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Abstract. CaesarJ is an aspect-oriented language which unifies aspects,
classes and packages in a single powerful construct that helps to solve a
set of different problems of both aspect-oriented and component-oriented
programming. The paper gradually introduces the concepts of the lan-
guage and illustrates them by showing how they can be used for non-
invasive component refinement and integration, as well as for develop-
ment of well modularized flexible aspects. In this way we demonstrate
that the combination of aspect-oriented constructs for join-point inter-
ception with advanced modularization techniques like virtual classes and
propagating mixin composition can open the path towards large-scale as-
pect components.

1 Introduction

Aspect-oriented programming is mostly perceived as a technology for localiz-
ing crosscutting concerns by means of a mechanism to intercept execution at
relevant events in order to trigger aspect-specific functionality. More recently
[1, 27, 44], more attention has been given to other software engineering prop-
erties attributed to good modularization such as robustness against changes,
well-defined interfaces and information hiding, or reusability.

CaesarJ1 is an aspect-oriented language with a strong support for reusabil-
ity. It combines the aspect-oriented constructs, pointcut and advice, with ad-
vanced object-oriented modularization mechanisms. From an aspect-oriented
point of view, this combination of features is particularly well-suited to make
large-scale aspects reusable - one can say, it enables aspect components. From a
component-oriented view, on the other hand, CaesarJ is addressing the problem
of integrating independent components into an application without modifying
the component to be integrated or the application.

In this paper, we will give an overview of CaesarJ’s features. Previous pub-
lications have focused on one of the viewpoints in isolation when presenting
CaesarJ features. In [37], the language features that are relevant to component
integration have been discussed, while the focus in [38] has been on features
for improving the modularity and reusability of aspect code. This paper unifies
the two viewpoints mentioned above and is the first comprehensive overview of
CaesarJ. In particular, we will show how enabling reusable large-scale aspect

1 CaesarJ can be downloaded from caesarj.org



components and supporting non-invasive integration of independently developed
components are actually facets of the same problem, which can be addressed by
the same set of language features. By doing so, the paper also contributes an
in-depth presentation of CaesarJ features that have not or only sparsely been
discussed in previous works in their interplay with the rest of the language.

The structure of the paper is as follows. In the next section, we illustrate
the problem we want to address with a concrete example and give a rough
overview of how a solution to this problem in CaesarJ would look like. In
Sec. 3, we introduce the main module construct of CaesarJ - a generalized
notion of classes that unifies them with the notion of packages (in terms of:
sets of collaborating classes) and aspects - and demonstrate how it can be used
to capture, extend and compose large-scale software components. In Sec. 4, we
show how CaesarJ addresses the crosscutting integration problem by providing
means for reconciling independently modularized parts of a system. In Sec. 5, we
introduce the notion of dynamic aspect deployment, a flexible mechanism that
enables control over the scope, in which an aspect component is active. The
implementation of CaesarJ as an extension of Java [2] that produces JVM-
compatible bytecode is outlined in Sec. 6. Related and future work is described
in Sec. 7 and 8, respectively.

2 Problems Addressed by CaesarJ in a Nutshell

This section briefly surveys the limitations of mainstream object-oriented pro-
gramming that CaesarJ addresses, so as to establish the frame within which
to understand the in-depth technical discussion in the following sections. It does
so by an example that will subsequently be used throughout the paper.

2.1 Large-scale units of modularity beyond individual classes

A significant body of research has raised the concern that classes are a too
small unit of modularity [50, 36, 48, 15, 43]. We think that any large-scale
piece of functionality involves a group of related classes; hence, abstraction, late-
binding, and subtype polymorphism should be supported at the level of groups
of interrelated classes. Different terminology has been used in the literature to
denote such groups of interrelated classes, such as collaborations [53, 43, 36, 32,
22], layers [48, 43], teams [22], and families [14]. In this paper, the notion of a
group of interrelated classes corresponds to that of a class family [14]. Hence,
this term will be used.

To illustrate the need for carrying over the notions of abstraction, late bind-
ing, and subtype polymorphism to the level of class families, consider the class
diagram in Fig.1. It shows the structure of a software for displaying hierarchical
data structures (see the screenshot in Fig. 2). As indicated by Fig. 2, the data
model assumed by the display component is one of a composite structure, where
nodes are randomly labeled childA, childB, etc.; the implemented layout is one
in which boxes displaying nodes in the hierarchy have a fixed size, independent



of the length of the displayed text; connections between nodes are shown as
straight lines between the middle points of the boxes.
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Fig. 1. Hierarchy display class diagram

 

Fig. 2. Hierarchy display

Now consider some simple variations of this display functionality. One is to
enable boxes capable of adjusting their size to the displayed content (screenshot
in Fig. 3). Another variation would be to have right-angled connections (screen-
shot Fig. 4); yet another would use colors to encode the hierarchical levels. Each
of these variations makes sense in isolation and in combination with others; it
is reasonable to require that in scenarios where variability is important, e.g., in
product line development, all of them co-exist. This calls for an incremental style
of programming and flexible composition mechanisms.

 

Fig. 3. ... adjusted nodes
 

Fig. 4. ... plus right-angled connections

We can incrementally define different variations of the node and connection
abstractions by subclassing Node and Connection. However, in addition, we need
to make sure that any reference to Node and/or Connection is (re)bound to the re-
spective new definition. For this, we have to redefine all classes that refer to Node

and/oder Connection either by calling their constructor or by being a subclass
of them. For constructor calls, we need to redefine all methods where instances
of Node respectively Connection are created2. For subclasses of the refined classes
the problem is even harder - most object-oriented languages provide no obvious
solution.

This problem is well-known [24] - to cope with it, CaesarJ supports virtual
classes, a concept that stems from the programming languages Beta [35] and

2 Some design patterns can help with this in dynamic languages like Smalltalk.



has been refined and generalized in more recent work [12, 16]. Just like a vir-
tual method, a virtual class is also an abstraction that has different meanings
depending on the dynamic context of use. Virtual classes are defined as inner
classes of an enclosing family class; just like methods and fields, they are also
members of instances of their enclosing family class, called family objects. Hence,
at any time during the execution their meaning is relative to the dynamic type
of the family object.

With family classes, we can group sets of collaborating classes into a new unit
(which is again a class). Fig. 5 shows that the classes of the hierarchy display
component are now members (virtual classes) of an enclosing class Hierarchy-

DisplayType. The name HierarchyDisplayType suggests that an instance of this
family class represents a particular configuration of hierarchy display, by being
a repository for the inner classes.
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Fig. 5. Hierarchy display extension with virtual classes

Subclasses of a family class can refine inherited inner classes. Fig. 5 shows how
AdjustedHierarchyDisplayType extends HierarchyDisplayType with text fitting
functionality; it contains only of a refinement (a so-called further-binding) of the
virtual class Node3. In such a further-binding, we can override inherited methods,
add new methods or new state, as well as add additional superinterfaces and
superclasses (the latter leads to multiple inheritance, which will be explained
later).

There is a significant difference between a further-binding and a conventional
subclass of Node: All references to the type Node in the other virtual classes
are automatically re-bound to the refined Node class, when they are referred to
during the execution of an object of type AdjustedHierarchyDisplayType. This is
indicated by the gray shadows of the other virtual classes in Fig. 5. For example,
in the context of an instance of AdjustedHierarchyDisplayType, a CompositeNode

is a subclass of the refined Node class. Similarly, instance creation expressions
are also late bound.

3 One could similarly refine Connection in a subclass AngularHierarchyDisplayType
to extend HierarchyDisplayType with angular connections.



A related problem addressed by CaesarJ is how to compose different vari-
ations of some basic functionality. In mainstream object-oriented languages, a
subclass is defined to a particular superclass. This lack of abstraction over the
implementation of the superclass hinders reusability: The variation defined by
the subclass cannot be reused with other superclasses. For illustration, consider
that it makes sense to compose different variants of hierarchy displays, e.g.,
AdjustedHierarchyDisplayType and AngularHierarchyDisplayType to have a lay-
out strategy with both, adjusted nodes and angular connections (see screenshot
in Fig. 4). However, such a composition is not possible, if both subclasses are
defined to a concrete implementation of HierarchyDisplayType.

To solve this problem CaesarJ shares with gbeta [12] a mixin-based class
composition mechanism [13]: (a) classes (simple or families) are mixins, i.e., their
superclass can be exchanged [9], and (b) mixin composition of family classes au-
tomatically propagates into their inner classes. By being mixins defined to a
common supertype, modules that implement the display layout strategy with
adjustable nodes and with angular connections can be composed with each
other; superclasses in the inheritance hierarchy are replaced according to specific
composition rules. Mixin composition propagation ensures that the composition
structure is propagated from families to their inner classes. Unambiguousness of
the composition is ensured by the composition order and a linearization algo-
rithm to be discussed later in this work.

2.2 Crosscutting composition mechanisms

The composition mechanism outlined so far is hierarchical: in order to compose
different modules in a non-trivial way, they must have common ancestors be-
cause only those inner class definitions are merged that are further-bindings of
a common class definition. In our example, all variations inherit the structure of
HierarchyDisplayType. It is this shared structure that makes them composable
with each other; the composition of differently structured class families is still
possible, but not very useful, because it would not compose any inner classes.

In many cases, however, one would like to compose independent (family)
classes that do not have a hierarchical relationship and hence no common ances-
tor, in a meaningful way. For illustration, consider the class diagram in Fig. 6 -
part of a software system for automating the administration of companies. As-
sume that we are involved in implementing a GUI, which is capable of displaying
the company structure. Given the two components we already have, Hierarchy-
DisplayType (or any of its variations) and Company, it is desirable to “simply”
compose them. The composition cannot, however, be performed automatically
by mixin-composition, because the operands of the composition are not in a
hierarchical relationship as the variations of the hierarchy display functionality.

