
Integrating Independent Components
with On-Demand Remodularization

Mira Mezini
Darmstadt University of Technology

D-64283 Darmstadt, Germany

mezini@informatik.tu-darmstadt.de

Klaus Ostermann
Siemens AG, CT SE 2

D-81730 Munich, Germany

Klaus.Ostermann@mchp.siemens.de

ABSTRACT
This paper proposes language concepts that facilitate the
separation of an application into independent reusable build-
ing blocks and the integration of pre-build generic software
components into applications that have been developed by
third party vendors. A key element of our approach are on-
demand remodularizations, meaning that the abstractions
and vocabulary of an existing code base are translated into
the vocabulary understood by a set of components that are
connected by a common collaboration interface. This gen-
eral concept allows us to mix-and-match remodularizations
and components on demand.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Programming Tech-
niques—Reusable Software; D.3.3 [Software Engineer-
ing]: Programming Languages—Modules, packages

General Terms
Design, Languages

Keywords
On-Demand Remodularization, Aspect-Oriented Program-
ming, Collaboration-Based Decomposition

1. INTRODUCTION
This paper proposes language support for separating and

capturing generic application logic that is useful in several
places within one application domain or even across appli-
cation domains. Hence the attribute ‘generic’. In the termi-
nology of standard component models such as CORBA, one
would probably use terms such as vertical and horizontal
facilities for the kind of generic application logic we target
here.

Graph algorithms are a good match for the kind of the
generic functionalty we mean, since they are used in almost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02,November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

Teacher Course

Student
YearStudent

1

*

*

*

* 1

requiredCourses

teaches
Room

Figure 1: University Example

any application domain. They are often even instantiated
several times within the same application, whereby each
instantiation might involve different units in the modular
structure of the application in playing the roles of vertices
and edges in the world of graph abstractions. For exam-
ple, the university administration software in Fig. 1 can be
viewed as a graph whose vertices are the courses and whose
edges are gained by connecting any pair of courses that are
taught by the same teacher or required by the same stu-
dent year. This view on the module structure of the univer-
sity software would be necessary on the demand of applying
graph coloring1 to compute an optimal assignment of time
slots to courses. Other - eventually completely different or
overlapping - remodularized views of the university software
are needed on the demand of adding other features by ei-
ther differently applying the coloring algorithm or by apply-
ing other graph algorithms, e.g., graph matching2. Tab. 1
presents different sample representations of the university
administration example as a graph.

One can easily generalize from graph algorithms to generic
application logic in other domains such as e.g., price calcula-
tion logic in the domain of web-based order systems, bonus
calculation and administration logic in the domain of online
travel agency software, etc. Now that we have illustrated
the meaning of the term generic functionality, the message
we want to convey is that appropriate language technol-

1A graph coloring is an assignment of colors to the vertices
of a graph such that no two vertices that are connected by an
edge have the same color. A minimum coloring is a coloring
with a minimum number of colors.
2A matching is a subset M ⊆ E of the graph’s edges such
that every vertex is connected to at most one edge from M .
A maximum matching is matching with a maximum number
of edges in M .

Graph Vertex Edge (v1,v2)

Course Collision Courses Teacher teaches both v1 and v2 or both v1 and
v2 required by same student year

Student Contacts Students v1 and v2 visit a common course
Student knows Teacher Students, Teachers Student v1 visits a course by teacher v2

Teacher uses Room Teachers, Rooms Course with Teacher v1 and assigned room v2

Table 1: Possible Mappings from University Example to Graph

ogy should support a software development process in which
such generic functionality as graph coloring or price calcu-
lation (a) are provided as ‘off-the-shelf’ components whose
implementation is decoupled from any particular applica-
tion, and (b) can be integrated a-posteriori into a multitude
of existing software.

The requirement for independent implementation of
generic functionality calls for appropriate module constructs
for doing so. The requirement for a-posteriori integration
implies that we need a remodularization of the existing soft-
ware, however, without physically changing it. A physical
change is not only undesirable but also frequently impossi-
ble. There is in fact no single physical change of the modular
structure that would satisfy the needs of all generic func-
tionality to be integrated, since they have in general quite
different views of what the modular structure should be.

In the absence of appropriate language technology, the im-
plementation of different graph algorithms will be scattered
around several classes, offen dublicated, rendering the re-
sulting software a nightmare to maintain and evolve. To use
the terminology of aspect-oriented software develeopment
comunity, graph algorithm implementations would crosscut
the modular structure of the university software. Unfortu-
nately, as argued in [2, 8, 17], current object-oriented lan-
guages are not very well equipped to cope with the subtle
problems that occur when integrating independently devel-
oped components. Industrial component models such as
EJB and CCM do not tackle this problem, either. With
beans in the EJB model one can indeed ‘write application
logic once and run it in (almost) any server platform’. How-
ever, the integration of generic independently developed ap-
plication logic into existing EJB software is not supported.

The problem does not only apply to the integration of
components from third party vendors but also to the inte-
gration of reusable modules in general: those that capture
different separated concerns of a system in any software en-
gineering effort. The principles of separation of concerns [5],
which manifests itself today in the form of aspect-oriented
programming [13, 27, 1, 20], tells us that we should try to di-
vide our software in smaller pieces that are as independent
from each other as possible, in order to facilitate mainte-
nance, understandability and reusability. However, as indi-
cated in [11], the aspect-oriented programming community
recognizes that still much has to be done for supporting flex-
ible integration of crosscutting concerns.

The work presented in this paper aims at improving the
state-of-the-art technologies targeted at the problem domain
outlined so far. To support independent implementation of
generic functionality, we introduce collaboration interfaces
for declaring generic component types. Collaboration inter-
faces differ in two ways from standard interfaces as we know
them, e.g., from Java.

EdgeVertex

Graph
<<collaboration-interface>>

GraphColoring GraphMatching

Figure 2: Graph collaboration

First, they can be nested, thereby allowing the bundling
of several abstractions that together build up the concept
world of a component type. For example, a component that
provides algorithms on graphs articulates its world outlook
- the structure and the requirements of a graph to which the
algorithms could be applied - in the collaboration interface.
Other components that also operate on graphs can refer to
the same collaboration interface. This is schematically il-
lustrated in Fig. 2. Second, in addition to expressing what
a client can expect from an implementation of the interface
- the provided contract -, collaboration interfaces also ex-
plicitly capture what interface implementations expect from
potential client contexts in which they might be integrated.
We say, they also make explicit the expected contract.

In order to support flexible a-posteriori integration of
generic components into existing applications, we distin-
guish between implementing and binding a collaboration in-
terface. Implementing a collaboration interface means im-
plementing its provided contract, while binding a collabo-
ration interface means implementing its expected contract.
Binding a collaboration interface is done with respect to a
particular application into which the component gets inte-
grated. We assume that the world of the particular appli-
cation is, in general, very different from the component’s
world. Therefore, we provide language means to express
how the abstractions of a base application should be trans-
lated to the vocabulary of a particular collaboration inter-
face. We use the term on-demand remodularization for this
translation process to indicate two important characteristics
of our remodularization concept. First, remodularizations in
our model are virtual, meaning that the base module struc-
ture is never changed physically; a remodularization rather
defines a virtual view on top of the physical structure. Sec-
ond, the remodularization specified for binding a collabora-
tion interface C is effective only on the demand of executing
functionality in C. In other words, the semantics of existing
programs remains unchanged as long as the remodulariza-

tion is not explicitly applied.
Please note that our use of the term is not identical to

its use in the context of HyperJ [22], where it was originally
introduced. We will explain the difference later.

An important insight that drove our approach to linguis-
tic means to express bindings is that simple mappings from
component abstractions to base classes (“In the collabora-
tion C, class X plays the role R”) are not sufficient. The
base application does not necessarily have classes that do
directly correspond to a role in a particular collaboration.
For instance, there is no abstraction in the university soft-
ware that directly corresponds to the edge abstraction in
the course collision graph (Tab.1). Edges are only implicitly
represented as pairs of courses that need to be computed at
runtime. Hence, our view that mapping abstractions from
the two worlds needs full computational power, which is usu-
ally not provided by declarative mapping constructs. One
of the contributions of this paper is the fact that we present
an approach which allows such flexible mappings.

In addition, our on-demand remodularization is object-
based rather than class-based. Class-based means that a re-
modularization which affects a class applies to all instances
of a class, whereas object-based means that the remodular-
ization may be created for individual objects on-demand.
The advantage of object-based remodularization is twofold.
First, we have fine-grained control over the integration pro-
cess because we can choose for each object whether it should
be part of a collaboration or not. Second, the same object
(or set of objects) can participate in multiple component in-
stances. For example, a particular course instance can be
a vertex in the course collision graph and simultaneously
an edge in the “Teacher uses Room” graph (see Tab.1). It
can even be a vertex in another course collision graph which
is independent from the first one. Hence, object-based re-
modularization enables us to create multiple independent
remodularizations of the same objects. This is indicated
in Fig. 3, which outlines the general architecture for us-
ing our proposal, by two different remodularizations of the
same structure. This was an important requirement on the
integration of independent components (recall the different
views of the university example in Tab. 1).

