
Growing a Language Environment with Editor Libraries

Sebastian Erdweg∗ Lennart C. L. Kats† Tillmann Rendel∗

Christian Kästner∗ Klaus Ostermann∗ Eelco Visser†
∗ University of Marburg

† Delft University of Technology

Abstract
Large software projects consist of code written in a multitude of
different (possibly domain-specific) languages, which are often
deeply interspersed even in single files. While many proposals ex-
ist on how to integrate languages semantically and syntactically,
the question of how to support this scenario in integrated devel-
opment environments (IDEs) remains open: How can standard IDE
services, such as syntax highlighting, outlining, or reference resolv-
ing, be provided in an extensible and compositional way, such that
an open mix of languages is supported in a single file?

Based on our library-based syntactic extension language for
Java, SugarJ, we propose to make IDEs extensible by organizing
editor services in editor libraries. Editor libraries are libraries writ-
ten in the object language, SugarJ, and hence activated and com-
posed through regular import statements on a file-by-file basis. We
have implemented an IDE for editor libraries on top of SugarJ
and the Eclipse-based Spoofax language workbench. We have val-
idated editor libraries by evolving this IDE into a fully-fledged and
schema-aware XML editor as well as an extensible LATEX editor,
which we used for writing this paper.

Categories and Subject Descriptors D.2.6 [Programming Envi-
ronments]; D.2.13 [Reusable Software]; D.3.2 [Language Clas-
sifications]: Extensible languages

General Terms Languages

Keywords language extensibility, library, DSL embedding, lan-
guage workbench

1. Introduction
Programming language extensibility is an old research topic that
has gained new relevance by the trend toward domain-specific lan-
guages and the vision of language-oriented programming [6, 32].
Researchers have proposed a variety of different approaches to ex-
tend the syntax and semantics of languages and to embed languages
in other languages, such as libraries [9, 14], extensible compil-
ers [8, 21, 28], macro systems [1, 3, 24, 25], and meta-object pro-
tocols [22, 23]. However, while languages themselves have gained
flexibility, tool support in the form of integrated development en-
vironments (IDEs) cannot keep up with the rapid development and
composition of new languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

Figure 1. regex.Sugar provides a syntactic extension for regular
expressions; regex.Editor provides the according IDE extension.

IDEs assist programmers, who spend a significant amount of
time reading, navigating, adapting and writing source code. They
provide editor services that improve a program’s layout and support
programmers in performing changes to the code, including syn-
tax highlighting, code folding, outlining, reference resolving, error
marking, quick fix proposals, code completion, and many more.
The quality of IDE support for a language is hence a significant
factor for the productivity of developers in that language. It is there-
fore desirable to provide the same level of tool support for extended
and domain-specific languages that programmers are familiar with
from mainstream programming languages.

However, as our own and the experience of others show, devel-
oping tool support for a new or extended language requires sig-
nificant effort [5, 16, 20]. Although there are several advances to
generate tool support from declarative specifications [7, 17], gen-
eration has to be repeated for every combination of language ex-
tensions because the generated editor services neither compose nor
grow with the language.

Composable and growable editor services are especially im-
portant in the context of growable languages that support flexi-
ble and composable extensions, e.g., for the embedding of multi-
ple domain-specific languages. In prior work, we developed Sug-
arJ, a variant of Java which is extensible via sugar libraries [9]. A
sugar library can export, in addition to ordinary types and meth-
ods, a syntactic extension and a transformation from the extended
syntax back into the syntax of the base language. Sugar libraries
are imported via the usual import mechanism of the base language.
Multiple syntactic extensions can be composed by importing them

into the same file, allowing a local mix of multiple embedded lan-
guages.

In this paper, we propose editor libraries to further generalize
library-based extensibility towards IDEs. Editor libraries compose:
When multiple languages are mixed within the same file (such as
XML, SQL and regular expressions within Java), we import and
thereby combine all corresponding editor services. Editor libraries
(as other libraries) are self-applicable, that is, editor libraries can be
used to develop other editor libraries. Furthermore, editor libraries
encourage a generative approach through staging: We generate
editor services from high-level specifications (yet another domain-
specific language) at one stage and use the generated services at a
later stage. Staging enables the coordination of editor services that
span several source files or languages.

We have developed an Eclipse-based IDE with support for ed-
itor libraries called Sugarclipse. For each file, Sugarclipse consid-
ers all editor libraries in scope, interprets the associated editor ser-
vices and presents the decorated source code and editing facili-
ties to the programmer. Sugarclipse is based on the Spoofax lan-
guage workbench [17], which supports the generation and dynamic
reloading of Eclipse-based language-specific editors from declar-
ative editor configurations. In Figure 1, we illustrate an example
usage of Sugarclipse: The import of regex.Sugar activates a syn-
tactic extension for regular expressions, which integrates regular
expression syntax into the surrounding Java syntax (instead of the
usual string encoding). The import of the editor library regex.Editor
enables corresponding editor services for regular expressions such
as syntax coloring and code completion. Sugarclipse automatically
composes the editor services of the host language, here Java, and
of the extension, here regular expressions, to provide uniform IDE
support to the programmer. While in Sugarclipse and in this paper,
we focus on editor libraries for SugarJ, the concept of editor li-
braries is similarly useful for embedded languages in syntactically
less flexible languages (cf. Section 7).

With several case studies, we demonstrate the practicality of ed-
itor libraries and the power of their composition. Beyond small ed-
itor libraries such as regular expressions illustrated above, we im-
plemented fully-fledged editor libraries for XML (including XML
Schema) and Latex. We used the latter for writing this paper.

In summary, we make the following contributions:

• We introduce the novel concept of editor libraries for organiz-
ing IDE extensions in libraries of the object language, in partic-
ular, to provide IDE support for embedded DSLs.
• Editor libraries are activated using the host language’s standard

import mechanism, and editor libraries compose to support mul-
tiple DSLs and the base language in a single file.
• We describe a pattern of editor library staging to generate editor

services from high-level specifications and to coordinate editor
services between several source files or languages.
• We present Sugarclipse, an extensible IDE for SugarJ based on

the Spoofax language workbench. Our growable IDE comple-
ments the syntactic extensibility of SugarJ with the capability
of providing domain-specific editor services that conform to the
embedded DSLs.
• We validate our approach through realistic case studies of fully-

fledged editors for XML and Latex. We demonstrate how our
IDE supports domain-specific and programmer-defined editor
configuration languages as well as deriving editor services from
language specifications.