There are two issues involved in integrating hierarchy display and company
components. On the one hand, the generic visualization functionality of the dis-
play component must be customized to the specifics of the company administra-
tion structure. On the other hand, the functionality of the company component
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Fig. 6. Company data model

must be tuned in such a way that changes to the company state, e.g., mov-
ing of employees from one department to another, are signaled to the display
component so that the latter can refresh itself.

Let us quickly discuss why this is a problem in conventional OO languages.
One could use the adapter pattern[17] for customizing the hierarchy display func-
tionality to the company structure and the observer pattern[17] for the display
refresh aspect of the composition, as outlined in Fig. 7 and Fig. 8 respectively.
However, the resulting composition exhibits crosscutting structure.

First, the adaptation of the generic display functionality to the structure
of the company software requires a lot of infrastructural logic: hash tables to
maintain adapter identity [24] and ubiquitous type casts in the adapter code.

Second, the adaptation logic cuts across various display variations. Adapters
are implemented in subclasses of concrete implementations of the types Node and
CompositeNode, e.g., those encoding the standard layout; hence, they only work
with that specific implementation. The adaptation logic must be duplicated for
all variations of the display implementation4.

Third, the observation logic for refreshing the display cuts across the modular
structure of the company component. Notification logic is not explicit and is
mixed within data model operations. Besides, the composition is not incremental:
adding observation support requires changing existing code. The lack of means
for explicit expression of the crosscutting structure of the display refreshing
aspect results in a lot of infrastructural code for observer registration and event
dispatch.

4 A part of the adaptation code can be made reusable in a language that supports
multiple inheritance.
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Fig. 8. Integrating components with observers

To cope with the outlined problems, CaesarJ provides two dedicated mech-
anisms for expressing crosscutting compositions. First, an AspectJ-like pointcut-
advice mechanism [26] is available for expressing modifications of existing be-
havior incrementally. Second, CaesarJ provides a mechanism for automatic
management of associations between company objects and their adapters to
roles in the hierarchy display concept world. The integration logic is expressed
in so-called binding classes.

Similar to the hierarchical variations, bindings are also expressed in family
classes as variations on the display functionality, i.e., they rely on the concepts
of virtual classes and propagating mixin composition. This has a twofold effect:
(a) type casts present in adapters are no longer needed, and (b) a binding of



the hierarchy display can be reused (composed) with any hierarchy display vari-
ation. Details on bindings as well as the variability enabled by CaesarJ will be
discussed in Sec. 4.

3 Class Families, Refinement, and Mixin Composition

In this section, we will first introduce the notion of virtual classes as realized
in CaesarJ, then we will talk about composing class hierarchies and how the
type system supports polymorphic usage of class families, and finally we will
explain the semantics of abstract virtual classes and introduce the notion of
collaboration interfaces.

3.1 Virtual Classes, Type System, and Family Polymorphism

With virtual classes, we can group sets of collaborating classes into a new unit
(which is again a class), and subclasses of such a unit can refine inherited inner
classes.
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To understand the effect of making a class a virtual member of another
class, consider another version of the example from Fig. 5. Fig. 9 shows an
alternative design for the hierarchy display component: the state and methods of
the virtual class HierarchyDisplay from Fig. 5 are moved to the top-level. These
two designs differ from each other in an important way: The Node, CompositeNode,
and Connection classes are members of individual HierarchyDisplay instances in
Fig. 9, whereas in Fig. 5 all HierarchyDisplay instances share the same Node,
CompositeNode, and Connection classes.

That is, in Fig. 5 different instances of HierarchyDisplay could share or ex-
change parts of the displayed data, whereas in Fig. 9 the family class acts as a
unit of confinement : The type system prevents that nodes or connections that



1 cclass HierarchyDisplay {
2 cclass Node { ... }
3 cclass CompositeNode extends Node { ...
4 calculateLayout() { ...
5 Connection c = new Connection(); ... }
6 }
7 cclass Connection { ...
8 void initShape(Point pt) { ... }
9 }

10 Node root; ...
11 }
12 cclass AdjustedHierarchyDisplay extends HierarchyDisplay {
13 cclass Node { ...
14 int maxwidth;
15 }
16 void foo(Node n) {... n.maxwidth ... }
17 }
18 cclass AngularHierarchyDisplay extends HierarchyDisplay {
19 cclass Connection { ...
20 void initShape(Point pt) { ... }
21 }
22 }

Listing 1. Code for HierarchyDisplay

stem from different families (in this case the hierarchy display instance is the
family) will ever be mixed. This is also the reason why the name of the family
class in Fig. 5 is HierarchyDisplayType: an instance of it represents a particu-
lar configuration or type of hierarchy displays, whereby multiple instances of
HierarchyDisplay might be instances of the same hierarchy display type.

Choosing between these two design alternatives is an important design deci-
sion to be made on a case-by-case basis. Such design considerations are out of
the scope of this paper - the distinction between the two alternatives was done
with the sole purpose to highlight the effect of making a class a virtual member
of another class. In the remainder of the paper we will use the design from Fig. 9
in our examples. Listing 1 shows source code that corresponds to the design in
Fig. 9 as well as two extensions, AdjustedHierarchyDisplay and AngularHierar-

chyDisplay, of the base component. The keyword cclass is used instead of class
in order to differentiate pure Java classes from (virtual) CaesarJ classes.

Since all virtual classes depend on their family, all types that refer to virtual
classes are implicitly (or explicitly) annotated with a path to their owner family
object. For example, the type Connection in line 5 of List. 1 implicitly means
HierarchyDisplay.this.Connection5, because the actual definition of this type
depends on the owner family object. Similarly, the superclass declaration in line 3
should be read as extends HierarchyDisplay.this.Node, meaning that the actual
superclass definition depends on the family object. The effect of late-bound types
is also illustrated in line 16: A type cast is not necessary to access the maxwidth

property, because it is known that all nodes of an AdjustedHierarchyDisplay

have this property.

5 In Java, as well as in CaesarJ, the owner object is referenced by qualifying ẗhisẅith
its class name.



1 hd.Node findChild(final HierarchyDisplay hd, hd.CompositeNode n, String text) {
2 for (int i = 0; i < n.getChildCount(); i++)
3 hd.Node m = n.getChildAt(i);
4 if (m.getText().equals(text)) return m;
5 }
6 return null;
7 }
8 ...
9 final HierachyDisplay hda = new AdjustedHierarchyDisplay();

10 hda.CompositeNode cna = . . . ;
11 final HierachyDisplay hdb = new AngularHierarchyDisplay();
12 hdb.CompositeNode cnb = . . . ;
13 hda.Node n1 = findChild(hda, cna, someString); // ok
14 hdb.Node n2 = findChild(hdb, cnb, someString); // ok
15 hda.Node n3 = findChild(hdb, cnb, someString); // static error

Listing 2. Illustration of path-dependent types and family polymorphism

If virtual classes are used as types outside their family classes, the implicit
scoping must be replaced by an explicit specification of the owner family object.
This is illustrated in List. 2, which shows a method defined in some class outside
HierarchyDisplay as well as some code that uses this method. The type decla-
ration hd.CompositeNode in the signature of the method findChild means that
only instances of CompositeNode that belong to the family hd may be passed as
the second parameter to the method. Similarly, the return type hd.Node means
that the returned node instance belongs to the family hd.

Hence, the calls in line 13 and 14 are correct, whereas the call in line 15 causes
a static type error, because the variable n3 belongs to the family hda rather than
hdb. In general, the type checker makes sure that families are never mixed, i.e.,
an object o1 can only be compatible to an object o2, if o1 and o2 belong to the
same family.

Listing 2 also illustrates the concept of family polymorphism [14]: The find-

Child method can be used polymorphically with different families (in the example
hda and hdb). The type checker for these kinds of dependent types is highly-non
trivial but not in the focus of this work. A full formalization of the core constructs
of virtual classes as used in CaesarJ (operational semantics, type system, and
a soundness proof) can be found in [16].

3.2 Composing Class Hierarchies

As illustrated in List. 3, CaesarJ classes can be composed with the operator
&. The class AdjustedAngularHierarchyDisplay composes AdjustedHierarchyDis-

play and AngularHierarchyDisplay. The composition operator realizes a variant
of multiple inheritance that linearizes the superclasses, thereby avoiding ambi-
guities w.r.t. method dispatch and w.r.t. to sharing or duplicating of inherited
state. The composition uses a variant of C3 linearization [3, 13], which produces
a unique and predictable linearization of the inheritance graph. In the case of
AdjustedAngularHierarchyDisplay, the linear order of superclasses produced by
the linearization algorithm is [HD,AngHD,AdjHD,AdjAngHD], whereby HD is an ab-



1 cclass AdjustedAngularHierarchyDisplay extends
2 AdjustedHierarchyDisplay & AngularHierarchyDisplay {}

Listing 3. Composing variants of hierarchy display

breviation for HierarchyDisplay, Ang is an abbreviation of angular, and Adj is an
abbreviation of Adjusted and the last mixin is the most specific one.

The order of the mixin operands of the operator & is important in deter-
mining the order of the mixins in the linearized chain. The operator & is not
commutative and the operand on the left hand side is more specific than the
one on the right hand side. The left most mixin is the most specific one. The
same linearization algorithm is also used if a further-binding of a class declares
additional superclasses.

In the context of virtual classes, this composition operator propagates
the composition into inner classes. This means that all inner classes of the
composed classes that are further-bindings of a common class are automatically
composed via linearization, whereby the linearization of the enclosing family
class determines the linearization of the inner classes. This composition works
recursively with arbitrary levels of nesting. In our example, this means that
AdjustedAngularHierarchyDisplay combines further-bindings of both Adjust-

edHierarchyDisplay and AngularHierarchyDisplay. Since the inner classes of a
class can represent an entire class hierarchy, the & operator can effectively be
used to extend and compose class hierarchies.