An important feature of the model is the loose coupling
of the implementation and binding modules which allows to
reuse them independently. The implementation of a compo-
nent type relies on the declarations in the required contract
in order to remain oblivious of the potential contexts of use.
This renders a component implementation independent of
specific applications. By having the expected contract be
an integral part of its type, any component implementation
carries around a port that makes it pluggable into unknown
worlds. Any binding of the collaboration interface can serve
as a plug. On the other side, a binding module can also
rely on the declarations in the provided contract, remaining
oblivous of any potential implementation of the component
type being bound. However, by carrying around the pro-
vided contract of their type, they can easily be plugged with
arbitrary implementations of that type.

To the best knowledge of the authors, our approach is the
first one that decouples the component implementations and
remodularizations as indicated in Fig. 3 and thus allows us
to combine arbitrary implementations with arbitrary bind-
ings of a collaboration interface. It is only after the composi-
tion with a binding module that an implementation becomes

Collaboration
Interface

Component 1 Component 2

Remodularization 1

Remodularization 2

<<binds>>

Base Application

Figure 3: General architecture for collaboration in-
terfaces and on-demand remodularization

operative. The gain is that one can write code that is poly-
morphic with respect to either a component’s implementa-
tions, or bindings, or both of them, depending on whether
the code is written to a certain binding type, a certain im-
plementation type, or to the component type, respectively.
In addition, due to an appropriate generalization of com-
mon OO concepts (such as types, subtype polymorphism
and late binding) from the level of individual classes to the
level of sets of collaborating classes, reuse is very naturally
supported in both dimensions, component implementation
and remodularization.

The remainder of this paper is organized as follows. Sec. 2
presents shortcomings of current language technology with
respect to supporting integration of generic components.
Sec. 3 introduces our notions of collaboration interfaces and
on-demand remodularization. Sec. 4 outlines future work, in
particular our plans towards fluid aspect-oriented program-
ming. Sec. 5 discusses related work, and Sec. 6 summarizes
the paper.

2. PROBLEM STATEMENT
In this section, we set up the stage for the rest of the pa-

per. The goal is to identify shortcomings of current object-
oriented language technology with respect to supporting the
development of generic components designed for late inte-
gration into various contexts of use. The following sections
will present our proposal for coping with these shortcom-
ings. The target of our criticism is the common concept of
interfaces as we know it, e.g., from Java. We argue that they
lack two important features:

• Appropriate support for declaring component
types as a set of mutually recursive types. Defin-
ing generic components involves in general several re-
lated abstractions. We claim that current technology
falls short in providing appropriate means to express
the different abstractions and their respective features
and requirements that are involved in a particular col-
laboration.

• Support for bidirectional communication: Inter-
faces provide clients with a contract as what to expect
from a server object that implements the interface. We
say, they express the provided contract. In order to
define generic components which are decoupled from
their potential contexts of use, expressing expectations
that a server might have on potential contexts of use
is as important. We use the term expected contract to
denote these expectations. What is needed is support

interface TreeModel {
Object getRoot();
Object[] getChildren(Object node);
String getStringValue(Object node, boolean selected,

boolean expanded, boolean leaf, int row, boolean focus);
}

}

interface TreeGUIControl {
display();

}

class SimpleTreeDisplay implements TreeGUIControl {
TreeModel tm;
display() {

Object root = tm.getRoot();
... tm.getChildren(root) ...
...
// prepare parameters for getStringValue
... tm.getStringtValue(...);
...

}
}

Figure 4: Simplified version of the Java Swing
TreeModel interface

for a loose coupling of client and server, that is (a)
decoupling them to facilitate reuse, while (b) enabling
them to tightly communicate with each other as part
of a whole.

To illustrate these shortcomings, let us have a critical look
at a simple example. Fig. 4 shows a simplified version of
the TreeModel interface in Swing3, Java’s GUI framework
[10]. This interface provides a generic description of the
data model for a JTree, or other GUI tree controls. For
illustration purposes, Fig. 4 also presents a pseudo interface
for tree GUI controls in TreeGUIControl, as well as a pseudo
implementation of this interface in SimpleTreeDisplay (the
latter roughly corresponds to JTree).

In our terminology the code in Fig. 4 defines a generic
component for displaying arbitrary data structures that can
be viewed as trees in a GUI. When this component is used
in a particular context, e.g., for object structures that rep-
resent arithmetic expressions, it provides to this context the
display functionality. In turn, it expects from the context
a concrete implementation of getChildren and getString-

Value. These operations can only be implemented specif-
ically for a concrete data type to be presented as a tree.
That is, TreeGUIControl corresponds roughly to what we
called the provided contract in the type of our component,
while TreeModel correspond roughly to what we called the
expected contract. The class SimpleTreeDisplay represents
a sample implementation of the provided contract.

The design in Fig. 4 does actually a good job in decou-
pling these two contracts. Different implementation of GUI
controls can be written to the TreeModel interface and can
therefore be reused with a variety of concrete implementa-
tions of it, i.e., with a variety of data structures. The other
way around, any data structure to be displayed is decoupled

3Swing separates our interface into two interfaces,
TreeModel and TreeCellRenderer. However, this is irrel-
evant for the reasoning in this paper.

class Expression {
Expression[] subExpressions;
String description() { ... }
Expression[] getSubExpressions() { ... }

}
class Plus extends Expression { ... }

Figure 5: Expression Trees

class ExpressionDisplay implements TreeModel {
ExpressionDisplay(Expression r) { root = r; }
Expression root;
Object getRoot() { return root; }
Object[] getChildren(Object node) {

return ((Expression) node).getSubExpressions();
}
String getStringValue(Object node, boolean selected,

boolean expanded, boolean leaf, int row, boolean focus){
String s = ((Expression) node).description();
if (focus) s ="<"+s+">";

return s;

}
}

Figure 6: Using TreeModel to display expressions

from a specific tree GUI control (e.g., JTree), such that the
data structure can be displayed with different GUI tree con-
trols.

So, what is wrong with the approach to specifying generic
components exemplified by the design in Fig. 4? The first
“bad smell” is the frequent occurrence of the type Object.
We know that a tree abstraction is defined in terms of
smaller tree node abstractions. However, this collaboration
of the tree and tree node abstrations is not made explicit
in the interface. Since the interface does not state anything
about the definition of tree nodes, it has to use the type
Object for nodes.

The disadvantages of using the most general type, Object,
are twofold. First, it is conceptually questionable. If every
abstraction that is involved in the component definition is
only known as Object, no messages, beside those defined
in Object, can be directly called on those abstractions. In-
stead, a respective top-level interface method has to be de-
fined, whose first parameter is the receiver in question. For
example, the methods getChildren and getStringValue

conceptually belong to the interface of a tree node, rather
than of a tree. Since the tree definition above does not in-
clude the declaration of a tree node, they are defined as top-
level methods of the tree abstraction whose first argument
is Object node.

Second, we loose type safety. Let us have a look at Fig. 5
and Fig. 6. Fig. 5 shows a simple base application for expres-
sions, and Fig. 6 demonstrates how the expression classes
can be adapted (’remodularized’) to fit in the conceptual
world of a TreeModel. In our terminology, ExpressionDis-
play in Fig. 6 represents an implementation of the expected
contract. Since we use Object all the time, we cannot rely
on the type checker to prove our code statically safe because
type-casts are ubiquitous.

The question naturally raises here: Why didn’t the Swing
designers define an explicit interface for tree nodes as in
Fig. 7 from the very beginning? Well, there are good reasons

interface TreeDisplay {
TreeNode getRoot();

}
interface TreeNode {

TreeNode[] getChildren();
String getStringValue(boolean selected,
boolean expanded, boolean leaf, int row, boolean focus);

}

Figure 7: TreeDisplay interface with explicitly reified
TreeNode interface

class ExprAsTreeNode
implements TreeNode {

Expression expr;
void getStringValue(...) {

// as before
}
TreeNode[] getChildren() {

Expressions[] subExpr = expr.getSubExpressions();
TreeNode[] children =

new TreeNode[subExpr.length];
for (i = 0; i<subExpr.length; i++) {

children[i] = new ExprAsTreeNode(subExpr[i]));
}
return children;

}
}

Figure 8: Mapping TreeNode to Expression

for this. With the explicit type NodeTree it becomes more
difficult to decouple the two contracts, i.e., the data struc-
tures to be displayed from the display algorithm. The idea
is that the wrapper classes around e.g., Expression would
look like in Fig. 8. The problem with such kind of wrappers,
as also indicated in [8], is that we create new wrappers every
time we need a wrapper for an expression. This leads to the
identity hell : we loose the state and identity of previously
created wrappers for the same node. The questionable alter-
native would be to use hash tables which is not only labori-
ous but does also involve the definition and use of additional
classes for maintaining these hashtables, thereby rendering
the code more complex and less readable4.

So far, we discussed problems resulting from the lack of
appropriate support for defining multiple related abstrac-
tions in one module. Let us now illustrate the problems re-
sulting from the second shortcoming of standard interfaces:
missing support for bidirectional communication. Consider
for this purpose the getStringValue() method in Fig. 4 and
Fig. 6. This method has noticeable many parameters that
might be of interest when computing a string representation
of the node. Might be. The sample implementation in Fig. 6
uses only the selected parameter and ignores the rest. That
means, the tree GUI control, which calls this method on the
TreeModel interface, has to perform expensive computations
to obtain the parameter values for this method (see imple-
mentation of SimpleTreeDisplay::display() in Fig. 4), al-
though they might be rarely all used.