Sugarclipse is an open source project that is publicly available at
http://sugarj.org/editor. Our case studies and, in particular,
the source of this paper are available at the same location.

2. An overview of Sugarclipse
Sugarclipse, as shown in Figure 2, consists of an editor that features
services such as syntax coloring, error marking and code comple-
tion. Sugarclipse has built-in support for Java syntax only, but all of
Sugarclipse’s editor services are user-extensible: Additional syntax
and editor services can be imported from libraries.

2.1 Using Sugarclipse
A Sugarclipse user activates editor support for an additional lan-
guage by importing a corresponding library. For example, in Fig-
ure 2, the sugar library xml.Sugar provides a grammar for embedded
XML documents, and the editor library xml.Editor provides editor
services for XML. This editor library specifies syntax colouring,
outlining, folding etc., for embedded XML documents without in-
validating the built-in services for Java. For example, the resulting
editor contains code folding and outlining for both Java and XML
combined. The additional editor support only affects the XML part
of the document and leaves the remaining editor support intact,
most visible in Figure 2 from syntax highlighting (including cor-
rect highlighting of quoted Java code nested inside XML).

We can extend the XML example by requiring that the em-
bedded XML should conform to a specific schema. Knowing that
schema, Sugarclipse provides even more tailored editor support for
the embedded XML, including content completion providing a list
of all valid tags and error reporting for validation errors. To acti-
vate the additional editor support, the user imports the editor library
xml.schema.BookSchema derived from the schema.

2.2 Editor services
A Sugarclipse user can also assume the role of editor-service de-
veloper, because editor services are specified declaratively within
Sugarclipse. This is more expressive than setting options in the
Eclipse menu and significantly easier than manually extending
Eclipse by writing a corresponding plugin. In addition to error
marking, Sugarclipse lifts and extends eight different editor ser-
vices from Spoofax [17]. Each service can be declaratively speci-
fied in a domain-specific language.

• Syntax coloring highlights source code using a colored, bold or
italic font.
• Code folding supports collapsing part of the source code to hide

its details.
• Outlining gives a hierarchical overview over the current docu-

ment and enables fast navigation.
• Content completion provides proposals for complementing the

current source code.
• Reference resolving resolves a construct (typically a name) to

its declaration and provides facilities to navigate to the declara-
tion directly (“CTRL-click”).
• Hover help displays documentation as a tooltip when hovering

over a documented entity with the mouse.
• A refactoring or projection applies a transformation to (parts

of) the source code and writes the result either in the original or
a separate file.
• Parentheses matching marks matching parentheses in the source

code and adds closing parentheses automatically. This service
is also essential for automatic indentation after line breaks.

Conceptually, editor services can be understood as procedures
that decorate syntax trees, for example, with coloring information.
Sugarclipse then interprets these decorated trees and maps the dec-
orations to the original source code or other means of visualization
such as a separate outline window or a completion proposal viewer.

http://sugarj.org/editor

Figure 2. Sugarclipse extended through the imported editor libraries. The quoted Java expression new String(title) is highlighted using the
typical Java coloring, while the surrounding XML code uses an XML-specific coloring service.

package xml;

import editor.Colors;
import xml.XmlSyntax;

public editor services Editor {
colorer

ElemName : blue (recursive)
AttrName : darkorange (recursive)
AttValue : darkred (recursive)
CharData : black (recursive)

folding
Element

outliner
Element

}

Figure 3. Editor library for coloring, folding and outlining of
XML code.

Since editor services are mere tree decorators, their definitions are
fairly simple in most cases (the definition of refactorings and pro-
jections being an exception). To reflect this simplicity in editor ser-
vice implementations, we use an extended version of the declarative
editor service configuration language provided by Spoofax [17].

Developers can bundle multiple editor-service specification in
an editor library (declared with public editor services). For exam-
ple, the xml.Editor library shown in Figure 3 provides editor ser-

vices for coloring, folding and outlining XML documents using
declarative tree decoration rules. Each tree decoration rule speci-
fies a syntax tree pattern to match against and the decoration to ap-
ply to matched trees. For example, the XML coloring rules match
on trees of the kind ElemName, AttrName, AttValue and CharData,
that is, trees derived from these non-terminal sorts as defined by
the imported sugar library xml.XmlSyntax. The coloring rules thus
declare that XML element names are shown in a blue font, XML
attribute names in a dark orange font, etc., and that the coloring
recursively applies to all nodes in the matched trees. Similarly, the
folding and outlining services declare that XML elements are fold-
able and XML documents show up in the outline of source files.

We specifically support the development of editor libraries by
providing, bundled with Sugarclipse, an editor library for writing
editor libraries. In similar fashion, we encourage other developers
of language embeddings to accompany their embeddings with edi-
tor support in the form of editor libraries.

3. Editor libraries
The basic use of editor libraries, as described in the previous sec-
tion, is to serve as containers for editor service specifications. Be-
fore discussing the composability of editor libraries in detail, we
describe a number of advanced usage patterns for editor libraries in
SugarJ.

3.1 Domain-specific editor configuration languages
SugarJ supports syntactic abstraction over all of its ingredients,
that is, Java code, syntactic sugar, static analysis specifications
and, now as well, editor configurations. This design enables the

import xml.schema.XmlSchema;

public xmlschema BookSchema {
<xsd:schema targetNamespace=”lib”>
<xsd:element name=”book” type=”Book” />

<xsd:complexType name=”Book”>
<xsd:choice maxOccurs=”unbounded”>
<xsd:element name=”author” type=”Person” />
<xsd:element name=”editions” type=”Editions” />

</xsd:choice>
<xsd:attribute name=”title” type=”string” />

</xsd:complexType>
</xsd:schema>
}

Figure 4. An excerpt of the Book XML Schema. The
xml.schema.XmlSchema library provides validation and editor ser-
vices for XML schemas themselves.

development of customized and potentially domain-specific editor
service configuration languages. For example, we have applied
SugarJ’s syntactic extensibility to provide an XML-specific editor
service configuration syntax in the style of Cascading Style Sheets
(CSS):

import editor.Colors;
import xml.CSS;
import xml.XmlSyntax;

public css CSSEditor {
Element { folding; outlining }
ElemName { rec−color : blue }
AttrName { rec−color : darkorange }
AttValue { rec−color : darkred }
CharData { rec−color : black }
}

This CSS-style editor configuration corresponds and, in fact,
desugars to the editor configuration in standard editor service syn-
tax shown in Figure 3; CSS is just another syntax for configuring
editor services.

