
THE IMPACT OF DYNAMIC CHANNELS ON

FUNCTIONAL TOPOLOGY SKELETONS

J. BERTHOLD AND R. LOOGEN

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg

Hans-Meerwein-Straße, D-35032 Marburg, Germany

{berthold,loogen}@informatik.uni-marburg.de

ABSTRACT
Parallel functional programs with implicit communication often generate purely hier-
archical communication topologies during execution: communication only happens be-
tween parent and child processes. Messages between siblings must be passed via the

parent. This causes inefficiencies that can be avoided by enabling direct communication
between arbitrary processes. The Eden parallel functional language provides dynamic

channels to implement arbitrary communication topologies. This paper analyses the
impact of dynamic channels on Eden’s topology skeletons, i.e. skeletons which define
process topologies such as rings, toroids, or hypercubes. We compare topology skeletons
with and without dynamic channels with respect to the number of messages. Our case
studies confirm that dynamic channels usually decrease the number of messages by up to
50% and can reduce runtime by up to 50%. Detailed analysis of Eden TV (trace viewer)
execution profiles reveals the reasons for these substantial runtime gains.

1. Introduction

Skeletons [3] provide commonly used patterns of parallel evaluation and simplify
the development of parallel programs, because they can be used as complete build-
ing blocks in a given application context. Skeletons are often provided as special
language constructs or templates, and the creation of new skeletons is considered
as a system programming task or as a compiler construction task [5,12]. Therefore,
many systems offer a closed collection of skeletons which the application program-
mer can use, but without the possibility of creating new ones, so that adding a new
skeleton usually implies a considerable effort.

In a functional language like Haskell or ML, a skeleton can be specified as a poly-
morphic higher-order function. In parallel functional languages like GpH (Glasgow
parallel Haskell) [24], Concurrent Clean [17], Eden [11], para-functional program-
ming [8], or Concurrent ML [20], skeletons can be implemented in the language
itself. Describing both the functional specification and the parallel implementation
of a skeleton in the same language context has several advantages. Firstly, it consti-
tutes a good basis for formal reasoning and correctness proofs. Secondly, it provides
much flexibility, as skeleton implementations can easily be adapted to special cases,
and if necessary, new skeletons can even be introduced by the programmer himself.

In this paper, we consider the functional specification and implementation of
topology skeletons and show how to improve their implementation substantially by
using dynamically established communication connections which we call dynamic
channels for short. Topology skeletons define parallel evaluation schemes with an
underlying communication topology like a ring, a torus or a hypercube. Many
parallel algorithms [9] rely on such underlying communication topologies. As any
skeleton, topology skeletons can easily be expressed in a functional language. A

Third Workshop on High-Level Parallel Programming and Applications

ring

...

Figure 1: Hierarchical Ring Skeleton

simple ring can e.g. be defined in Haskell as follows:

ring :: ((i,[r]) -> (o,[r])) -- ring process mapping

-> [i] -> [o] -- input-output mapping

ring f inputs = outputs

where (outputs, ringOuts) = unzip [f inp | inp <- nodeInputs]

nodeInputs = mzip inputs ringIns

ringIns = rightRotate ringOuts

rightRotate xs = last xs : init xs

The function ring takes a node function f and a list inputs whose length determines
the dimension of the ring. The node function f is applied to each element of the
list inputs and a list of values which is received from its left ring neighbour. It
yields an element of the list outputs which is the overall result and a list of values
passed to its right ring neighbour. Note that the ring is closed by using the list of
output lists ringOuts rotated by one position to the right by rightrotate as inputs
ringIns in the node function applications. The Haskell function zip converts a pair
of lists element by element into a list of pairs and unzip does the reverse. The mzip

function corresponds to the zip function except that a lazy pattern is used to match
the second argument. This is necessary, because the second argument of mzip is the
recursively defined ring inputa.

A parallel ring can be obtained by evaluating each application of the node func-
tion f in parallel. Implicit and semi-explicit lazy parallel functional languages like
GpH (Glasgow parallel Haskell) [24], Concurrent Clean [17], or Eden [11] introduce
parallelism by primitives to spawn subexpressions for parallel evaluation by a sep-
arate thread or process. Necessary arguments and the results will automatically
be communicated by the parallel runtime system underlying the implementation of
such languages.

