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ABSTRACT
Object-oriented languages come with pre-defined composi-
tion mechanisms, such as inheritance, object composition,
or delegation, each characterized by a certain set of com-
position properties, which do not themselves individually
exist as abstractions at the language level. However, of-
ten non-standard composition semantics is needed, with a
mixture of composition properties, which is not provided as
such by any of the standard composition mechanisms. Such
non-standard semantics are simulated by complicated archi-
tectures that are sensitive to requirement changes and can-
not easily be adapted without invalidating existing clients.
In this paper, we propose compound references, a new ab-
straction for object references, that allows us to provide
explicit linguistic means for expressing and combining in-
dividual composition properties on-demand. The model is
statically typed and allows the programmer to express a
seamless spectrum of composition semantics in the interval
between object composition and inheritance. The resulting
programs are better understandable, due to explicitly ex-
pressed design decisions, and less sensitive to requirement
changes.

1. INTRODUCTION
The two basic composition mechanisms of object-oriented
languages, inheritance and object composition, are very dif-
ferent concepts, each characterized by a different set of prop-
erties. The properties of inheritance have been discussed in
several works, e.g., [25, 31, 22]. Also, the relationship be-
tween inheritance and object composition is carefully stud-
ied, e.g., in [17, 16]. The mixture of composition proper-
ties supported by each mechanism is fixed in the language
implementation and individual properties do not exist as
abstractions at the language level.

However, often non-standard composition semantics is
needed, with a mixture of properties, which is not as such

To appear in proceedings of OOPSLA 2001. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

provided by any of the standard techniques. We indi-
cate that in the absence of linguistic means for express-
ing and combining individual composition properties on-
demand, such non-standard semantics are simulated by
complicated architectures that are sensitive to requirement
changes and cannot easily be adapted without invalidating
existing clients. Actually, the need to combine properties
of inheritance and object composition has already been the
driving force for two families of non-standard approaches to
object-oriented composition.

On one side, delegation [20] enriches object composition
with inheritance properties. Please note that in contrast
to the frequent use of the term delegation as a synonym for
forwarding semantics, in this paper it stands for dynamic,
object-based inheritance. In pure delegation-based mod-
els, objects are created by cloning other prototype objects,
and objects may inherit from other objects, called parents.
Hence, in such models one has object composition and dele-
gation, but no class-based inheritance. The most prominent
programming language in this family is Self [32]. More re-
cently delegation-based techniques are integrated into stati-
cally typed, class-based languages, which thus provide class-
based inheritance, delegation, and object composition [18,
11, 4]. On the other side, several mixin-based models [7, 21,
12, 2] approach the goal of combining inheritance and object
composition properties from the opposite direction, enrich-
ing inheritance with object composition properties, such as
the ability to statically/dynamically apply a subclass to sev-
eral base classes.

Like standard composition mechanisms, these approaches
also do not provide abstractions for explicitly expressing in-
dividual composition properties that would allow to combine
these properties on-demand. In this paper, we distinguish
between five properties that can be used to describe the rela-
tion that holds between two modules M and B (classes and/or
objects) to be composed, whereby B denotes the base mod-
ule, M denotes the modification module, and M(B) denotes
the composition.

1. Overriding: The ability of the modification to over-
ride methods defined in the base. In M(B), M’s defini-
tions hide B’s definitions with the same name. Self-
invocations within B ignore redefinitions in M.

2. Transparent redirection: The ability to transpar-
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Table 1: Composition properties supported by stan-
dard mechanisms

ently redirect B’s this to denote M(B) within the com-
position.

3. Acquisition: The ability to use definitions in B as
if these were local methods in M(B) (transparent for-
warding of services from M to B).

4. Subtyping: The promise that M(B) fulfills the con-
tract specified by B, or that M(B) can be used every-
where B is expected.

5. Polymorphism: The ability to (dynamically or stat-
ically) apply M to any subtype of B.

Table 1 shows the set of properties we discuss in the paper
as row indexes. Columns are indexed by existing object-
oriented composition mechanisms.

The key idea of the approach presented in this paper is the
separation and independent applicability of these notions by
providing explicit linguistic means to express them. This al-
lows the programmer to build a seamless spectrum of compo-
sition semantics in the interval between object composition
and inheritance, depending on the requirements at hand,
making object-oriented programs more understandable, due
to explicitly expressed design decisions, and less sensitive
to requirement changes, due to the seamless transition from
one composition semantics to another.

The remainder of the paper is organized as follows. Sec. 2
discusses examples where non-standard combinations of
composition properties are desirable. Sec. 3 presents the ba-
sic concepts of our model. The model is evaluated in Sec. 4.
Sec. 5 discusses some advanced issues related to static type
safety. Related work is discussed in Sec. 6. Sec. 7 summa-
rizes the paper and suggests areas of future work.

2. MOTIVATION
In this section we consider three composition scenarios
where non-standard combinations of composition properties
make sense. In all cases, we discuss various designs that can
be used to achieve the desired composition semantics. How-
ever, please note that this section is not about proposing
THE ultimate designs for the given scenarios. The reader
might eventually come up with other, equivalent or even
superior, designs to the same scenarios. Yet, this is not es-
sential for the purpose of this chapter: The main message
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Figure 1: Class diagram for account example

we want to convey is rather (a) that in all cases some so-
phisticated design is needed, which does not explicitly state
important conceptual relationships between the involved ab-
stractions, and (b) that different designs are needed for dif-
ferent combinations of composition properties.

2.1 Composition Scenario 1:
The Account Example

Consider an application in the banking domain with per-
sons, companies, accounts, and standing orders. The re-
lation between persons/companies and accounts is usually
one to many. However, in this example we want each ac-
count to have a dedicated role for its owner. For exam-
ple, we want a company to have a dedicated pay account
and a dedicated rental account. This makes it possible to
choose the appropriate account for specific transfers auto-
matically. In this (simplified) example, a Person has only
one “main” account and a Company has a rental and a pay ac-
count. Different kinds of accounts exist (SavingsAccount,
CheckingsAccount), and accounts are subject to frequent
changes at runtime. A particular account may be shared,
as e.g., two persons may use the same account, or the pay
account and the rental account of a company may be iden-
tical. A class SOP (standing order processing) is used for the
registration, deregistration and execution of standing orders.
On execution, multiple standing orders with identical source
and target accounts are summarized to a single transfer.

A class diagram for this problem is shown in Fig. 1. Based on
the information on a pay order, the OrderProcessingClerk

gets the account objects from the involved Person/Company,
creates a StandingOrder and registers it with a SOP. This
design is simple and easy to understand. However, it has a
problem: If the account of a person changes, a previously
registered standing order will still be executed with respect
to the outdated account. With the design in Fig. 1, one
has to update all account references that were ever given
out by a person or company “manually”. That is definitely
undesirable.

Given a reference p to a Person object, we ideally want “p’s
account”, i.e., a compound, or indirect reference to account

via p, to be passed to SOP, rather than the account refer-
ence itself. In other words, we want some kind of redirect
semantics for references: the meaning of account should be
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Figure 2: Decorator design for output streams

late bound within the current context of the object referred
to by p, whenever “p’s account” gets evaluated. Due to
the lack of such “compound references” in standard object-
oriented languages, we have to change the architecture of
our design to simulate them. Some possible solutions are
discussed below.