3.2 Staged editor libraries
Many editor services are not static, but rather depend on the con-
tents of the file being edited and imported files. For example, hover
help for non-local Java methods depends on the method definitions
in other files and code completion for XML elements depends on
the corresponding schema. Hand-written IDEs support such editor
services by managing a set of files as a project, explicitly coor-
dinating between the information retrieved from each file. Unfor-
tunately, neither SugarJ nor Spoofax have a notion of projects: In
Spoofax, editor services for different files are independent, and in
SugarJ, files are processed one after another. Sugarclipse, however,
supports separate generation and application stages for editor li-
braries from different source files, which enables rich patterns of
interaction between editor services of individual source files.

The central idea of our staging pattern is to first generate ed-
itor services from domain-specific declarations in one file and to
later use them in another file. The generated editor services may
well be of auxiliary nature such as a mapping from method names
to the documentation of these methods, which a hover help ed-
itor service can query to display documentation of a method as
a tooltip. In general, Sugarclipse employs the transformation lan-
guage Stratego [29] for auxiliary editor services, and an import
statement brings the generated editor services into scope.

For example, we applied the staging pattern to promote XML
schemas as domain-specific declarations for XML editor services

that are specific to an XML dialect. Such editor services include
XML validation and tag completion. Figure 4 shows an excerpt of
the Book XML schema, which declares a dialect of XML for de-
scribing books. From this schema, we generate the definition of
a static analysis as well as code completion. For the former, we
desugar an XML schema into a set of Stratego rules that traverse
a given XML document to check whether this document conforms
to the schema. In other words, we generate a type checker for each
XML schema. The result of applying the XML Book type checker
is shown in Figure 2, where quoted Java expressions within an
XML document are marked but ignored otherwise. Furthermore,
our XML Schema embedding desugars each schema into a set of
schema-specific completion templates. For instance, the follow-
ing completion template results from desugaring the above Book
schema.

completion template : Content =
”<{lib}book title=\”” <string> ”\”>”
”</{lib}book>”

Accordingly, when importing the Book schema, Sugarclipse recog-
nizes the accompanying editor services and provides code comple-
tion to the programmer as shown in Figure 2.

As this case study illustrates, Sugarclipse supports the imple-
mentation of editor services that involve multiple files using a gen-
erative approach; the staging pattern effectively facilitates data flow
from one source file to another.

3.3 Self-applicability
Like conventional libraries, editor libraries are self-applicable, that
is, editor services can be used during the development of other ed-
itor libraries. For example, we have implemented code completion
for the code completion editor service using an editor library:

public editor services Editor {
completions
completion template : EditorServiceCompletionRule =

”completion template” ” : ” <Sort> ” =\n\t”
”\”” <prefix> ”\” <” <placeholder> ”>”

}

This template provides content completion for completion tem-
plates themselves. Completion templates are represented as se-
quences of strings and placeholders such as <Sort>, which Sugar-
clipse marks for the user to replace. The above completion template
expands into the following code on selection, where the underlined
fragments are placeholders:

completion template : Sort =
”prefix” <placeholder>

More generally, we provide full editor support for writing editor
libraries in Sugarclipse using editor libraries.

4. Editor composition
A key feature of Sugarclipse is the ability to compose editor li-
braries. For example, we can import support for regular expres-
sions and XML in the same document. The editor then supports
both language extensions with corresponding syntax highlighting,
and other facilities. Editor libraries cooperate to present a coherent
user interface even though their respective authors might not have
planned for their editor library to be used in that exact combination
of editor libraries.

We can compose editor libraries developed independently, such
as regular expressions and XML, but we can also develop editor
libraries that extend other libraries and editor libraries that explic-
itly interact with other editor libraries through extension points. Let
us illustrate such interaction with an example from the domain of

text documents (which we will describe in more detail in Sec. 6.2):
We express a bibliography database in one language (e.g., Bibtex-
like) and write the text with references to bibliography items in an-
other language (e.g, Latex-like). When composing both languages,
we would like to add editor services to navigate from bibliogra-
phy references to their definitions, to suggest available references
with content completion, to provide hover help, and so forth. These
editor services need to bridge elements in different files and from
different languages.

Although different kinds of interactions and even conflicts be-
tween editor services are possible, we argue that editor services
are largely independent and have local effects. In addition, for
many services, interactions can be implicitly resolved using generic
strategies. Finally, for intended interactions as in the bibliography
example, we apply the staging pattern for explicitly coordinating
editor services.

4.1 Local variation and global consistency
Editor libraries extend the local behavior of the SugarJ editor. There
are different notions of locality:

• Editor libraries affect only files that import them explicitly. In
these files, only the part after the import is affected.
• Editor libraries that extend distinct editor services compose

naturally. For example an editor library defining syntax coloring
will not conflict with another editor service providing content
completion.
• Editor libraries usually reason about small and local subtrees of

the abstract syntax tree. For example, an editor library typically
defines syntax highlighting for specific syntactic forms, not for
the overall program, and editor libraries that accompany a DSL
embedding reason over tree fragments of that DSL only. Editor
libraries that act on different parts of the abstract syntax tree
naturally compose. For example, the XML editor library shown
in Figure 3 only decorates XML fragments of the syntax tree
and does not affect Java fragments.

The global behavior of the SugarJ editor, however, is fixed and
cannot be extended by editor libraries. For example, the SugarJ
editor supports a fixed set of editor services such as syntax high-
lighting, reference resolving, hover help, etc. as discussed in Sec-
tion 2.2. The SugarJ editor presents a coherent user interface to
access these editor services. For example, key bindings or the vi-
sual appearance of error markers are defined by the SugarJ editor
directly and are therefore consistent across error libraries.

Together, global consistency and local variation go a long way
ensuring that Sugarclipse supports arbitrary languages while still
providing a coherent user interface. Some interactions between
editor libraries cannot be resolved by locality, however, and require
implicit or explicit coordination between editor libraries.

4.2 Implicit coordination
Although most editor libraries work locally, their results can con-
flict or overlap. For most editor services, conflicts can be resolved
implicitly following generic strategies: aggregation and closest
match.

