a rectangle r, then applications of intersect are dis-
patched as follows:

intersect c c −− selects SxS instance
intersect c r −− selects SxR instance
intersect r c −− selects RxS instance
intersect r r −− static error ; ambigious selection

The last case is reported as an error because both RxS and SxR
match but none of them is more specific than the other. If we added
an RxR instance, then the last intersect call would be valid since the
RxR instance would count as the most-specific applicable instance.

In most multi-dispatch systems, a more conservative regime is
applied. That is, potentially ambiguous method combinations are
not admitted. The type-class-based solution is less conservative.
One can provide instances with potential ambiguity. An error is
raised only when an ambiguity is statically detected at a call site. A
transcription of this powerful regime to OO languages would need
to accommodate the non-trivial complication of OO subtyping.

3.2 Family polymorphism
Traditional subtype polymorphism cannot capture relations be-
tween several objects and their methods. For instance, it is not
possible to specify that a method accepts a node and a vertex ob-
ject while both objects need to belong to the same family such as
a family for colored graphs or weighted graphs. As a remedy, the
notion of family polymorphism [13] has been proposed with type-
system realizations based on virtual classes and path-dependent
types [15, 13].

Fig. 11 shows a type-class encoding of (a variant of) the graph
example from [13]. The type class Graph is a multi-parameter type
class with three type parameters g, v, and e, standing for the graph
family, the vertex type and the edge type, respectively. Since we
want vertices to be comparable, we restrict v by Eq v. The annota-
tion g −> v e is the declaration of a functional dependency [25],

class Eq v => Graph g v e | g −> v e where
vertices :: g −> e −> (v,v)
edges :: g −> v −> [e]

otherVertex :: Graph g v e => g −> v −> e −> v
otherVertex g v e = if (v == v1) then v2 else

if (v == v2) then v1 else ⊥
where (v1,v2) = vertices g e

Figure 11. A type class for graphs and a simple function on graphs

instance Graph [[ Int ]] Int ( Int , Int ) where
vertices g (v1,v2) = (v1,v2)
edges g v = map (\i −> (v,i)) (g !! v)

data Vertex = Vertex String [Edge] deriving Eq
data Edge = Edge Float Vertex Vertex deriving Eq

instance Graph [Vertex] Vertex Edge where
vertices g (Edge v1 v2) = (v1,v2)
edges g (Vertex es ) = es

Figure 12. Two different graph families

graph1 = [[1],[0]] −− 1st family
graph2 = [v1,v2] where −− 2nd family
v1 = Vertex ”x” [e1]
v2 = Vertex ”y” [e2]
e1 = Edge 0.5 v1 v2
e2 = Edge 0.7 v2 v1

test1 = otherVertex graph1 1 (0,1)
test2 = otherVertex graph2 v1 e1
−− test3 = otherVertex graph2 v1 (0,1) −− static type error

Figure 13. Family polymorphism at work

which means that the graph type determines the vertex and edge
types. The function otherVertex is an example for a (very simple)
algorithm on graphs using the Graph type class.

Fig. 12 shows two different instances for the type class Graph,
one using integer lists, and one using algebraic datatypes.2 Fig. 13
illustrates the use of these two different graph families. The last
line in the figure illustrates static typing; any attempt to confuse the
families is rejected by the type checker.

For comparison, Fig. 14 shows an encoding of the same exam-
ple in CaesarJ [41, 1], a Java-based language with virtual classes
and path-dependent types. The same example could just as well be
encoded in gbeta [13] or Scala [46]. In Fig. 14, Edge and Vertex
are virtual classes, which means that they are class-valued proper-
ties of the enclosing instance of Graph. The class ConcreteGraph1,
which is a subclass of Graph can refine the definition of Edge and
Vertex with a concrete implementation.

