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Abstract
Programmers need convenient syntax to write elegant and concise
programs. Consequently, the Haskell standard provides syntactic
sugar for some scenarios (e.g., do notation for monadic code), au-
thors of Haskell compilers provide syntactic sugar for more sce-
narios (e.g., arrow notation in GHC), and some Haskell program-
mers implement preprocessors for their individual needs (e.g., id-
iom brackets in SHE). But manually written preprocessors cannot
scale: They are expensive, error-prone, and not composable. Most
researchers and programmers therefore refrain from using the syn-
tactic notations they need in actual Haskell programs, but only use
them in documentation or papers. We present a syntactically ex-
tensible version of Haskell, SugarHaskell, that empowers ordinary
programmers to implement and use custom syntactic sugar.

Building on our previous work on syntactic extensibility for
Java, SugarHaskell integrates syntactic extensions as sugar libraries
into Haskell’s module system. Syntax extensions in SugarHaskell
can declare arbitrary context-free and layout-sensitive syntax. Sug-
arHaskell modules are compiled into Haskell modules and further
processed by a Haskell compiler. We provide an Eclipse-based IDE
for SugarHaskell that is extensible, too, and automatically provides
syntax coloring for all syntax extensions imported into a module.

We have validated SugarHaskell with several case studies, in-
cluding arrow notation (as implemented in GHC) and EBNF as a
concise syntax for the declaration of algebraic data types with asso-
ciated concrete syntax. EBNF declarations also show how to extend
the extension mechanism itself: They introduce syntactic sugar for
using the declared concrete syntax in other SugarHaskell modules.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Extensible languages; D.2.11 [Software Architectures]:
Domain-specific architectures; D.2.13 [Reusable Software]

General Terms Languages, Design

Keywords SugarHaskell, Haskell, language extension, syntactic
sugar, layout-sensitive parsing, DSL embedding, language compo-
sition, arrows, SugarJ

1. Introduction
Many papers on Haskell programming propose some form of syn-
tactic sugar for Haskell. For instance, consider the following code
excerpt from a paper about applicative functors [McBride and Pa-
terson 2008]:
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instance Traversable Tree where
traverse f Leaf = [| Leaf |]
traverse f (Node l x r) =

[| Node (traverse f l) (f x) (traverse f r) |]

The “idiom brackets” used in this listing are not supported by
the actual Haskell compiler; rather, the paper explains that they are
a shorthand notation for writing this:

instance Traversable Tree where
traverse f Leaf = pure Leaf
traverse f (Node l x r) =

pure Node <∗> (traverse f l) <∗> (f x) <∗> (traverse f r)

Such syntactic sugar is quite common. Sometimes it is eventu-
ally supported by the compiler (such as do notation for monads);
sometimes preprocessors are written to desugar the code to stan-
dard Haskell (such as the Strathclyde Haskell Enhancement prepro-
cessor1 which supports, among other notations, the idiom brackets
mentioned above), and sometimes such notations are only used in
papers but not in actual program texts. Extending a compiler or
writing a preprocessor is hard, elaborate, and not modular, since
independently developed compiler extensions or preprocessors are
hard to compose.

Another practical problem of syntactic language extension is
that the integrated development environment (IDE) should know
how to deal with the new syntax, e.g., for syntax coloring, auto
completion, or reference resolving. IDEs can be extended, of
course, but this again is not a modular solution.

We propose a generic extension to Haskell, SugarHaskell, with
which arbitrary syntax extensions can be defined, used, and com-
posed as needed. In SugarHaskell, a syntactic extension is activated
by importing a library which exports the syntax extension and de-
fines a desugaring of the extension to SugarHaskell. Using Sug-
arHaskell, the code for the example above looks like this:2

import Control.Applicative
import Control.Applicative.IdiomBrackets

instance Traversable Tree where
traverse f Leaf = (| Leaf |)
traverse f (Node l x r) =

(| Node (traverse f l) (f x) (traverse f r) |)

The syntactic extension and its desugaring is defined in the
library IdiomBrackets. By importing this library, the notation and
its desugaring are activated within the remainder of the file. When
the SugarHaskell compiler is invoked, it will desugar the brackets
to the code using pure and <∗> from above. Files which do not
import IdiomBrackets are not affected by the syntactic extension.
If more than one syntax extension is required in the same file, the
extensions are composed by importing all of them. Conflicts can

1 http://personal.cis.strath.ac.uk/conor.mcbride/pub/she
2 To avoid syntactic overlap with Template Haskell, we follow Strathclyde
Haskell Enhancement and implement rounded idiom brackets.
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arise if the extensions overlap syntactically, but this is rare for real-
world examples and can usually be disambiguated easily [Erdweg
et al. 2011b].