For most editor services, aggregating results of different edi-
tor libraries is sufficient. For example, in our XML embedding,
both Java and XML code completion services would respond to
a prefix ch., which could be followed by a Java method name or an
XML element. Sugarclipse simply shows all completion proposals.
Aggregation works similarly for code folding, outlining and error
marking.

For some other services, primarily syntax highlighting and
hover help, simple heuristics can resolve conflicts implicitly. For

example, when one editor library specifies that all tokens in as-
signments should be blue, whereas another editor library specifies
that all tokens in while loops should be red, Sugarclipse needs to
coordinate between these editor libraries and decide in which color
to display tokens in an assignment nested within a while loop.
As heuristic, we propose a closest-match rule, as used for style
sheets in HTML: Color information, hover help, and other speci-
fications on an AST node overrule corresponding specifications of
the parent node; always the most specific information is used for
presentation. For our example above, the closest-match rule dis-
plays the assignment blue, because the match on assignments is
more specific (closer to the tokens in question) than the match on
the while loop.

Aggregation and the closed-match rule resolve most conflicts
implicitly in a natural way. Explicit coordination is usually neces-
sary only for intended interactions.

4.3 Explicit coordination
Not all editor libraries are supposed to be independent. Editor
libraries might explicitly extend the behavior of other libraries or
interact with them in controlled ways.

An editor library can add additional editor-service specifications
to another library. For example, the XML-Schema library builds on
top of the XML library and extends it with code completion and
error checking. In addition, different editor libraries can interact
explicitly through the staging pattern to share data and coordinate
editor services. The staging pattern, described in Section 3.2, en-
ables communication from one editor library to another through
the generation of auxiliary editor services. In our example, the bib-
liography database shares information about all known entries by
generating an auxiliary editor service (technically: Stratego rules)
that maps entry names to their definitions:

bibtex−entry : ”Hudak98” −>
BibtexEntryStm(”@inproceedings”,

BibtexEntryName(”Hudak98”), ...)

Any other editor library can use this information to integrate with
the bibliography editor library. For example, our Latex editor li-
brary supplies hover help and content completion for citations
(\cite{...}), and checks for undefined references.

4.4 Limitations
Although editor-library composition is usually straightforward in
practice, there are limitations. Most significantly, we cannot pro-
vide modular guarantees about editor services in hostile environ-
ments.

Editor services use a global namespace without hiding. In prin-
ciple, editor libraries could access (auxiliary) services of all other
imported editor libraries and extend them. We discourage uncon-
trolled sharing and use naming conventions (similar to fully quali-
fied names in Java) to avoid accidental name clashes. The staging-
based communication between editor libraries relies on conven-
tions and implementation patterns; there is no explicit scoping con-
cept for staged services yet.

Furthermore, editor services should make little assumptions
about the global structure of the AST. Editor services are used in a
context where the AST of a file typically contains structures from
different languages. For example, navigating from an AST element
to its direct parent should be avoided, instead one should search
for a direct or indirect parent of the expected type. Such strategies
make editor libraries more robust against additional language ex-
tensions. However, Sugarclipse currently does not enforce locality
and cannot detect violations modularly.

Building a module system to provide explicit namespaces and
checked interfaces for Sugarclipse and the underlying SugarJ is an

SugarJ +
extensions

PARSE

DESUGAR

GENERATE

Java

Grammar

Editor
Services

Desugaring

AnalysesANALYZE
Problem
Report

configure parser

configure desugaring

configure analysis

mark problems

configure editor
edit source code

display parsed source

only SugarJ nodes

mixed SugarJ and
extension nodes

Figure 5. Data flow in Sugarclipse. The results of the processing pipeline
()

are used to configure
()

the earlier stages.

interesting avenue for future work. Such a module system should
prevent name clashes and control what kind of information (techni-
cally: which Stratego rules) can be shared between editor libraries.
To a large degree this seems to be a straightforward adoption of
concepts from other module systems, such as the compilation man-
ager in Standard ML [2]. On top, semantic interfaces could enable
modular detection of conflicts between two editor libraries, so we
would report an error when importing both of them.

In our experience, conflicts between editor libraries are rare
and patterns for explicit coordination are easy to implement when
required. Naming conventions and implementation patterns seem
sufficient to avoid conflicts in practice. Hostile environments (de-
liberate attacks against editor libraries) are currently not a practi-
cal concern for editor extensions. Sugarclipse appears useful for
many practical tasks, even without modular guarantees. Neverthe-
less, more experience in a broader set of applications is necessary
to assess the difficulty of editor library composition.

5. Technical realization
In Sugarclipse, we combine the sugar libraries of SugarJ [9] with
the IDE foundation of Spoofax [17] to support editor libraries for
growing an IDE. SugarJ parses a file incrementally, because each
declaration can extend the grammar of the rest of the file, and
like in Spoofax, we use a generic editor component which can be
configured to support different languages. Sugarclipse adds editor
libraries into the mix: sugar libraries can desugar source code into
editor libraries, and editor libraries in scope reconfigure the editor
while a source file is edited. Together, these components enable to
grow the IDE with editor libraries.

5.1 Architecture
Source code documents are often processed in many stages,
compile-time and run-time being traditionally the most well-
known. A library can affect several of these stages. For example,
a Java class library contains, among other things, type definitions
and method bodies. Clients of the library are type-checked against
the type definitions in the library at compile-time, but method calls
to method definitions in the library are executed at run-time. In our
previous work on sugar libraries in SugarJ, we have broadened the

applicability of libraries by considering additional stages: parsing,
desugaring and analysis. Sugar libraries contain grammar or desug-
aring rules to affect these stages of the SugarJ implementation. In
the present work on editor libraries, we consider an integrated de-
velopment environment as an integral part of the language imple-
mentation, that is, we consider an additional editor stage, which
can be affected by editor libraries.

The interaction of these stages in Sugarclipse is shown in Fig-
ure 5. The editor stage is depicted by the Sugarclipse screenshot,
all other stages are depicted as block arrows

()
. The parsing

stage transforms a source code document into an heterogeneous
abstract syntax tree with nodes from different language extensions.
The desugaring stage expands all nodes corresponding to language
extensions into nodes of the base language, and the generation stage
transforms the resulting homogeneous abstract syntax tree into sep-
arate source code artefacts containing grammar extensions, desug-
aring rules, editor services and so on. At the same time, the analysis
stage checks the heterogeneous abstract syntax tree and produces a
problem report listing all found errors and warnings.