Assessment Virtual classes rely on type parameterization by val-
ues, which is more flexible than type parameterization by types,
as provided for type classes. For instance, the types g1.Edge and
g1.Vertex depend on a first-class value, namely an object g1,
whereas the edge and vertex type in the corresponding type class
Graph depend on a type, namely the first type parameter of the class,
as expressed through the functional dependency. For instance, we
could have a dynamic selection of a graph based on a test:

2 The deriving Eq annotation for the algebraic datatypes Vertex and Edge
means that the Eq instance should be derived canonically by the compiler.
Haskell 98 provides special support for some type classes including Eq.



abstract class Graph {
abstract class Edge {

Vertex getLeft ();
Vertex getRight ();

}
abstract class Vertex { ... }

}
class GraphAlg {

g.Vertex otherVertex( final Graph g, g.Vertex v, g.Edge e) { ... }
}
class ConcreteGraph1 extends Graph {

class Edge {
private Vertex v1;
private Vertex v2;
Edge(Vertex v1, Vertex v2) {

this .v1 = v1; this .v2 = v2;
}
Vertex getLeft () { return v1; }
Vertex getRight() { return v2; }

}
class Vertex { ... }

}
class ConcreteGraph2 extends Graph { ... }

// Some test code
final Graph g1 = new ConcreteGraph1();
final Graph g2 = new ConcreteGraph2();
g1.Vertex v1 = new g1.Vertex (...);
g2.Vertex v2 = new g2.Vertex (...);
g1.Vertex e1 = new g1.Edge(...);
g2.Vertex e2 = new g2.Edge(...);

GraphAlg alg = new GraphAlg();

g1.Vertex test1 = alg.otherVertex(g1,v1,e1);
g2.Vertex test2 = alg.otherVertex(g2,v2,e2);

Figure 14. The graph example rephrased in CaesarJ [41, 1] — Is
is important to notice that all nested classes in CaesarJ are virtual classes and hence
class-valued properties of the enclosing object.

Graph g = complexTest() ? new ConcreteGraph1()
: new ConcreteGraph2();

alg . otherVertex(g, new g.Vertex (), new g.Edge());

Hence, virtual classes are more flexible than our type-class-based
transcription, if we assume that values can be passed and computed
and stored more flexibly than types, which holds for most program-
ming languages. One may engage in type-level programming using
type classes [19, 38, 30, 32, 31], even though this step may imply
considerable encoding efforts.

3.3 Framework integration
The integration of OO frameworks into an existing application
or the combination of multiple frameworks are well-known prob-
lems [37, 43, 21, 42, 4]. When frameworks are specialized by sub-
classing framework classes, the integration of a framework into an
existing application requires elaborate adapters. Not even multiple
inheritance (i.e., creating a subclass of the framework class that is
also a subclass of the application class) is sufficient in this case
because (apart from the typical multiple inheritance problems) the
existing application contains hard links to the original application
class in superclass declarations or constructor invocations.

Fig. 15 shows an example of an OO framework for pricing.
Fig. 16 shows a type-class-based encoding of the framework. There
is functional dependency that states that the first type-class param-
eter, p, determines all other type parameters of the type class. Tech-
nically, the actual type for the formal parameter p is not expected to
represent any interesting value domain; it merely serves a type-level
value that is used to unambiguously select a type-class instance.
Coexisting framework instances may use the same types for some
(or all) of the framework parameters.

Figure 15. Framework example from [21, 42]

class Pricing p lineItem pricer charger item customer
| p −> lineItem pricer charger item customer

where
pricer :: p −> lineItem −> pricer
customer :: p −> lineItem −> customer
item :: p −> lineItem −> item
quantity :: p −> lineItem −> Int
basicprice :: p −> pricer −> Double
discount :: p −> pricer −> Double
cost :: p −> charger −> Int −> Double −> item −> Double
charge :: p −> item −> charger

additionalCharge :: Pricing p lineItem pricer charger item customer =>
p −> item −> Double −> Int −> Double

additionalCharge p item unitPrice qty =
cost p (charge p item) qty unitPrice item

price :: Pricing p lineItem pricer charger item customer =>
p −> lineItem −> Double

price p l = unitPrice +
(additionalCharge p (item p l ) unitPrice (quantity p l ))

where
basicPrice = basicprice p ( pricer p l )
dcount = discount p ( pricer p l )
unitPrice = basicPrice − dcount ∗ basicPrice