This is a typical case where we would like to establish a

4In fact, Swing offers a TreeNode interface similar to the one
in Fig. 7. However, classes that define data structures to be
displayed as tree nodes should anticipate this and explicitly
implement the interface.

bidirectional communication between the two contracts of
the tree displaying component. Here we would like Expres-

sionDisplay.getStringValue to explicitly ask the tree GUI
control to compute only relevant values for it, like selected

or hasFocus, implying the GUI control interface provides
respective operations. Recall that the GUI control interface
corresponds to the provided interface of our generic com-
ponent for displaying arbitrary data structures that can be
viewed as trees in a GUI. As for now, the interfaces are com-
pletely separated into (TreeModel and TreeGUIControl),
and there is nothing in the design that would suggest their
tight relation as two faces of the same abstraction. As such,
there is no build-in support for bidirectional communication
between their respective implementations. Build-in means
by the virtue of implementing two faces of the same abstrac-
tion, which serves as the implicit communication channel.

One can certainly achieve the desired communication by
additional infrastructure (e.g., via cross-references) which
has to be communicated to the respective programmers.
However, we think that bidirectional communication is such
a natural and frequent concept that the overhead that is
necessary to enable bidirectional communication with con-
ventional interfaces is too high. Please note that the addi-
tional TreeNode interface would also be of no help concern-
ing the bidirectional communication problem exemplified by
the getStringValue() method.

The third point is the fact that it is difficult and awk-
ward to associate state with abstractions like our tree nodes.
We might want to associate state with tree nodes in both
the ExpressionDisplay class in Fig. 6 and also inside the
tree gui control. For example, we might want to cache the
computed string value or children in Fig. 6, because the re-
computation might be expensive. In the gui control itself,
we might want to associate state like whether a tree node
is selected or not or its position on the screen with the re-
spective tree node. The only means to associate state with
tree nodes is to make extensive use of hash tables, which is
laborious and awkward.

3. CORE CONCEPTS
In this section, we will give an overview of the concepts

that comprise our model by means of the TreeDisplay ex-
ample from the previous section.

3.1 Collaboration Interfaces, their Implemen-
tations and Bindings

In order to cope with the problems discussed in Sec. 2
we propose the notion of collaboration interfaces (CI for
short), which differ from standard interfaces in two ways.
First, CIs introduce the provided and required modifiers
to annotate operations belonging to the provided and the
expected contracts, respectively, hence supporting bidirec-
tional interaction between clients and servers. Second, CIs
exploit interface nesting in order to express the interplay be-
tween multiple abstractions participating in the definition of
a generic component.

For illustration, the CI TreeDisplay that bundles the
definition of the generic tree displaying functionality from
Sec. 2 is shown in Fig. 9. As an example for the “reifica-
tion” of provided and expected contract, consider the meth-
ods TreeDisplay.display() and TreeDisplay.getRoot()

in Fig. 9. Any tree display object is able to display itself
on the request of a client - hence the provided modifier for

interface TreeDisplay {
provided void display();
expected TreeNode getRoot();

interface TreeNode {
expected TreeNode[] getChildren();
expected String getStringValue();
provided display();
provided boolean isSelected(),
provided boolean isExpanded();
provided boolean isLeaf();
provided int row();
provided boolean hasFocus();

}
}

Figure 9: Collaboration interface for TreeDisplay

TreeDisplay.display. However, in order to do so, it ex-
pects a client specific way of how to access the root tree
node. What the root of a displayable tree will be depends
on (a) which modules in a concrete deployment context of
TreeDisplay will be seen as tree nodes and, (b) which one
of them will play the role of the root node. Hence, the decla-
ration of getRoot with the expected modifier. TreeDisplay
comes with its own definition of a tree node: The CI Tree-
Node is nested into the declaration of TreeDisplay. Please
note that nesting of bidirectional interfaces in our approach
has a much deeper semantics than usual nested classes and
interfaces in Java: the nested interfaces are namely virtual
types as in [6]. We will elaborate on that in Sec. 3.4.

The categorisation of the operations into expected and
provided comes with a new model of what it means to im-
plement an interface. We explicitly distinguish between im-
plementing an interface’s provided contract and binding the
same interface’s expected contract. Two different keywords
are used for this purpose: implements, respectively binds.
In the following, we refer to classes that are declared with
the implements keyword as implementation classes. Simi-
larly, we refer to classes that are declared with the binds

keyword as binding classes
An implementation class of a CI must (a) implement all

provided methods of the CI and (b) provide an implemen-
tation class for each of the CI’s nested interfaces. In doing
so, it is free to use respective expected methods. In addi-
tion, an implementation class may or may not add additional
methods and state to the CI’s abstractions it implements.
Fig. 10 shows a sample tree GUI control that implements
TreeDisplay. The class SimpleTreeDisplay implements
the only provided operation of TreeDisplay, display(), by
forwarding to the result of calling the expected operation
getRoot(). In addition to implementing display(), Sim-
pleTreeDisplay must also provide a nested class that imple-
ments TreeNode - the only nested interface of TreeDisplay.
The correspondence between a nested implementation class
and its corresponding nested interface is based on name
identity – SimpleTreeDisplay e.g., defines a class named
TreeNode which is the implementation of the nested inter-
face with the same name in TreeDisplay. This nested class
has to implement all provided methods of the TreeNode

interface, e.g., display(). The declaration of the instance
variable boolean selected and the corresponding query op-
eration isSelected in SimpleDisplay.TreeNode are exam-
ples of new declarations added by an implementation class.

class SimpleTreeDisplay implements TreeDisplay {
void onSelectionChange(TreeNode n, boolean selected) {

n.setSelected(true);
}
void display() {

getRoot().display();
}

class TreeNode {
boolean selected;
...
boolean isSelected() { return selected; }
// other provided methods similar to selected
void setSelected(boolean s) { selected =s;}
void display() {

... TreeNode c = getChildren()[i];

... paint(position, c.getStringValue());

...
}

}
}

Figure 10: A sample implementation of TreeDisplay

Please note that just as nested interfaces, all nested imple-
mentation classes are virtual types (see Sec. 3.4).

A binding class of a CI must (a) implement all expected
methods of the CI, and (b) provide zero or more binding
classes for each of the CI’s nested interfaces (we may have
multiple bindings of the same interface, see subsequent dis-
cussion). Just as implementation classes can use their re-
spective expected facets, the implementation of the expected
methods of a CI and its nested interfaces can also call meth-
ods declared in the respective provided facets. The process
of binding a CI instantiates its nested types for a concrete
usage scenario of the generic functionality defined by the CI.
Hence, it is natural that in addition to their provided facets,
binding classes also use the interface of abstractions from
that concrete usage scenario. We say that bindings wrap
abstractions from the world of the concrete usage scenario
and map them to abstractions from the generic component
world.

For illustration, the class ExpressionDisplay in Fig. 11
shows an example of binding the generic TreeDisplay

CI from Fig. 9 for the concrete usage scenario, in
which Expression structures are to be viewed as the
trees to display. First, ExpressionDisplay binds the
nested type TreeNode as shown in the nested class Expr-

TreeNode. The latter implements all expected methods
of TreeNode by using (a) the provided facet of Tree-

Node, and (b) the interface of the class Expression (via
the instance variable e). Consider e.g., the implemen-
tation of the method ExprTreeNode.getStringValue(),
which calls both TreeNode.hasFocus() as well as Expres-

sion.getDescription().
In addition to binding TreeNode, ExpressionDisplay also

implements the method getRoot() - the only method de-
clared in the expected facet of TreeDisplay. Here is where
the reference root to the Expression object to be seen as
the root of the expression structure to display is transformed
into a TreeNode by being wrapped into an ExprTreeNode ob-
ject. Please note that this wrapping does not happen via an
ordinary constructor call - new ExprTreeNode(root) in this
case -, but rather by means of the wrapper recycling call
ExprTreeNode(root). We will elaborate on the concept of

class ExpressionDisplay binds TreeDisplay {
Expression root;

public ExpressionDisplay(Expression rootExpr) {
root = rootExpr;

}

TreeNode getRoot() {
return ExprTreeNode(root);

}

class ExprTreeNode binds TreeNode {
Expression e;
ExprTreeNode(Expression e) { this.e=e;}
TreeNode[] getChildren() {

return ExprTreeNode[](e.getSubExpressions());
}
String getStringValue() {

String s = e.description();
if (hasFocus()) s ="<"+s+">";
return s;

}
}

Figure 11: Binding of TreeDisplay for expressions

wrapper recycling in a moment.
The careful reader should have noticed that we do not use

identical names for establishing the correspondence between
a binding class and its corresponding nested interface, as
we did with implementing classes (ExprTreeNode in Fig. 11
binds TreeNode, but is itself not called TreeNode). As in-
dicated in Sec. 1, different bindings of the same interface
might be needed, if we have different abstractions in the
concrete usage scenario that have to be mapped to the same
component abstraction. This was illustrated by the “Stu-
dent knows Teacher” graph from Tab. 1: Both, students
and teachers, play the role of vertices in this graph. To cope
with such multiple bindings of the same interface, the iden-
tification by name that we had with implementation classes
is not carried over to binding classes. This enables multiple
different bindings of the same component type to different
base types without running into conflicts, since the bindings
can still be discriminated by their names.