The results of compilation can configure earlier stages as de-
picted with dashed arrows

()
in Figure 5. For example, gen-

erated grammars configure the parsing stage for clients of a sugar
library and the generated analyses are applied in the analysis stage.
In addition to these stages, the results of compilation also configure
the editor, as we detail in the following subsections. In particular,
the editor displays the input file’s content with syntax highlight-
ing according to the parsed source code, marks problems found by
the analysis stage and behaves according to the editor services cur-
rently in scope. When the programmer changes code in the editor,
the processing pipeline is run again to produce updated grammars,
desugarings, etc., and any changes in these artifacts are reflected in
the various stages.

5.2 Incremental parsing
Sugarclipse supports languages with extendible syntax by relying
on SugarJ for incremental parsing. Parsing with SugarJ is an incre-
mental process because import declarations and syntax definitions
can change the syntax for the rest of the file. To this end, SugarJ
repeatedly parses a single top-level entity (e.g., import or class dec-

laration) followed by the remainder of the file as a string. For each
such parse, SugarJ extends the grammar according to the parsed
entitiy before continuing to parse the remainder of the file.

In the context of Sugarclipse, two additional concerns arise.
First, the parser must associate every node of the abstract syntax
tree with position information which the editor needs for marking
errors, moving the cursor for reference resolving or outline view
navigation, and so on. Second, the parser must associate some
nodes of the abstract syntax tree with tokens that are used for syntax
highlighting.

To reconcile incremental parsing of SugarJ with creating tokens
and collecting position information, we use the same tokenizer for
each parse. After each parse, we partially retract the tokenizer to
ignore all tokens after the top-level entity and to reset the parser
position accordingly. After parsing, we combine the trees of all
top-level entities and ensure that the tree nodes have pointers to
corresponding tokens and position information.

5.3 Dynamic loading of editor services
Sugarclipse supports editor libraries by relying on Spoofax to pro-
vide a generic Eclipse-based editor which can dynamically load
and reload editor services. Although Spoofax still distinguishes the
building and loading of editor services into separate phases, its dy-
namic loading capability forms the basis for editor services that are
transparently built and loaded with library imports in Sugarclipse.

In the context of Sugarclipse, two additional concerns arise.
First, parse tables and editor services need to be adapted on-the-
fly whenever the corresponding language or editor libraries change.
This is accomplished by running the full processing pipeline when-
ever a file has been changed and needs to be reparsed. The edi-
tor then dynamically reloads the possibly regenerated editor ser-
vices. To ensure optimal responsiveness of the editor, generation
and reloading happens in a background thread. Any services that
were already loaded and parse tables that were already built are
cached. Second, in Sugarclipse, each file determines the required
language components and editor components by means of library
imports. Sugarclipse therefore needs to maintain a separate set of
editor services for each file. In contrast, Spoofax normally uses a
language-level factory class. We subclass that factory with a spe-
cialized implementation that loads editor services in a file-specific
fashion.

To conclude, in the present section we presented Sugarclipse’s
architecture, which augments SugarJ’s processing pipeline with an
additional editor stage that can be configured via editor libraries.
The editor stage connects to the processing pipeline through pre-
senting the parsed syntax tree, marking errors and loading the (pos-
sibly staged) editor services. The following section reports on our
experiments with this realization of Sugarclipse.

6. Case studies
We applied our Sugarclipse implementation to demonstrate the
practicability of editor libraries. We have developed editor libraries
for a small number of simple language extensions such as regular
expressions, where editor services only act locally and no explicit
coordination is necessary. These simple editor services compose
with the basic SugarJ editor services and other simple editor ser-
vices through implicit coordination. For example, our regular ex-
pression editor library would compose easily with an editor library
for SQL to provide editor services for regular expressions nested
within SQL statements, because each library acts on syntax tree of
the respective DSL only.

In addition to these simple editor libraries, we have conducted
two realistic case studies to evaluate the practicability and com-
posability of editor libraries for larger languages: XML and LATEX.
In both case studies, we demonstrate Sugarclipse’s support for the

Figure 6. Editor services for Latex in Sugarclipse: outline, nested
syntax coloring, citation completion, reference checking, code
folding.

staging of editor services, and in the Latex case study we addition-
ally apply explicit coordination to compose editor libraries.

6.1 Growing an XML IDE
XML and XML Schema demonstrate many interesting facets of
editor libraries, including domain-specific editor configuration lan-
guages and editor library staging as described in Section 3. Al-
though the XML Schema editor library extends the editor library
for XML with schema-specific tag completion and validation, both
libraries compose with editor services such as Java or SQL. This
composability is based on locality and implicit coordination in the
form of aggregation and the closest match rule (cf. Section 4).

In summary, we have grown Sugarclipse through the use of syn-
tactic extensions and editor libraries into an XML-aware IDE that
features coloring, folding, outlining, schema-specific tag comple-
tion and XML validation. Several potential editor services have not
been implemented so far, but qualify as future student projects, for
example, reference resolving according to XML Schema references
or hover help to display documentation from the schema within the
XML document.

6.2 Growing a Latex IDE
Language extensions such as XML or regular expressions extend
the Java fragment of SugarJ and provide editor services that com-
pose with Java services. Compared to Java, these language exten-
sions are relatively small and do not cross-cut Java programs too
much. Therefore, we also wanted to gain experience with incre-
mentally growing a language from scratch by composing multiple
sublanguages and their editor services into one unified language.
To this end, we grew Sugarclipse into a Latex IDE by composing
a Latex core with libraries for mathematical formulas, listings of
(parsed and IDE-supported) source code and Bibtex bibliographies
and citations. However, we only provide an IDE frontend for the
Latex language and its libraries: Latex code in Sugarclipse com-
piles to regular Latex files, which use regular Latex libraries. In
Figure 6, we show a screenshot of our Latex IDE.

The basic Latex language consists of macro calls \emph{arg},
environments \begin{abstract}...\end{abstract}, structure declara-
tions \section{A}, \paragraph{B}, and so forth, and of course text.
We support these concepts in our core Latex syntax definition and
editor library, which, for example, highlights section headers in a

bold, blue font, proposes code completions for macro calls, or pro-
vides a structural document outline.