Figure 16. Type-class encoding of the framework in Fig. 15

data RegularPricing = RP

instance Pricing RegularPricing
Quote (Quote,HWProduct) [Tax] HWProduct Customer

where ... −− omitted for brevity

Figure 17. Non-invasive integration of the framework in Fig. 16

Fig. 17 alludes to a binding of the framework to a particular
set of existing data structures. The trivial datatype RegularPricing
is used to select the particular framework instance. The other pa-
rameters of the Pricing type class are represented by datatypes that
are supposed to play the particular roles defined in the type class.
For instance, Quote plays the role of lineItem . A framework func-
tion can now be called with values of adapted application types,
whereby the first parameter selects the framework binding, e.g.,
price RP myQuote (myQuote,myHWPr) [] myHWPr cust.

Assessment This kind of mapping is non-invasive and very flex-
ible because neither the framework nor the application need to be
modified for the integration. The mapping is not restricted to a nom-
inal 1:1 mapping; instead structural types may be associated with
the type parameters as well. For instance, in Fig. 17, the charger
role is played by lists of taxes, i.e., [Tax]. In other respects, the
OO approach and the type-class approach are very similar: In-
stead of overriding abstract methods of a framework class in an
application-specific subclass, we define the methods of a type class
in the application-specific type-class instance.



It has been observed [17] that plain multi-parameter type classes
with functional dependencies can become tedious when used for
the encoding of type associations. The main problem is that type
parameters for associated types have to be explicitly enumerated
whenever the type class is referenced in a constraint — even when
a particular function does not interact with all the type parameters.
(The signature of price in Fig. 16 alludes to this problem.) Accord-
ingly, enhancements of Haskell’s type classes have been proposed:
so-called associated types [7] and (synonyms [6]).

4. Discussion
We are ready to draw some conclusions from the examples of the
previous sections. In particular, we identify the particular strengths
of type classes, when compared to basic or advanced OO expres-
siveness. Furthermore, we comment on some limitations of type
classes in the context of software extension and integration.

4.1 Retroactive interface implementation
It is striking that single-parameter type classes are similar to in-
terfaces in OO languages like Java and C#. The main difference
between the two concepts is in the modularity and extensibility:
implementation of an interface in an OO class must be designed
into the class, hence it is not possible to separate the interface im-
plementation from the OO class definition or to add an interface
implementation to an existing class, which is probably the main
reason for the ubiquitous usage of adapters in OO languages.

Type classes enable fine-grained modularity because an instance
can be declared separately from both the class declaration and the
type which is made an instance of the class. In OO terms, such a
separation into three independent parts corresponds to retroactive
interface implementation. One can achieve a similar degree of
decomposition by using the OO design pattern strategy [16], in
which case behavior (according to a given interface) is separated
from objects. The main difference between strategies and type
classes is that the former approach requires one to explicitly select
and pass implementations — as if we were encoding the latter
approach based on ‘explicit dictionary passing’.

Haskell’s type classes assume global scope for instances: an in-
stance defined by any of a program’s modules will be visible (i.e.,
applicable) anywhere in the program; regardless of module hier-
archy and module interfaces. While such global scope is mostly
appropriate and often beneficial for retroactive interface implemen-
tation, local scoping may be useful at times, but it would also chal-
lenge coherence and the definition of principal types [59, 30].

The type-class-based solutions of Sec. 2 exploit the retroactive
capability. In OO terms, one would need to be able to ‘re-open’ a
class in a separate module so that we can add an implementation for
an interface referred to by name. There are a few recent language
designs that provide related expressiveness, normally including
separate compilation, e.g., interface and method introductions in
AspectJ [28], local rebinding in Classboxes and Classbox/J [3, 2],
models in F G [51] and views in Scala [45, 46].

4.2 Multi-class modules versus multi-parameter type classes
Various notions of multi-class modules in OO languages have been
developed, ranging from lightweight constructs such as packages
or namespaces to sophisticated module constructs such as virtual
classes or multiple dispatch.

In abstract terms, single-parameter type classes enable the
formation of sets of types with common methods, while multi-
parameter type classes enable the formation of relations on types,
again with common methods. Each instance injects a new relation-
ship between specific types into the relation.