• A decorator [15] that contains an account object and
forwards all calls to it is passed to SOP instead of the
account object itself. The base object of the decora-
tor (the account) can be changed without the need for
further manual updates. However, the identity test in
SOP fails: If two persons share an account, SOP com-
pares non-identical decorators with the same base ob-
ject. Other subtleties of an architecture that uses the
decorator pattern for composition are highlighted in
the next scenario.

• A second approach is to change the SOP class so that
it accepts AccountOwner instead of Account objects
with AccountOwner being an interface with a single
getAccount() method. Person and Company have to
implement the AccountOwner interface. This is diffi-
cult in the Company case, because a company has two
different accounts. For this reason, we have to create a
separate AccountOwner subclass for Company1. Besides
its complexity, the main drawback of this approach is
that we have to modify the StandingOrderProcessing
class, which might not be desirable or even possible in
case this class is purchased as part of a banking com-
ponent library. Another limitation of this proposal is
that it works only for one level of redirection. For
example, we might want to register a standing order
that transfers money to the account of a person’s cur-
rent spouse (and, spouses are also subject to frequent
changes these days).

• A common approach to avoid the coupling of the

1In Java, these classes would probably be implemented as
inner classes.
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Figure 3: Simulation of transparent redirection

sender of a request to its receiver is the chain of re-
sponsibility pattern [15]. Applied to our example this
would mean that each account has an optional suc-
cessor account and new accounts are appended to the
previous account. Calls to the account are forwarded
to the last and current account in the chain. Besides
its considerable complexity, this approach is not com-
patible with sharing of accounts.

• Another possible solution would be to let the SOP class
be an observer [15] of persons and companies that is
notified whenever an account is exchanged. However,
it is easy to see that this would result in a design that
is even more complicated than the previous ones.

2.2 Composition Scenario 2:
The Stream Example

I/O Streams exist in multiple variations and the different
stream features are typically implemented as decorators [15]
of a basic stream class (see e.g., the Java I/O package [29]),
so that the set of desired features for a stream instance can
be choosen dynamically. A typical decorator design for out-
put streams is shown in Fig. 2.

By using the decorator to compose basic OutputStream func-
tionality with optional filtering features we want to achieve
the following composition properties: (a) subtyping between
the resulting composition and the base component, (b) ac-
quisition of the base behavior within the filtering functional-
ity, (c) dynamic polymorphism - a certain filtering should be
applicable to any subtype of OutputStream, and (d) overrid-
ing of the methods that have to be changed for the extended
functionality. The decorator pattern realizes dynamic poly-
morphism of the composition by means of object composi-
tion and subtype polymorphism. Acquisition and overrid-
ing is achieved by implementing the base component’s inter-
face by means of forwarding methods resp. decorator-specific
methods. The decorator becomes a subtype of the compo-
nent by inheritance. The simulation of these composition
properties, however, has a number of shortcomings:
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Figure 4: Structure of text justifier and tree iterator

• The implementation of the decorator class is a tedious
and error-prone work, due to the manual simulation
of the acquisition feature. In addition, it suffers from
the syntactic fragile base class problem [30]: Whenever
the interface of the base component changes, the cor-
responding forwarding methods have to be added or
deleted.

• We have no transparent redirection. This means that
method calls to this within the base component are
not dispatched to their overridden methods in the dec-
orators but to the local implementations. A further
consequence is that if a base object passes this to
other objects, it passes itself instead of the decorator.
In some situations, however, the opposite effect would
be desirable. This anomaly is known as the self prob-
lem [20] or as broken delegation [16]. The manual simu-
lation of transparent redirection is rather complex and
leads to a design that is very different from the orig-
inal decorator pattern because the base object needs
some way of knowing about the decorators. One alter-
native is to store a back reference to the decorator in
the base, but this would prohibit multiple decorators
for one base object. Another solution with (again) a
different design is to pass the decorator to the base
object in every method call. A corresponding design
is illustrated in Fig. 3.

• The base class may define state. All decorators inherit
this state and become unnecessary heavy. Although
merely a subtype relationship between the decorator
and the base component is needed, the decorator is
enforced to inherit the state, due to the use of inheri-
tance for subtyping. This is usually no problem if the
usage as a base for decorators was already anticipated
at writing time. However, if a predefined library class
should be decorated, this may be a problem.

2.3 Composition Scenario 3:
The TextJustifier Example

Envisage a TextJustifier command class in a text process-
ing system, which justifies all paragraphs in a document, ex-
cept for preformatted paragraphs. The document elements
to be justified are stored in a recursive object structure,
as shown in the diagram on the left-hand side of Fig. 42.

2In a more realistic situation, one would have to apply the
visitor pattern to connect TextJustifier and the DocEle-
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Figure 5: Usage of the iterator by inheritance

For performing the document justification the text justifier
needs to iterate over the document structure. Assume that
we have already implemented a tree iterator class shown on
the right-hand side of Fig. 4. The class TreeIterator en-
codes a breadth-first iteration strategy for recursive object
structures. It can be used by overriding the action() and
test() methods for the specific purpose. The iterator class
provides a number of iteration mechanisms, e.g., applying
action() to all elements that satisfy test() (doAll()), or
up to the first one that does not satisfy test() (doWhile()),
and so on. Assume that the design shown in Fig. 53 where
text justification and iteration functionality are composed
by means of inheritance is just good enough for satisfying
the requirements on our system during an early stage of the
development process.

In a later iteration stage, we realize that inheritance is not
the composition semantics we want. First, we do not want
TextJustifier to be a subtype of TreeIterator anymore
because a TextJustifier is not a special kind of an itera-
tor. In addition, the acquisition semantics that comes with
inheritance is not desired anymore; all methods of TreeIt-
erator pollute the interface of TextJustifier, which has
become complex anyway during the development. Second,
the initial requirements have slightly changed: It should be
possible to determine the iteration strategy to be used with
a TextJustifier at runtime. For this purpose, subclasses
PreOrder and PostOrder of TreeIterator have been im-
plemented that refine the default breadth-first semantics by
overriding the first() and next() methods.

Now, the question is how to compose the text justifier in
Fig. 4 with the iteration hierarchy, such that the above set
of composition properties are satisfied. A feasible solution
is schematically presented in Fig. 6. TextJustifier has
an instance variable, it, of type TreeIterator, which can
be assigned to an instance of MyPreOrder, MyIterator, or
MyPostOrder. The latter are defined as subclasses of the
corresponding library classes and redundantly implement
the test() and action() methods for the justification pur-
poses. It is quite reasonable to assume that the test and the
action performed in each step of the iteration needs infor-

ment hierarchy. For the sake of simplicity, we assume this is
not the case in our example. The problems we discuss here
apply to a visitor-based design as well.
3In the design we assume that DocElement implements Tree
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Figure 6: Initial design for dynamic composition

mation from the text justifier object, which is provided via
the context reference on the TextJustifier.

Obviously, the design in Fig. 6 is very different from the
predecessor design in Fig. 5. That is, two different mixtures
of features for composing the same pieces of functionality
are realized by two very different designs. Furthermore, the
design is more complex than the design in Fig. 5, and it
does not reflect the conceptual relationships between the
entities in it. Additional classes and associations have been
introduced, and the MyXXX classes contain duplicated imple-
mentations of action() and test().

At this point, it becomes clear that the initial iterator de-
sign is unsatisfactory because it leads to code duplication
as in Fig. 6. It would have been better to choose a more
sophisticated design for the iterator classes right from start,
namely iterators that use a command class (IterationStep)
as shown in Fig. 7. But this still does not solve our prob-
lem: We still need a complex design such as in Fig. 7, al-
though the conceptual relationship between TextJustifier

and TreeIterator is as simple as the initial design in Fig 5.
The design in Fig 5 would already be sufficient, even for
the dynamic composition, if only we could configure the re-
lation between TextJustifier and TreeIterator with the
properties in Tab. 1.

