
Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

TypeChef: Towards Correct Variability Analysis
of Unpreprocessed C Code for Software

Product Lines

Paolo G. Giarrusso

04 March 2011

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Software product lines (SPLs)

SPL = 1 software project Feature selection−−−−−−−−−−→ 1 variant of a program,
out of many possible ones.

Examples of features:

Which data representation to use?

Support end-user feature so-and-so?

Fast or real-time version?

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

(Static) correctness checking

Aim: to support developers, check if all variants are “correct”

Syntactic correctness

Type-correctness

Bug finding

Static analysis

Model checking (freedom from deadlock, liveness)

...

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Exponential number of variants

33 optional, independent features⇒

a unique variant for each person on the planet
Slide credits: Christian Kästner

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Exponential number of variants

320 optional, independent features⇒

variants > # estimated atoms in the universe

Slide credits: Christian Kästner

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Example SPLs

NASA flight control system: 275 features

Vim (text editor): 779 features

HP Owen printer firmware: 2000 features

Linux kernel: > 6500 features

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Approach

Analyse the whole SPL at once!

Parsing: build a conditional AST, which stores the presence
conditions (boolean formulas) of code elements

SPL-aware type checking: if A refers to B, B must be present
whenever A is: pcA → pcB.

If conflicting definitions are present, they must not be active at
the same time: pcA xor pcB.

Done for other languages (e.g., Java)

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Rely on SAT-solvers

We need therefore to check formula validity.

NP-complete problem! Exponential time again!

For many classes of problems, available SAT-solvers are
efficient.

Our problem is one of those!

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Conditional compilations for SPLs

Use a lexical preprocessor (like the C preprocessor, CPP) to
implement SPLs.

Example:

1 #if FEATURE_REAL_TIME
2 void sort(int array[], int length) {
3 //Use heap sort, always O(n log n)
4 }
5 #else
6 void sort(int array[], int length) {
7 //Use quick sort, usually but not always faster.
8 }
9 #endif

Conditional compilation is available in other languages as well.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Analysis of unpreprocessed code

C compilers first preprocess code, then parse it.

Instead, we need to parse C code before preprocessing.

But it is hard!

CPP mixes variability with other stuff.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Examples for parsing CPP

Macro expansion
required for

parsing!

Alternative
definitions

Undisciplined
annotations

(Around 16% in a study of

40 Open Source projects)

Slide credits: Christian Kästner

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

From the Linux kernel:

Slide credits: Christian Kästner

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Requirements

The output must:

Be simple to further process (esp. parse)

Contain only variability, remove unrelated constructs

Avoid #define . . .

⇒ use only #if ...#endif
⇒ Avoid #define

⇒ Use only #if...#endif and #define

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Correctness of partial preprocessing

Ideally, our correctness requirement would be:

cpp(σ, ppc(prog)) = cpp(σ, prog)

The actual specification is more complex and has quite a few
restrictions, which are OK for our application scenario.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Conditional compilation

1 #if C_1
2 body 1
3 #elif C_2
4 body 2
5 #else
6 body else
7 #endif

becomes:

1 #if C_1
2 body 1
3 #endif
4 #if !C_1 && C_2
5 body 2
6 #endif
7 #if !C_1 && !C_2
8 body else
9 #endif

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Macro expansion

Given:

1 #if C_1
2 #define A (expansion_1)
3 #elif C_2
4 #define A (expansion_2)
5 #endif

a reference to A becomes:

1 #if C_1
2 (expansion_1)
3 #endif
4 #if !C_1 && C_2
5 (expansion_2)
6 #endif
7 #if !C_1 && !C_2
8 A
9 #endif

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Include guards

Typical header structure, for foo.h:

1 #ifndef FOO_H
2 #define FOO_H
3 /* Header body */
4 #endif

This way, multiple or even (indirect) recursive inclusions of
foo.h are tolerated.

Therefore, when FOO_H is tested, we need to check if it is
satisfiable⇒ again, use SAT!