Assemble(p, C) = Linearize([ Expand(p, p) | p← Defs(p, C) ])

Defs(p, C) = [ p.C | p← p, ClassDef (p.C) 6= ⊥ ]

Expand(p, p) = Linearize([Assemble(p, C′) | C′ ← C1...Cn ]) p
where ClassDef (p) = cclass C extends C1&...&Cn { ... }

Linearize(nilp) = nilp
Linearize(p p) = Lin2 (Linearize(p), p)

Lin2 (nilp, nilp) = nilp
Lin2 (p p, p′ p) = Lin2 (p, p′) p
Lin2 (p, p′ p′) = Lin2 (p, p′) p′ if p′ 6∈ p
Lin2 (p p, p′) = Lin2 (p, p′) p if p 6∈ p′

Lin2 (p p′p′′p, p′p′) = Lin2 (p p′′p, p′) p′

(Note: use first case that matches)

Fig. 10. Mixin computation for class C given mixin list p of enclosing family class

A definition of how mixins are linearized and composed is given in Fig. 106.
Therein, p denotes a mixin by the static path C1...Cn, Ci class names, that
denotes the lexical position of the class body corresponding to p. For example,
the mixin for the class definition in line 3 of Listing 1 is HD.CompositeNode. The
6 These definitions are part of the aforementioned formalization of virtual classes [16].



notation p denotes a list of mixins p1, ..., p|p|, e.g., p = [HD,AdjHD,AdjAngHD],
and p denotes a list of mixin lists. The [ ... | ... ] notation is used to denote list
comprehensions as e.g., in Haskell or Python7.

Given a class C and the mixin list of the enclosing family p, the Assemble
function computes the mixin list that determines the definition of C relative to
p. For illustration, we will simulate the evaluation of Assemble([HD,AdjHD], Com-

positeNode), which calculates the mixin list of CompositeNode in the context of
AdjustedHierarchyDisplay, resulting in [HD.Node,AdjHD.Node,HD.CompositeNode].
To do so, Assemble first calls Defs to collect all the definitions of CompositeNode
(our C) located in any of the class bodies specified by [HD,AdjHD] (our p) 8. The
result is HD.CompositeNode, because there is only one definition of CompositeNode
and no further-binding.

The complete mixin list for a class C must also include the mixins of all
its ancestors. For this purpose, Assemble applies Expand over the list of mix-
ins returned by Defs and linearizes the result. For each p in this list, Expand
computes the mixin list for each superclass of p, again relative to the enclosing
mixin list p. For this purpose, Expand recursively applies Assemble over the list
of all superclasses, linearizes the result, and adds the mixin p at the end. The
recursion is well-defined because it recurses only on the superclasses and the
superclass relation has no cycles in a well-formed program (we stop when we
reach a top-level object, which has a trivial mixin list).

For our setting of p = HD.CompositeNode, and p = [HD,AdjHD], Expand
will be applied to HD.Node - the only superclass of HD.CompositeNode, which
will cause Assemble([HD,AdjHD], Node) to be recursively called, resulting in
[HD.Node,AdjHD.Node]. Since Node does not have any further superclases,
this is the end of the recursion - the mixin HDComposite is added to
[HD.Node,AdjHD.Node] yielding the overall result: Assemble([HD,AdjHD], Compos-

iteNode) = [HD.Node,AdjHD.Node,HD.CompositeNode].

Linearization is a technique for topological sorting of an inheritance graph,
so that method calls can be dispatched along the calculated order. The function
Linearize in in the lower part of Fig. 10 linearizes a list of mixin lists, i.e., it
produces a single mixin list which contains the same mixins as those in the
operands, in an order which is controlled by the operands. Linearize is defined
in terms of a binary linearization function, Lin2 . This function is an extension
of the C3 linearization algorithm [3, 13]. The linearization algorithm has been
designed so that the ordering of mixins in a virtual class can be controlled by
the programmer of a subclass, in a similar spirit as when the programmer of
a subclass can decide to override a method in any mainstream object-oriented
programming language, see [3, 13].

7 For example, [ 2n | n← 1...5, n > 3 ] is the list [8, 10]
8 The function ClassDef , which is not defined here, simply looks up a class in the

program.



1 abstract public cclass IHierarchyDisplay {
2 abstract public Node getRoot(); /∗ data model ∗/
3 abstract public void calculateLayout(); /∗ visualization ∗/
4 abstract public void draw(Graphics g); /∗ visualization ∗/
5 abstract public void refresh(); /∗ visualization ∗/
6 ...
7 abstract public cclass Node {
8 abstract public String getText(); /∗ data model ∗/
9 abstract public boolean textFits(String text); /∗ visualization ∗/

10 }
11 abstract public cclass CompositeNode extends Node {
12 abstract public Node getChildAt(int i); /∗ data model ∗/
13 abstract public int getChildCount(); /∗ data model ∗/
14 abstract public void calculateLayout(); /∗ visualization ∗/
15 }
16 }
17 public cclass HierarchyDisplay extends IHierarchyDisplay { ... }

Listing 4. Collaboration interface of hierarchy display

1 final public IHierarchyDisplay hier = new HierarchyDisplay();
2 hier .CompositeNode node = hier.new CompositeNode(); /∗ error ∗/
3 final public IHierarchyDisplay2 hier2 = new HierarchyDisplay2();
4 hier2 .CompositeNode node = hier.new CompositeNode(); /∗ ok ∗/

Listing 5. Polymorphic instantiation of classes of an abstract family class

3.3 Abstract Classes and Collaboration Interfaces

The benefits of polymorphism can be maximized by using abstract family classes.
A separate interface concept is not necessary because we do not have the single
inheritance bottleneck. For example, we can use an abstract family class IHier-

archyDisplay to define the public interface of the HierarchyDisplay component,
as shown in List. 4. The abstract family class exposes the public methods of the
component as well as the classes that should be visible to the clients, e.g. the
abstraction in List. 4 does not expose the Connection class.

Declaring a class as abstract means that it cannot be instantiated. According
to this rule, we cannot create instances of the class IHierarchyDisplay. The
virtual classes Node and CompositeNode are declared as abstract too. This means
that they cannot be instantiated polymorphically through a family variable with
type IHierarchyDisplay; so the line 2 in List. 5 will generate a compiler error.

In a similar way, we can allow polymorphic instantiation of virtual classes by
declaring them as concrete. For example, List. 6 shows an alternative interface to
the hierarchy display component, which declares its virtual classes Node and Com-

positeNode as concrete even though they contain abstract methods. The intent
of such a design is to allow their polymorphic instantiation as shown in line 4 of
List. 5. Here, the instantiation is requested through the abstract interface, but
the class that is actually instantiated is CompositeNode of HierarchyDisplay2,
which belongs to a concrete family class and must implement all the inherited
abstract methods.

Abstract classes are also allowed within concrete classes. For example, in an
alternative design of HierarchyDisplay component, there could be a new class



1 abstract public cclass IHierarchyDisplay2 {
2 ...
3 public cclass Node {
4 abstract public String getText(); ...
5 }
6 public cclass CompositeNode extends Node {
7 abstract public Node getChildAt(int i); ...
8 }
9 }

10 cclass HierarchyDisplay2 extends IHierarchyDisplay2 { }

Listing 6. Alternative interface to the hierarchy display

LeafNode to represent leaf nodes, while Node would serve only as an abstraction
to define the common interface for all types of nodes. In such case, declaring
Node as abstract would prevent its instantiation.

If we do not know whether a virtual class will be concrete in concrete sub-
families, it is better to declare it as abstract, because we can override an abstract
class with a concrete one, but not the other way around. Overriding a concrete
class with an abstract one is not allowed, because it would break the soundness
of polymorphic instantiation.

In Java, a class containing an abstract method, must be declared as abstract.
In CaesarJ this rule is weakened: a method can be abstract when at least one
of its enclosing classes is abstract. This rule is sufficient to ensure that abstract
methods will never be called, because it excludes the possibility of direct in-
stances of the class declaring the method. According to this rule, it is legitimate
to have concrete classes with abstract methods inside an abstract family class,
which is the case in List. 4. It is also possible to have abstract classes with
abstract methods inside a concrete class.

Abstract classes used as interfaces enable a more fine-grained separation of
the different concerns of our hierarchy display. One of these concerns that we
might want to separate is how the data to be displayed is represented. Our
previous implementation stored the data model directly in corresponding fields.
The comments in Listing 4 now identify a set of methods which are the interface
to the data model. With inheritance and class composition we can now separate
the display logic from the data model.

Listing 7 shows a sample implementation of the data model. The corre-
sponding family class is abstract because it is only an implementation of the
data model; hence, the part of the IHierarchyDisplay interface responsible for
the visualization is missing. On the other hand, Listing 8 shows a version of Hi-
erarchyDisplay that does not define the data model, hence, it is abstract as well.
Note that the code in Listing 8 uses the methods responsible for the data model
without defining them. In an appropriate composition, such as in Listing 9, both
facets of a hierarchy display are composed. Since the composition is complete,
it does not need to be abstract and can be used directly.

There are two important aspects in the design embodied in Listings 4, 8, and
9: (a) the partition of the interface methods into different facets, as indicated by



1 abstract public cclass MutableHierarchyModel extends IHierarchyDisplay {
2 protected Node root;
3 public void getRoot() { return root; }
4 ...
5 public cclass Node {
6 protected String text;
7 public String getText() {
8 return fitsText(text) ? text : text.substring(0, 1);
9 } ...

10 }
11 public cclass CompositeNode {
12 protected List children = new LinkedList();
13 public Node getChildAt(i) { return (Node)children.get(i); }
14 public int getChildCount() { ... }
15 ...
16 }
17 }

Listing 7. Hierarchy display data model as a separate module

1 abstract public cclass HierarchyDisplay extends IHierarchyDisplay {
2 protected Component view = null;
3 public void calculateLayout()
4 getRoot().calculateLayout();
5 refresh ();
6 }
7 public void draw(Graphics g) { ... }
8 public void refresh() { ... }
9 ...