2.4 Problem Statement Summary
So far so good. In all cases, the desired composition seman-
tics can indeed be achieved somehow. Still, the result is
highly unsatisfactory. Why? First, the most severe problem
is that the architectures we ended up with are completely
different, depending on the desired mixture of composition
properties. Second, the design gets complex, as soon as a
composition is required that deviates from the semantics of
the standard composition mechanisms directly supported by
linguistic means.

As illustrated by the first composition scenario, different
programmers may come up with different architectures even
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Figure 7: More sophisticated design for dynamic
composition

for the same composition semantics. Moreover, any later
change of the composition features might require switching
to another architecture. This is not only a tough challenge
for any programmer. It also affects the understandability,
and hence maintenance of object-oriented programs: The
very important knowledge about the encoded composition
semantics is not explicitly expressed by any of the designs
that simulate non-standard semantics. In general, it is not
obvious how to separate the part of the architecture that
is directly involved in encoding application logic from the
part of the architecture that serves as an infrastructure for
encoding non-standard composition semantics. As a conse-
quence, it is hard to guess from looking at the design that
two architectures are different merely because they encode
different composition semantics, or that two different archi-
tectures actually implement the same application logic, and
only differ in the way they encode the same composition
semantics.

The frequency of changes in the composition features is
documented by refactorings, such as, “Replace Delegation
with Inheritance”4, “Replace Inheritance with Delegation”,
“Hide Delegate” and “Remove Middle Man” [13]. In our ter-
minology, each of these refactorings can be seen as moving
from an architecture with a certain mixture of composition
properties to another one with another mixture of composi-
tion features that better fits the requirements or the current
state of the development process. The work on refactoring
recognizes that such transformations are not trivial and aims
at aiding programmers in performing them by describing the
process in a systematic way, or even (partly) automating it
by means of refactoring browsers. The highly positive echo
that the work on refactoring has found in the object-oriented
community, especially in the practice of everyday program-
ming, actually supports our claim that the need for differ-
ent architectures to express different composition semantics
makes a programmer’s life harder.

4Fowler uses the term delegation in the sense of decorator-
like forwarding



However, we follow another path in approaching the prob-
lem, motivated by the observation that identifying and de-
scribing common refactorings does not solve the core prob-
lem: It does not change anything in the fact that different
architectures for different composition semantics are needed
and one still needs to switch from one architecture to the
other in order to react to requirement changes. Conse-
quently, we put the emphasis on tackling the problem in
its roots: At language design. Our claim is that besides
identifying and describing refactorings we should strive for
language mechanisms that make some of the refactorings
obsolete, or at least explicit in the language. This require-
ment becomes even more relevant in a component setting
where refactoring steps like “adjust all clients to call the
new server” are no longer feasible.

3. THE COMPOUND
REFERENCE MODEL

This section introduces the basic notions of our model as an
extension of the Java programming language [3]. However,
the concepts are easily applicable to other statically typed
OO languages. Each introduced feature corresponds to a
row in Table 1 and represents a step forward on a seam-
less transition from object to inheritance-based composition
semantics.

3.1 Field Methods and Overriding
To explain the operational semantics of our model, we use
the notion of field methods. A field method is a method that
pertains to a specific field. Syntactically, the affiliation of a
method to a field is expressed by prefixing the method name
with the field name using “.” as separator. A class C with a
field f of type F can be thought of as implicitly containing
a method named f.m() for every public method m() of F.
The method named f.m() has the same signature as m()

in F, and its visibility is identical to the visibility of f in C.
The default implementation of f.m() in C is one that simply
forwards m() to the object referred to by f, denoted within
the implementation of f.m() by the special pseudo-variable
field. This is similar to the pseudo-variable super denot-
ing an overridden method within the overriding method. Fi-
nally, any invocation of m() on the object referred to by f

within C should be thought of as being dispatched to the
corresponding implicit field method f.m().

For illustration, recall the iterator example from Sec. 2.
With the implicit field methods written down, the code
for the TextJustifier would look like in Fig. 85. The call
it.doAll() within justify() should be thought of as ac-
tually calling the implicitly available field method named
it.doAll().

Until know, the introduction of field methods into the im-
plementation of a class has no impact on the semantics of
the class. The TextJustifier implementation presented in
Fig. 8 is semantically equivalent to an implementation that
does not contain any implicit field method. The decisive
point is that implicit methods can be replaced by explicitly

5In the context of this section, the reader should think of
the abstract methods as being implemented empty.

class TextJustifier {
private TreeIterator it;
public void justify() { ... it.doAll() ... }

// ** begin of implicitly available field methods **

private void it.doAll() { field.doAll(); }
private void it.doWhile() { field.doWhile(); }
private void it.doUntil() { field.doUntil(); }
...
private void it.action(Item x) { field.action(x); }
private boolean it.test(Item x) {

return field.test(x);
}
// ** end of implicitly available field methods **

}

Figure 8: Implicit field methods in TextJustifier

class TextJustifier {
private TreeIterator it;

private void it.doAll() { ... }

public void justify() {... it.doAll(...); }
}

Figure 9: Explicit field methods in TextJustifier

available methods. For example, in order to implement an
action to be undertaken whenever it.doAll() is called in
TextJustifier, the programmer of TextJustifier would
implement an explicit field method, called it.doAll(), en-
coding the desired behavior, as shown in Fig. 9. Please note
that Fig. 9 is only an illustration of explicit field methods
and not our final solution for the TextJustifier problem.

Before leaving this section we would like the reader to re-
call that we we introduced implicit methods as a means to
describe the operational semantics of our model, indepen-
dently of a specific implementation.

3.2 Field Redirection with Compound Refer-
ences

The central mechanism of our model is the notion of com-
pound references (CR). In contrast to “primitive references”,
the binding of a CR to an object is not absolute, but rather
relative to another reference. To gain a first insight for
the usefulness of CRs reconsider the account example from
Sec. 2.1. We could solve the problem discussed there if we
were able to express that “person’s account” - meaning the
account reference within the context of the person refer-
ence - should be passed to the standing order processing
unit. This is where CRs come into play.

A CR to a reference instVar within a class is created by
means of this<-instVar. To illustrate their semantics,
consider the class in Fig. 106. The getPersonsAccount()

method returns a compound reference to the account in-

6Please note that in Java all object-typed instance variables
are references.



class Person {
Account account;
Account getAccount() { return account;}
Account getPersonsAccount() {

return this<-account;
}
void setAccount(Account newAccount) {

account = newAccount;
}

}

class Client {
public static void main(String[] args) {

Person jack = ...
Account ubsAccount = new Account("UBS", "12345");
Account dbAccount =

new Account("Deutsche Bank", "54321");
jack.setAccount(ubsAccount);
Account anAccount = jack.getAccount();
Account jacksAccount = jack.getPersonsAccount();

// anAccount and jacksAccount
// refer to the UBS account

jack.setAccount(dbAccount);

// anAccount still refers to the UBS account
// but jacksAccount refers to the DB account

}
}

Figure 10: Illustration of compound references

stance variable of a person, while getAccount() returns a
“primitive” reference to the account instance variable of a
person. The effect of the CR returned by getPersonsAc-

count() is that it always refers to the current value of the
account reference within a Person object. After the setAc-

count call in the last statement of Client::main in Fig. 10,
which changes Jack’s account from ubsAccount to dbAc-

count, jacksAccount will refer to Jack’s current “Deutsche
Bank” account, while anAccount will still refer to his old
UBS account. Fig. 11 and Fig. 12 schematically show the
state before and after changing Jack’s account.