Unfortunately, the one-by-one pattern of parallel thread or process creation
induces a purely hierarchical communication topology. Figure 1 shows the ring
topology resulting from the above definition, if the node function applications are
spawned for parallel evaluation. The solid arrows show the connections between the
node processes and the parent process ring via which the inputs and outputs are

aLaziness is essential in this example - a corresponding definition is not possible in an eager
language.

The Impact of Dynamic Channels on Functional Topology Skeletons

passed. The dashed lines show ring connections that are also established between
the nodes and the parent which will pass the data as indicated. This unnecessarily
increases the number of messages and causes a bottleneck in the parent process.

The parallel functional language Eden [11] offers means to create arbitrary chan-
nels between processes to achieve better performance by eliminating such commu-
nication bottlenecks. The expressiveness of Eden for the definition of arbitrary
process topologies has been emphasised by [6], but in a purely conceptual manner,
without addressing any performance issues. The use of dynamic channels has been
investigated in [15], explaining how non-hierarchical process topologies can system-
atically be developed using dynamic reply channels. In the current paper, we focus
on a detailed analysis of topology skeletons in Eden using trace information col-
lected during parallel program executions. We compare topology skeletons defined
with and without dynamic channels and analyse the benefits and overhead induced
by the use of dynamic channels. Our case studies show that dynamic channels lead
to substantial runtime improvements due to a reduction of message traffic and the
avoidance of communication bottlenecks in parent processes. A new trace viewer
tool [21] is used to visualise the interaction of all machines, processes and threads,
and allows us to spot inefficiencies in programs in a post-mortem analysis.

2. Dynamic Channels in Eden

Eden [11], a parallel extension of the functional language Haskell, embeds functions
into process abstractions with the special function process and explicitly instanti-
ates (i.e. runs) them on remote processors using the operator (#). Processes are
distinguished from functions by their operational property to be executed remotely,
while their denotational meaning remains unchanged as compared to the underlying
function.

process :: (Trans a, Trans b) => (a -> b) -> Process a b

(#) :: (Trans a, Trans b) => Process a b -> a -> b

For a given function f and some argument expression e, evaluation of the expression
process f # e leads to the creation of a new (remote) process which evaluates the
function application f e. The argument e is evaluated locally by the creator or
parent process, i.e. the process evaluating the process instantiation. The value of e
is transmitted from the parent to the child and the child output f e is transmitted
from the child to the parent via implicit communication channels installed during
process creation. The type classb Trans provides implicitly used functions for these
transmissions. Tuples are transmitted component-wise by independent concurrent
threads, and lists are transmitted as streams, element by element.

Example 1 Ring

In the following, we slightly refine the ring specification of the introduction and
discuss two definitions of a process ring skeleton in Eden (see Figure 2): The number
of ring processes is no longer deduced from the length of the input list, but given
as a parameter. Input split and output combine functions generalise the skeleton
and allow the input to be of arbitrary type i instead of the list type [i].

bIn Haskell, type classes provide a structured way to define overloaded functions.

Third Workshop on High-Level Parallel Programming and Applications

ring, ringDC :: (Trans i,Trans o,Trans r) =>

Int -- ring size

-> (Int -> i -> [i]) -- input split function

-> ([o] -> o) -- output combine function

-> ((i,[r]) -> (o,[r])) -- ring process mapping

-> i -> o -- input-output mapping

ring n split combine f input = combine toParent

where

(toParent,ringOuts) = unzip [process f # inp | inp <- nodeInputs]

...