In Sec. 1 we gave an example that illustrated why declara-
tive mapping constructs as in [27, 20, 21] are not sufficient to
express arbitrary on-demand remodularizations. In general,
the full computational power of an object-oriented language
is needed for this purpose. For this reason, our approach
to specifying remodularizations is rather “manual”. In fact,
binding classes and their nested classes are “almost stan-
dard” classes. “Almost” stands for two differences. First,
nested binding classes are also virtual types (see Sec. 3.4).
Second, they make use of the notion of wrapper recycling,
which we discuss next.

3.2 Wrapper Recycling
Wrapper recycling is our mechanism to escape the wrap-

per identity hell mentioned in Sec. 2. It is a concept on how
to create and maintain wrapper instances, and a way to
navigate between abstractions of the component world and
abstractions of the base world - the concrete usage scenario
world -, ensuring that the same (identical) wrapper instance
will always be retrieved for a set of constructor arguments.
This way the state and the identity of the wrappers is pre-

served.
Syntactically, wrapper recycling refers to the fact that,

instead of creating an instance of a wrapper W with
a standard new W(constructorargs) constructor call, a
wrapper is retrieved with the construct outerClassIn-

stance.W(constructorargs). For illustration consider once
again the expression return ExprTreeNode(root) in the
method ExpressionDisplay.getRoot() in Fig. 11. We al-
ready mentioned in the previous section that the expression
in the return statement is not a standard constructor call,
but rather a wrapper recycling operator. We use the usual
Java scoping rules, i.e., return ExprTreeNode(root) is just
an abbreviation for return this.ExprTreeNode(root).

The idea is that we want to avoid creating a new Expr-

TreeNode wrapper each time the method getRoot() is called
on an ExpressionDisplay. The call to the wrapper re-
cycling operation ExprTreeNode(root) is equivalent to the
corresponding constructor call, only if a wrapper for root

does not already exist, ensuring that there is a unique Expr-
TreeNode wrapper for each expression within the context of
the enclosing ExpressionDisplay instance. That is, two
subsequent wrapper retrievals for an expression e yield the
same wrapper instance - the identity and state of the wrap-
per are preserved.

This is due to the semantics of a wrapper recycling call,
which is as follows: The outer class instance maintains a map
mapW for each nested wrapper class W. An expression outer-

ClassInstance.W(wrapperargs) corresponds to the follow-
ing sequence of actions:

1. Create a compound key for the constructor arguments,
lookup this key in mapW.

2. If the lookup for the key fails, create an instance of
outerClassInstance.W with the annotated construc-
tor arguments, store it in the hash table mapW, and
return the new instance. Otherwise return the object
already stored in mapW for the key.

The wrapper recycling call ExprTreeNode[](...) in the
method Expr.TreeNode.getChildren() in Fig. 11 is an ex-
ample for the syntactic sugar we use to express wrapper re-
cycling of arrays, namely an automatic retrieval of an array
of wrappers for an array of base objects.

A naive implementation of wrapper recycling in a lan-
guage with garbage collection would imply a memory hole
because wrapped objects would never be collected by the
garbage collector. However, this can easily be reconciled
by more advanced memory management techniques such as
weak references and reference queues. Java, for example,
has a standard API class WeakHashMap that could be used
instead of a usual map.

3.3 Composing Bindings and Implementa-
tions

Both classes defined in Fig. 10 and 11 are not operational,
i.e., cannot be instantiated, even if they are not annotated as
abstract. These classes are indeed not abstract, since they
are complete implementations of their respective contracts.
The point is that the respective contracts are parts of a
whole and make sense only within a whole. Operational
classes that completely implement an interface are created
by composing an implementation and a binding class, using
the composition operator +. This is illustrated by the class

class SimpleExpressionDisplay =
SimpleTreeDisplay + ExpressionDisplay;

...

Expression test = new Plus(new Times(5, 3), 9);
TreeDisplay t = new SimpleExpressionDisplay(test);
t.display();

Figure 12: Creating and using compound classes

SimpleTreeDisplay.TreeNode

isSelected() { ...}

ExprTreeNode
TreeNode[] getChilds() { ... }

getStringValue() { ... }

TreeNode
expected TreeNode[] getChilds();
expected String getStringValue();
provided boolean isSelected(),
provided boolean isExpanded(); <<binds>>

SimpleTreeDisplay
void display() {

... TreeNode n ... }

ExpressionDisplay
TreeNode getRoot() { ... }

Figure 13: Type rebinding in compound classes

SimpleExpressionDisplay in Fig. 12. Only such compound
classes are allowed to be instantiated by the compiler. For
instance, Fig. 12 also shows sample code that instantiates
and uses the compound class SimpleExpressionDisplay.

Combining two classes with “+” means that we create a
new compound class within which the respective implemen-
tations of the expected and provided methods are com-
bined. The same combination also takes place recursively
for the nested classes: All nested classes with a binds dec-
laration are combined with the corresponding implementa-
tion from the component class. The separation of the two
contracts, their independent implementation, and the dedi-
cated late composition, allows us to freely reuse implemen-
tations of the two contracts in arbitrary compositions. We
could combine SimpleTreeDisplay with any other binding
of TreeDisplay. Similarly, ExpressionDisplay could be
combined with any other implementation of TreeDisplay.
Sec. 4 will have more to say about the reuse dimensions and
the flexibility supported by our approach.

Note that the overall definition of the nested type, e.g.,
TreeNode, depends on the concrete composition of imple-
mentation and binding types within which the type is used.
This does not only affect the external clients, but also
the internal references. For instance, references to Tree-

Node within ExpressionDisplay and SimpleDisplay are re-
bound to the composed definition of TreeNode in SimpleEx-

pressionDisplay, as illustrated in Fig. 13. Their meaning
would be different in another compound class, e.g., resulting
from composing SimpleDisplay with another binding class,
or ExpressionDisplay with another implementation class.
This is a natural consenquence of the fact that nested types
introduced by the collaboration interfaces are virtual types,
on which we will elaborate in the following.

3.4 Virtual Types
In our approach, all types that are declared as nested in-

terfaces of a CI and all classes that implement or bind such

interfaces (including classes that extend the latter) are vir-
tual types and virtual classes, respectively [15]. In the con-
text of this paper, we use the notion of virtual types of the
family polymorphism approach [6]. This means: (a) similar
to fields and methods, types also become properties of ob-
jects of the class in which they are defined, and consequently
(b) their denotation can only be determined in the context
of an instance of the enclosing class. Hence, the meaning of
a virtual type is late bound depending on the receiver object
that executes when the virtual type at hand is referenced.

Consequently, all type declarations, constructor calls, and
wrapper recycling calls for virtual types/classes within a
CI are actually always annotated with an instance of the
enclosing class. That is, type declarations and construc-
tor invocations are always of the form enclInst.MyVirtual

x, respectively enclInst.MyConstructor(). Similarly,
wrapper recycling calls are also always of the form
outerClassInstance.W(constructorargs) and not simply
W(constructorargs). For the sake of simplification, we ap-
ply the scoping rules common for Java nested classes also
to type declarations and constructor or wrapper recycling
calls: A call OuterClass.this.W(constructorargs) can be
shortened to W(constructorargs), and the type declaration
OuterClass.this.W can be shorted to W as long as there are
no ambiguities. This scoping rule applies to all type decla-
rations and wrapper recycling calls that have appeared so
far in this paper.

For instance, all references to ExprTreeNode in Fig. 11
should be read as ExpressionDisplay.this.ExprTreeNode.
The implication is that the meaning of any reference
to the type name ExprTreeNode within the code of Ex-

pressionDisplay will be bound to the compound class
that combines ExpressionDisplay.ExprTreeNode with the
implementation class of TreeNode that is appropri-
ate in the respective execution context. For exam-
ple, in the context of a SimpleExpressionDisplay as
in Fig. 12, ExprTreeNode will be bound to the com-
pound class ExpressionDisplay.ExprTreeNode + Simple-

TreeDislay.TreeNode. The same references will be bound
differently if they occur in the execution context of an object
of some subclass of ExpressionDisplay or in the context of
a different implementation class. The same also applies to
nested implementation and compound classes.

The rationale behind using virtual types lies in their power
with respect to supporting reuse and polymorphism, as ar-
gued in [6]. The advantages with respect to the degree of
reuse we gain in our context will be discussed in Sec. 4. At
this point, we will rather shortly discuss how our specific
use of virtual types (borrowed from [6]) does not suffer from
covariance problems usually associated with virtual types,
as for example the virtual type proposal in [28], which re-
quires runtime type checks. If we have a virtual type in a
contravariant position, as for example the argument type of
setRoot in Fig. 14, type safety is still preserved, because
subsumption is disallowed if the enclosing instances are not
identical. In order to make the approach sound, all vari-
ables that are used as part of type declarations have to be
declared as final because otherwise the meaning of a type
declaration might change due to a field update. For illustra-
tion consider the declaration of the variable ed in the sample
code in Fig. 14. It is used as part of a type declaration for
the variable t and is therefore declared as final. For more
details on typing issues we refer to [6].

Expression e = ...;
final ExpressionDisplay ed =

new SimpleExpressionDisplay(e);

...

// let FileSystemDisplay be a binding of
// TreeDisplay to the file system structure
SimpleFileSystemDisplay =

SimpleTreeDisplay + FileSystemDisplay;

FileSystem fs = ... ;
final FileSystemDisplay fsd =

new SimpleFileSystemDisplay(fs);

...

ed.TreeNode t = ed.getRoot();

fsd.setRoot(t); // Type error detected by typechecker!
// sd.TreeNode is not subtype of ed.TreeNode

Figure 14: Type safety due to family polymorphism

3.5 Object Constructors
Having classes with “splitted” code, as in our division into

a binding part and an implementation part, the question of
object construction and constructor calls arises. Which site
(binding or implementation) should be able to implement,
respectively call, constructors? An important prerequisite in
the following discussion is that we assume that – in general
– constructors have arguments.