Just like object methods that differ from functions in the
sense that different calls to them may return different val-
ues, depending on the state of the method’s owner (the re-
ceiver), a CR is different from a primitive reference in the
sense that the evaluation of a CR might result in different
values depending on the state of CR’s owner object. CRs
are very different from pointers or pointers to pointers etc.
A pointer always explicitly specifies the dimension of indi-
rection (in C++ the number of *). Pointer of different di-
mensions (for example, Account **a1 and Account ***a2)
are not compatible or substitutable7. CRs, on the other
hand, are a transparent replacement for usual references: It
is generally not known whether a reference is a CR or not,
or how many levels of indirection are hidden in the CR. In a
way, CRs are similar to symbolic links in a Unix file system.

7A conversion from ** to *** is possible in C++, for ex-
ample a1 = *a2, but the semantics is different: If the first
indirection of a2 is changed after this assignment, a1 still
points to the previous account.

A symbolic link may refer to a file or to another symbolic
link. If objects were directories, we could create a symbolic
account link in the SOP directory that refers to the account
link in the Jack directory.

A CR can be defined relatively to a primitive reference or
recursively to another CR. Hence, each CR may in general
induce a path of object references. For example, a class
Person might return a CR to the spouse of that person. If
the getPersonsAccount() method on this CR is called, we
obtain a new CR with path personOID<-spouse<-account.
In general, a CR is an OID o together with a sequence of
field names v1, ..., vn. A CR o<-v1<-...<-vn induces a corre-
sponding path of objects o0<-o1<-...<-on such that o0 = o

and oi = oi−1.vi (details and subtleties about creating an
object path for a CR are discussed in section 5). Such a
path is not created directly but incrementally as a result of
creating a CR to a reference that is actually already a CR.
In the following, we regard a “usual” reference as a special
case of a CR of length one. Relative to an element oi, we
call oi−1 a predecessor and oi+1 a successor. Furthermore,
o0 is the head and on is the tail of the CR. Please note that a
CR is itself immutable, while the corresponding object path
may change in the course of time due to a changing instance
variable on the path.

Just like any reference in a statically typed language, (a) a
CR has a type, (b) it can be compared to other CRs, and
(c) methods can be invoked on it. We define the static type
of a CR to be the static type of its tail. It might seem to be
straightforward to equally define the dynamic type of a CR.
However, we decided to call the dynamic type of the tail the
temporary type of a CR, because this type may change as
a side effect of a field update. Downcasts to the temporary
type of a CR are disallowed in our model because references
that are typed to the temporary type may become invalid
after a field update. This issue is further discussed in section
5.

Let us now consider the identity semantics in the context of
compound references. The question is: Under which condi-
tions are two compound references s ≡ o<-v1<-...<-vn and
t ≡ p<-w1<-...<-wm with their corresponding object paths
o0<-o1<-...<-on and p0<-p1<-...<-pm considered identical?

There are at least three possible answers:

• Head identity: s == t :⇔ o == p.

• Tail identity: s == t :⇔ on == pm.

• Path identity: s == t :⇔ n = m and oi ==
pi for i = 0, ..., n.

Head identity seems to be awkward because references would
be considered identical that are - in general - not even of
the same type (the static type of a CR is the static type
of its tail). For example, CRs to the account resp. to the
address of the same person would be considered identical.
Path identity, on the other hand, seems to be too restrictive.
Recall the account example. If Jack and Sally share an
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account, then we want Jack’s account, i.e., the CR jack<-

account, to be identical to Sally’s account, i.e., to the CR
sally<-account. Hence, tail identity seems to be the only
reasonable identity semantics. For this reason, we define two
CRs to be identical if and only if their tails are identical as
defined above.

Finally, let us consider the method call semantics on a CR.
If a method implemented by an object o is called via a CR
on o, the value of the implicit this parameter is actually the
CR and not o. That is, if during the execution of the method
the object o passes itself to another object, it actually passes
the CR by which the method was called. For convenience,
we add some syntactic sugar: A method call (this<-a).m()
is abbreviated to a<-m().

For illustration, reconsider the TextJustifier implementa-
tion in Fig. 9. Truly incremental modification would mean
to implement only test() and action() since these are the
only methods, the semantics of which should be specific
when used in the context of a TextJustifier. The ques-
tion is now, how would then the specific iteration step se-
mantics implemented by TextJustifier::it.action() get
integrated into the iteration process which is performed by
the doAll() method called on the instance variable it of a
TextJustifier? Here is where the interplay between field
methods and CRs becomes relevant. If methods are dis-
patched via a compound reference, field methods override
corresponding methods of successive objects. In more de-
tail, the semantics is as follows. Let myref ≡ o<-v1<-...<-
vn be a CR with object path o0<-o1<-...<-on and m() be a
method of the static type of vn. Furthermore, let i be the
lowest index such that the class of oi contains a field method
vi+1.....vn.m() (a normal method is regarded as a field
method with empty prefix). Then a method call myref.m()
will be dispatched to the field method vi+1.....vn.m().

The implementation in Fig. 13 illustrates the inter-
play of CRs and explicit field methods. Within

class TextJustifier {
private TreeIterator it;
private void it.action(Object x) { ... }
private boolean it.test(Object x) { ...}
public void justify() {... it<-doAll(...); }

}

Figure 13: Explicit redirected field methods in Text-
Justifier

TextJustifier::justify(), the method doAll() is not
called directly on it, but rather via the compound
reference this<-it. Consequently, subsequent calls
to action() and test() that are made within the
control flow of TreeIterator::doAll() will be dis-
patched to TextJustifier::it.action(), respectively
TextJustifier::it.test().

With the implementation in Fig. 13, the fact that Text-

Justifier uses and even customizes an TreeIterator is
completely hidden from clients and subclasses of Text-

Justifier. It is not required for overriding methods to
respect the visibility of the overridden methods, because
TextJustifier is not a subtype of TreeIterator. With-
out any further code modification, it would also be possible
to choose an iteration strategy at runtime (cf. subsection
2.3) by simply assigning a new iterator object to it. Thus,
the implementation in Fig. 13 actually realizes a compo-
sition of TextJustifier and TreeIterator functionalities
that supports overriding, transparent redirection, dynamic
polymorphism, without subtyping and acquisition.

So far, compound references to an aggregated object referred
to by a field f are only explicitly created by the aggregating
class containing f before a method call (cf. f<-m()). That
is, the scope of the composition features mentioned above
(overriding, transparent redirection, and dynamic polymor-
phism) is an individual method call via an explicitly created
CR to f. This is different with fields that are declared with



// rf is a redirected field
private void rf.m() { field<-m(); }

// f is a non-redirected field
private void f.m() { field.m(); }

Figure 14: Field methods and field redirection

class TextJustifier {
private redirect TreeIterator it;
private void it.action() { ... }
private boolean it.test(Item x) { ...}
public void justify() {... it.doAll(...);}

}

Figure 15: TextJustifier with field redirection

the modifier redirect. Implicit field methods of a field that
is annotated with the redirect keyword have a different se-
mantics: Instead of simply forwarding the call to the field
object, they first implicitly create a CR to that field and call
the method on the created CR. Fig. 14 shows the difference
between the default implementation of implicitly available
methods of a redirected field, rf and that of a non-redirected
field f. For illustration, a version of TextJustifier with it

declared as a redirect field is given in Fig. 15.