SugarHaskell also comes with an Eclipse-based development
environment specifically tailored to support syntactic extensions.
By importing the IdiomBrackets library, syntax coloring for the ex-
tended syntax is automatically provided. More advanced IDE ser-
vices can be defined in and imported from editor libraries [Erdweg
et al. 2011a].

It makes a significant difference that the target of the desugar-
ing is SugarHaskell and not Haskell, because this means that the
syntax extension mechanism is itself syntactically extensible. We
will illustrate this issue with a case study that allows the defini-
tion of EBNF grammars in Haskell. Besides desugaring an EBNF
grammar into an algebraic data type (the abstract syntax) and a Par-
sec parser (the concrete syntax), we generate yet another syntactic
extension that enables using the concrete syntax in Haskell expres-
sions and patterns directly.

The idea of library-based syntactic extensibility is not new.
SugarHaskell builds on our earlier work on SugarJ, a syntactically
extensible version of Java [Erdweg et al. 2011b,a]. The research
contributions of this paper are as follows:

• SugarJ is tightly coupled to the Java programming language.
To create SugarHaskell, we have decoupled syntax extension
mechanism from the underlying programming language by cre-
ating an interface. We describe the design of this interface and
how we used it to implement SugarHaskell.3

• Haskell presents a new technical challenge not present in Java:
Layout-sensitive parsing [Marlow (editor) 2010, Sec. 2.7]. Sug-
arHaskell allows the definition of layout-sensitive syntactic ex-
tensions and is, to the best of our knowledge, the first declar-
atively extensible parser for Haskell with layout-sensitive syn-
tax. To realize layout-sensitive parsing, we have significantly
extended a core technology on which SugarHaskell builds,
namely the SDF formalism for syntax descriptions [Heering
et al. 1989].

In addition to these research contributions, we believe that this
work can also contribute very practically to the Haskell community.
Haskell programmers often strive to express programs elegantly
and concisely, using built-in features such as user-defined infix no-
tation and layout-sensitive do notation. But since these built-in fea-
tures are not always enough to express the desired syntax, Haskell
compiler writers add language extensions to their compilers to sup-
port additional syntactic sugar. The Haskell community can benefit
from SugarHaskell in two ways:

• SugarHaskell empowers ordinary library authors to provide ap-
propriate notation for the use of their libraries without having
to change a Haskell compiler.
• SugarHaskell assists language designers by providing a frame-

work for prototyping and thorough experiments with language
extensions that propose to change Haskell’s syntax.

We show through a number of examples that it is simple and
practical to implement a wide range of frequently desired syntactic
extension in SugarHaskell.

Finally, to avoid confusion, within this paper we refrain from
prettyfying code: All syntactic sugar is implemented with Sug-
arHaskell and code is reproduced literally in the paper.

3 SugarHaskell is open-source and available at http://sugarj.org.

exp ::= ...
| proc pat -> cmd

cmd ::= exp -< exp
| exp -<< exp
| (| exp cmd ... cmd |)
| cmd exp
| cmd qop cmd
| (cmd)
| \ pat ... pat -> cmd
| let decls in cmd
| if exp then cmd else cmd
| case exp of { calt; ...; calt }
| do { cstmt; ...; cstmt }

Figure 1. Syntactic additions for arrow notation.

2. SugarHaskell by example
To illustrate SugarHaskell, let us integrate syntactic sugar for pro-
gramming with arrows [Hughes 2000]. Arrows are a versatile gen-
eralization of monads and, like monads, arrows are somewhat cum-
bersome to use without syntactic support. For this reason, Paterson
[2001] proposed arrow notation to make programming with arrows
more convenient. In this section, we implement arrow notation with
SugarHaskell.

We are not the first to support arrow notation for Haskell. Pa-
terson developed a preprocessor4 that translates Haskell code with
arrow notation into Haskell 98 code. Furthermore, GHC supports
arrow notation through a compiler extension, which can be acti-
vated by the -XArrows flag [GHC Team 2012, Section 7.13]. In
contrast, SugarHaskell empowers regular programmers to integrate
custom syntactic extensions that compose.