Figure 2: Type of Eden ring skeletons and definition of static ring

The static ring skeleton has been obtained by replacing the function application
(f inp) with the process instantiation ((process f) # inp). It uses only hierarchi-
cal interprocess connections and produces the topology shown in Figure 1 with the
problems explained in the introduction. The non-hierarchical skeleton ringDC will
be defined in Example 2 using dynamic channels. /

For this reason, Eden provides the dynamic creation of channels which allows to
establish direct channel connections between arbitrary processes. An Eden process
may explicitly generate a new dynamic reply channel and pass the channel’s name to
another process. The receiving process may then either use the name to return some
information directly to the sender process (receive and use), or pass the channel
name further on to another process (receive and pass). Both possibilities exclude
each other, and a runtime error will occur if a channel name is used more than oncec.
Eden introduces a unary type constructor ChanName for the names of dynamically
created channels. It provides two operators to generate and use channel names.

new :: Trans a => (ChanName a -> a -> b) -> b

parfill :: Trans a => ChanName a -> a -> b -> b

Evaluating an expression new (\ ch_name ch_vals -> e) has the effect that a new
channel name ch name is declared as reference to the new input channel via which
the values ch vals will eventually be received in the future. The scope of both
is the body expression e, which is the result of the whole expression. The chan-
nel name must be sent to another process to establish the direct communication.
A process can reply through a channel name ch name by evaluating an expression
parfill ch_name e1 e2. Before e2 is evaluated, a new concurrent thread for the
evaluation of e1 is generated, whose normal form result is transmitted via the dy-
namic channel. The result of the overall expression is e2. The generation of the
new thread is a side effect. Its execution continues independently from the eval-
uation of e2. This is essential, because e1 could yield a (possibly infinite) stream
which would be communicated element by element. Or, e1 could even (directly or
indirectly) depend on the evaluation of e2.

cThe current implementation detects the multiple use of channel names only for stream channels,
but not for single-value channels.

The Impact of Dynamic Channels on Functional Topology Skeletons

-- ring process using dynamic channels

plink :: (Trans i,Trans o,Trans r) =>

((i,[r]) -> (o,[r])) -> Process (i,ChanName [r]) (o,ChanName [r])

plink f = process fun_link

where fun_link (fromParent,nextChan) = new (\ prevChan prev ->

let (toParent,next) = f (fromParent,prev)

in parfill nextChan next (toParent,prevChan))

ringDC

...

Figure 3: Ring Skeleton Using Dynamic Channels

Example 2 Ring, continued

In the version of Figure 3, the static ring connections are replaced by dynamic
reply channels which have to be sent in the other direction to achieve the same
information interchange. Therefore the above definition of ring is only modified
in two places to define ringDC: The reply channels are rotated in the opposite di-
rection — rightRotate is replaced by an appropriately defined leftRotate. More
importantly, the process abstraction process f is replaced by a call to the function
plink f (defined in Figure 3) which establishes the dynamic channel connections.

The function plink embeds the node function f into a process which creates a new
input channel prevChan that is passed to the neighbour ring process via the parent.
It receives a channel name nextChan to which the ring output next is sent, while
the ring input prev is received via its newly created input channel. The mapping of
the ring process remains as before, but the ring input/output is received and sent
on dynamic channel connections instead of via the parent process. The obvious
reduction in the amount of communications will be quantified in the following. /

3. Topology Skeletons

Topology skeletons define process systems with an underlying communication topol-
ogy. In this section, we consider rings, toroids, and hypercubes. The concept of Eden
dynamic channels allows to specify such topology skeletons exactly in the intended
way, using direct connections between siblings. The following analysis quantifies
the impact of dynamic channels in a theoretical manner. In the next section we will
justify these considerations by measurements for chosen applications.

3.1. Analysis of the Ring Skeleton

The number of messages between all processes is compared for the ring skeletons
of Section 2 with and without dynamic channels. In general, a process instantia-
tion needs one system message from the parent for process creation. Tuple inputs

Third Workshop on High-Level Parallel Programming and Applications

and outputs of a process are evaluated componentwise by independent concurrent
threads. Communicating input channels (destination of input data from the parent)
needs 1+tsize(i) administrative messages from the child (where tsize(a) denotes the
number of components in type a). For simplicity, we only compute the amount of
messages inside the system in the case where data items fit into single messagesd.