3.3 Field Acquisition
Field acquisition is another step on the road from object
composition to inheritance. Orthogonal to the other modi-
fiers, the acquire modifier can also annotate a field declara-
tion. The intuitive semantics is that the features available
in the field become an inherent part of the aggregating class.
A class C with an acquired field f of type F implicitly con-
tains a method m() for every public method m() of F. The
method m() retains its signature as declared in F and its
visibility in C is public. The semantics of the implicit field
methods remains the same as with non-acquired fields, ex-
cept that they are now provided in the interface of C. For
illustration, consider the example in Fig. 16. Although Emp-

tyFilterStream does not itself implement write(int) or
write(int[]), these methods can be invoked on efs – an
instance of EmptyFilterStream – due to the declaration of
the instance variable stream as an acquired field.

Acquired implicit methods can also be replaced by explic-
itly programmed methods with the same signature. For the
sake of uniformity and in order to facilitate changing of a
given composition semantics by means of changing the mod-
ifiers of an instance variable, the prefix notation has to be
used when explicitly overriding acquired methods. For il-
lustration, consider the sample code in Fig. 17. The class
BufferedOutputStream acquires both write methods from
its acquired field stream and overrides them to add buffer-
ing.

Note that the bos.write(array) call in the client code
in Fig. 17 only displays “... buffering 5 ints ... ”
on the screen. The fact that no message “... buffer-

ing a single int ...” appears on the screen suggests

class OutputStream {
public void write(int b) {

System.out.println("Hello from write(int )");
}
public void write(int[] b) {

System.out.println("Hello from write(int[] )");
}

}

class EmptyFilterStream {
acquire private OutputStream stream = new OutputStream();

}

class Client {
static public void main(String[] args) {

EmptyFilterStream efs = new EmptyFilterStream();
int[] array = ...;

efs.write(3);
// "Hello from write(int )" appears

efs.write(array);
// "Hello from write(int[] )" appears

}
}

Figure 16: EmptyFilterStream with acquired fields

that the overridden write(int) method as implemented
in BufferedOutputStream is not invoked, although, at this
point the write(int) method of the underlying fout stream
will actually be called 5 times (since the buffer is already
full, the overridden field method will be called for both the
buffer and the int array passed as a parameter). However,
“... buffering a single int ...” is not displayed be-
cause neither stream is a redirected field, nor are the
calls field.write(buffer) and field.write(b) made via
a compound reference this<-stream. Therefore, the calls
to write(int) from within field.write(...) escape the
override by the BufferedOutputStream. This corresponds
to the broken delegation problem discussed in Sec. 2. In this
case, this is indeed the desired semantics, i.e., redirection
is actually not desired. Once the buffer is full, we want to
flush buffer’s content and the integers to be written imme-
diately to the underlying data sink. Hence, we indeed want
to escape buffering.

However, there might be cases, when we want all calls
occurring within the control flow of a call to an overrid-
den acquired method of an object outer to be also dis-
patched to outer. If field acquisition is combined with
field redirection, we obtain a perfect solution for this com-
position requirement. In the version of BufferedStream

presented in Fig. 18, where stream is declared to be ac-
quired and redirected, it suffices to do the buffering in the
write(int) method, because calls to write(int) in the
write(int[]) method are automatically redirected to the
buffering method.

One important restriction is imposed on field acquisition:
We allow every class to have at most one field acquisi-
tion. Otherwise we would have to take charge of all those
annoying multiple inheritance conflicts. However, due to



class OutputStream {
public void write(int b) { ... }
public void write(int[] b) {

for (i = 0; i < b.size(); i++) write(b[i]);
}

}

class BufferedOutputStream {
acquire private OutputStream stream;
int[] buffer; int current;

public BufferedOutputStream(out) {
stream = out;
buffer = ... ;

}

public void stream.write(int b) {
System.out.println("... buffering

a single int ... ");
if (buffer.notFull()) buffer[current++] = b;
else {

field.write(buffer);
field.write(b);
current = 0;

}
}
public void stream.write(int[] b) {

System.out.println("... buffering "
+ b.size + "ints ...");

if (buffer.size() >= current + b.size()) {
System.arraycopy(b,0,buffer,current,b.size);
current += b.size;

} else {
field.write(buffer)
field.write(b);
current = 0;

}
}

}

class Client {
static public void main(String[] args) {

FileOutputStream fout =
new FileOutputStream(aFileName);

BufferedOutputStream bos =
new BufferedOutputStream(fout);

int[5] array = ...;

bos.write(3);
// "... buffering a single int..."
// appears on the screen
...

//assume that buffer is full at this point

bos.write(array);
// "... buffering 5 ints ..."
// appears on the screen

}
}

Figure 17: Overriding acquired fields

class BufferedStream {
acquire redirect private OutputStream stream;
public void stream.write(int b) {

...do buffering...
field.write(b);

}
}

Figure 18: Overriding and redirecting acquired
fields

the fact that we can (a) do overriding and redirection for
multiple fields, and (b) combine multiple classes by means
of organizing them in an acquisition chain, this is no grave
limitation.

There is a second restriction that we need to make. Due
to subtype polymorphism, an instance of a subtype of Out-
putStream may be assigned to the stream instance variable.
This subtype may contain methods that are not available
in OutputStream. These methods should not be overrid-
den, because this might lead to unexpected or unsound re-
sults: The result might be unexpected because the author
of the overriding method does not know about the existence
and semantics of the overridden methods. The result might
also be unsound, because the overriding method may have
a signature that is not compatible with the signature of the
overridden method (e.g., has a different return type, see also
[18]). For this reason, we make the following restriction: A
field method overrides a method defined in a field type if
and only if it is already defined in the static type of the field
type.

The addition of the acquire feature into the model, has fur-
ther enriched the range of composition semantics between
the classes C and F that the programmer can express. Used
in isolation, acquire enables C to transparently forward
“services” to F, whenever it needs to do so, in order to sat-
isfy a request from an external client. On the other hand,
combining redirect and acquire yields a mechanism for in-
cremental modification that mimics the code reuse provided
by inheritance or delegation.

3.4 Subtyping
One thing is still missing on the road to
inheritance/delegation-based composition: Field acqui-
sition does not imply subtyping. A class can explicitly
declare to be a subtype of a number of other types via a
subtypeof clause. Declaring a class C as a subtype of a
type T, requires that C has to either implement all methods
that are defined in T or be abstract. In contrast to Java’s
implements clause, in our model both interfaces and classes
may appear on the right hand side of a subtypeof clause8.

Declaring a class D to be a subtype of another class C means
that D implements the interface of C, but it does not mean
that the implementation of C can automatically be used for
the realization of the corresponding methods in D - D does

8It is still possible to use traditional inheritance with ex-
tends.



class OutputStream { ... }
class FileOutputStream extends OutputStream { ... }

class FilterStream subtypeof OutputStream {
acquire redirect protected OutputStream stream;

}
class BufferedOutputStream extends FilterStream {

public void stream.write(in b) {
... do buffering ... ;
field.write(b);

}
class CompressedOutputStream extends FilterStream {

...
}

Figure 19: OutputStream in our model

not automatically acquire the state and method implemen-
tations of C. However, D can still make use of the behavior
defined in C, if this is desired, by declaring a field of type
C with modifiers acquire and redirect. This is an impor-
tant step towards a better separation of types and classes.
Decoupling subtype declaration from implementation reuse
solves e.g., the last drawback of the decorator approach ex-
plained in section 2.2.