Allowing both sites to implement and call constructors
would be unsound because every site would only call its
own constructors (it does not know about the existence of
the other-side constructors), and therefore invariants that
are established in the constructors of the other site will not
hold since the constructor of the other site will never be
called - implicit constructor invocation is not possible if the
constructor requires arguments.

Our point of view is that only the binding site should
implement constructors because the binding site needs to
establish links to base objects (which are adapted to the
role they play in the particular collaboration of a generic
component) in order to fulfill its purpose. If the implemen-
tation site needs to create objects, this can easily be done
by specifying corresponding expected factory methods in
the collaboration interface which can be called from the im-
plementation site and are implemented at the binding site.
Therefore, only the binding classes can implement construc-
tors, and these constructors are also the constructors that
are available in the compound classes that combine an im-
plementation class with a binding class by means of the +

operator.
Although this point (object creation) seems to be only

marginal, it has an important conceptual implication that
is related to symmetry. At first, collaboration interface im-
plementation and binding seem to be rather symmetric, but
object creation creates an important asymmetry. A conse-
quence of this asymmetry is that we can have only one im-
plementation of a bidirectional interface, but we may have
multiple different bindings of a bidirectional interface; we
can select among these bindings by means of different con-
structors.

3.6 Interim Evaluation of the Model
As an interim result, let us compare the way the generic

tree display functionality and its instantiation for expres-
sions was modeled with our model to the conventional solu-
tion discussed in Sec. 2.

• Other than the Swing interface in Fig. 4, we do not
need to use Object; every item is well-typed and we
do not need type casts. The methods that are concep-
tually part of the interface of tree nodes, are expressed
as methods of a dedicated nested interface.

• Due to bidirectional interfaces, we do not have the
problem related to the getStringValue() parameters:
The implementation of this method, as in Fig. 11,
causes the computation of only those values about the
state of displaying that are really needed by means of
calling appropriate methods in the provided interface.

• It is easy to associate additional state with tree nodes.
For example, the TreeNode implementation in Fig. 10
adds a selected field, and the TreeNode binding in
Fig. 11 could as well have added extra state to Expr-

TreeNode.

4. DIMENSIONS OF REUSE
In this section we want to elaborate on the degrees of

reuse and polymorphism supported by our proposal. For
this purpose, we will use the graph example from Sec. 1,
since it is better suited to demonstrate the advantages of
our approach.

4.1 Component Type Hierarchies
The first kind of reuse supported by our model is along the

dimension of component types. The key object-oriented no-
tion of subtyping between individual interfaces extends very
naturally to our nested collaboration interfaces. New CIs
can be defined as extensions of already existing CIs via the
extends clause. The new CI inherits all nested type defini-
tions and provided/expected methods of its parent CI. The
inheriting CI can than add new nested type definitions and
expected/provided method declarations. In addition, the
inherited nested types can be refined by defining interfaces
with the same name annotated by the modifier override.
An “overriding” nested type inherits all declarations of the
nested type being overridden and can add new declarations.

For illustration, Fig. 15 shows three sample collaboration
interfaces for graphs. The top interface Graph defines the
general graph abstractions and properties of these abstrac-
tions. The other two interfaces, ColoredGraph and Matched-

Graph, refine Graph by adding methods or refining inherited
nested interfaces of Graph5.

The refinement of nested types has pretty much the se-
mantics of standard inheritance on types. So, why the new
syntax - the keyword override rather than the familiar ex-
tends? The reason becomes clear once you recall that our
nested types are virtual types, rather than standard types
as e.g., Java interfaces. Other than an ordinary extends

5The purpose of the ColoredGraph.Edge.getBadness()
method is to have a measure of how troublesome a par-
ticular edge is with respect to minimum coloring, meaning
that if an edge with a high badness would be removed, it is
likely that we can color the graph with less colors.

interface Graph {
interface Vertex {

expected Edge[] getEdges();
}
interface Edge {

expected Vertex getV1();
expected Vertex getV2();

}
}

interface ColoredGraph extends Graph {
provided computeMinimumColoring(Vertex v[]);
override interface Vertex {

expected void setColor(int c);
expected int getColor();

}
override interface Edge {

provided float getBadness();
}

interface MatchedGraph extends Graph {
provided computeMaximumMatching(Vertex v[]);
override interface Edge {

expected void setMatched(boolean b);
expected boolean isMatched();

}
}

Figure 15: Graph collaboration interfaces

declaration, an override declaration does not create a new
type with a new name but overrides the definition of the in-
herited type. The typing implications of these virtual types
were explained in the previous section.

4.2 Implementation Hierarchies
Fig. 16 shows two implementation classes for the Colored-

Graph interface from Fig. 15, SuccessiveAugmentationCol-
oring and SimmulatedAnnealingColoring, each employing
a different algorithm for graph coloring. By being imple-
mentation classes, each of them provides implementations
for the provided methods of ColoredGraph, using the de-
clared expected methods. In addition, they may add new
declarations. For example, SuccessiveAugmentationCol-

oring adds a field temp_color to Vertex. The association
of the nested classes with the corresponding nested interface
in ColoredGraph happens by common names, as already ex-
plained in Sec. 3.1

Similar to interface refinement as in Fig. 15, it is also
possible to refine implementation classes, whereby the def-
initions of the nested classes can again be refined with the
override modifier. In other words, the subclassing and sub-
typing relations between individual classes in standard OO
are naturally carried over to the implementation classes of
CIs; again with the important difference that our nested
classes are virtual types as explained in the previous section.
For example, the commonalities between the two different
coloring algorithms could be factored out into a common
superclass as in Fig. 17.

4.3 Binding Hierarchies
In the following we elaborate on some advanced issues

related to CI bindings that could not be appropriately de-
mostrated by the simple example of the previous section.
Furthermore, we discuss the extent to which reuse is en-
abled along the dimension of binding classes.

class SuccessiveAugmentationColoring
implements ColoredGraph {

// successive augmentation coloring algorithm
void computeMinimumColoring(Vertex v[]) {

// successive augmentation coloring algorithm
... Edge e[] = v[i].getEdges(); ...
... Vertex w = e[j].getV2();
... if (w.isLegalColor(color)) w.temp_color = color;
... e[n].setBadness(badness); ...
// commit final coloring
for (int k=0; k<v.length;k++)

v[k].setColor(v[k].temp_color);
}
class Vertex {

int temp_color;
boolean isLegalColor(int color) {

Vertex neighbor[] = ...;
for (int i=0;i<neighbor.length;i++)

if (neighbor[i].getColor() == color) return false;
return true;

}
}
class Edge {

float badness;
float getBadness() { return badness; }
void setBadness(float b) { badness = b; }

}
}

class SimulatedAnnealingColoring
implements ColoredGraph {

// Simulated Annealing coloring algorithm
void computeMinimumColoring(Vertex v[]) {

...
}
...

}

Figure 16: Different Coloring Algorithms

Recall our claim that binding a CI to a concrete applica-
tion implies an on-demand remodularization of the applica-
tion for which simple declarative mappings are insufficient.
With the more sophisticated graph example, we are now able
to illustrate, how our proposal copes with this requirement.
For this purpose, Fig. 18 shows a binding class that trans-
forms the scheduling graph structure hidden within the uni-
versity class structure to the class structure that is required
by our graph algorithms. The nested classes CourseCol-

lision and CourseVertex are remodularization wrappers
around base objects. The class CourseCollision imple-
ments the expected interface of ColoredGraph.Vertex by
wrapping an object c of type Course, while CourseVertex

implements the expected interface of ColoredGraph.Edge by
wrapping two objects of type Course, c1 and c2.

Please note that the class CourseCollision wraps two
courses because there is no dedicated abstraction for course
collisions in the base application. This scenario illustrates
one part of our claim that simple declarative role mappings
are not sufficient. Binding a CI type is, in general, not a
simple equation of it with a type in the base application. It
rather might imply the collaboration of several instances of
the same or of different base types.

The example at hand also allows us to illustrate how our
proposal deals with the requirement for multiple bindings of
the same interface to different abstractions in the base appli-

abstract class AbstractColoring
implements ColoredGraph {

class Vertex { ... }
class Edge { float badness; ... }

}

class SuccessiveAugmentationColoring
extends AbstractColoring {

// Successive augmentation coloring algorithm
void computeMinimumColoring(Vertex v[]) { ... }
override class Vertex { ... }

}

class SimulatedAnnealingColoring
extends AbstractColoring {

// Simulated Annealing coloring algorithm
void computeMinimumColoring(Vertex v[]) { ... }
override class Vertex { ... }

}

Figure 17: Factoring out the commonalities between
the coloring algorithms

class SchedulingGraph binds ColoredGraph {
class CourseVertex binds Vertex {

Course c;
Edge[] cachedEdges;
CourseVertex(Course c) { this.c = c; }
Edge[] getEdges() {

if (cachedEdges == null) {
Vector tc = c.getTeacher().getCourses();
tc.append(c.getStudentYear().getCourses());
cachedEdges = new Edge[tc.length];
for (int i=0;i<tc.length;i++) {

Course x = (Course) tc[i];
cachedEdges[i] = CourseCollision(c,x);

}
}
return cachedEdges;

}
void setColor(int color) {

c.timeSlot = TimeSlots.getSlot(color);
}

}
class CourseCollision binds Edge {

Course c1,c2;
CourseCollision(Course c1, Course c2) {

this.c1=c1; this.c2 = c2;
}
Vertex getV1() { return CourseVertex(c1); }
Vertex getV2() { return CourseVertex(c2); }

}
}

Figure 18: Binding for scheduling graph

class StudentKnowsTeacherGraph binds Graph {

class StudVertex binds Vertex {
final Student s;
StudVertex(Student s) {this.s=s;}
...