2.1 Arrow notation
Figure 1 summarizes the syntactic extension for arrow notation as
specified by GHC [GHC Team 2012, Section 7.13]. First of all,
arrow notation introduces new expression syntax proc pat -> cmd
where proc is a new keyword for building arrows whose input
matches pat and whose output is determined by the command cmd.
Commands are like expressions but provide different syntax for
applications. The first and second command productions specify
arrow application where the right-hand-side expression is input to
the arrow described by the left-hand-side expression. Here, GHC
(and we) distinguish forwarding arrow application (exp -< exp)
from the arrow application (exp -<< exp) that uses app from the
ArrowApply type class. The third and fourth productions declare
application of an expression to commands and vice versa. The
brackets (|...|) have been introduced into GHC to syntactically
distinguish these two forms of application.

An example SugarHaskell program that uses arrow notation is
shown in Figure 2. It activates arrow notation by importing the
arrow sugar library Control.Arrow.Syntax alongside the standard
arrow library. Arrow notation is only active where the import is
in scope, that is, in the current module. Therefore, it is possible to
use competing syntactic extensions in different modules, but also
to compose different syntax extensions in a single module. For
example, idiom brackets (Section 1) do not conflict with arrow
notation since brackets in arrow notation can only occur inside a
command. Hence, these two sugar libraries can be used within the
same module. Let us now look at the implementation of the arrow
sugar library.

A sugar library consists of two artifacts: A grammar that spec-
ifies an extended syntax and a transformation that translates the

4 http://hackage.haskell.org/package/arrowp
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import Control.Arrow
import Control.Arrow.Syntax

eval :: (ArrowChoice a, ArrowApply a) =>
Exp -> a [(Id, Val a)] (Val a)

eval (Var s) = proc env ->
returnA -< fromJust (lookup s env)

eval (Add e1 e2) = proc env -> do
∼(Num u) <- eval e1 -< env
∼(Num v) <- eval e2 -< env
returnA -< Num (u + v)

eval (If e1 e2 e3) = proc env -> do
∼(Bl b) <- eval e1 -< env
if b
then eval e2 -< env
else eval e3 -< env

eval (Lam x e) = proc env ->
returnA -< Fun (proc v -> eval e -< (x,v):env)

eval (App e1 e2) = proc env -> do
∼(Fun f) <- eval e1 -< env
v <- eval e2 -< env
f -<< v

Figure 2. Hughes’s lambda-calculus interpreter [Hughes 2000]
using arrow notation in SugarHaskell.

extended syntax into Haskell code (or Haskell code extended by
other sugar libraries). To specify the syntax, we employ the gener-
alized LR parsing formalism SDF [Heering et al. 1989], which we
extended to support layout-sensitive languages. SDF has two major
advantages over other parsing technologies. First, since it is a gen-
eralized LR parser, it supports declarative grammar specifications
where we do not need to concern ourselves with left-recursion or
encoding priorities. Second, SDF organizes grammars in compos-
able modules and features a number of disambiguation mechanisms
that make it possible to add syntax without changing previous syn-
tax definitions [Erdweg et al. 2012a]. This enables us to modularly
add syntactic extensions to Haskell without changing our Haskell
grammar.

We have decomposed the syntax definition for arrow notation
into three sugar libraries: one for command alternatives, one for
command statements, and one for commands themselves. The lat-
ter one is shown in Figure 3. A SugarHaskell sugar library inte-
grates into Haskell’s module system. Accordingly, each sugar li-
brary starts with a module declaration and a list of import state-
ments. These imports typically refer to other sugar libraries whose
syntax is extended. The body of a sugar library is composed of
SDF syntax declarations and desugaring transformations (more on
desugarings later). Essentially, the syntax declaration in Figure 3
reflects the EBNF grammar from Figure 1. In SDF, the defined non-
terminal appears on the right-hand side of the arrow ->. Hence, the
first production declares a new syntactic form for Haskell expres-
sions. After a production, a list of annotations can follow in curly
braces. The cons annotation specifies the name of the AST node
corresponding to a production. The annotations left and right de-
clare a production to be left-associative or right-associative, respec-
tively. Finally, longest-match denotes that in case multiple parses
are possible (SDF uses a generalized parser), the longest one should
be chosen. These productions are supplemented with priority dec-
larations (left out for brevity), which, for example, specify that the
ArrAppBin production has precedence over the ArrOpApp produc-
tion.