10 abstract public cclass Node {
11 protected TextShape shape = new Rectangle();
12 public void draw(Graphics g) { shape.setText(getText()); shape.draw(g); }
13 public boolean textFits(String text) { ... }
14 ...
15 }
16 abstract public cclass CompositeNode {
17 protected List connections = new LinkedList();
18 public void draw(Graphics g) {
19 super.draw(g);
20 for (int i1 = 0; i1 < getChildCount(); i1++) getChildAt(i1).draw(g); ...
21 }
22 public void calculateLayout() { ... }
23 ...
24 }
25 public cclass Connection { ... }
26 }

Listing 8. HierarchyDisplay without data model implementation

the comments in List. 4, and (b) the design rule that subclasses of the interface
responsible for one facet implement only those methods belonging to this facet
(whereby any method declared in the interface can be called). In such a design,

1 public cclass MutableHierarchyDisplay
2 extends HierarchyDisplay & MutableHierarchyModel { }

Listing 9. Reconstructing the mutable hierarchy display component



the interface in List. 4 controls the collaboration between different facets of its
implementation, hence, we call such interfaces collaboration interfaces.

It is tempting to turn this design pattern into a language feature, so that
conformance to a particular interface facet is checked by the compiler. In pre-
vious publications [37, 38] we actually proposed to divide the methods of such
a collaboration interface into two generic fixed facets: expected and provided. In
the implementation of CaesarJ, we dropped this mechanism because it is not
general enough. In general, there can be many different facets of an interface,
not just two. We are currently working on a new interface concept that allows
more freedom in this regard while still retaining static checking of classes with
respect to the facets they are responsible for.

4 Crosscutting Integration

In this chapter, we will introduce CaesarJ features for supporting crosscutting
composition.

4.1 Bindings

The implementations of hierarchy display facets that are presented in List. 7 and
List. 8 are self-consistent and completely encapsulated behind the collaboration
interface. Alternatively, facets can be implemented as adapters of already exist-
ing classes. In our example, we might want to display the company model from
Fig. 6 with our hierarchy display. The company model can indeed be seen as a
data model for our hierarchy display, except that it does not fit to its internal
modular structure. Hence, in the following we will implement the data model
facet of the hierarchy display as an adapter to the company model, which allows
to view the company model as a data model for the hierarchy display.

A family class which implements a component facet by adapting external
classes is called binding. Concrete family classes are produced by combining
bindings with the families implementing the component functionality to be in-
tegrated. Fig. 11 shows how the family class CompanyHierarchyDisplay for visu-
alizing the company organizational hierarchy is defined as a combination of the
implementation of the visualization facet of the IHierarchyDisplay interface im-
plemented in HierarchyDisplay and the data model facet of IHierarchyDisplay

defined as its binding to the company model CompanyHierarchyBinding.
Bindings map between types from two domains by means of wrapper classes

- dynamic extensions of other classes, called wrappees. A wrapper can introduce
new state and operations, as well as adapt the wrappee to required interfaces.
The wrapper-wrappee relationship is established by the keyword wraps. A wrap-
per can access its wrappee by means of the special identifier wrappee.

To map the display and the company domains of our example, we have to
bind hierarchy display nodes to company model objects. One wrapper class is
needed for each type of display node. Top nodes are bound to company objects,
nodes at the second level of the display hierarchy to department objects, and
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Fig. 11. Integration of hierarchy display into company model

bottom nodes to employees. In List. 10, WorkerNode is a wrapper for Employee.
It adapts Employee to the data model facet of Node by implementing getText,
the only method related to the data model in Node, using methods of Employee.
Wrappers for Company and Department turn these classes into composite nodes
in the display world: they inherit from CompositeNode and implement its data
model related methods for retrieval of text and children.

Wrappers are created by wrapper constructors, which take as parameters the
objects to be wrapped and return the corresponding wrapper objects. For ex-
ample, a DepartmentNode should return the nodes representing the workers at
that department as its children. Its method getChildAt(i) in List. 10 retrieves
the i-th employee of the department and wraps it into a WorkerNode object. A
wrapper constructor differs from a conventional instantiation: given a certain
wrappee object, o, only the first call of a wrapper constructor with o as a para-
meter creates a new wrapper for o; consecutive calls will always return the same
wrapper instance.

Such ”wrapper recycling” ensures that there is only one wrapper for one
wrappee per binding and, hence, enables stateful wrappers. Attaching additional
state to wrapped objects is important: a component to be integrated has its own
state which cannot be inferred from wrappee’s state. For example, the position
of a node and its graphical attributes cannot be inferred from the data model
and must be stored in node objects.

However, an object can have multiple wrappers of the same type within dif-
ferent family instances. The wrapper constructor call WorkerNode(..) in List. 10
is in fact an abbreviation for this.WorkerNode(..). Wrappers are also virtual
classes - their meaning is relative to an enclosing family. Wrapper constructors
are also available outside the family class by explicitly qualifying their calls with
a reference to a family instance.

Mapping between the abstractions in their respective domains is not enough
for full integration: the components often need to adapt their behavior within the



1 abstract public cclass CompanyHierarchyBinding extends IHierarchyDisplay {
2 protected Company company = null;
3 public Node getRoot() { return CompanyNode( company); }
4 ...
5 public cclass WorkerNode extends Node wraps Employee {
6 public String getText() {
7 return textFits(wrappee.getFullName()) ?
8 wrappee.getFullName() : wrappee.getInitials();
9 }

10 }
11 public cclass DepartmentNode extends CompositeNode wraps Department {
12 public String getText() { ... }
13 public Node getChildAt(int i) {
14 return WorkerNode(wrappee.getWorkerAt(i));
15 }
16 public int getChildCount() { return wrappee.getWorkerCount(); }
17 }
18 public cclass CompanyNode extends CompositeNode wraps Company {
19 public Node getChildAt(int i) {
20 return DepartmentNode(wrappee.getWorkerAt(i));
21 }
22 ...
23 }
24 pointcut departmChildrenChange() : execution(∗ Department.addWorker(..)) ||
25 execution(∗ Department.removeWorker(..));
26 pointcut companyChildrenChange() : execution(∗ Company.addDepartment(..)) ||
27 execution(∗ Company.removeDepartment(..));
28 pointcut displayChange() : execution(∗ company.∗.set∗Name(..)) ||
29 departmChildrenChange() || companyChildrenChange();
30 after(Department d) : departmChildrenChange() && this(d) {
31 DepartmentNode(d).calculateLayout();
32 }
33 after(Company c) : companyChildrenChange() && this(c) {
34 CompanyNode(c).calculateLayout();
35 }
36 after() : displayChange() && !cflowbelow(displayChange()) { refresh(); }
37 }

Listing 10. Company hierarchy binding

composition. In our example, organizational changes, e.g., transfer of employees
from one department to another, affects the layout of the hierarchy display and
should cause the layout of certain branches in the hierarchy to be recalculated.
In CaesarJ, such behavioral integrations are expressed within a binding by
means of pointcuts and advice. CaesarJ supports AspectJ-like pointcuts and
advice. In the following discussion, we assume that the reader is familiar with
the crosscutting mechanisms in AspectJ [26] and the advantages of observing
with pointcuts [20, 27].

In our example, the binding in List. 10 uses pointcuts to observe relevant
changes. Pointcuts departmChildrenChange and companyChildrenChange observe
DepartmentNode, respectively CompanyNode children changes. The pointcut dis-

playChange observes any kind of change that affect the company hierarchy dis-
play9. Display update is done in advice (List. 10) using methods of the collabora-
tion interface (List. 4). Top-level methods, such as refresh, can be called directly,

9 It reuses the pointcuts for children changes and quantifies over all methods that
affect names of the data model objects. We use the cflowbelow pointcut to ensure



1 public cclass CompanyHierarchyDisplay
2 extends HierarchyDisplay & CompanyHierarchyBinding { }

Listing 11. Component for company hierarchy display

the methods of the nodes, e.g. calculateLayout, are called on the corresponding
wrapper object.

As already mentioned, the company hierarchy display component is con-
structed by applying mixin composition to the implementation of its visualiza-
tion facet and its company binding (List. 11). Fig. 12 depicts the implicit class
diagram inside CompanyHierarchyDisplay, which is the result of merging the in-
herited classes and their relationships. It contains both the wrapper classes from
the binding as well as the Connection class from the family HierarchyDisplay,
which implements the visualization facet. The classes Node and CompositeNode of
HierarchyDisplay become the superclasses of the wrapper classes in the context
of CompanyHierarchyDisplay. Thus, the resulting wrapper classes inherit both the
functionality related to the data model and to the visualization.
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Fig. 12. Class diagram of the virtual classes within CompanyHierarchyDisplay

Of course, bindings do not necessarily need to be coded to collaboration in-
terfaces. If the code of a binding is not reusable, it can be defined as a simple
subclass of the family type that we want to adapt in a specific context. For
example, CompanyHierarchyDisplay could also be implemented as subclass of Hi-
erarchyDisplay. Then the binding would be a concrete family class and could be
instantiated directly.

4.2 Dynamic Wrapper Selection

This section considers the issue of defining wrappers in the presence of inheri-
tance hierarchies. For example, the class Employee may have various subclasses,
e.g., InternalEmployee and ExternalEmployee to distinguish between internal em-
ployees of the company and the employees subcontracted from other companies.
We may want this difference to be reflected in the display of the organiza-
tional structure. The question is how to define wrappers for subclasses of already
wrapped classes.

that the display is refreshed only once after a sequence of changes that constitutes
a logical transaction.