Let n denote the ring size, ik and ok be the number of input and output items for
process k, and rk the amount of data items which process k passes to its neighbour
in the ring. Input data for the ring process is a pair and thus needs 3 = 1+2 channel
messages from each ring process. In case of the ring without dynamic channels, the
total number of messages is:

TotalnoDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

(1 + ik + rk) +
n∑

k=1

sent by child k
︷ ︸︸ ︷

(3 + ok + rk)

As seen in the introduction, ring data is communicated twice, via the parent. Thus
the parent either sends or receives every message counted here!

Using dynamic channels, each ring process communicates one channel name via
the parent (needs 2 messages) and communicates directly afterwards:

TotalDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

(1 + ik + 2) +

n∑

k=1

sent by child k
︷ ︸︸ ︷

(3 + ok + 2 + rk)

It follows that using dynamic channels saves (
∑n

k=1
rk) − 4n messages, and we

avoid the communication bottleneck in the parent process.

3.2. Toroid

As many algorithms in classical parallel computing are based on grid and toroid
topologies, we extend our definition to the second dimension: a toroid is nothing
more than a two-dimensional ring. In principle, the skeletons for those topologies
work exactly the same way as the presented ring. In Figure 4, we only show the
definition of the version which does not use dynamic channels. The version with
dynamic channels can be derived as has been shown for the ring skeleton. It can also
be found in [15]. The auxiliary functions mzipWith3, mzip3 and unzip3 are straight-
forward generalisations of the Haskell prelude functions zipWith, zip and unzip for
triples. The prefix m marks versions with lazy argument patterns. Considering again
the amount of messages, we get the following:

Let n denote the torus size (identical in the two dimensions), ik,l and ok,l be the
number of input and output items for torus process (k, l). The amount of data
items it passes through the torus connections shall be denoted vk,l and hk,l (vertical,
horizontal). The input of a torus process is a triple and thus needs 4 administra-
tive messages. If the skeleton does not use dynamic channels, the total number of

dWhen a data item does not fit into a single message due to the limited message size, it is split
into several packages that are sent in separate partial messages.

The Impact of Dynamic Channels on Functional Topology Skeletons

toroid :: (Trans a,Trans b, Trans c, Trans d) =>

Int -> Int -- torus size (2 sizes)

-> ((c,a,b)->(d,a,b)) -- node processes mapping

-> [[c]] -> [[d]] -- input-output mapping

toroid nf nc f toChildren = outssToParent

where

(outssToParent,outssA,outssB) = unzip3 (map unzip3 outss)

outss = [[(process f) # outAB | outAB <- outs’] | outs’ <- outss’]

outss’ = mzipWith3 mzip3 toChildren outssA’ outssB’

outssA’ = mzipWith (:) nf (map last outssA) (map init outssA)

outssB’ = last outssB:init outssB

Figure 4: Static definition of toroid skeleton

messages is

TotalnoDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

n∑

l=1

(1 + ik,l + vk,l + hk,l) +

n∑

k=1

n∑

l=1

sent by child (k,l)
︷ ︸︸ ︷

(4 + ok,l + vk,l + hk,l)

Again, the parent process is involved in every message counted here.
Using dynamic channels, torus processes exchange two channels via the parent

(4 messages) and communicate directly afterwards; giving:

TotalDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

n∑

l=1

(1 + ik,l + 4) +

n∑

k=1

n∑

l=1

sent by child (k,l)
︷ ︸︸ ︷

(4 + ok,l + 4 + vk,l + hk,l)

It follows that we save (
∑n

k=1

∑n

l=1
(vk,l + hk,l)) − 8n2 messages.

3.3. Hypercube

The presented skeletons can be generalised even more to create 3-, 4-, and n-di-
mensional communication structures between a hyper-grid of processes. The ring
skeleton is the one-dimensional instance of such a multi-dimension skeleton, and
the well-known classical hypercube reduces to simply restricting the size to 2. We
present a non-recursive hypercube definition where all processes are created by the
parent process.