By importing the Control.Arrow.Syntax.Command module, a
program using the extended syntax can already be parsed by Sug-
arHaskell. However, compilation will fail because the parsed AST
contains arrow-specific nodes like ArrProcedure that will not be un-

module Control.Arrow.Syntax.Command where

import Control.Arrow.Syntax.Alternatives
import Control.Arrow.Syntax.Statement

context-free syntax
”proc” HaskellAPat ”->” ArrCommand

-> HaskellExp {cons(”ArrProcedure”)}

HaskellExp ”-<” HaskellExp
-> ArrCommand {cons(”ArrFirst”)}

HaskellExp ”-<<” HaskellExp
-> ArrCommand {cons(”ArrHigher”)}

”(|” HaskellExp ArrCommand+ ”|)”
-> ArrCommand {cons(”ArrForm”)}

ArrCommand HaskellExp
-> ArrCommand {cons(”ArrAppBin”), left}

ArrCommand HaskellQop ArrCommand
-> ArrCommand {cons(”ArrOpApp”), right}

”\\” HaskellFargs ”->” ArrCommand
-> ArrCommand {cons(”ArrAbs”)}

”do” ArrStmtList
-> ArrCommand {cons(”ArrDo”), longest-match}

...

Figure 3. SugarHaskell syntax extension for arrow notation.

derstood by the compiler. Therefore, we require a desugaring trans-
formation that relates the arrow-specific nodes to Haskell nodes (or
nodes from another syntactic extension). To implement tree trans-
formations, SugarHaskell employs the Stratego term-rewriting sys-
tem [Visser 2001]. Stratego rules are based on pattern matching but,
in contrast to many other systems, Stratego rules are open for exten-
sion: A rule can be amended in a separate module to handle more
syntactic forms [Hemel et al. 2010]. This way, all SugarHaskell
extensions contribute to a single desugaring transformation that
desugars an AST bottom-up.

Figure 4 displays an excerpt of the desugaring transformation
for arrow notation. First, let us inspect the import statements. The
first import just brings the concrete and abstract command syn-
tax into scope, which is the input language of the transformation
we are about to define. However, the second import is special; it
activates a SugarHaskell extension that does not affect the object
language Haskell but the metalanguage Stratego. The sugar library
Meta.Concrete.Haskell activates concrete syntax for transforma-
tions [Visser 2002], that is, it enables metaprogrammers to describe
AST transformations by concrete syntax within |[...]| instead of ab-
stract syntax. Since SugarHaskell extensions are self-applicable,
syntactic extensions to the metalanguage can be expressed as a
sugar library as well. Moreover, in our example, the metaextension
is further extended by Control.Arrow.Syntax.Concrete, which en-
ables concrete syntax for arrow commands after the cmd keyword.

Using concrete Haskell syntax in Stratego transformations, the
desugaring transformation follows the GHC translation rules for ar-
row notation [Paterson and Peyton Jones 2004] except for some op-
timizations. The entry point of our desugaring is the desugar-arrow
rule as declared by the desugarings block. Each Stratego rule de-
clares a pattern on the left-hand side of the arrow -> and produces
the term on the right-hand side of the arrow. In concrete syntax,
we use $ to escape to the metalanguage in correspondence with
TemplateHaskell [Sheard and Peyton Jones 2002]. Accordingly, in
the first transformation rule desugar-arrow in Figure 4, the pattern
matches on an arrow procedure and binds the Stratego variables pat



module Control.Arrow.Syntax.Desugar where

import Control.Arrow.Syntax.Command
import Meta.Concrete.Haskell
import Control.Arrow.Syntax.Concrete

desugarings
desugar-arrow

rules
desugar-arrow :
|[ proc $pat -> $cmd ]| ->
|[ arr (\$pat -> $(<tuple> vars))

>>> $(<desugar-arrow’(|vars)> cmd) ]|
where <free-pat-vars> pat => vars

desugar-arrow’(|vars) :
cmd |[ $f -< $e ]| ->
|[ arr (\$(<tuple-pat> vars) -> $e) >>> $f ]|

desugar-arrow’(|vars) :
cmd |[ $f -<< $e ]| ->
|[ arr (\$(<tuple-pat> vars) -> ($f, $e)) >>> app ]|

desugar-arrow’(|vars) :
cmd |[ do $c

$∗cs ]| ->
|[ arr (\$(<tuple-pat> vars) ->

($(<tuple> vars), $(<tuple> vars)))
>>> first $(<desugar-arrow’(|vars)> c)
>>> arr snd
>>> $(<desugar-arrow’(|vars)> cmd |[do $∗cs]|) ]|

...

Figure 4. Desugaring transformation for arrow notation.

and cmd. If the matching succeeds, the rule produces a term that
constructs an arrow with arr from a lambda expression and com-
poses (>>>) this arrow with result of desugaring cmd. Note that in
Stratego angled brackets <r> t denote an application of the rewrite
rule r to the term t.