In separate libraries, we define the syntax and editor support for
various extensions of the Latex core:

First, the math library introduces a new language construct
for formulas $n \to n + 1$ and according editor services (e.g.,
highlighting). These services act locally and thus compose with
other Latex extensions.

Second, the listings library supports source code listings in
a document. Typically, such source code listings are unparsed,
unchecked and, often enough, erroneous. Within the code listing,
all language-specific editor services are available, if the corre-
sponding editor libraries are in scope. This way, we compose the
Latex editor services with editor services for Java, services for ed-
itor libraries and services for language extensions such as XML
Schema. For example, while writing this paper, Sugarclipse pro-
vided us syntax coloring and error checking for the schema in Fig-
ure 4, as shown in the screenshot of Figure 6.

Third, we separately implemented a syntactic extension and ed-
itor library for Bibtex, which, for instance, provides reference re-
solving and hover help for string constants within a bibliography.
Bibtex and Latex interact via citations \cite{...} that occur in a La-
tex document and refer to Bibtex entries. However, the according
editor services do not compose automatically in a meaningfully
way; explicit coordination is necessary to provide code completion,
hover help or checking for undefined references. We provide these
editor services for citations by generating and explicitly coordinat-
ing services as described in Section 4.3.

The key feature of our Latex IDE is its extensibility: users can
extend the IDE through syntax definitions and editor libraries to
support, for instance, vector-graphics libraries. Staging and explicit
coordination of editor services provides the conceptual means for
implementing a wide range of powerful IDE extensions.

7. Discussion
In this paper, we have focused on the integration of editor libraries
into a syntactically extensible object language such as SugarJ. In
this section, we point out a number of further application scenar-
ios for editor libraries and discuss whether it is sensible at all to
organize editor services as part of source files.

7.1 Language embedding
There are several approaches to embed domain-specific languages,
even when the host language is not syntactically extensible. Typ-
ical examples are string-based embeddings and embedding a lan-
guage with constructs of the host language, known as pure embed-
ding [14]. The latter works even better if the host language has a
flexible syntax, as in Scala. In Figure 7, we illustrate three typi-
cal embeddings: embedding regular expressions as plain strings in
Java, embedding XML as API calls in C#, and embedding LINQ-
style queries in Scala.

Even for DSL embeddings in a nonextensible language, we
want to add domain-specific IDE support. Even if regular expres-
sions are embedded as strings or XML is embedded as API calls,
we want to provide domain-specific editor services such as syn-
tax coloring and content completion. Using editor libraries, DSL
implementers can accompany their DSL embeddings with editor
services to support programmers.

In the case of string-based embedding, Sugarclipse attempts to
parse the document in more detail than the host language. In the
pure-embedding scenario, we provide editor-service declarations
that reason about more complex syntactic structures, for example
nesting of XAttribute instantiation inside XElement instantiation.
The general library mechanism works equivalently for languages
that are syntactically extensible or not.

s.matches(”a\\.∗[0−9]”)
(a) String-based embedding of regular expressions in Java.

new XElement(”book”,
new XAttribute(”title”, new String(title)),
new XElement(”author”, new XAttribute(”name”, ”Mintz”)))

(b) Pure embedding of XML in C#.

from(books)(b => where(b.isPublished) select(b.title))
(c) Pure embedding of SQL in Scala.

Figure 7. Typical DSL embeddings in Java, C# and Scala.

7.2 Library-based pluggable type systems
The notion of pluggable type systems was first proposed by Bracha
and describes type systems that accept extensions (plugins) to en-
force additional static analyses on demand [4]. Programmers can
configure a pluggable type system by selecting a set of extensions
to activate. Due to Sugarclipse’s support for marking user-defined
errors and warnings visually in the source file and problems view,
Sugarclipse is especially well-suited for the application of library-
based pluggable type systems. In a library-based pluggable type
system, type system extensions are organized in libraries and acti-
vated through usual import statements.

Pluggable type systems enable the definition of specialized lan-
guage subsets for various purposes: pedagogical language subsets
prohibit the use of certain language constructs, convention-based
language subsets enforce the compliance with code style or author
guide lines, language subsets for a particular platform (e.g., Java
targeting Google Web Toolkit) often support part of the standard
library only. However, more sophisticated language restrictions are
possible as well. For instance, we implemented XML validation as
a library-based type system plugin.

7.3 Are editor libraries a good idea?
Sugarclipse raises the question whether it is a good idea to have
editor definitions as part of the sources of a program. One could
argue that such metadata should be kept separate, because they are
not part of the program semantics and they potentially couple the
sources to a specific IDE. Our answer to this objection is twofold:
First, SugarJ and Sugarclipse are attempts to tear down stratifica-
tions into base and metalevel. This enables self-applicability and
the use of the same mechanisms for abstraction, versioning, de-
ployment, evolution and so forth at all metalevels. Second, we tried
to reduce the conceptual coupling to a specific IDE by making the
editor definitions as abstract as possible, such that Sugarclipse-like
functionality can be adopted for many IDEs. While more expe-
rience is necessary for the final word on editor libraries, we be-
lieve that the positive evidence we collected makes further research
worthwhile.

8. Related work
Our work follows in a line of previous work on extensible and
customizable code editors, IDEs, and language workbenches. We
provide an overview and compare these works to Sugarclipse.

Extensibility of code editors and IDEs. Notable early examples
of extensible code editors are Emacs and Vim. They support exten-
sibility by means of plugins, written in dynamic languages such as
Lisp and Vim Script. Using APIs and hooks to coordinate actions
in the editor, these plugins can introduce syntax highlighting and
shortcuts or commands specific to a language. Plugins that intro-

duce more advanced features, such as inline error markers are rare
for these editors.

Modern IDEs distinguish themselves from the traditional code
editors and programming environments by combining a rich set of
programmer utilities such as version management with a variety
of sophisticated language-specific editor services [12]. These IDEs
parse the source code as it is typed, rather than treating it as text
with regular-expression-based syntax highlighting. The parsed ab-
stract syntax tree is used for semantic editor services such as inline
error marking and content completion. Examples of these IDEs are
Eclipse, IntelliJ IDEA, and Visual Studio. Each provides extensibil-
ity by means of plugins, written in general-purpose languages such
as Java or C#, for which APIs and hooks are provided to customize
the IDE experience.