The nodes of the hypercube communicate with one partner in every dimension,
thus the type of the node function includes this communication as a list of streams
[[r]], each stream sent by an independent concurrent thread. The hypercube skele-
ton creates all hypercube nodes and distributes the returned channels to the respec-
tive communication partners, where the call (invertBit n d) returns the communi-
cation partner of node n in dimension d by inverting bit position d in integer n. The
process abstraction hyperp embeds the node function into a process abstraction,
which expects and returns a list of channels, one for every dimension. Functions

Third Workshop on High-Level Parallel Programming and Applications

hypercube :: (Trans i, Trans o, Trans r) =>

Int -- dimension

-> ((i,[[r]]) -> (o,[[r]])) -- node function

-> [i] -> [o] -- input/output (to/from all nodes)

hypercube dim nodefct inputs = outs

where (outs,outChans) = unzip [hyperp dim nodefct # proc_in

| proc_in <- proc_ins]

proc_ins = zip inputs inChans

inChans = [[outChans!!(invertBit n d)!!d | d <- [0.. dim-1]]

| n <- [0..2^dim -1]]

hyperp :: (Trans i, Trans o, Trans r) =>

Int -- dimension

-> ((i,[[r]]) -> (o,[[r]])) -- node function

-> Process (i, [ChanName [r]]) (o, [ChanName [r]])

hyperp dim nodefct =

process (\ (input, toNeighbCs) ->

let (output, toNeighbs) = nodefct (input, fromNeighbs)

(fromNeighbCs, fromNeighbs) = createChans dim

sendOut = multifill toNeighbCs toNeighbs output

in (sendOut, fromNeighbCs))

createChans :: Trans x => Int -> ([ChanName x], [x])

multifill :: Trans x => [ChanName x] -> [x] -> b -> b

Figure 5: Definition of hypercube skeleton with dynamic channels

createChans and multifill are obvious generalisations of new and parfill, which
work with lists of channels and values instead of single channels.

In contrast to the previous skeletons ring and toroid, the hypercube skeleton
cannot use tuples with one component for every dimension. Dynamic reply channels
are instead exchanged in form of a list. As an important consequence, a completely
analogous skeleton with static communication channels cannot be defined in Eden
(unless using Channel Structures [2], which are currently not implemented). By
using dynamic reply channels, communication between neighbours is handled in
separate streams and independent threads. When communicated via the parent,
the list of streams between hypercube neighbours would be communicated as a
stream of lists, sent by only one thread. Thus, a hypercube version with static
connections would be applicable only for algorithms where neighbours interact in a
strictly regular order. Otherwise, a deadlock may easily occur and it is impossible
for the hypercube nodes to concurrently interact in different dimensions.

4. Case Studies

Throughout this section, we will show several runtime trace visualisations with the
Eden Trace Viewer [21], a new tool for the post-mortem analysis of Eden program
executions. Trace information is collected during runtime by an instrumented run-

The Impact of Dynamic Channels on Functional Topology Skeletons

time environment, using the Pablo Trace Library [19] and Pablo’s self-explanatory
format SDDF (Self-Defining Data Format). Context information for all machines,
processes and threads is gathered when loading a trace file, and the Eden Trace
Viewer visualises the state transitions of these units of computation in different
zoomable views, as well as the communication between processes.

4.1. Warshall-Algorithm Using a Ring

A simple use of ring structures is to pass global data around between nodes of
a parallel computation. The program measured here is a parallel implementation
of Warshall’s algorithm to compute minimum distances for all nodes of a graph
(adapted from [16]). The parallel processes communicate in a ring and each process
evaluates rows of minimum distances for a subset of the graph nodes. Starting with
the row for the first graph node, intermediate results are passed to the next ring
process and flow through the whole ring for one round. While a row flows through
the ring, each process updates its own rows by possible paths via the respective
node, before eventually passing its own intermediate result to the ring neighbour.
In a second phase, the remaining rows are received, and local rows are again updated
accordingly to yield the final result.

The trace visualisations of Figure 6 and 7 show the processes per machine view
of the Eden Trace Viewer for an execution of the warshall program on 16 processors
of a Beowulf cluster, the input graph consisting of 500 nodes. Each process is
represented by a horizontal bar with colour-coded segments for its actions. We
distinguish between the process states blocked (red – dark grey), runnable (yellow
– bright grey) and running (green – middle grey).