}

class TeacherVertex binds Vertex {
Teacher t;
TeacherVertex(Teacher t) { this.t = t; }
...

}

... Vertex v1 = StudVertex(aStudent); ...

... Vertex v2 = TeacherVertex(aTeacher); ...
}

Figure 19: Multiple bindings of the same interface

cation - the other part of our claim that simple declarative
role mappings are not sufficient. This was exemplified by the
“Student knows Teacher” graph in Tab. 1, where both, stu-
dents and teachers, play the role of vertices in this graph.
In the previous section, we indicated that in our model,
this can be expressed by implementing different bindings of
the same interface with different names, which is now illus-
trated in Fig. 19. Here we have multiple bindings of the
interface Vertex without, however, introducing ambiguity,
because the bindings can still be discriminated by the dif-
ferent names, StudVertex and TeacherVertex, respectively.

Finally, we would like to use the more sophisticated ex-
ample to discuss more advanced issues of wrapper recycling.
Consider the wrapper recycling calls CourseCollision(c,x)
in CourseVertex.getEdges in Fig. 18, which ensure that
there is only one unique instance of CourseCollision for
each pair (c1,c2) of courses. In this example, an undirected
edge in the course collision graph is represented by two di-
rected edges, therefore a wrapper recycling call CourseC-

ollision(c1,c2) will in general yield a different wrapper
than CourseCollision(c2,c1) – In other words: wrapper
recycling takes the order of the constructor arguments into
account. If we want to disregard the order of the arguments,
this can be done with an appropriate data structure. For ex-
ample, a direct representation of undirected edges would also
be possible if we would pass a set with the two courses as
elements in the CourseCollision constructor calls instead
of the ordered pair of courses.

Now, that we have illustrated advanced issues of bindings,
let us focus on the reuse supported by our proposal along
this dimension. For this purpose, Fig. 20 shows a completely
different view of the university application as a graph. The
classes defined in Fig. 20 remodularize the university appli-
cation to present the student contacts graph. In this graph,
students play the role of vertices and two vertices are con-
nected if the students visit a joint course. The class Stud-

ContactsGraph represents the general remodularization to
the Graph collaboration, while StudContactsColoredGraph

and StudContactsMatchedGraph refine this class in order to
specialize the collaboration to ColoredGraph and Matched-

Graph6, respectively. A minimum coloring in the student
contacts graph would represent maximum groups of students

6The code for the MatchedGraph CI and its implementation
are not shown but are analogous to the coloring example

class StudContactsGraph binds Graph {
class StudVertex binds Vertex {

final Student s;
StudVertex(Student s) {this.s=s;}
Edge[] getEdges() {

... Student t = ... ;

... e[i] = StudContact(s,t);
return e;

}
}
class StudContact binds Edge {

Student s,t;
StudContact(Student s, Student t) {

this.s = s; this.t = t;
}

}
}
class StudContactsColoredGraph extends StudContactsGraph

binds ColoredGraph {
override StudVertex {

void setColor(int c) {
Exam.joinGroup(s,c);

}
}

}
class StudContactsMatchedGraph extends StudContactsGraph

binds MatchedGraph {
override StudContact {

void setMatched(boolean b) {
Rooms.getFreeApartment().assignStudents(s,t);

}
}

}

Figure 20: Alternative bindings of ColoredGraph and
MatchedGraph

that do not know each other and would therefore be good
candidates for joint exams with little cheating opportunities.
A maximum matching, on the other hand, would be helpful
to assign the students to two person apartments, such that
most students are pooled together with a person they know.

The sample code in Fig. 20 is presented for illustrat-
ing two nice features of our model. First, together with
the code in Fig. 18, it demonstrates how two “worlds” of
types can be multiply mapped to each other without ever
being changed. The second feature is again due to the
seamless integration of our new concepts into the standard
object-oriented concepts of classes, inheritance and subtype
polymorphism. Inheritance allows us to reuse StudCon-

tactsGraph in the definition of both StudContactsColored-

Graph and StudContactsMatchedGraph. Similar to the re-
finements of nested interfaces in Fig. 15, and the refinements
of nested implementation classes in Fig. 17, the nested bind-
ings StudVertex and StudContact of StudContactsGraph

can be refined with an override declaration, as illustrated
by StudContactsColoredGraph.StudVertex and StudCon-

tactsMatchedGraph.StudContact.

4.4 Polymorphism and the + Operator
As introduced in Sec. 3.3, implementations and bindings

of a CI can be freely combined by means of the “+” oper-
ator. In terms of the graph example, this is illustrated in
Fig. 21, where two different complete realizations of Col-

oredGraph (cf. Fig. 15) are defined by combining the same
binding class, SchedulingGraph, with two different imple-

class SucAugSched =
SuccessiveAugmentationColoring + SchedulingGraph;

class SimAnSched =
SimulatedAnnealingColoring + SchedulingGraph;

...
final SchedulingGraph sg =

wantSucAug ? new SucAugSched() : new SimAnSched();
sg.computeMinimumColoring(sg.CourseVertex[](courses));

Figure 21: Demo code

class SucAugStudContacts =
SuccessiveAugmentationColoring + StudContactsColoredGraph;

class SimAnStudContacts =
SimulatedAnnealingColoring + StudContactsColoredGraph;

class Matching1StudContacts =
MatchingAlgorithm1 + StudContactsMatchedGraph;

class Matching2StudContacts =
MatchingAlgorithm2 + StudContactsMatchedGraph;

Figure 22: Free combination of components and con-
nectors

mentation classes, SuccessiveAugmentationColoring and
SimulatedAnnealingColoring.

Both combinations, SucAugSched and SimAnSched, are
subtypes of their common binding part, SchedulingGraph,
and can therefore uniformly be used whenever an object
of type SchedulingGraph is expected. One can view the
type SchedulingGraph as being parameterized by the pro-
vided contract of its CI and the + operator as an application
operator that binds an actual value to the formal parame-
ter. SucAugSched and SimAnSched are two instantiations of
SchedulingGraph that differ from each other on the coloring
algorithm. This allows us to write code like the computeM-

inimumColoring() call in Fig. 21 polymorphically with re-
spect to the coloring algorithm used.

Other examples of this kind, i.e., the same binding classes
being combined with different implementation classes can
be found in Fig. 22. Just as SchedulingGraph, StudCon-

tactsColoredGraph binding from Fig. 20 can be combined
with any of the ColoredGraph implementations presented
in Fig. 16. Similarly, StudContactsMatchedGraph can be
combined with an arbitrary matching algorithm that imple-
ments MatchedGraph (adumbrated in Fig. 22). Both Su-

cAugStudContacts and SimAnStudContacts are subtypes of
StudContactsColoredGraph and can be used everywhere it
is expected. Similarly, Matching1StudContacts and Match-

ing2StudContacts are subtypes of StudContactsMatched-
Graph.

On the reverse side, one could think of coloring algo-
rithms, i.e., of implementation types, as being parameterized
with the expected facet of their CI. Hence, any operation
written to an implementation type, is naturally polymorphic
with respect to all bindings of that implementation type’s
CI. For instance, SucAugStudContacts from Fig. 22 and Su-

cAugSched from Fig. 21 represent two instantiations of Suc-
cessiveAugmentationColoring, i.e., both are subtypes of
the latter.

To summarize the typing relationships: If we have a class
C = A+B with implementation class A and binding class B

which communicate over a common collaboration interface
CI, then C is a subtype of both A and B, which are subse-

quently both subtypes of CI.
Since A and B are independent classes, we have to deal

with conflicts which are caused by accidental name clashes
of methods in A and B. We resolve these possible conflicts
by hiding all methods of A and B, which are not already in
the collaboration interface CI, in the context of a reference
of type C. For example, if both A and B would introduce
a method m(), then C c = ...; c.m(); would be an ille-
gal call, whereas A a = c; a.m(); would be legal, thereby
eleminating all possible ambiguities and conflicts.

To recap, we can create completely different and indepen-
dent mappings of a base structure (e.g., university admin-
istration) to a particular component structure (e.g., graph)
and combine them with yet a range of different implementa-
tions of the component (e.g., different coloring algorithms).
In general, the role or task that base objects play in a partic-
ular collaboration is not static but depends on the context
within which the collaboration is used, e.g., a course is a
vertex in the course collision graph, and the same course is
an edge in the “teacher uses room” graph (see Tab. 1). This
is also an advantage of our model over previous more static
approaches.

4.5 Section Summary
To summarize the chapter, we want to recall the different

dimensions of polymorphism and reuse that are possible in
our approach:

• Collaboration interface dimension: A hierarchy
of collaboration interfaces can be defined, such as the
Graph interface which is refined by ColoredGraph and
MatchedGraph (see Fig. 15).