Extensible code editors and IDEs use a plugin model for the
organization and distribution of editor components. In contrast to
our library-based approach, plugins are not part of the object lan-
guage but are externally implemented and integrate into an editor’s
architecture directly. This has a number of significant implications.
First, editor libraries can be activated through object language im-
ports on a per-file basis, whereas plugins require external activation
instead, for example, on a per-editor mode or per-language basis.
Second, independent editor libraries typically compose based on
locality and implicit coordination, whereas plugins have to be de-
signed for composition a priori. Third, editor libraries are declar-
ative and describe how to perform editor services, rather than im-
peratively changing the editor execution. Finally, while IDEs such
as Eclipse or Visual Studio require the environment to be restarted
whenever the implementation of editor service changes, editor li-
braries ensure a transparent compilation model.

Customizability of code editors and IDEs. IDEs usually provide
some adaptability through configurations such as custom coloring
schemes or user-defined code templates. However, these facilities
are often coarse-grained and hard to deploy or share. For instance,
Eclipse’s standard Java plugin JDT defines a fixed set of colorable
entities (decimal and hexadecimal numbers must look the same),
requires completion templates to apply either to Java statements
or type members only, or to complete Java (no completion tem-
plates for expressions only) and does not support an import and
export mechanism for all editor configurations. In contrast, editor
libraries are deployable just like usual Java libraries and enable pre-
cise configuration of editor services based on the language’s full
syntactic structure. Furthermore, since editor libraries are part of
the object language, it is possible to package them with conven-
tional programming libraries. This enables library-specific editor
services such as code completion templates for typical use cases of
an API or warnings for depreciated uses.

Language workbenches. Language workbenches are tools that
integrate traditional language engineering tools such as parser gen-
erators and transformation systems and tools to develop IDE sup-
port [11]. By combining these tools and by providing IDE support
for these metaprogramming tasks, language workbenches enable
developers to efficiently create new languages with IDE support.

Language workbenches based on free text editing and parsing
include EMFText [13], MontiCore [19], Rascal [27], Spoofax [17],
TCS [15] and Xtext [7]. These workbenches provide modern ed-
itor service facilities such as content completion, following in a
line of work on extensible IDEs with metaprogramming facilities,
such as the Meta-Environment [18, 26]. Similar to our work, these
workbenches provide support for developing and using editor ser-
vices. However, they strictly separate metaprogramming and pro-
gramming. Languages and editor services are deployed together in
such a way that they apply to a certain file extension. Any changes
to the language or editor service can only be applied at language-

definition level. In contrast, in our work editor services can be
freely imported and composed as editor libraries across any number
of metalevels, which enables the self-application of editor services.

In addition to language workbenches designed to implement ar-
bitrary textual languages, there are also tools that are based on a
fixed host language. Examples include Helvetia [22], a Smalltalk-
based environment, and DrRacket [10], aimed at the Racket pro-
gramming language (formerly known as Scheme). Helvetia sup-
ports syntactic extensibility and custom syntax highlighting for ex-
tensions through a dynamic meta-object protocol, but has no sup-
port for more sophisticated editor services such as reference re-
solving, content completion, or static checks. DrRacket does not
provide the same syntactic flexibility as Helvetia or Sugarclipse,
but does provide autogenerated reference resolving editor services.
In Helvetia, language definitions can be loaded for a Smalltalk im-
age and activated in parts of the application. In DrRacket a lan-
guage definition can only be selected at file level using the #lang
directive. Both tools are highly tied to their respective host lan-
guages, using dedicated metaprogramming systems. For instance,
reference resolving in DrRacket demands that new constructs for
binding identifiers are defined in terms of predefined binding con-
structs of the Racket language. In contrast, our editor libraries ap-
proach is language-agnostic as our Java-independent case study for
Latex shows.

MPS is a language workbench based on projectional editing
rather than free text editing [30, 31], notable for its support for
compositionality of languages. It allows language extensions to be
activated in a specific parts of an application, but does not organize
them as true libraries. MPS strictly separates metaprogramming
and programming by providing fixed templates for syntactic and
semantic customization of language components.

In summary, while current language workbenches integrate
metaprogramming and programming into a single IDE environ-
ment, they still strictly separate language definitions and language
uses into two different worlds. They do not support composition
of extensions as libraries, although MPS allows project-level con-
figuration of the set of languages that is supported. Unlike our
editor libraries they cannot import and compose editor services.
They also provide limited support for self-applicability and ab-
straction over editor service definitions. Our work, which is based
on the Spoofax [17] language workbench, shares properties such as
providing IDE support for language development, but does away
with the restrictions of the two-world approach of current language
workbenches.

9. Conclusion and future work
Our main idea in Sugarclipse is the application of libraries for orga-
nizing IDE extensions as reusable units. As our case studies show,
editor libraries are particularly beneficial in combination with syn-
tactically extensible programming languages such as SugarJ and
represent an important step towards our ultimate goal of language
libraries. Language libraries enable the implementation of all as-
pects of a language as a library. Currently, we support the library-
based adaptation of parsing, desugaring, analyzing and editor pre-
sentation, but lack library-based extensibility for implementing the
semantics of a language extension. In our future work, we would
like to support the configuration of builder services that declare the
semantics of embedded languages and integrate into Sugarclipse
naturally. Builder services should replace traditional build scripts
completely and specify the order as well as the tool used to build a
set of source files.

In addition, we would like to further investigate the modular-
ity and composability of editor libraries. In particular, we would
like to explore scoping mechanisms for editor libraries that retain
composability while providing clearer interfaces for explicitly co-

ordinating services with staged editor libraries. We also plan to con-
duct a large-scale case study to evaluate the composability of editor
libraries more accurately, namely Java Server Pages. Java Server
Pages brings together a number of languages such as HTML, Java,
JavaScript and CSS. We plan to provide editor libraries for each
of these language separately and to compose the resulting editor li-
braries to form an editor library for Server Pages. While conducting
this case study, we would furthermore like to explore new declara-
tive means for explicitly coordinating editor libraries.

Acknowledgments
This work is supported in part by the European Research Coun-
cil, grant No. 203099, and NWO/EW Open Competition project
612.063.512, TFA: Transformations for Abstractions.

References
[1] J. Bachrach and K. Playford. The Java syntactic extender (JSE). In

Proceedings of Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 31–42. ACM,
2001.

[2] M. Blume and A. W. Appel. Hierarchical modularity. Transactions on
Programming Languages and Systems (TOPLAS), 21:813–847, 1999.