1 abstract public cclass CompanyHierarchyBinding extends IHierarchyDisplay {
2 ...
3 public cclass DepartmentNode extends CompositeNode wraps Department {
4 public Node getChildAt(int i) {
5 return WorkerNode(wrappee.getWorkerAt(i));
6 } ...
7 }
8 public cclass WorkerNode extends Node wraps Employee {
9 public String getText() { ... }

10 }
11 public cclass WorkerNode wraps ExternalEmployee {
12 public String getText() {
13 return super.getText() + ”(” + wrappee.getCompanyName() + ”)”;
14 }
15 }
16 }

Listing 12. Wrapper hierarchy for different types of employees

In CaesarJ, wrappers for classes in a hierarchy chain build a hierarchy of
related wrappers which share the same name, but are distinguished by the type of
the objects they wrap, i.e., they have different wraps clauses. All these wrappers
share the same constructor which decides which specific wrapper type to create
by the dynamic type of the wrappee object passed as a parameter. The general
rule of wrapper selection is that the most specific wrapper is selected for the given
object. In this way, a wrapper for an object can be retrieved polymorphically.

For illustration, consider the WorkerNode wrapper for ExternalEmployee in
List. 12. It refines the implementation of getText so that the display text in-
cludes the name of the external company. For an instance of ExternalEmployee,
the version of WorkerNode that wraps ExternalEmployee will be used, whereas for
an instance of InternalEmployee, the WorkerNode wrapping Employee will be used,
because there is no more specific wrapper declared for InternalEmployee. The
wrapper is retrieved polymorphically in the getChildAt method of DepartmentN-
ode (List. 12).

Polymorphic usage of wrappers imposes certain typing constraints. The Work-

erNode wrapper constructor in the method getChildAt in List. 12 may return an
instance of type this.WorkerNode, where the WorkerNode is the wrapper class for
Employee or an instance of WorkerNode wrapper for ExternalEmployee. To allow
the polymorphic usage of wrappers, WorkerNode for ExternalEmployee must be a
subtype of WorkerNode for Employee. In CaesarJ, this is ensured by implicit in-
heritance between such wrapper classes, which is why we do not need to declare
explicitly WorkerNode for ExternalEmployee as a subclass of Node. The general rule
is that subtype relationship between wrappee classes implies inheritance between
corresponding wrapper classes. As a consequence, wrappers with the same name
build inheritance hierarchies, which reflect the inheritance hierarchies of their
wrappees.

Dynamic wrapper selection can be ambiguous in case of multiple inheritance
relationships between wrappees. This can occur when wrapping Java interfaces
or CaesarJ classes. Consider the case of two wrappers for types A and B, where



both A and B are supertypes of the a given wrappee class W. If B is subtype of A,
B’s wrapper will be selected for W. The ambiguous situation occurs when A and B

are not comparable. The ambiguity can be resolved by declaring a wrapper for
a supertype of W that is a subtype both of A and of B.

The problem is, however, that detection of such ambiguities cannot be done
in a modular way and requires a global analysis of the type system of an applica-
tion. An analogous problem has been raised in the context of the implementation
of external methods in Multijava [10]; the problem is addressed there by disal-
lowing dynamic dispatch on interface types. External methods on interfaces are
allowed in Relaxed Multijava [40], but the ambiguities are detected only at class
load time. In the current implementation of CaesarJ, ambiguities of dynamic
wrapper selection are detected at runtime.

We plan to generalize the dynamic wrapper selection to multiple wrappees
(such that there is, e.g., a unique wrapper for a pair of wrappees). At the time
of writing this paper, the best strategy for dealing with ambiguities and with
the inheritance relationships between wrappers (see next subsection) has not yet
been fully worked out; hence, this is part of our future work. Note that multiple
wrappees can still be used if the programmer defines a usual constructor and
takes care of the wrapper management manually.

So far, we have discussed the case of defining wrappers for classes that have
an inheritance relationship but are adapted to the same abstraction. In List. 12,
both Employee and its subclass ExternalEmployee are adapted to Node. In the
general case, given two abstractions A1 and A2 pertaining to one concern, where
A2 is a subtype of A1, it might be necessary to adopt them to two different
abstractions pertaining to another concern B1 and B2, where B2 is a subtype of
B1.

Consider for illustration the binding of IHierarchyDisplay to the contain-
ment hierarchy of GUI elements in a typical Java application in List. 13. In the
standard Java library, Component is the supertype of all GUI elements, and Con-

tainer is the supertype of GUI elements containing other elements. In order to
display a GUI hierarchy, we have to bind Node to Component and CompositeNode

to Container. Further, since Container is subtype of Component, their wrappers
must belong to the same hierarchy.

So we have a situation, where wrappers of the same hierarchy must im-
plement different interfaces of the collaboration interface. This is possible in
CaesarJ, because each wrapper in the hierarchy can introduce new inheritance
relationships. For example, in List. 13 the ComponentNode wrapper for Container

inherits from CompositeNode besides its implicit inheritance from the wrapper
ComponentNode for Component.

4.3 CaesarJ Bindings versus AspectJ Intertype Declarations

Bindings share with AspectJ’s aspects pointcut and advice declarations, but
they are based on a different static crosscutting model. CaesarJ aspects use
wrappers instead of intertype declarations to add new functionality to existing
objects. Bindings support reuse by the techniques of coding to interfaces, virtual



1 abstract public cclass GUIHierarchyBinding extends IHierarchyDisplay {
2 protected Component rootComp = null;
3 public Node getRoot() { return ComponentNode(rootComp); }
4

5 public cclass ComponentNode extends Node wraps Component {
6 public String getText() {
7 String name = wrappee.getClass().getName();
8 return name.substring(name.lastIndexOf(’.’) + 1);
9 }

10 }
11 public cclass ComponentNode extends CompositeNode wraps Container {
12 public Node getChildAt(int i1) {
13 return ComponentNode(wrappee.getComponent(i1));
14 }
15 public int getChildCount() { return wrappee.getComponentCount(); }
16 }
17 }

Listing 13. Binding for containment hierarchy of GUI elements

types, and mixin composition. AspectJ’s reuse mechanisms, on the other hand,
are limited to abstract aspects and aspect inheritance. In this section, we will
discuss the implications of these differences.

Polymorphic aspectual extensions. Wrappers and dynamic wrapper se-
lection allow to define functionality outside a base class (a.k.a open classes [10]),
while retaining subtype polymorphism. Wrapper classes define functionality that
is polymorphic with respect to both base object types (wrappees) and aspect
types.

Consider for illustration List. 10. The method calculateLayout belongs to
aspect functionality. It is polymorphic with respect to hierarchy node types (each
node type has its own draw method, which is called by calculateLayout). In
its control flow, calculateLayout eventually calls methods pertaining to data
management, such as e.g., getChildAt or getText. The latter are defined relative
to different base types in List. 10, i.e., they are polymorph w.r.t. base types.
Each company object has its specific way to access children or to display a text
label. For what is more, this specific way is also relative to a particular aspect.
That is: It is not only possible to define different ways of accessing children for
different company objects within the same aspect; the latter can also be different
from aspect to aspect.

As discussed in [38], polymorphic behavior in the extent described above is
not possible with intertype declarations. One can only achieve polymorphism
w.r.t base types by invasively adding state and methods to base classes directly,
however, at the cost of loosing independent extensibility and polymorphism with
respect to aspect types [49, 38].

Late-bound operations outside the base model is also the motivation of the
visitor design pattern [17]. Both late-bound wrappers and visitors activate their
functionality dynamically. Nevertheless, differently from wrappers, visitors re-
quire preplanned preparations in the data model and manual implementation of
the dispatch code. Furthermore, wrappers give more flexibility for default han-
dling of certain variants of the data model. In List. 12, e.g., we specify default



display behavior for all types of Employee and handle only ExternalEmployee in a
specific way. Finally, a visitor implements the late-binding of a single operation
and, therefore, does not support interactions between multiple operations.

Wrappers also allow to associate arbitrary aspect-specific state with base
objects; the state can either be defined in the wrapper or inherited from the
component class the wrapper binds. As shown in List. 10, wrapper construc-
tors provide a convenient way to navigate from a base (application) object to
the corresponding aspect (component) wrapper. An alternative to wrapper con-
structors in AspectJ would be manual implementation of similar mechanisms
for each specific case in the aspect code. Other solutions require modification
of application classes to contain links to the corresponding wrapper objects. A
more detailed discussion of the problems with managing aspect specific state
extensions can also be found in [38].

Abstraction and Reuse. Collaboration interfaces support reuse of the
same functionality in different contexts. In Sec. 4.1 and Sec. 4.2 we discussed
two reuse scenarios for HierarchyDisplay: one with the organizational hierarchy
of a company and another with the containment hierarchy of GUI elements.
Bindings are also reusable, as long as they are defined to the collaboration in-
terface. We can provide other implementations of hierarchy display for the same
collaboration interface. In Sec. 3, we have defined different extensions to Hierar-

chyDisplay, which are also alternative implementations of the visualization facet
of the same collaboration interface. They can all be reused with our bindings to
both the company and GUI structure.

By mixin composition, any display implementation is composable with any
binding, as shown in Fig. 13. This is not an accident, but a consequence of proper
abstraction. The collaboration interface sets an explicit contract for the compo-
sition. It ensures that methods used by the display implementation have the
same signature as those implemented by the binding and the other way around.
The collaboration interface also unifies the names of the shared classes, mak-
ing them automatically composable. Any deviation from this contract would be
detected by the compiler. The rules for abstract classes help to check correct-
ness of the composition, too. The compiler can ensure that only concrete classes
are instantiated and that concrete classes in concrete collaborations are fully
implemented.

Once the variability basis (meaningful variations of the display functional-
ity) is set up, CaesarJ developers can easily support different strategies for
displaying the company structure, as illustratively shown in Fig. 14, with no ad-
ditional overhead. The decision as which strategy to use in a concrete situation
can be made statically or even dynamically. Here the CaesarJ’s deployment
mechanism, which will be discussed in the next section, comes into play.