For illustration, the “complete” implementation of the
stream example from Fig. 2 in our model is given in Fig. 19.
Compare this to the simulation of redirect semantics in
Fig. 3.

3.5 Field Navigation
If the object referred to by a field represents a facet that
should be visible to clients, we would like to have this fact
made explicit in the declaration of the field, rather then re-
lying on the presence of appropriate getter methods. For
serving this purpose, a field can be made navigable by an-
notating it with the navigable modifier. For example, we
could annotate the account field of Person as navigable, as
shown below. This allows clients to directly navigate to this
part of the object by retrieving a compound reference to
that part. This is illustrated below by having the client of
the Person object p retrieve a CR to p’s account and store it
in a. Technically, the declaration of a field as navigable can
be seen as short-cut for the corresponding getter methods
discussed above.

class Person {
private navigable Account account;

}
Person p = ...
Account a = p<-account;

Note that declaring a field as navigable does not imply that
clients can directly change the field. The possibility to nav-
igate to a field becomes part of the class interface, similar
to a getter method that returns the current value of a field.
Actually, the navigable composition semantic flavor discour-
ages rather than supports breaking encapsulation. Export-
ing a CR to an instance variable to external clients as part
of the interface of a class C can also be simulated by declar-
ing a redirect field to be public. However, this breaks the

encapsulation of C: clients can freely change the value of the
reference. This is not possible with navigable references.

The inverse navigation operation is provided by a CR reduc-
tion operator that can be used to access previous objects on
the object path of a CR. A reduction <AType> myref on a
compound reference myref ≡ o<-v1<-...<-vn creates a new
compound reference o<-v1<-...<-vn−1. The reduction suc-
ceeds if the type of the shortened compound reference (that
is, the static type of the vn−1 variable) is a subtype of AType.
If the length of the source path is two, a primitive reference
to o is created. Since it is not statically known whether an
account reference is a compound reference via a person, a
CR reduction has to be checked at runtime. The reduction
operation is in a way similar to type downcasts in languages
like Java. In the Account example, we could reduce a com-
pound reference to an Account to Person:

Person p = ...
Account a = p<-account;
Person p2 = <Person> a; // ok, checked at runtime
(p == p2) // true

4. EVALUATION OF THE MODEL
After having introduced the individual steps on the road
from object composition to inheritance, it is now time to
show how the problems discussed in Sec. 2 are addressed
in our model. The key to addressing these problems is the
availability of rich linguistic means to express a variety of
composition flavors by simply decorating object references
with composition properties. To support the discussion,
Fig. 20 introduces graphical notations for some of the most
relevant composition flavors between two classes C and F that
can be expressed with the model9. Please note that these
notations do not address overriding because in our model
overriding is implictly available by means of field methods
and need not be explicitly turned on or off.

Let us start with the the composition flavor (b) - in the mid-
dle of the road between object composition and inheritance.
A composition C(F) with this flavor shares with inheritance
overriding with late binding. This is not available with ob-
ject composition. On the other side, such a flavor shares
with object composition dynamic polymorphism as well as
lack of both acquisition and subtyping. The latter two fea-
tures are inseparable from inheritance/delegation, though.
The discussion of the TextJustifier example in Sec. 2 indi-
cated that such a mixture of features might indeed be needed
and that the lack of linguistic means to express it forces the
programmer in an object-oriented language to simulate the
same semantics by means of complex, unclear architectures
that are fragile with respect to requirement changes.

In the previous section, we have modeled the same com-
position scenario in our model. The implementation of
the desired composition semantics between TextJustifier

and the TreeIterator hierarchy is as simple as the code

9This list is not intended to cover all possible combinations
of composition features, but only those that are relevant for
evaluating the model with respect to the issues discussed in
Sec. 2.



(b)  Object composition
with redirection

(c) Object composition
with acquisition

(a)  Object composition

(d) Object composition
with acquisition and redirection

(e) Object composition
with acquisition, redirection
and subtyping

Figure 20: Graphical notations for different compo-
sition flavors

in Fig. 15 and the design as clear as the class diagram pre-
sented in Fig. 21, which is as simple as the inheritance-based
design in Fig. 5. However, in contrast to the inheritance-
based design, with the CR-based solution (1) several itera-
tion strategies can be chosen dynamically, (2) the iteration
functionality does not pollute the interface and implemen-
tation of TextJustifier, and (3) the conceptual view that
a TextJustifier is not a special kind of TreeIterator is
preserved. The latter are features that were indeed also
supported by the architecture based on object-composition
presented in Fig. 6 and 7. However, our design does not
share the complexity of the designs presented in Fig. 6 and
Fig. 7.

The complexity of designs that simulate non-standard com-
position flavors was only one of the problems that we identi-
fied in Sec. 2. The second and more important problem, was
that different composition flavors were modeled by different
architectures. In the following, we demonstrate, that this
problem is avoided in our model, by reconsidering the text
justifier and stream example from Sec. 2.

The design in Fig. 21 encodes a composition with redirec-
tion, overriding and dynamic polymorphism. Assume, we
also want to have acquisition. In our model, we would sim-
ply add the acquire modifier to the declaration of it. The
class diagram in Fig. 21 remains the same, except for re-
placing the current it link with link (d) in Fig. 20. On the
contrary, with the designs in Fig. 6 and Fig. 7 we would
have to change TextJustifier to implement all methods in
the interface of TreeIterator by forwarding these methods
to it. If we additionally want to have TextJustifier be
a subtype of TreeIterator, we would again merely have to
replace the it link with the link (e) in Fig. 20. The result-
ing design would still encode a different composition flavor
as compared to the inheritance based composition in Fig. 5,
since (1) we still have a composition that supports dynamic
polymorphism and (2) TextJustifier would not inherit the
state of TreeIterator.

TreeIterator
aggregate:Tree

doAll():void
doWhile():void
isDone():boolean
current():Object
next():void
first():void
test():boolean
action():void

TextJustifier

doc

ComposedDoc

DocElement

Simple

justState
it.test():boolean
it.action():void

PreOrder PostOrder

next()
first()

next()
first()

it

*

Figure 21: TextJustifier using compound references

A similar seamless transition from one composition flavor to
the other was observed when we modeled different flavors
of BufferedOutputStream in Fig. 17, Fig. 18, and Fig. 19.
Here we started with a flavor that is closer to the inheritance
end of the composition flavor spectrum: Object composition
with acquisition semantics. We then added redirection and
subtyping in two separate steps.

Another important feature of our model which makes it su-
perior to standard composition models is the fact that a
class can simultaneously reuse and adapt the functionality
of several other classes without suffering from the known
multiple-inheritance conflicts:

• Naming conflicts: Different methods with the same
name are inherited.

• Repeated inheritance (a.k.a. diamond inheritance):
The same class is inherited twice indirectly, for ex-
ample D is a subclass of B and C, both of which are
subclasses of A. Is a single copy of A shared by B and
C or are there two copies? What happens to methods
that are overridden in B and C in the first case? Which
copy of A do clients of D see in the latter case?

Different mechanisms have been developed to cope with
these problems, but avoiding a problem is certainly better
than fixing it. Due to our naming definition for field meth-
ods (prefixing it with the name of the attribute), we have no
naming conflicts. Problems related to repeated inheritance
do not occur either, because every compound reference in-
duces a unique path for message dispatch. The question
whether we have a shared or replicated “parent” boils down
to assigning the same, respectively different instances of the
aggregated class to the corresponding attributes.