Multi-parameter type classes differ essentially from several
OO generalizations of inheritance and polymorphism for multi-

class Eq a where
(==), (/=) :: a −> a −> Bool
−− Minimal complete definition : (==) or (/=)
x == y = not (x/=y)
x /= y = not (x==y)

Figure 18. A type class with defaults

ple classes with regard to the granularity of the modularization and
the extensibility. That is, type-class instances can be defined for
every combination of types. By contrast, mixin layers [53] or vir-
tual classes [15, 1, 14] use some forms of nested definitions, which
ties together the participants more strictly. The nesting restriction
of mixin layers and virtual classes is equivalent to saying that the
functional dependencies of a type class must form a tree. For ex-
ample, a functional dependency a −> b c, c −> d can be mirrored
by the nesting structure a(bc(d)), but a −> b, b −> a or a b −> c
cannot be expressed by nesting.

Since the notion of retroactive interface extension also carries
over to the multi-parameter case, type classes can also be compared
to generalizations of the adapter pattern to a multi-type scenario,
such as adapters in [39] or bindings in CaesarJ [1]. The differences
are again similar to the comparison for the single-parameter case
(see Sec. 2.2): Bindings and adapters are used explicitly, can have
state and exist per combination of objects, whereas instance decla-
rations are used implicitly, are stateless, and exist per combination
of types.

4.3 Default implementations
Type classes provide a convenient way of sharing implementations
among instances. That is, one can provide defaults for type-class
methods in the type-class declaration. Fig. 18 illustrates this capa-
bility for the Eq class. It provides defaults for both member func-
tions so that a type-specific implementation of either (==) or (/=)
would be sufficient to implement the entire interface. In a sense,
type-class declarations are therefore reminiscent of abstract classes
in mainstream OO languages. We reckon that the capability of de-
fault implementations for interface methods would be a straight-
forward extension of the typical OO interface construct (in C# or
Java). The language constructs of traits [11] provides a related ex-
tension to OO that allows to encode interfaces with default method
implementations.

4.4 Explicit vs. implicit subtyping
Type-class-bounded polymorphism does not readily provide the
flexibility of OO-like implicit subtyping. Fortunately, we can work
around this issue. Let us consider an illustrative example; we use
the adapter example from Sec. 2.2. Suppose we want to write a
function that takes a list of shapes and computes a list of their
circumferences. Here is an attempt:

allcircumference :: Shape s => [s] −> [Int]
allcircumference = map circumference

This function would work well for a list of text views, e.g.:

test1 = allcircumference [ (TextView ”” 0 0 10 10)
, (TextView ”” 5 5 20 20) ]

However, the function cannot be applied to a heterogeneous list
of shapes such as a list that contains both text and image views.
In fact, it is not even possible to construct such a list because the
elements of a list must be of the same type. A similar problem
would arise for mutable variables — without implicit subtyping,
the type of the variable would be fixed by the first assignment. With
implicit subtyping, a variable may reference objects of different
types during its lifetime.



data AnyShape = forall a. Shape a => AnyShape a

allcircumference :: [AnyShape] −> [Int]
allcircumference = map (\(AnyShape s) −> circumference s)

test2 = allcircumference [ AnyShape (TextView ”” 0 0 10 10)
, AnyShape (ImageTextView ...)]

Figure 19. Heterogeneous lists based on existential types

public boolean intersectMany(Shape[] shapes) {
for ( int i = 0; i < shapes.length; i++) {

for ( int j = i+1; j < shapes.length; j++) {
if (shapes[ i ]. intersect (shapes[ j ])) { return true ; }

}
}
return false ;

}

Figure 20. Pairwise intersection tests for a list of shapes

We can enable these scenarios with the use of existential
types [34] that make the actual type, such as a text or image view,
opaque. One can say that we use explicit subtyping. In our exam-
ple, we need an existential envelope for shapes; cf. the declaration
of AnyShape in Fig. 19. Values that are wrapped by AnyShape
can be collected in normal lists. In contrast to implicit subtyp-
ing, we need to perform an explicit up-cast by wrapping (as in
AnyShape (TextView ””0 0 10 10)). In the figure, we also explicitly
carry out unwrapping by pattern matching (cf. the lambda expres-
sion \(AnyShape s) −> ...). This step does not need to be placed
in ‘user code’ because we could add an instance for the wrapper
type AnyShape to the type class Shape.