As also discussed in [38], the same degree of reuse and variability is not pos-
sible with abstract aspects and intertype declarations of AspectJ. First, the lin-
ear inheritance hierarchy is not sufficient for multidimensional reuse, i.e., either
the bindings would inherit from concrete display implementations or the other
way around. Second, the intertype declarations of an abstract aspect cannot be
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Fig. 13. Composing variations of display implementations and bindings

 

Fig. 14. Company hierarchy display variations

reused in multiple concrete aspects that provide alternative implementations of
the introduced operations.

5 Dynamic Aspect Control

We can increase applicability of aspects by enabling flexible control over their
activation time and scope. One way to achieve this is to encode the activation
logic directly in the aspect. But, this tightly couples the aspect to specific parts
of the application and limits its reusability in other contexts. A better solution
is is to provide control mechanisms over aspects from outside. In this chapter,
we review features of CaesarJ that enable dynamic control over aspects and
their scope of activity.

5.1 Explicit Instantiation, Local and Thread-Based Deployment

In CaesarJ an aspect is simply a class containing pointcuts and advice. Like
conventional objects aspects in CaesarJ can be instantiated at any point of
the program execution using the keyword new. There can be multiple instances
of an aspect type with independent state, life-cycle, and scope of deployment.



1 public class ShowCompanyHierarchyAction implements ActionListener {
2 List companyList; Frame mainWindow;
3 ...
4 public void actionPerformed(ActionEvent e) {
5 CompanyHierarchyDisplay hier = new CompanyHierarchyDisplay();
6 hier .setCompany(selectCompanyFromList(companyList));
7 HierarchyView view = createNewView(mainWindow);
8 view.setHierarchy(hier );
9 deploy hier;

10 }
11 }
12 public class HierarchyView extends JComponent {
13 IHierarchyDisplay hierarchy;
14 ...
15 public void close() { undeploy hierarchy; }
16 }

Listing 14. Lifecycle of company hierarchy display component

Like any other objects, aspects can be referenced, passed as parameters and used
polymorphically.

Instantiation does not automatically activate an aspect; the latter must be
deployed in order to activate its pointcuts and advice. Aspects can be deployed
on different dynamic scopes. For simplicity, we will first consider the simplest
deployment method called local deployment. By means of deploy, respectively
undeploy, statements aspects are deployed, respectively undeployed, on all join-
points occurring in the local virtual machine process, as illustrated in List. 14
(lines 9 and 15).

Let us illustrate the usefulness of explicit aspect instantiation for the de-
sign of the company hierarchy display. The component CompanyHierarchyDisplay
(List. 11) is an aspect, because it inherits pointcuts and advice from its binding
(List. 10). On the other hand, CompanyHierarchyDisplay has all the properties
of a conventional class. It can be instantiated whenever the application needs
to display the company hierarchy. It can be instantiated once more, if the user
opens one more view. Furthermore, the decision which concrete variation of the
aspect to instantiate may depend on runtime conditions, e.g., user preferences
can specify, which of the hierarchy display variations should be used.

In List. 14, CompanyHierarchyDisplay is created in a class that handles the
menu action to open a hierarchical view of a company. After instantiation we
can initialize it with additional data and pass it as a parameter to a view object,
which uses its visualization functionality. Once initialized, the aspect is deployed
and starts observing changes in the company model10.

An aspect is garbage collected when it is not referenced anymore and is not
deployed. It would be incorrect to garbage collect deployed aspects, because even
if they are not explicitly referenced, they are still reachable through joinpoint
interception and provide a meaningful functionality just by reacting to certain

10 We could also deploy the aspect in its constructor, i.e., automatically at creation
time; the solution in List. 14 is however safer, because the observation begins only
after completing initialization, which establishes necessary application invariants.



1 deployed public cclass CompanyDisplayLogging {
2 void around() : execution(∗ draw(..)) && this(CompanyHierarchyDisplay) {
3 CompanyLogger logger = new CompanyLogger();
4 deploy (logger) { proceed(); }
5 }
6 }

Listing 15. Thread-based deployment

1 deployed public cclass CompanyLogger {
2 pointcut logMethods() : execution(∗ company.∗.∗(..)) || execution(company.∗.new(..));
3 before() : traceMethods() {
4 System.out.println(thisJoinPointStaticPart.toString ());
5 }
6 }

Listing 16. Singleton aspect to trace company model

application events. Aspects can be undeployed explicitly from outside or implic-
itly as a reaction to some joinpoint. For example, CompanyHierarchyDisplay can
be undeployed by its client view when the view is closed (List. 14).

By deploying and undeploying aspects at certain points of program execution
we control their scope of application. In List. 14, we deploy CompanyHierarchyDis-

play when its owner view is created and undeploy it, when the view is destroyed.
In this way we limit the scope of the aspect application to the lifetime of the
corresponding view. We can also restrict the scope of the applicability of the
aspect to individual control flows. A similar level of flexibility of aspect control
is hard to achieve with static aspect activation as in AspectJ.

The scoping enabled by local deployment is limited only by time of activation.
This may not be sufficient in a multi-threaded environment, where we might
want to limit the scope of aspects to a single thread. For this purpose, CaesarJ
provides thread-based deployment, expressed by the deploy block. For illustration
consider how the aspect in List. 15 is deployed on the scope of the control flow
inside the block and does not have any influence on concurrent executions.

Thread based deployment works well for crosscutting of inherently synchro-
nous processes, such as calculations or workflows. However, in event-driven, data-
centric environments, we may want to observe updates and events independently
of the thread that causes them; in this case, local deployment is more suitable.

5.2 Static Deployment

When an aspect needs to be active all the time, it can be deployed statically.
There are two ways to express static deployment. One can declare an aspect class
as statically deployed by adding the deployed modifier to its declaration. This
means that a single instance of the class must be created and deployed at load
time. This is useful for implementing singleton aspects. List. 16 demonstrates
a singleton aspect CompanyLogger, which traces all operations on the company
model to the console window.



1 public cclass CompanyLogger extends AbstractLogger { ... }
2 public cclass Application {
3 deployed final private static CompanyLogger compLogger = new CompanyLogger();
4 ...
5 }

Listing 17. Static deployment outside the aspect

By declaring the aspect class as statically deployed, we couple its definition
with the decision that it will not be used dynamically. The decision can be
postponed by expressing it outside the aspect: the deployed keyword can also
be applied to static fields, declared as final. This causes the instance referenced
by the field to be automatically deployed at the load time of the enclosing class.
List. 17 shows the alternative way to create a statically deployed instance of
CompanyLogger.

Static deployment is mainly a matter of convenience, it allows to express a
special case of dynamic deployment in a more compact way.

5.3 Remote Deployment

Distributed applications open one more dimension for scoping. Process bound-
aries should not be an obstacle for aspect-oriented interaction techniques. Just as
distributed object-oriented applications need to call methods on remote objects,
distributed aspect-oriented applications need to intercept remote joinpoints.

In a distributed environment, the company model - instances of Company,
Department, Employee - would most probably reside on a server; the display func-
tionality - the CompanyHierarchyDisplay together with dependent instances of
Node and CompositeNode - would be on the client. Observation with pointcuts
would have to cross the process boundaries: advice would be executed in the
context of the hierarchy display component on the client as a reaction to join-
points of the company model on the server.

Interception of remote joinpoints is enabled by remote deployment, which
allows to deploy aspects on the scope of remote processes. Remote aspect de-
ployment must be enabled on the server process by calling a special API method
activateAspectDeployment on an instance of CaesarHost initialized with the RMI
address identifying the server (List. 18). This creates and publishes an object
that accepts aspect deployment requests on the process where activateAspect-

Deployment is called.
On the client side, aspects can be deployed on the remote process by con-

structing an instance of CaesarHost with the same RMI address and using its
deployAspect and undeployAspect methods. List. 19 shows a modified version of
List. 14, which initializes the hierarchy display of a remote company object. We
just have to change the way the Company object is retrieved and replace local
deployment of display component with remote deployment.

Remote aspect deployment is built on top of the Java RMI infrastructure
that deals with such issues as remote calls, marshaling of method arguments and



1 public class CompanyServer {
2 public static void main(String[] args) {
3 ...
4 CaesarHost host = new CaesarHost(”rmi://myserver.net/MyServer/”);
5 host.activateAspectDeployment();
6 ...
7 }
8 }

Listing 18. Server process hosting company model

1 public class ShowCompanyHierarchyAction implements ActionListener {
2 CaesarHost host = new CaesarHost(”rmi://myserver.net/MyServer/”);
3 ...
4 public void actionPerformed(ActionEvent e) {
5 try {
6 CompanyHierarchyDisplay hier = new CompanyHierarchyDisplay();
7 hier .setCompany((Company)host.resolve(”Company”));
8 HierarchyView view = createNewView(mainWindow);
9 view.setHierarchy(hier );

10 host.deployAspect(hier);
11 }
12 catch (CaesarRemoteException e) { System.out.println(e.getMessage()); }
13 }
14 }

Listing 19. Initializing display of remote company model

management of remote references. Additionally, we provide a tool that generates
stubs for CaesarJ classes that must be executed for each CaesarJ class that
is used or deployed remotely.

5.4 Deployment on a Distributed Control Flow

In Sec. 5.1, we argued that the aspects observing processes need to be deployed
on single threads. In List. 15, the aspect CompanyLogger was deployed inside the
execution of the method draw of the company display component to monitor how
the display uses the data model. Such a solution fails in a distributed environ-
ment, where the display component is working on the client side, but the data
model is located on the server.

On the other hand, the remote deployment, described in Sec. 5.3 enables
observation of the data model activity on the server process, but it does not
distinguish between requests from different clients. So, if we deploy Company-

Logger using remote deployment method, it will monitor all the activity on the
data model during its deployment period. However, we need to intercept only
the joinpoints on the server side that are in the control flow of the draw method
including the synchronous remote calls.