As expected from the analysis, the dynamic channel version uses about 50%
of the messages of the static version (8676 instead of 16628) – network traffic is
considerably reduced. Figures 8 and 9 show a zoom of the initial 5 seconds of both
traces, with the messages exchanged between the processes drawn as grey lines
between the horizontal bars. The figures show the high message traffic in the static
version, where the parent process turns out to be a massive bottleneck. The direct
ring communication can clearly be observed in the dynamic version.

As the number of messages drops to 50%, the runtime decreases by approxi-
mately 50% as well, but the traces show that this is not a direct correspondence.
The algorithm contains an inherent data dependency: each process must wait for
the updated results of its predecessor, leading to a gap between the two phases
passing through the ring. This is also observable in the dynamic version, but ring
processes communicate in a distributed manner and show a good workload distri-
bution with only short blocked or idle phases. In the static version, the time each
ring process waits for data from the heavily-loaded parent is accumulated through
the whole ring. The trace of this version shows a successively increasing wait phase
while data flows through the ring.
Both versions scale well when the number of processors is increased. When moving
from 8 to 24 processor elements, a relative speedup of 2.3 has been obtained.

Third Workshop on High-Level Parallel Programming and Applications

Runtime: 77.88 sec.

Figure 6: Warshall-Algorithm (500 node graph) using static connections for ring
(Beowulf Cluster, Heriot Watt University, Edinburgh, 16 machines)

Runtime: 40.37 sec.

Figure 7: Warshall-Algorithm (500 node graph) using dynamic channels for ring
(Beowulf Cluster, Heriot Watt University, Edinburgh, 16 machines)

The Impact of Dynamic Channels on Functional Topology Skeletons

Runtime: 77.88 sec.

Figure 8: Message traffic during the initial 5 seconds of the Warshall-Algorithm
(500 node graph) – using static connections for ring

Runtime: 40.37 sec.

Figure 9: Message traffic during the initial 5 seconds of the Warshall-Algorithm
(500 node graph) – using dynamic channels for ring

Third Workshop on High-Level Parallel Programming and Applications

4.2. Matrix multiplication in a torus

The toroid structure can be applied for a parallel matrix multiplication algorithm by
Gentleman [18]. The result matrix is split into a square of submatrix blocks which
are computed by parallel processes. The needed data to compute a result block
are whole rows of the first and columns of the second matrix. These matrices are
split into blocks of the same shape and the blocks passed through a torus process
topology to avoid data duplication. The torus processes receive suitable input
blocks after an initial rotation, and successively pass them to torus neighbours (in
both dimensions). Every input block does one round through the torus, thus all
processes of a block row eventually receive it. Each process accumulates a sum of
products of the input blocks as the final result. The analyses in [10] have shown
that this program, using dynamic reply channels, delivers good speedups on up to
36 processors, predictable by a suitable skeleton cost model.

The traces clearly show that the processes tend to communicate earlier than
they start their computation. This is due to Eden’s eager communication since
every process can give away its block and all blocks it receives from its neighbours
without any evaluation.

For the 4×4 torus used here, the data passed through the torus connections is a
list of 3 matrices, vk,l = hk,l = 4. As the formula in Section 3.2 shows, this exactly
outweighs the message reduction. Different numbers of messages result from the
fact that smaller messages (channel names instead of matrices) are exchanged in
the dynamic channel version. The number of messages drops from 1049 messages
in the static torus multiplication of two matrices of size 600 to 761 messages, i.e.
by about 30 %.

The runtimes of the version with dynamic channels (trace shown in Figure 11)
is 40% less than for the version with static connections. Again, the improvement
in runtime does not only result from saved messages, but from eliminating the bot-
tleneck in the parent process. Without the direct torus connections, the algorithm
must communicate the matrix blocks twice with a serious bottleneck in the parent
process. As can be seen in Figure 10, the pure computation time is about the same
(27 sec.) in both versions, but in the original version, it is preceded by an immense
communication phase (almost 40 instead of 10 sec.).

4.3. Sorting in a Hypercube

A lot of hypercube algorithms can be found in classical literature on parallel pro-
gramming. As explained in Section 3.3, a comparison of the hypercube skeleton
with and without dynamic channels is only possible for algorithms in which the
hypercube nodes do not communicate simultanously in different hypercube dimen-
sions. Test programs for this special case expose the anticipated bottleneck in the
parent process, leading to dramatically increased runtimes (factor 8) for the static
version.