[3] C. Brabrand and M. I. Schwartzbach. Growing languages with meta-
morphic syntax macros. In Proceedings of Workshop on Partial Evalu-
ation and Program Manipulation (PEPM), pages 31–40. ACM, 2002.

[4] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival
of Dynamic Languages, 2004.

[5] M. Chapman. Extending JDT to support Java-like languages. Invited
Talk at EclipseCon’06, 2006.

[6] S. Dmitriev. Language oriented programming: The next programming
paradigm. Available at http://www.jetbrains.com/mps/docs/
Language_Oriented_Programming.pdf., 2004.

[7] S. Efftinge and M. Voelter. oAW xText: A framework for textual
DSLs. In Workshop on Modeling Symposium at Eclipse Summit, 2006.

[8] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In Pro-
ceedings of Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 1–18. ACM, 2007.

[9] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). ACM, 2011.

[10] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environment
for scheme. Journal of Functional Programming, 12(2):159–182,
2002.

[11] M. Fowler. Language workbenches: The killer-app for domain specific
languages? Available at http://martinfowler.com/articles/
languageWorkbench.html, 2005.

[12] M. Fowler. PostIntelliJ. Available at http://martinfowler.com/
bliki/PostIntelliJ.html, 2005.

[13] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende.
Derivation and refinement of textual syntax for models. In Proceed-
ings of European Conference on Model Driven Architecture – Foun-
dations and Applications (ECMDA-FA), volume 5562 of LNCS, pages
114–129. Springer, 2009.

[14] P. Hudak. Modular domain specific languages and tools. In Pro-
ceedings of International Conference on Software Reuse (ICSR), pages
134–142. IEEE, 1998.

[15] F. Jouault, J. Bézivin, and I. Kurtev. TCS: A DSL for the specification
of textual concrete syntaxes in model engineering. In Proceedings of
Conference on Generative Programming and Component Engineering
(GPCE), pages 249–254. ACM, 2006.

[16] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz,
and S. Apel. FeatureIDE: Tool framework for feature-oriented soft-
ware development. In Proceedings of International Conference on
Software Engineering (ICSE), pages 611–614. IEEE, 2009.

[17] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In Proceedings of
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 444–463. ACM, 2010.

[18] P. Klint. A meta-environment for generating programming environ-
ments. Transactions on Software Engineering Methodology (TOSEM),
2(2):176–201, 1993.

[19] H. Krahn, B. Rumpe, and S. Völkel. Monticore: Modular development
of textual domain specific languages. In Proceedings of Technology
of Object-oriented Languages and Systems (TOOLS), pages 297–315.
Springer, 2008.

[20] S. McDirmid and M. Odersky. The Scala plugin for Eclipse. In
Proceedings of Workshop on Eclipse Technology eXchange (ETX),
2006. published online http://atlanmod.emn.fr/www/papers/
eTX2006/.

[21] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An exten-
sible compiler framework for Java. In Proceedings of Conference on
Compiler Construction (CC), pages 138–152. Springer, 2003.

[22] L. Renggli, T. Gı̂rba, and O. Nierstrasz. Embedding languages without
breaking tools. In Proceedings of European Conference on Object-
Oriented Programming (ECOOP), LNCS, pages 380–404. Springer,
2010.

[23] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A
class-based macro system for Java. In Proceedings of Workshop on
Reflection and Software Engineering, volume 1826 of LNCS, pages
117–133. Springer, 2000.

[24] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Proceedings of Conference on
Programming Language Design and Implementation (PLDI). ACM,
2011.

[25] L. Tratt. Domain specific language implementation via compile-time
meta-programming. Transactions on Programming Languages and
Systems (TOPLAS), 30(6):1–40, 2008.

[26] M. Van den Brand, A. Van Deursen, J. Heering, H. De Jong, et al.
The Asf+Sdf Meta-Environment: A component-based language de-
velopment environment. In Proceedings of Conference on Compiler
Construction (CC), volume 2027 of LNCS, pages 365–370. Springer,
2001.

[27] T. van der Storm. The Rascal language workbench. Submitted to
Language Workbench Competition 2011, available at http://www.
languageworkbenches.net/lwc11rascal.pdf., 2011.

[28] E. Van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute
grammar-based language extensions for Java. In Proceedings of Euro-
pean Conference on Object-Oriented Programming (ECOOP), LNCS,
pages 575–599. Springer, 2007.

[29] E. Visser. Stratego: A language for program transformation based
on rewriting strategies. In Proceedings of Conference on Rewriting
Techniques and Applications (RTA), LNCS, pages 357–362. Springer,
2001.

[30] M. Voelter. Embedded software development with projectional lan-
guage workbenches. In Proceedings of Conference on Model Driven
Engineering Languages and Systems (MoDELS), volume 6395 of
LNCS, pages 32–46. Springer, 2010.

[31] M. Voelter and K. Solomatov. Language modularization and compo-
sition with projectional language workbenches illustrated with MPS.
http://voelter.de/data/pub/VoelterSolomatov_SLE2010_
LanguageModularizationAndCompositionLWBs.pdf, 2010.

[32] M. P. Ward. Language-oriented programming. Software – Concepts
and Tools, 15:147–161, 1995.

http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/bliki/PostIntelliJ.html
http://martinfowler.com/bliki/PostIntelliJ.html
http://atlanmod.emn.fr/www/papers/eTX2006/
http://atlanmod.emn.fr/www/papers/eTX2006/
http://www.languageworkbenches.net/lwc11rascal.pdf
http://www.languageworkbenches.net/lwc11rascal.pdf
http://voelter.de/data/pub/VoelterSolomatov_SLE2010_LanguageModularizationAndCompositionLWBs.pdf
http://voelter.de/data/pub/VoelterSolomatov_SLE2010_LanguageModularizationAndCompositionLWBs.pdf

	Introduction
	An overview of Sugarclipse
	Using Sugarclipse
	Editor services

	Editor libraries
	Domain-specific editor configuration languages
	Staged editor libraries
	Self-applicability

	Editor composition
	Local variation and global consistency
	Implicit coordination
	Explicit coordination
	Limitations

	Technical realization
	Architecture
	Incremental parsing
	Dynamic loading of editor services

	Case studies
	Growing an XML IDE
	Growing a Latex IDE

	Discussion
	Language embedding
	Library-based pluggable type systems
	Are editor libraries a good idea?

	Related work
	Conclusion and future work