Finally, we would like to bring up navigable fields in this
evaluation, because they foster another spectrum of relation-
ships not discussed so far. Industrial component models like



COM [6] and CCM [23] have the notion of independent inter-
faces or facets that a component exposes and that can be re-
trieved by special navigation methods. Design patterns such
as extension interface [26] or extension object [14] propose
architectures to allow a class to export multiple unrelated
interfaces à la COM and CCM without employing inheri-
tance or subtyping. However, as also acknowledged by the
authors, the proposed patterns incur increased design and
implementation effort, e.g., navigation infrastructure that is
of no functional use but necessary to retrieve the facets [26],
and increased client complexity [14, 26]. This critique is in
the vein of or our discussion in the motivation section.

Navigable fields present an elegant approach to modeling
classes that export several unrelated interfaces. A class C

exports the interfaces of all navigable fields. This is explic-
itly declared in the class’ interface. This export involves no
interface bloat because C’s interface does not itself contain
the methods of the exported interfaces. This is in contrast to
a class in Java implementing several different interfaces. In
contrast to the extension interface and extension object pat-
terns, the feature of exporting several unrelated interfaces
is built into the language and integrated with static type
checking. The relationship that the exported interfaces are
“facets” of the behavior of the exporting class is explicit in
the exporting class’ interface. The same relationship is not
explicit in the design of the extension interface and extension
object patterns as also indicated by Gamma [14].

5. ADVANCED ISSUES
Until now, compound references have been introduced in a
rather informal way. In this section, we will provide more
details. In particular, we will show that our model is type
safe. Type safety is threatened by subtle combinations of
compound references and subtype polymorphism.

In section 3.2, the static and the temporary type of a CR
have been defined. We have argued that type casts to the
temporary type of a CR should not be allowed because the
temporary type may change in the course of time. Enforce-
ment of this invariant is trivial for explicit type casts in
the program code. However, there are situations when we
have to cast a CR to its temporary type: Consider a class
A with a field b of type B. At runtime, an instance of BSub,
a subtype of B, is assigned to b and A makes a call b<-m()
to this object. The method m() of B is overridden in BSub.
This means that we execute the method m() of BSub and
the actual value of this is the CR a<-b with static type B.
However, the type of this has to be (at least) the type of
the corresponding class because otherwise features that are
introduced in BSub could not be called.

These casts to the temporary type are the cause that under
certain conditions the naive algorithm for creating an object
path o0<-o1<-...<-on for a CR o<-v1<-...<-vn, namely o0

= o and oi = oi−1.vi, fails. Fig. 22 shows three different
scenarios that lead to type errors if the naive algorithm is
employed. In the first scenario, the algorithm fails because
the new object in b no longer contains a field c when the
q() method of o is called. In the second one, the Other

instance expects its reference to be of type BSub, but the

new value for b is an instance of B. In the last scenario, the
CR that constitutes this during the execution of BSub::m()
is changed while the method is still on the call stack.

Some of these problems also occur in delegation-based sys-
tems and different solutions have been proposed (see [19]
for an overview). However, most of these approaches do not
really fit in our model, because all fields are the potential
targets of CRs, so that trivially type safe restrictions like
requiring the new value of a field to be a subtype of the
dynamic type of the previous object are not practicable.

Instead, we present a dispatch algorithm that guarantees
static type safety while preserving the unrestricted program-
ming model. The main idea of our approach is as follows:
On every cast to the temporary type of a CR, we store the
current field value in the CR. This original value is used
whenever the current value would lead to a type error.

For the definition of this algorithm, we choose a recursive
representation of CR: A CR is either a primitive reference
or a pair parent<-v such that parent is a CR and v a field
name. We call a CR that has been casted to its temporary
type (or a supertype of the temporary type that is not a
supertype of the static type) a critical CR. A critical CR is
a triple parent<-v | s such that s is the stored field value.
Please note that due to the recursive construction parent
may already be a critical CR. A non-critical CR is converted
to a critical CR by storing the current value of the field in
s. This “conversion” (think of the CR as being passed “by
value”) takes place whenever the CR is subject to an implicit
downcast to its temporary type. The decision whether the
current or the stored field value is used is based on an ad-
ditional parameter, the requested type reqType, that defines
which type is expected in the actual context. For a CR ref,
reqType is the declared type of ref. In the following, Cv

denotes the class in which the field v is defined. For non-
critical CR, the object path is created as follows:

objectPath(parent<-v, reqType) :=
objectPath(parent, Cv)<-tail(parent<-v, reqType)

tail(parent<-v, reqType) :=
tail(parent, Cv).v

Except for the additional reqType parameter, this algorithm
is equivalent to the non-recursive description oi = oi−1.vi.
In the critical case, the reqType parameter comes into play:

tail(parent<-v | s, reqType) :=
if tail(parent, Cv).v instanceof reqType

then tail(parent, Cv).v
else s

An induction proof on the length of CR shows that this
algorithm preserves type safety. It suffices to proof that the
type of the object that is returned by the tail function is
always a subtype of reqType. For CRs of length one (that
is, primitive references) the claim holds because the base



4. q()

A B

BSub

Other
m(o: Other) store(C c) {

  this.c = c;
}
q() {
c.danger(); }

m(o: Other) {
  o.store(this<-c);
}

b

a:A o:Other

1. setB(bs)
2. p(o)
3. setB(b);

p(o:Other) {
  b<-m(o);
}

4. q()

C
danger() { ...
}

c

c

A B

BSubOther

m(o: Other)

store(BSub bs) {
  this.bs = bs;
}
q() { bs.danger(); }

b

a:A o:Other
1. setB(bs)
2. p(o)
3. setB(b)

p(o:Other) {
  b<-m(o);
}

m(o: Other) {
  o.store(this);
}
danger() { ... }

bs

A B

BSub

m() {...}
n() {...}

b

a:A1. setB(bs)
2. p()

b.n() {
  b = new B();
}
p() {
  b<-m();
}

m() {
  n();
  danger();
}
danger() { .. }

Scenario 1 Scenario 2 Scenario 3

bs:BSub
bs:BSub

b:B

Figure 22: Scenarios that threaten type safety

language (without CR) is assumed to be statically type safe.
Let ref be a CR with length n and declared type T. Then
ref may be a critical or a non-critical CR.

1. ref is non-critical. Let ref ≡ parent<-v. T =
reqType is a supertype of the static type of ref be-
cause otherwise ref would be critical. By induction
hypothesis, the type of tail(parent, Cv) is a subtype of
Cv, so that the field value v, ov can be safely retrieved.
Subtyping guarantees that this object is a subtype of
the declared type of v, and therefore also a subtype of
reqType.

2. ref is critical. Let ref≡ parent<-v | s. By induction
hypothesis, the type of tail(parent, Cv) is a subtype of
Cv, so that the field value v, ov can be safely retrieved.
The if statement guarantees that ov is returned if and
only if it is an instance of reqType. If this is not the
case, s is returned, so we have to show that s is a
subtype of reqType. This is assured by the rule that a
critical CR is created and initialized whenever a non-
critical CR is casted to its temporary type because this
implies that during the assignment of ref s has been
(and is) a subtype of the static type of ref.