The necessary filtering is provided by another deployment method supported
in CaesarJ - deployment on a distributed control flow. This deployment method
is expressed by API calls, as shown in List. 20. The aspect affects the synchronous
control flow, which the current thread is part of. The synchronous control flow
may involve multiple threads from different processes, which interact through



1 deployed public cclass CompanyDisplayLogging {
2 void around() : execution(∗ draw(..)) && this(CompanyHierarchyDisplay) {
3 CompanyLogger logger = new CompanyLogger();
4 RemoteDeployment.deployOnControlFlow(logger);
5 proceed();
6 RemoteDeployment.undeployFromControlFlow(logger);
7 }
8 }

Listing 20. Deployment on distributed control flow

synchronous calls. In this way, we can filter the joinpoints of company model
methods, which were requested by draw functionality.

6 Implementation

In this section, we discuss the implementation of CaesarJ on top of the Java
Virtual Machine by presenting the steps performed by the CaesarJ compiler.

6.1 Implementation of Virtual Classes

By explicitly redefining virtual classes in a sub-family, we potentially also in-
troduce implicit (inherited) types and relations. Let us consider List. 1 for il-
lustration. Although the virtual type CompositeNode is not explicitly declared in
AdjustedHierarchyDisplay, there is an implicit virtual type AdjustedHierarchy-

Display.CompositeNode (dashed rectangles in Fig. 15). Furthermore, there are
a number of implicit relations, namely the relations inherited from the super-
family and the subtype relations between different refinements of a virtual class
(dashed inheritance arrows in Fig. 15).

Node Connection

Composite
Node

HierarchyDisplay

Node Connection

Composite
Node

AdjustedHierarchyDisplay

Fig. 15. Implicit types and relations

In CaesarJ, all available virtual types are generated at compile-time as Java
classes. Hence, the first step in the compilation process is the calculation of the
type graph by extending the explicit (in source code) declared structure with
the information about the implicit types and relations. For example, all boxes
and relations in Fig. 15 (explicit and implicit ones) constitute the type graph of
List. 1. Note that the cclass interface hierarchy directly reflects the structure of
the type graph.



Next, for each CaesarJ type contained in the type graph, the compiler
generates a corresponding mixin list with the algorithm already discussed in
Sec. 3.2.

Finally, the generated mixin lists are transformed to Java language con-
structs. This is achieved as follows. For each cclass declaration, the CaesarJ
compiler generates a Java interface, called the cclass interface in the following
discussion, and a Java class, called the cclass implementation below. This results
in an interface and an implementation hierarchy. For example, Fig. 16 shows sep-
arated implementation and inheritance hierarchies for the set of classes defined in
the framed listing. The interfaces have the same name as the cclass declarations
in the source code. A Impl-suffix is appended to the names of implementation
classes.
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A_Impl 
implements A

B_Impl
implements B

C_Impl
implements C

C_Impl_Copy
implements C

D_Impl
imlpements D

&

MIXIN
COPY

  cclass A {}
  cclass B extends A {}
  cclass C extends A {}
  cclass D extends C & B {}

Fig. 16. Separated interface and implementation hierarchies

To construct the implementation hierarchy, every cclass is conceptually
viewed as a mixin whose super-class parameter is restricted to the declared
parent or a subclass of it. The cclass implementations are gained from a com-
position of an ordered mixin list. For example, the mixin list of B Impl is [A,

B].
Given the set of mixin lists for a set of CaesarJ classes, the compiler con-

structs the single inheritance implementation hierarchy using plain Java classes.
Nodes in the resulting inheritance hierarchy are cclass implementations; each
path in it, starting with the root node, corresponds to a mixin list. Sometimes,
mixins need to be duplicated and the declared parent of a mixin has to be
changed. For example, the mixin list of D Impl is [A, B, C, D]. That is, the
super of C, which is A by default, needs to be replaced with B.

To generate the corresponding path in the implementation hierarchy, the
compiler generates a new Java class by cloning the bytecode of the original
mixin, then it replaces in the cloned bytecode all occurrences of the old super-
class references with the new one. In our example, C Impl Copy is the clone of
C Impl, having the references to the old super-class replaced by B Impl.



1 class N extends M { }
2 class O extends N { }
3 class P extends O { }
4

5 cclass CollabA {
6 cclass A wraps M { ... }
7 cclass A extends B wraps O { ... }
8 cclass B { ... }
9 }

10 cclass CollabB extends CollabA {
11 cclass A wraps M { ... }
12 cclass A wraps P { ... }
13 }

Fig. 17. Code with wrapper classes

1 cclass CollabA {
2 cclass A M { ... }
3 cclass A O extends B & A M { ... }
4 cclass B { ... }
5 public A M newAforM(M x) {
6 if (x instanceof O) {
7 return newAforO((O)x);
8 }
9 return new A M(x);

10 }
11 public A O newAforO(O x) {
12 return new A O(x);
13 }
14 }
15 cclass CollabB extends CollabA {
16 cclass A M { ... }
17 cclass A P extends A O { ... }
18 public A O newAforO(O x) {
19 if (x instanceof P) {
20 return newAforP((P)x);
21 }
22 return new A O(x);
23 }
24 public A P newAforP(P x) {
25 return new A P(x);
26 }
27 }

Fig. 18. Generated code

The interface hierarchy hides the implementation hierarchy. It contains the
public methods of the cclass implementations and represents their subtype re-
lations. E.g., the interface D is a subtype of B and C. Since the implementation
class always implements the corresponding cclass interface, we can preserve type
compatibility by working with cclass interfaces, e.g., we can assign D Impl to B

and C.

6.2 Implementation of Wrappers

Wrapper recycling is managed by family objects via a map from wrappees to
wrappers for each hierarchy of wrappers with the same name. When a wrapper
constructor is called, a wrapper is retrieved from a hash table using the wrappee
as a key. If the wrapper for given wrappee is not available, a new most-specific
wrapper for given wrappee is created and registered in the hash table.

Wrapper classes are translated to virtual classes that are identified by the
pairs of wrapper and wrappee names as shown in List. 17 and List. 18. The
example shows that wrappers can be overridden in the sub-family by declaring
a new wrapper with the same name and for the same wrappee class. The inher-
itance relationships between the translated wrappers are generated according
the subtype relationships of their wrappee classes. In the next compilation steps
wrappers are treated in the same way as described in Sec. 6.1 for the simple
virtual classes.



List. 18 also shows methods generated for the creation of the most specific
wrapper for the given wrappee. Such methods are generated for each wrapper
class. Each method checks if the direct subclasses of the wrapper class can be
applied for the given wrappee: if yes, the selection is delegated to the more
specific method; if not, the current wrapper class is instantiated. Note, that the
instantiation is polymorphic, which ensures that the most specific versions of
the wrappers will be instantiated. The selection methods must be overridden
when the set of the direct subclasses of the wrapper is changed, e.g., newAforO is
overridden in List. 18, because a new subclass of A O was defined.

Another important implementation issue is the life-cycle management of
wrappers. The life-cycle of a wrapper is coupled to the life-cycle of two ob-
jects, the family and the wrappee. In the current implementation, families use
a standard Java hash map to implement the mapping from wrappees to wrap-
pers. This means that entries in the map are garbage-collected only when the
corresponding family object is garbage-collected. A better solution would be to
release a mapping as soon as neither the wrappee nor the wrapper are reach-
able. Weak references sound like a solution at first glance but it turned out that
the support for weak references as currently implemented in the JVM is not
sufficient to implement this strategy.

6.3 Implementation of Dynamic and Remote Deployment

In this section, we sketch the implementation of aspect deployment in CaesarJ.
The aspect deployment framework builds upon static aspects. Each crosscutting
class is split into two classes: an implementation class and a registry class. The
implementation class encapsulates the behavior of the aspect objects, while the
registry class manages their deployment. Pieces of advice, declared in the aspect,
are translated to methods in the implementation class, while the pointcuts are
copied to the registry class.

The registry is a singleton aspect, which is statically woven using the AspectJ
weaver [26]. The methods of the registry can be seen as statically woven hooks,
which are responsible to dispatch calls to the corresponding methods of the
deployed instances of the implementation class. The singleton registry instance
maintains a container of the deployed instances of the implementation class, as
shown in Fig. 19.

Aspect containers in Fig. 19 decide on the deployed objects that must be
called at a certain joinpoint. Different deployment methods use different types
of containers. The container for local deployment notifies all objects it manages.
The thread-based deployment strategy, on the other hand, uses a map-based
container that notifies only the objects that are deployed on the current thread.
Simultaneous use of multiple deployment strategies is supported by using a com-
posite container, which aggregates the aspect containers of multiple deployment
methods. The relationship between the implementation and the registry classes
is not one to one. The compiler analyzes inheritance relationships between as-
pect classes, which may involve mixin composition, and generates shared registry
classes for aspects with identical crosscutting behavior.
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Fig. 19. Sample runtime configuration with dynamically deployed aspects

The implementation of dynamic deployment has been carried out with care
about performance. The weaver inserts advice calls only at joinpoints which
are referenced by the aspects in the application. If no aspect is deployed at a
joinpoint, the dispatch logic causes one redundant static method call and one
field check for the null value. When aspects are deployed, there is only one
additional virtual method call as compared to AspectJ. The reader interested in
a more details on aspect registries is referred to [18].

Remote Deployment. Remote aspect deployment in CaesarJ uses Java
RMI, which generates stub classes for transparent communication with remote
objects. Stubs must also be generated for aspects that are remotely deployed.
When an aspect object is deployed remotely, a stub is created for this object
on the remote process. The stub intercepts joinpoints on the remote process
and marshals the advice calls to the real aspect object. The stubs are generated
by a specialized RMI compiler for CaesarJ classes. Classes, which are used or
deployed remotely, must be prepared by this tool. Differently from standard Java
RMI, the CaesarJ RMI compiler does not require specially prepared remote
interfaces. The stub can be generated for any CaesarJ class.

Deployment on Distributed Control Flow. Each synchronous control
flow is represented by a single thread in each involved process; therefore, the
aspects deployed on the control flow are actually deployed on these threads.
During remote call the client process must send the aspects deployed within the
current thread, and the remote process must again deploy the received aspects
on the tread that serves the client request.