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Real-world example:

⇒

Slide credits: Christian Kästner

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

The need for simplification

1 #if FEAT1 && FEAT2
2 #define A BODY1
3 #else
4 #define A BODY2
5 #endif

Define B as:

1 #if FEAT2
2 #define B A
3 #endif

Without any simplification, the expansion of B would become:

4 #if FEAT2 && FEAT1 && FEAT2
5 BODY1
6 #endif
7 #if FEAT2 && !(FEAT1 && FEAT2)
8 BODY2
9 #endif

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Simplified result

1 #if FEAT2 && FEAT1
2 BODY1
3 #endif
4 #if FEAT2 && !FEAT1
5 BODY2
6 #endif

Less duplicated literals (or none)!

Even more important in complex, real-world examples!

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Scalability requirements

Potentially huge codebases (Linux kernel)

File inclusion: a file can include thousands of lines of extra
code.

During development, naive algorithm implementation lead to:

Filling up the disk (>9G of output for one file)
Filling up the heap (2-3G of RAM)
⇒ Non-termination

Most of this happened during formula manipulation.

All state-of-the-art algorithms (including the alternative to
SAT-solvers, i.e. BDD) have exponential worst-case complexity.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Formula representation – I

1st idea: Represent formula by an unordered node-labeled
tree, similar to AST; nodes represent And, Or and Not
operations on the nodes.

2nd idea: Hash-consing: each formula is represented exactly
once; after a formula is built, it is looked up in a canonicalization
map to find an existing copy, which is used if available.

⇒ Formula comparison becomes O(1).

⇒ Formulas are represented by DAGs, not trees, because
subtrees can be shared.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Formula representation – II

Simplification during construction: simplification rules remove
some redundant terms.

And and Or nodes contain sets of nodes. This removes
duplicates and speeds up membership testing, which becomes
O(1).

Negation normal form (NNF): negation is pushed down to
literals, using DeMorgan laws. This is done during formula
construction: quite tricky to make it non-exponential.

Simplification rules require O(1) negation.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Some simplification rules

e ∧ False 7→ False
e ∧ e 7→ e
. . .

e ∧ (e ∧ e′) 7→ e ∧ e′

e ∧ (¬e ∧ o) 7→ False
e ∧ (e ∨ o) 7→ e

e ∧ (¬e ∨ o) 7→ e ∧ o

Remove duplicates (see e) (at least “nearby” ones)!

The dual of each rule is also present.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Exponential replication

Below, size of Ti can be polynomial or exponential in i ,
depending on how size is measured:

T1 = a (1)
Ti+1 = Ti ∧ (b ∨ (Ti ∧ ¬c)) (2)

The difference is in the expansion! Ti appears twice in Ti+1; T1
appears (indirectly) 2n times in Tn+1.

Represented as a tree, the number of nodes is exponential in n;
represented as a DAG, the number of node is linear in n.

Express such a formula in the output without #define⇒ fully
expand references.

We need to preserve sharing!

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Formula renaming

Formula renaming: If ϕ appears twice in ψ, replace it by a
variable A, and impose A↔ ϕ.

This avoids replication, and produces an equisatisfiable
formula.

A↔ ϕ can be further optimized to reduce the output size, we
omit here the details.

This technique is also crucial for non-exponential
transformation of formulas into CNF for SAT-solving.

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Conclusion

We discussed variability analysis for C; within this context, our
focus was on efficient algorithms for boolean formula
manipulation.

Thanks to these algorithms, we believe we will be able to
partially preprocess the whole Linux kernel and Vim, while
considering the whole feature model.

These techniques might also be useful for source manipulation
tools for C (e.g., refactorings).

Introduction The C preprocessor Partial Preprocessing Examples of partial preprocessing Boolean formula manipulation

Part of this work was published as:

Christian Kästner, Paolo G. Giarrusso, and Klaus Ostermann.
Partial preprocessing of C code for variability analysis. In Proc.
Int’l Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 137–140, New York, 2011. ACM
Press.

	Introduction
	The C preprocessor
	Partial Preprocessing
	Examples of partial preprocessing
	Boolean formula manipulation