The existential wrapping approach does not work well for multi-
parameter type classes. As an example, let us continue the in-
tersection example from Sec. 3.1; we want to define a function,
intersectMany, that processes a collection of shapes, to see whether
any pair of shapes intersect. Fig. 20 shows the (Multi)Java version.
In Haskell, with an encoding that uses a single closed datatype of
shapes, we have no problem whatsoever to perform the same opera-
tion (using double recursion in place of the nested loop); cf. Fig. 21.

For the type-class-based approach, we attempt this type:

intersectMany :: [AnyShape] −> Bool
intersectMany = ...

There are two options. Option 1: suppose there is no generic default
instance for Intersect . In this case, the bound of AnyShape is insuf-
ficient to constrain the function intersectMany. That is, the function
may encounter pairs of shapes for which no Intersect instance can
be selected, which is clearly inconsistent with static typing. Option
2: suppose that the multiple dispatch scenario at hand allowed us to
define a generic default instance. Hence, one may expect the bound
for the type class Shape to be sufficient for applying intersectMany
to any pair of shapes. That is, the type system could rest on the as-
sumption that the default instance can be applied as ‘a last resort’.
Some Haskell implementations can be actually persuaded to accept
the above type subject to appropriate compiler switches.3 However,
the default instance would always be applied since the opaque types
cannot possibly participate in any instance selection (because they
are opaque). Clearly, the universal selection of the default instance
defeats the entire purpose of multiple dispatch.

There is an entirely different approach that can be put to work;
it is inspired by the HList library for heterogeneous collections in

3 See the related bug report for GHC: http://www.haskell.org/
/pipermail/glasgow-haskell-bugs/2006-July/006809.html.

intersectMany :: [Shape] −> Bool
intersectMany [] = False
intersectMany (x :[]) = False
intersectMany (x:y:z) =

intersect x y || intersectMany (x:z) || intersectMany (y:z)

Figure 21. Haskell variation on Fig. 20 w/o type classes

class IntersectMany x where
intersectMany :: x −> Bool

instance IntersectMany () where
intersectMany = False

instance Shape x => IntersectMany (x,()) where
intersectMany = False

instance ( Intersect x y, IntersectMany (x,z ),
IntersectMany (y,z) ) => IntersectMany (x,(y,z)) where

intersectMany (x ,(y,z)) =
intersect x y || intersectMany (x,z) || intersectMany (y,z)

Figure 22. Subtyping based on heterogeneous lists

class Eq a where (==) :: a −> a −> Bool
class Read a where read :: String −> a
class Show a where show :: a −> String

Figure 23. Different uses of type-class parameters

Haskell [32] — a library that heavily relies on type-class-based
programming. Essentially, we need to keep track of the precise type
of all shapes when we assemble heterogeneous lists. This can be
achieved by representing lists of shapes as nested, right-associative,
explicitly terminated pairs. The operation intersectMany must then
be defined as a type-class-based function performing induction on
the nested pairs. For instance, a list with two elements would be
represented as a nested tuple like this:

( Rectangle 1 1 2 2, ( Circle 1 1 2, () ))

We use () to explicitly terminate the nested pairs. Fig. 22 shows
the type-class-based operation intersectMany. The earlier equations
of the closed-world version are lifted to the type-class level very
directly. Essentially, the type-class-based version recurses into the
nested tuple (at the type level) in the same way as the closed-world
version recurses into the normal list at the value level.

4.5 Explicit references to MyType
The formal type-class parameter can be (in fact: must be) explicitly
referenced in the member signatures; it can occur both in argument
and result positions; it can also occur several times; cf. Fig. 23. In-
terfaces of mainstream languages like Java and C# do not admit
explicit reference to the implementing type; this type is implicitly
assumed for the receiver of the instance methods of the interface.
More elaborate type systems and languages such as PolyTOIL [5]
have been proposed to admit explicit reference to ‘MyType’. Mul-
tiple references (in fact, double references) are needed for binary
methods such as (==).