• Component dimension: Multiple independent im-
plementations of a collaboration interface are possi-
ble, such as the different coloring implementations in
Fig. 16. Component implementations can reuse other
component implementations to implement more spe-
cialized collaboration interfaces via inheritance. For
example, the communalities of the two coloring algo-
rithms in Fig. 16 can be outsourced into a common
superclass (Fig. 17).

• Connector dimension: Multiple independent bind-
ings of a collaboration interface to the same or different
applications can co-exist, such as the course collision
and the student contacts remodularizations in Fig. 18
and 20, respectively. Inheritance among connectors,
such as in Fig. 20, allows to reuse existing remodular-
ization specifications when binding more specialized
collaboration interfaces.

• Bound component dimension: The bound compo-
nent is a subtype of both the component and the con-
nector type. Therefore, client code, such as in Fig. 21,
can be reused with any implementation.

5. FUTURE WORK:
TOWARDS FLUID AOP

This paper represents a stable snapshot of an ongoing
work. In this section, we want to outline the next steps
we tackle. Our future work on this model heads for fluid
aspect-oriented programming, a term recently coined by Gre-
gor Kiczales. In [11], he writes:

“But we can also see signs of a next genera-
tion of AOP technology, that we call fluid AOP.
Fluid AOP involves the ability to temporarily
shift a program (or other software model) to a
different structure to do some piece of work with
it, and then shift it back.”

We think that due to its expressiveness concerning on-
demand remodularizations, our approach is a good starting
point for fluid AOP. Our idea of enabling fluid AOP in our
approach is based on two concepts by which we plan to ex-
tend our model: callback methods and callback activation.
The rationale behind these two concept is that we feel that
we need something more dynamic than pure compile time
transformations with little runtime semantics as in AspectJ
[12]. Fig. 23 illustrates our ideas by code for online schedul-
ing, i.e., a new schedule is automatically computed every
time an assignment of teachers or student years to courses
changes.

The method courseAssignmentChanged() in Schedul-

ingGraph is a sample callback method. A callback method
describes events (or joinpoints) that should lead to the
execution of that method. For example, the definition
of courseAssignmentChanged() states that this method
should be called after the methods assignCourse() or
addRequiredCourse() have been called on objects of type
Teacher and StudentYear, respectively. Callback methods
as illustrated by the example resemble pretty much advices
in AspectJ [12].

Despite the similarity at the syntactic level, which stems
from the fact that for the purpose of illustrating the idea of
how our model can be seen as a step towards fluid AOP we
basically borrow the joinpoint designator syntax of AspectJ,
our callback methods are different in two important ways.
First, our callback methods are real methods just as any
method in a Java class: They have a signature and can be
inherited and refined. This is not true for AspectJ advices.
Details about the signature of a callback method as well as
the inheritance rules are out of the scope of this paper.

Second, the pure declaration of such a callback method
does not have any computational effects. This is the point
where our new more dynamic notion of aspects and join-
points comes in: The callback methods have to be activated
by means of an apply block. An example can be found in
the lower part of Fig. 23. An apply block is configured with
an object whose definition contains callback methods, such
as the sg object in Fig. 23. The semantics of the apply block
is that the callbacks defined in sg are active during the exe-
cution of everything that is inside the apply block - in this
case, the call to startCourseAssignment() and everything
that is transitively called in that method.

With respect to the idea of fluid AOP, the application is
transformed to perform online scheduling during the execu-
tion of a method call, and after the execution, everything is
shifted back.

Please note the dynamics that is involved in this process.
First, we can choose at runtime whether we want to perform
online scheduling or not (depending on the runtime value of
the wantOnlineScheduling variable. Second, if we decided
to use online scheduling, we can still choose from different
scheduling (respectively coloring) algorithms which we want
to use (exemplified by the decision between SucAugSched

and SimAnSched).
The full details of this approach - for example, the exact

class SchedulingGraph binds ColoredGraph {
// Remainder as in Fig. 18

Course[] courses;
SchedulingGraph(Courses c[]) { courses = c;}

void courseAssignmentChanged(Course c)
after calls(Teacher.assignCourse(c)) ||

calls(StudentYear.addRequiredCourse(c)) {
computeMinimumColoring(courses);

}
}

...

// SucAugSched and SimAnSched as in Fig. 21

if (wantOnlineScheduling) {
SchedulingGraph sg = wantSucAug ?

new SucAugSched(courses) : new SimAnSched(courses);

apply (sg) in {
startCourseAssignment(courses, teachers, studentyears);

}
} else {

startCourseAssignment(courses, teachers, studentyears);
}

Figure 23: Fluid AOP with On-Demand Remodu-
larization, Callbacks, and Callback Activation

syntax for specifying events and options for on efficient im-
plementation - have not yet been worked out. Yet we are
confident that we will be able to answer all open questions
in the next time and that the prospects of this approach are
worth the trouble.

6. RELATED WORK
Pluggable Composite Adapters (PCAs) [21] and their pre-

decessor, Adaptive Plug and Play Components (APPCs)
[20], have been important starting points for our work. Both
approaches offer different means for on-demand remodular-
ization. The APPC model had a vague definition of required
and provided interfaces. However, this feature was rather
ad-hoc and not well integrated with the type system. Recog-
nizing that the specification of the required and expected in-
terfaces of components was rather ad-hoc in APPCs, PCAs
even dropped this notion and reduced the declaration of the
expected interface to a set of standard abstract methods.
With the notion of collaboration interfaces, the approach
presented here represents a qualitative improvement over
PCA and APPC.

Due to the lack of decoupling of the component implemen-
tations from their bindings, the connectors and adapters in
APPC and PCA models are bound to a fixed component.
Furthermore, the lack of the notion of virtual types is an-
other drawback of these approaches as compared to the work
presented here. In addition, both approaches rely on a ded-
icated mapping sublanguage that is less powerful than our
notion of object-oriented wrappers with wrapper recycling.
Among these approaches, the APPC model of remodulariza-
tion is a class-based one, and only PCAs share the object-
based on-demand remodularization with our approach.

In [7], a variant of the PCA construct, called dynamic view
connectors (DVCs) is used in the architecture of an inte-

grated software engineering environment to support the late
integration of independently developed software engineering
tools. This work demonstrates the power of on-demand re-
modularization in a real-world, fairly large system. By being
basically a realization of the PCA concept, DVCs also share
their shortcomings mentioned above.

The Hyperspaces model and its instantiation in Hyper/J
[27] also support on-demand remodularization - this notion
was actually first introduced by the Hyperspaces model.
Both, on-demand remodularization in Hyper/J and in our
approach, have a common goal: “On-demand remodular-
ization allows a developer to choose at any time the best
modularization, based on any or all of their concerns, for
the development task at hand” [22]. Hence the same name.

However, despite the common goal, there are some impor-
tant differences between these two approaches. In a nutshell,
the functionality offered by Hyper/J can be summarized as
extracting concerns and composing concerns.

Extracting concerns means that one can take a piece of
existing software and tag parts of the software, e.g., method
a() in class A and method b() in class B, by means of a
so-called concern mapping. Later, this mapping can be used
to extract a particular concern from this software and reuse
it in a different context. This is similar to the old idea
of retroactive generalization in inheritance hierarchies [24].
An important concept for extracting concerns is the notion
of declarative completeness. Basically, this means that all
methods that are used inside the tagged methods but are
not tagged themselves are declared as abstract in the context
of the extracted concern. Our model does not have any
dedicated means for feature extraction.

However, we think that with respect to composing con-
cerns our approach is in some important ways superior to
Hyper/J. Composition in Hyper/J happens by means of
a so-called hypermodule specification, which describes in a
declarative sublanguage, how different concerns should be
composed. In terms of our model, a hypermodule performs
both the functionality of our binding classes and the actual
composition with the + operator. Due to this mixing and due
to the absense of an interface concept similar to our collab-
oration interface, Hyper/J has no polymorphism and reuse
as in our approach, e.g., one cannot switch between differ-
ent implementations and bindings, and one cannot use them
polymorphically. Since the mapping sublanguage is declar-
ative, it relies on similar signatures that can be mapped to
each other, and transformations other than name transfor-
mations (e.g., type transformations), are very difficult. In
addition, Hyper/J’s sublanguage for mapping specifications
from different hyperslices is fairly complex and not well in-
tegrated into the common OO framework.

The last important difference is that Hyper/J’s approach
is class-based: it is not possible to add the functionality
defined in a hyperslice to individual objects, instead the ob-
jects have to be created as objects of the compound hyper-
module from the very beginning. Therefore, multiple in-
dependent bindings that are added to individual objects at
runtime are not possible.

At this point, the question rises of how to position the
work presented here with respect to previously published
works on collaboration-based decomposition (CBD). CBD
approaches aim at providing modules that encapsulate a
whole collaboration of classes. With CBD classes are de-
composed into the roles they play in the different collabo-

rations. The idea is nicely visualized by a two dimensional
matrix with the classes as the column indexes and collabora-
tions in which these classes are involved as the row indexes.

Mixin Layers [26] and delegation layers [23] are two rep-
resentatives of approaches to CBD. Both approaches pro-
vide concepts for composing and decomposing a collabora-
tion into layers, such that a particular collaboration variant
can be obtained by composing the required layers. Mixin
layers use a nested variant of mixin-inheritance [4], whereas
delegation layers combine delegation and virtual classes in
order to defer the layer combination until runtime. None
of these approaches support on-demand remodularization.
The definition of a collaboration layer in these approaches
also encodes how the collaboration will be integrated. The
vocabulary of abstractions that are involved in an applica-
tion is defined a-priori to the definition of any collaboration
layer and is consequently shared by all layer definitions.