To send aspects to another process, the marshaling of remote method calls
has been modified. Normally the stub of a remote object marshals the reference
to the object, the name of the called method and the arguments. In the modified
version, the stub additionally sends the references to the aspects, which are
deployed on the current control flow. The remote process unpacks the received
references to the aspects and deploys them on the corresponding thread.



7 Related Work

We have divided work similar to the paper itself into three different groups:
Hierarchical composition, crosscutting composition, and dynamic aspect control.

7.1 Hierarchical Composition

Virtual classes were originally introduced in BETA [34] and were further de-
veloped in gbeta [12], which supplemented them with mixin composition and
family polymorphism. CaesarJ provides a solid implementation of these con-
cepts on the JVM and combines them with language features for crosscutting
composition.

Jx [42] supports a kind of nested inheritance. A major difference is that Jx
considers inner classes not as properties of the enclosing object, but as properties
of the surrounding class. Applicability of Jx is limited to linear refinements,
because it does not provide any composition mechanisms for family classes. A
similar linear refinement of classes is also supported in Keris [54], but as extension
technique for static modules rather than for instantiable family classes.

AHEAD [4] is the newest technology based on ideas of GenVoca [5] and
Mixin Layers [48]. AHEAD supports modularization of application features in
large-scale units called layers, which are sets of files describing fragments of dif-
ferent artifacts of the application including fragments of Java classes. The layers
are composed using a mixin composition technique that is similar to the one of
CaesarJ. The provided implementation is based on source-to-source transfor-
mation. Layers lack subtyping and abstraction capability. In CaesarJ, abstrac-
tions play an important role for ensuring validity of individual family classes
and their composition. In AHEAD reliable composition of layers is assured by
additional specifications. Differently from CaesarJ family classes, layers cannot
be instantiated and used polymorphically.

Virtual classes are composed along two dimensions: at first the mixins of
the same virtual class are composed, and then such mixin list is composed with
analogous mixin lists of its superclasses. Traits [6] also support the composition
of the classes along two dimensions: composing the traits inside a class and
then along the inheritance hierarchy. Composition of traits inside a class is an
orthogonal dimension w.r.t. the both composition dimensions of virtual classes.
Traits in combination with virtual classes would mean that virtual classes could
be extended with new traits in their further bindings.

7.2 Crosscutting Composition

Hölzle analyzed the problem of integrating independent components in object-
oriented languages [24]. Our work addresses many problems identified by Hölzle.
CaesarJ is also related to Hyper/J [51] and the notion of multi-dimensional
separation of concerns (MDSOC) [52]. In order to avoid the ”tyranny of the
dominant decomposition” CaesarJ is not limited to hierarchical refinement



and composition techniques, but supports development of multiple independent
hierarchies and their crosscutting composition by means of bindings.

However, on the technical level CaesarJ is very different from Hyper/J. In
Hyper/J, one can define an independent component in a hyperslice. A hyper-
slice is integrated into an existing application by means of composition rules,
specified in a hypermodule. Hyperslices are independent of their context of use,
because they are declaratively complete, i.e. they declare as abstract methods
everything that they need, but cannot implement themselves. This is different
from the CaesarJ approach of shared abstractions in form of a collaboration
interface, which facilitates reliable composition and makes the composition code
itself reusable. The composition mechanisms in Hyper/J are class based and
cannot be applied in a dynamic way like CaesarJ bindings. Furthermore, Hy-
per/J’s sublanguage for mapping specifications from different hyperslices is fairly
complex and not well integrated into the common OO framework.

Integration of multi-abstraction of components was addressed by the pre-
decessor technologies of CaesarJ: Adaptive Plug and Play Components (AP-
PCs) [36], Aspectual Components (AC) [31] and Pluggable Composite Adapters
(PCA) [39]. Due to lack of necessary abstraction capabilities, connectors and
adapters in APPC, AC, and PCA models are bound to a fixed implementation
of an aspect and cannot be reused. CaesarJ also extends these technologies
with mechanisms for layered refinement and composition.

The idea of collaboration based design and composition with bindings is also
implemented in ObjectTeams [22]. The notion of a team is analogous to our fam-
ily classes, and the roles inside teams have similar semantics as virtual classes.
This enables linear refinement of teams and separation of generic team imple-
mentation from its concrete binding to application classes. However, similarly
to APPC, AC and PCA, ObjectTeams does not support collaboration interfaces
and reuse of bindings. Besides, the crosscutting capabilities supported in the
form of call-ins are significantly less expressive than the pointcuts supported by
CaesarJ.

Framed Aspects [33], Sally [19], and LogicAJ [28] provide a form of genericity
for AspectJ-like aspects. In this way an aspect is more reusable, because it can be
bound to various application classes by specifying different generic parameters.
In CaesarJ, we assume that bindings to different classes are different and may
require totally different adaptation code. Nevertheless, CaesarJ can benefit
from generic pointcuts for better reuse of similar bindings.

7.3 Dynamic Aspect Control

Method Call Interception (MCI)[29] offers dynamically deployed joinpoint inter-
ception on the basis of source code instrumentation. Their idea to use central
registry to control execution of explicitly instantiated and deployed advice ob-
jects is similar to our local dynamic deployment mechanism outlined in Listing
14. In comparison to the implementation of MCI [30], CaesarJ provides ad-
ditional optimizations by creating a specialized registry for each type of aspect
and weaves it only at the joinpoints, referenced by the pointcuts of the aspect.



CaesarJ and most of other dynamic aspect activation approaches, such as
EAOP[11], JAC[45], PROSE[46], JBoss AOP[25] and AspectWerkz[8], require
one or another form of pre-runtime class preparation for weaving. The classes
are either prepared at compile time, at class load time or during just-in-time
compilation. There are two possibilities for pre-runtime class preparation: either
to insert hooks at all joinpoints of a loaded class or to limit to a fixed set of known
join points. While the first option causes significant performance overhead, the
second option (also used in CaesarJ) assumes initial knowledge about aspects,
which will be activated.

Dynamic aspect deployment can be more efficiently implemented on the sys-
tems supporting real run-time weaving, such as Steamloom [7] and AspectS [23].
Steamloom is particularly well-suited for the needs of aspect deployment in Cae-
sarJ, because it supports thread local aspects as well as aspect deployment on
individual objects.

Remote pointcuts introduced in DJcutter [41] allow definition of aspects
which refer to joinpoints on remote processes. All aspects run on a special aspect
server and intercept joinpoints in all or some of the registered hosts. CaesarJ
extends applicability of remote joinpoints, by combining them with dynamic as-
pect deployment. This enables dynamic selection of servers as well as connecting
and disconnecting from the server at any point of program execution. Besides,
dynamic deployment postpones the decision about local or remote usage of an
aspect until runtime.

The idea of unifying aspects and classes, i.e. support for stateful aspects and
their explicit instantiation, has also recently been implemented in the Eos-U
language [47]. In Eos-U, the advice overriding problem is solved by completely
replacing advice with methods. A similar effect can be achieved in CaesarJ by
inserting method calls on self in the advice bodies.

8 Summary and Future Work

In this paper we gave an overview of the CaesarJ programming language. We
demonstrated that advanced object-oriented techniques for multi-class compo-
nents and interaction based on joinpoint-interception are complementary tech-
nologies, which can be used together to solve important software design prob-
lems.

In Sec. 3, we showed that by treating collaborations as classes, we can ap-
ply object-oriented techniques on a larger scale. Virtual classes and propagat-
ing mixin composition provide a means for abstraction, refinement and poly-
morphism of multi-class components, but they are not sufficient for integration
of independently developed components with different modular structure. The
problem of crosscutting integration of structure and behavior can be solved by
the mechanisms for join-point interception and dynamic object extensions in
form of wrappers. The unification of aspects and collaborations facilitates devel-
opment of reusable well-modularized aspects, as was explained in Sec. 4. Finally,



Sec. 5 demonstrated that treating an aspect as a class enables its free instanti-
ation and flexible control over its scope of application.

The current implementation of the CaesarJ compiler covers all the features
presented in this paper except the dynamic wrapper selection, which is part of
our on-going work. The existing implementation is stable and is already used in
case studies of our industrial partners. We also provide an IDE for the language
in the form of an Eclipse plug-in, which, among other features, includes views for
visualization of CaesarJ virtual classes and crosscutting structure. The com-
piler, the Eclipse plug-in, the language reference as well as other documentation
are available from caesarj.org.

There are several areas of ongoing and future work. We are investigating
ways to provide a better support for CaesarJ language features on the virtual
machine level. So far, we have been building support for shadow search, weav-
ing, and dynamic aspect deployment into the aspect-oriented virtual machine
Steamloom [21]. However, CaesarJ is not built on top of Steamloom so far.
We believe that implementing CaesarJ compiler on top of Steamloom could
significantly improve the implementation, but JVM compatibility would have to
be sacrificed.

Also, we plan to add support for the virtual classes directly at the virtual
machine level. This will significantly facilitate the implementation of the compiler
and will avoid a lot of code duplication generated right now by the compiler to
simulate the virtual class semantic on top of standard Java classes. Another
path in our future research will be concerned with bringing into CaesarJ a
more powerful pointcut language such as the one supported by the prototype
language presented in [44].

Yet other threads of future work will be concerned with the module system
of CaesarJ. One interesting issue to consider is to support a more flexible
bundling of classes into families. Right now, related virtual classes have to be
defined within a module. This might be too restrictive. We would like to be able
to bundle classes that are defined independently into families. This imposes hard
challenges on static typing, which need to be considered carefully. Another issue
to investigate is the relation between CaesarJ modules, generic components and
crosscutting bindings, to genericity. We believe that CaesarJ modules, equipped
with some extensions such as so-called final bindings are able to simulate generics
properly, but this needs to be investigated more in the future.
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