We instead show the trace of a recursive parallel quicksort in a hypercube with
dynamic channels (Figure 12) with message traffic, exposing the typical hypercube
communication pattern. The random input list is locally created by the hypercube
nodes (first phase in the trace, ca. 14 sec.), before the algorithm starts. The node

The Impact of Dynamic Channels on Functional Topology Skeletons

Runtime: 66 sec.

Figure 10: Matrix multiplication (600 rows), toroid without dynamic channels
(Beowulf Cluster, Heriot Watt University, Edinburgh, 17 machines)

Runtime: 38 sec.

Figure 11: Matrix multiplication (600 rows), toroid with dynamic channels
(Beowulf Cluster, Heriot Watt University, Edinburgh, 17 machines)

with the lowest address chooses a pivot element, which is broadcasted in the entire
hypercube. All partners in the highest dimension exchange sublists, where the
higher half keeps elements bigger than the chosen pivot. Then, the hypercube is
split in half, and the algorithm is recursively repeated in the two subcubes.

Third Workshop on High-Level Parallel Programming and Applications

Runtime: 43.8 sec.

Figure 12: Parallel Quicksort in hypercube with dynamic channels
(Beowulf Cluster, Heriot Watt University, Edinburgh, 17 machines)

5. Related Work

Dynamic reply channels are a simple but effective concept to support reactive com-
munication in distributed systems. It is related to the ‘incomplete message principle’
known from concurrent logic languages [23] and the ‘channel name passing’ principle
of the π-calculus [13]. In the context of a functional language it must however be
introduced in a far more restricted way in order to preserve referential transparency
(at least for a subset of the language).

By allowing completely free communication structures between parallel processes,
for instance in the style of MPI [14], one gives up much programming comfort and
security. The underlying theories which model communicating processes, namely
π-calculus [13] and its predecessors, are as well liberal in terms of communication
partners and usually untyped. Due to this inherent need for liberty which does not
fit well in the functional model and its general aim of soundness and abstraction,
not many parallel functional languages support arbitrary connections between units
of computation at all. The concepts for Clean presented in [22] go in this direction
and make use of Clean’s uniqueness concept to purify some points. In the same way,
languages like Facile [7] or Concurrent ML [20] support communication facilities on
a lower-level of abstraction than the dynamic channel concept of Eden.

Functional languages like NESL [1], OCamlP3l [4], or PMLS [12] where the par-
allelism is introduced by pre-defined data-parallel operations or skeletons have the
advantage to provide optimal parallel implementations of their parallel skeletons,
but suffer from a lack of flexibility, as the programmer has no chance to invent new
problem-specific skeletons or operations.

The Impact of Dynamic Channels on Functional Topology Skeletons

6. Conclusions

Our evaluation of topology skeletons shows that using dynamic channel connec-
tions substantially decreases the number of messages and eliminates bottlenecks.
Dynamic channels can be usefully applied to speed up parallel computations sub-
stantially, as exemplified by typical case studies for the different topology skeletons
discussed in this paper. As explained for the hypercube skeleton, dynamic channels
may also be used to introduce more concurrency, and therefore offer new possi-
bilities for skeletons. Using the trace visualisation for Eden, process behaviour at
runtime and inter-process communication can be analysed more thoroughly than by
simple runtime comparisons, which allows further optimisations for Eden skeletons.

Besides skeleton runtime analysis and optimisations, an area for future work
is to investigate the potential performance gain and pragmatics of explicit process
placement (possible in the Eden runtime system, but not exposed to language level
yet) in conjunction with the presented and other topology skeletons.

Acknowledgements

The authors thank Phil Trinder from Heriot-Watt-University, Edinburgh and Hans-
Wolfgang Loidl from LMU, Munich, for fruitful discussions and in particular for the
opportunity to work with their Beowulf clusters.

References

[1] G. Blelloch. Programming Parallel Algorithms. Communications of the ACM,
39(3):85–97, 1996.