Collaboration layers are especially useful in case we have
many different variants of a particular collaboration (for ex-
ample, Graph, ColoredGraph, and WeightedGraph) and want
to mix-and-match these variants at runtime (for example,
create a ColoredWeightedGraph by composing the color and
the weight layer). Collaboration layers complement the con-
cepts proposed in this paper very nicely, because they would
allow us to decompose both components and connectors into
layers that could be combined on-demand. In the future, we
plan to combine the dynamic composition features of the
delegation layers approach with the concepts of the work
presented here.

VanHilst and Notkin propose an approach for modelling
collaborations based on templates and mixins as an alterna-
tive to using frameworks [30]. However, this approach may
result in complex parameterizations and scalability prob-
lems. A contract [9] allows multiple potentially conflicting
component customizations to exist in a single application.
However, contracts do not allow conflicting customizations
to be simultaneously active. Thus it is not possible to allow
different instances of a class to follow different collaboration
schemes.

Lasagne [29] is a runtime architecture that features
aspect-oriented concepts. An aspect is implemented as a
layer of wrappers. Aspects can be composed at run-time,
enabling dynamic customization of systems, and context-
sensitive selection of aspects is realized, enabling client-
specific customization of systems.

Hölzle [8] analyses some problems that occur when com-
bining independent components. Our proposal can be seen
as an answer to the problems and challenges discussed in [8].
Mattson et al [17] also indicate the problems with framework
composition, analyze reasons for these problems and investi-
gate the state of the art of available solutions. In [3], Bosch
proposes a language construct for specifying a class as the
adapter of another class, that is, for explicit expression of
the adapter pattern. The adapter construct as proposed
in [3] has two main restrictions: First, it does not support
adaptation of entire collaborative functionality. Second, as
indicated in [3], it does not allow interface incompatibility.

Our work is also related to architecture description lan-
guages (ADL) [25], for example Rapide [14], Darwin [16],
C2 [19], and Jiazzi [18]. The building blocks of an archi-
tectural description are components, connectors, and archi-
tectural configurations. A component is a unit of computa-
tion or data store, a connector is an architectural building

block used to model interactions among components and
rules that govern those interactions, and an architectural
configuration is a connected graph of components and con-
nectors that describe architectural structure. In comparison
with our approach, ADLs are less integrated into the com-
mon OO framework, and do not have a dedicated notion
of on-demand remodularization in order to provide a new
virtual interface to a system.

We think that collaboration interfaces might also prove
very useful in the context of ADL. In ADL, components also
describe their functionality and dependencies in the form
of required and provided methods (so-called ports). The
goal of these ports is to render the components reusable and
independent from other components. However, although the
components are syntactically independent, there is a very
subtle semantic coupling between the components, because a
component A that is to be connected with a component B has
to provide the exact counterpart interface of B. The situation
becomes even worse if we consider multiple components that
refer to the same protocol. The problem is that there is no
central specification of the communication protocol to which
all components that use this protocol can refer to – in other
words: we have no notion of a collaboration interface.

7. SUMMARY
This paper proposed language concepts that facilitate the

separation of an application into independent reusable build-
ing blocks and the integration of pre-build generic software
components into applications that have been developed by
third party vendors.

A key element of our approach is the notion of collabo-
ration interfaces, used to declare the type of generic com-
ponents. Collaboration interfaces are nested interfaces,
bundling several abstractions that together build up the
concept world of a component type into a family of virtual
types [6]. In addition to the ‘client-from-server contract’, ex-
pressed by standard interfaces, collaboration interfaces also
capture what servers expect from potential client contexts in
which they might be integrated, i.e., the server-from-client
contract. The implementations of these two contracts are
completely decoupled from each other.

The implementation of the second contract translates the
abstractions and vocabulary of an existing code base into
the vocabulary understood by a set of components that are
connected by a common collaboration interface. This trans-
lation is called on-demand remodularization, since the trans-
lation is virtual and effective only during the execution of
functionality in the collaboration interface, whose server-
from-client contract is implemented by the remodulariza-
tion. Our approach to remodularization is object-based and
uses the full computational power of an object-oriented lan-
guage. The concept of wrapper recycling was additionally
introduced to support the specification of the remodulariza-
tion.

The decoupling of component implementation from bind-
ings via remodularizations, allows to mix-and-match remod-
ularizations and components on demand. The + operator
was introduced for this purpose. This decoupling com-
bined with the lean integration of collaboration interfaces
with generalized notions of inheritance and subtype poly-
morphism, provide for a high degree of reuse in our model.

There are several areas of future work which were briefly
outlined in the paper. First, we plan to combine our ap-

proach with concepts from the delegation layers approach
[23]. This will allow us to decompose both components and
connectors into layers that could be flexibly combined on-
demand. Another very important area of future work is to
extend our remodularization language with constructs for
better supporting the integration of reusable crosscutting
concerns, as outlined in Sec. 5. This is a promising step
towards fluid AOP.

8. REFERENCES
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting object interactions using
composition filters. In R. Guerraoui, O. Nierstrasz,
and M. Riveill, editors, Object-Based Distributed
Programming. Springer, 1993.

[2] L. M. Berlin. When objects collide: Experiences with
reusing multiple class hierarchies. In Proceedings of
OOPSLA ’90, pages 181–193, 1990.

[3] J. Bosch. Design patterns as language constructs.
Journal of Object-Oriented Programming, 11(2):18–32,
1998.

[4] G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings OOPSLA/ECOOP’90, ACM SIGPLAN
Notices 25(10), pages 303–311, 1990.

[5] E. W. Dijkstra. A Discipline of Programming.
Prentice Hall, 1976.

[6] E. Ernst. Family polymorphism. In Proceedings of
ECOOP ’01, LNCS 2072, pages 303–326. Springer,
2001.

[7] S. Herrmann and M. Mezini. PIROL: A case study for
multidimensional separation of concerns in software
engineering environments. In Proceedings of OOPSLA
2000. ACM SIGPLAN Notices, 2000.

[8] U. Hölzle. Integrating independently-developed
components in object-oriented languages. In
Proceedings ECOOP ’93, LNCS, 1993.

[9] I. M. Holland. Specifying reusable components using
contracts. In Proceedings ECOOP ’93, LNCS 615,
pages 287–308, 1992.

[10] Java Foundation Classes.
http://java.sun.com/products/jfc/.

[11] G. Kiczales. Aspect-oriented programming - the fun
has just begun. In Workshop on New Visions for
Software Design and Productivity: Research and
Applications, Vanderbilt University, Nashville,
Tennessee, December 13-14, 2001.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of ECOOP ’01, 2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, Proceedings ECOOP’97, LNCS
1241, pages 220–242, Jyvaskyla, Finland, 1997.
Springer-Verlag.

[14] D. C. Luckham, J. L. Kenney, L. M. Augustin,
J. Vera, D. Bryan, and W. Mann. Specification and
analysis of system architecture using Rapide. IEEE
Transactions on Software Engineering, 21(4):336–355,
1995.

[15] O. L. Madsen and B. Møller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented

programming. In Proceedings of OOPSLA ’89. ACM
SIGPLAN, 1989.

[16] J. Magee and J. Kramer. Dynamic structure in
software architecture. In Proceedings of the ACM
SIGSOFT’96 Symposium on Foundations of Software
Engineering, 1996.

[17] M. Mattson, J. Bosch, and M. E. Fayad. Framework
integration problems, causes, solutions.
Communications of the ACM, 42(10), October 1999.

[18] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New
age components for old fashioned java. In Proceedings
of OOPSLA ’01, 2001.

[19] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of
off-the-shelf components in C2-style architectures. In
Proceedings of the 1997 international conference on
Software engineering, pages 692–700, 1997.

[20] M. Mezini and K. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In
Proceedings OOPSLA ’98, ACM SIGPLAN Notices,
1998.

[21] M. Mezini, L. Seiter, and K. Lieberherr. Component
integration with pluggable composite adapters. In
M. Aksit, editor, Software Architectures and
Component Technology: The State of the Art in
Research and Practice. Kluwer, 2001. University of
Twente, The Netherlands.

[22] H. Ossher and P. Tarr. On the need for on-demand
remodularization. In ECOOP’2000 workshop on
Aspects and Separation of Concerns, 2000.

[23] K. Ostermann. Dynamically composable
collaborations with delegation layers. In Proceedings of
ECOOP ’02, LNCS 2374, Springer, 2002.

[24] C. H. Pedersen. Extending ordinary inheritance
schemes to include generalization. In OOPSLA ’89
Proceedings, 1989.

[25] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. PrenticeHall,
1996.

[26] Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin-layers. In Proceedings of ECOOP
’98, pages 550–570, 1998.

[27] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In Proc. International Conference on
Software Engineering (ICSE 99), 1999.

[28] K. K. Thorup. Genericity in Java with virtual types.
In Proceedings ECOOP ’97, 1997.

[29] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B. N. Joergensen. Dynamic and selective
combination of extensions in component-based
applications. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE’01), 2001.

[30] M. VanHilst and D. Notkin. Using role components to
implement collaboration-based design. In Proceedings
OOPSLA 96, 1996.