The use of a type-class parameter in the result position of a
method requires special attention. The absence of an argument
whose type can drive instance selection implies that the result type
of the method application must be constrained sufficiently, e.g., by
an explicit type annotation. For instance, when using read, we must
disambiguate the result type of read.

haskell−prompt> read ”True” :: Bool
True



−− Trees for untyped representation
data Tree = Node String [Tree]

−− Parsing of trees
class FromTree x where

fromTree :: Tree −> x
instance FromTree Int where

fromTree (Node s []) = read s
instance FromTree Lit where

fromTree (Node ”Lit” [ i ]) = Lit (fromTree i)
instance (Exp e, Exp e ’, FromTree e, FromTree e’)

=> FromTree (Add e e’) where
fromTree (Node ”Add” [x,y]) = Add (fromTree x) (fromTree y)

instance (Exp e, FromTree e) => FromTree (Neg e) where
fromTree (Node ”Neg” [x]) = Neg (fromTree x)

Figure 24. A failed attempt at open parsing

onTree :: ( forall x. Exp x => x −> y) −> Tree −> y
onTree f (Node ”Lit” [ i ]) = f (Lit (fromTree i ))
onTree f (Node ”Neg” [x]) = onTree (f . Neg) x
onTree f (Node ”Add” [x,y]) = onTree (\x’ −>

onTree (f . Add x’) y) x

Figure 25. Parsing based on CPS — The case discrimination on trees
leads to the construction of the appropriate expression form, which is not returned
however, but instead processed by the provided argument function. This function must
be necessarily polymorphic so that it can be applied to every possible expression. This
implies a rank-2 polymorphic type for onTree, as shown.

When we adopt this idea to the extensible datatypes of Sec. 2.4,
then we encounter a challenge. Consider the problem of ‘parsing’
(or de-serializing) expressions, while using ’untyped’ trees as in-
put. If we follow the same recipe as for the evaluation and print
functions in Fig. 7 and 8, we end up with the code in Fig. 24.
However, the shown definition is practically useless because we
would need to annotate the parse expression with the precise ex-
pression type whose shapes coincides with the shape of the actual
expression. For instance, the following annotation is impractical,
and leaving it out would cause an ambiguous expression:

−− How to know that we are expecting a literal?
myExp = (fromTree sometree) :: Lit

To summarize, we cannot scatter the cases for printing over mul-
tiple instances because there is no useful way of driving instance
selection. However, we can provide a closed parse function with a
single type. In fact, there are two equivalent approaches: (i) wrap
the parsing result in an existential envelope; (ii) use continuation-
passing style (CPS) to process the parsing result; cf. Fig. 25 for an
illustration of the latter approach. Both approaches suffer from two
weaknesses: (i) unless we engage in encoding such that we defer
taking the fixpoint of the recursive parse function, the function is
nonextensible; (ii) the parse function is also closed over the bound
on the parsing result (such as Exp or Print).

Both limitations call for future work; we only record some hy-
potheses here. Regarding (i): we would like to avoid the hardwired
enumeration of Lit , Add and Neg in Fig. 25. To this end, we would
need either strong forms of reflection or means of modular registra-
tion of variants. Both options are known in the object world; think
of serialization frameworks, for example. Regarding (ii): we would
like to be able to use the parse functions on new (open) functions
without anticipating their bounds. To this end, we would either need
a form of type-class parameterization [22] or a form of ‘dependent
type classes’ where we can express that a new class (such as Print)
is not just a subclass of an existing class (such as Exp), but the in-
verse instance-relationship holds, too.

5. Conclusion
We have shown that type classes enable interesting and new so-
lutions to various software extension and integration problems.
This insight is worth communicating because most of the discussed
problems have been studied predominantly on the grounds of OO
languages, and they have triggered a considerably amount of OO
language extensions. While our analysis suggests that type classes
provide a principled mechanism for software extension and inte-
gration, it also pinpoints several limitations of type classes in this
context. We hope that our work promotes future research on the
notion of type classes and contributes to a better understanding
of the relation between advanced OO and functional (type-class-
based) programming with particular focus on principled challenges
for software extension and integration.
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