Applied to the scenarios in Fig. 22 this means that in sce-
nario 1, the reference c in o is critical, and the call to dan-

ger() in Other::q() is dispatched via the original object
path bs<-c. This is also the case in scenario 2 and 3: The
reference bs in o resp. this in bs is critical and the danger()
call is dispatched via the original object path a<-bs.

We have shown that our dispatch algorithm renders the
model statically type-safe. However, a price has to be paid:
Although this happens only under very special conditions,
it is an undesirable complication of the model that the in-
variant that all calls to a CR are always dispatched to the
current object of the corresponding field does not hold any-
more. We think that the reason for these problems is the

existence of a “magic triangle” between (a) type safety, (b)
expressive power, and (c) easy semantics. In our proposal,
we put the emphasis on (a) and (b) and got some problems
with (c).

6. RELATED WORK
Delegation appeared first in untyped, prototype-based lan-
guages [20]. The most prominent example in this category
is Self [32]. As shown in Table 1, delegation includes all
composition properties simultaneously; applying individual
properties independently is not explicitly supported.

More recent proposals have been proposed to restrain the
extreme flexibility offered by Self and a number of related
proposals by embedding delegation in a statically typed lan-
guage. The Darwin model [18, 19] combines delegation and
static inheritance in a statically typed language. Darwin
already incorporates a limited variant of composition prop-
erty separation: Besides delegation and inheritance, Dar-
win also has the notion of consultation, which, in our ter-
minology, corresponds to delegation without redirection.

Generic wrappers [4] support a restricted variant of del-
egation: Once a “wrappee” is assigned to a “wrapper”, the
wrappee is fixed. In our terminology, this corresponds to del-
egation with “semi-dynamic” polymorphism (parent fixed at
runtime), and in our model would be expressed by declar-
ing the corresponding attribute as final. Büchi and Weck
[4] emphasize the importance of being able to dynamically
cast a wrapper to the dynamic type of its wrappee (trans-
parency). In our model, this could be achieved by allowing
explicit dynamic casts to the temporary type of a CR, which
is not problematic, when the attributes are annotated fi-

nal. However, further details on this aspect have been left
out of the scope of this paper.

gbeta [11] also has a number of dynamic features that are
related to delegation. Like in Generic Wrappers, parents
in gbeta are fixed at runtime. gbeta also allows dynamic
behavior additions to objects that preserve object identity,



for example a statement like aClass##->anObject## adds
the structure of aClass to anObject. Another delegation-
based approach is described in [28]. Steyaert and De Meuter
propose a variant of delegation in which a class has to an-
ticipate all its possible extensions in order to avoid certain
encapsulation problems.

Compared to these approaches to supporting delegation in
a statically typed language, delegation, in our model, comes
out as a special mixture of composition properties, among
many other possible mixtures. In addition, our model is
more flexible in that in contrast to the aforementioned ap-
proaches, objects do not have a single special parent at-
tribute. In our model it is possible to override and redirect
multiple arbitrary attributes.

Predicate objects [10], Rondo [21], and the context
relationship [27] allow the programmer to express certain
kinds of context-dependent facets of an object by explicit
linguistic means. The composition of the basic behavior
of an object and its facets obeys delegation semantics in
[10, 27], and some form of mixin-based inheritance in [21].
Our model shares with these approaches the support for
a two-dimensional incremental modification: (1) vertically
by means of inheritance in our model, Rondo, and con-
text relationship, respectively by means of delegation in
predicate objects, and (2) horizontally by means of an
advanced form of delegation in [10], an advanced form of in-
heritance that supports the static/dynamic polymorphism
property in [21, 27], and by means of CRs in our model.
However, in [10, 21, 27] the composition flavors in both axes
are built in; individual composition properties are not ex-
plicitly available for on-demand combination.

Mixin-based inheritance [7, 12, 2] is an enrichment of
normal inheritance with the static polymorphism feature of
Tab. 1. In contrast to the normal inheritance, the super

pseudo-variable of a subclass is not bound to a certain base
class when the subclass is defined. Rather, there is an ex-
plict composition stage, where super is statically bound to a
composition-specific superclass. In this way, the same sub-
class (mixin) can be statically applied to several base classes.
However, inheritance enhanced with static polymorphism is
the only composition flavor supported.

Jigsaw [8] improves the modularity of the original mixin-
based inheritance [7] by providing a suite of language opera-
tors that independently control several roles that classes play
in standard languages such as combination of features, mod-
ification, encapsulation, name resolution, and sharing. This
untangling of class composition semantics is in its core very
similar to our untangling of standard composition seman-
tics. The motivation for undertaking these untanglings is
different, though. The main focus in Jigsaw is on fine-grain
control over the visibility of the features from the individual
modules in a composition, to allow mixins, multiple inher-
itance, encapsulation, and strong typing to be combined in
cohesive manner.

The flexible control over the method dispatch via filters at-
tached to an object complemented by the ability to define

different factes of an objects in so-called internal and ex-

ternal objects supported by the composition filters ap-
proach [1] can probably also be used to simulate some of
the flavors of composition semantics that can be expressed
in our model. Still, there are important differences between
the two models. First, the composition filters approach
lacks a static type system. Second, different flavors of com-
position semantics need to be manually implemented in dif-
ferent dispatch filters. This might turn out to be a tedious
end error-prone activity, especially if several internals and
mixtures of composition properties are involved. In contrast,
the specification of the desired semantics is more declarative
in our model. Third, it is not obvious how redirection se-
mantics could be ”programmed” with dispatch filters.

Our notions of field methods and field navigation share some
commonality with the as-expressions of the point of
view notion of multiple inheritance [9] in that they
allow to adapt and combine multiple classes without suffer-
ing from multiple inheritance conflicts. However, due to the
use of object rather than class composition, our approach is
more flexible when coping with issues such as sharing and
duplicating the features of common parents, typical for ap-
proaches to multiple inheritance.

7. SUMMARY AND FUTURE WORK
In this paper, we showed that the traditional object-oriented
composition mechanisms, object composition and inher-
itance/delegation, are frequently inappropriate to model
non-standard composition scenarios. Non-standard compo-
sition semantics are simulated by complicated architectures
that are sensitive to requirement changes and cannot easily
be adapted without invalidating existing clients. This un-
satisfactory situation is due to the fact that the combination
of composition properties supported by each mechanism is
fixed in the language implementation and individual prop-
erties do not exist as abstractions at the language level.

We proposed compound references as a new and powerful ab-
straction for object references. On this basis, we were able to
provide explicit linguistic means for making individual com-
position properties available and to allow the programmer
to express a seamless spectrum of composition semantics
in the interval between object composition and inheritance.
The model is statically type-safe and makes object-oriented
programs more understandable, due to explicitly expressed
design decisions, and less sensitive to requirement changes.

Two issues that have already been worked out but have been
omitted due to space reasons are as follows: First, there is a
well-known conflict between delegation and method header
specialization [4, 19]. Second, the concept of abstract classes
and abstract methods is also useful for object-based overrid-
ing. Statically safe solutions to both problem are proposed
in [24].

There are some areas of future work. First, the fine-grained
scale between object composition and inheritance renders
the common visibility modifiers public and protected too
coarse, so that a more sophisticated visibility concept is de-
sirable. Such a refined visibility concept may also solve en-



capsulation problems as described in [28]. Another interest-
ing area is to investigate the space of possible composition
property combinations for invalid combinations, which need
to be rejected at compile-time. Finally, an interesting ex-
tension of the CR concept would be to also allow CRs to
dictionary entries, so that the dictionary keys take the roles
of field names, and the corresponding values the role of field
values.
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