[2] S. Breitinger and R. Loogen. Channel Structures in the Parallel Functional Language
Eden. In Glasgow Workshop on Funct. Prg., 1997. Available online.

[3] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. Research Monographs in Parallel and Distributed Computing. The MIT Press,
Cambridge, MA, 1989.

[4] M. Danelutto, R. DiCosmo, X. Leroy, and S. Pelagatti. Parallel functional programming
with skeletons: the OCamlP3L experiment. In Proceedings of the ACM workshop
on ML and its applications, page 31ff. Cornell University, 1998.

[5] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu,
and R. While. Parallel Programming Using Skeleton Functions. In PARLE’93 —
Parallel Architectures and Languages Europe, volume 694 of LNCS, page 146ff.
Springer, 1993.

[6] L. A. Galán, C. Pareja, and R. Peña. Functional skeletons generate process topologies
in Eden. In PLILP’96 – Programming Languages: Implementations, Logics, and
Programs, volume 1140 of LNCS, page 289ff, Aachen, Germany, Sep 1996. Springer.

[7] A. Giacalone, P. Mishra, and S. Prasad. Facile: a Symmetric Integration of Concurrent
and Functional Programming. In Tapsoft’89 – Int. Joint Conf. on Theory and
Practice of Software Development, volume 352 of LNCS, page 181ff. Springer, 1989.

[8] P. Hudak. Para-Functional Programming. IEEE Computer, 19(8):60–70, Aug. 1986.
[9] Leighton, F. T. Introduction to Parallel Architectures : Arrays, Trees, Hypercubes.

Morgan Kaufmann Publishers, 1992.
[10] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Abstrac-

tions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons for
Parallel and Distributed Computing. Springer, 2003.

Third Workshop on High-Level Parallel Programming and Applications

[11] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Programming
in Eden. Journal of Functional Programming, Special Issue on Functional Ap-
proaches to High-Performance Parallel Programming, 15(4):1–45, 2005.

[12] G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skeletons from
Higher Order Functions. Parallel Algorithms and Appl., 16:181–206, 2001.

[13] R. Milner. Communicating and Mobile Systems: The π Calculus. Cambridge
University Press, Cambridge, England, 1999.

[14] MPI Forum. MPI 2: Extensions to the Message-Passing Interface. Technical report,
University of Tennessee, Knoxville, 1997.

[15] R. Peña, F. Rubio, and C. Segura. Deriving non-hierarchical process topologies. In Se-
lected papers from the 3rd Scottish Functional Programming Workshop (SFP01),
volume 3 of Trends in Functional Programming, page 51ff. Intellect, 2001.

[16] M. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, Reading, Massachusetts, USA, 1993.

[17] R. Plasmeijer, M. van Eekelen, M. Pil, and P. Serrarens. Parallel and Distributed Pro-
gramming in Concurrent Clean. In K. Hammond and G. Michaelson, editors, Research
Directions in Parallel Functional Programming, page 323ff. Springer, 1999.

[18] M. Quinn. Parallel Computing. McGraw-Hill, 1994.
[19] D. A. Reed and R. A. Aydt et al. Scalable Performance Analysis: The Pablo Perfor-

mance Analysis Environment. In Proc. of the Scalable Parallel Libraries Confer-
ence, page 104ff. IEEE Computer Society, 1993.

[20] J. H. Reppy. Concurrent Programming in ML. CUP, Aug. 1999.
[21] P. Roldán-Gómez. Eden Trace Viewer: A Tool to Visualize Parallel Functional Program

Executions. Master’s thesis, Universidad Complutense de Madrid, Spain, 2004. (in
German).

[22] P. R. Serrarens and R. Plasmeijer. Explicit message passing for concurrent clean.
In IFL’98 — Intl. Workshop on the Implementation of Functional Languages,
volume 1595 of LNCS, London, GB, 1999. Springer.

[23] E. Shapiro. The family of concurrent logic programming languages. ACM Comput.
Surv., 21(3):413–510, 1989.

[24] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones. GUM:
a portable implementation of Haskell. In IFL’95 — Intl. Workshop on the Imple-
mentation of Functional Languages, Bastad, Sweden, 1995. Available online.