The module Control.Arrow.Syntax finally imports and reexports
the two modules that define the syntax and desugaring for arrow
notation. Since sugar libraries are integrated into Haskell’s module
system, an import statement suffices to activate the syntactic ex-
tension as illustrated in Figure 2. Moreover, SugarHaskell modules
that contain (possibly sugared) Haskell code compile into a pure
Haskell module. Therefore, SugarHaskell programs are interopera-
ble with regular Haskell programs: The application of SugarHaskell
in a library is transparent to clients of that library.

2.2 Layout-sensitive syntactic extensions
In order for a syntactic extension to integrate into Haskell nicely,
the syntactic extension needs to adhere to the layout-sensitivity of
Haskell code. For example, arrow notation includes arrow-specific
do blocks that consists of a sequence of command statements, as
visible in the interpreter in Figure 2 and the last production in Fig-
ure 3. All existing layout-sensitive languages we know of employ
hand-tuned lexers or parsers. However, since we want regular pro-
grammers to write SugarHaskell extension, we need a declarative
formalism to specify layout-sensitive syntax.

To this end, we have developed a variant of SDF that supports
layout-sensitive languages. In our variant, SugarHaskell program-
mers can annotate productions with layout constraints that restrict
the context in which this production may be used. Figure 5 shows
the use of layout constraints in the definition of arrow-specific state-

module Control.Arrow.Syntax.Statement where

context-free syntax
”let” HaskellDeclbinds -> ArrStmt {cons(”ArrLetStmt”)}
HaskellPat ”<-” ArrCommand -> ArrStmt {cons(”ArrBind”)}
ArrCommand -> ArrStmt {cons(”ArrCmdStmt”)}

context-free syntax
ArrImplStmtList -> ArrStmtList {cons(”ArrStmtList”)}
”{” ArrExplStmtList ”}”

-> ArrStmtList {cons(”ArrStmtList”), ignore-layout}

ArrStmt -> ArrExplStmtList
ArrStmt ”;” ArrExplStmtList

-> ArrExplStmtList {cons(”ArrStmtSeq”)}

ArrStmt -> ArrImplStmt {layout(”1.first.col < 1.left.col”)}
ArrImplStmt -> ArrImplStmtList
ArrImplStmt ArrImplStmtList -> ArrImplStmtList
{cons(”ArrStmtSeq”), layout(”1.first.col == 2.first.col”)}

Figure 5. SugarHaskell’s layout constraints restrict the context in
which a production may be used.

ment lists. In the figure, we have emphasized the layout-specific
additions we made to SDF. A statement list can employ implicit or
explicit layout. In the latter case, the statement list is encapsulated
in curly braces and statements are separated by semicolons. Hence,
an explicit statement list does not pose any layout constraints. What
is more, an explicit statement list may even violate constraints im-
posed by the surrounding context. For example, the following is a
syntactically valid Haskell program where the do block consists of
three statements:

foo = do
x <- foo
let
{ y = bar x
; z = baz z }
bac z

In SugarHaskell, such layout behavior is declared by the ignore-layout
annotation.

Statement lists with implicit layout are harder to realize. Essen-
tially, they need to adhere to two invariants. First, each statement
may only extend to the right, that is, every token is further indented
than the token that starts the statement. This invariant is expressed
by the first constraint in Figure 5: 1.first.col selects the column of
the starting token of the first subtree of the current production; in
contrast, 1.left.col selects the column of the leftmost non-starting
token of the first subtree of the current production. The second in-
variant declares that each statement in a statement list must start on
the same column. This invariant is expressed by the second con-
straint on the last line of Figure 5.

More technical details on our layout-sensitive parser follow in
Section 3.3. For now, let us point out that our layout-sensitive
parser is not limited to the object language. We employ the same
parser for parsing metaprograms, which thus can make use of
layout-sensitive syntax. In particular, when using concrete Haskell
syntax to declare transformations, the Haskell syntax is layout-
sensitive. For example, the last rule of Figure 4 matches on an
arrow-specific do block. The Haskell snippet used to match on
such expressions is parsed layout-sensitively, that is, indenting or
dedenting the remaining statement list $∗cs will lead to a parse
error. While this may seem overkill for such a small code snippet,
it becomes essential when generating code that nests let, do, case,
and where blocks.



3. Technical realization
We realized SugarHaskell on top of our previous work on SugarJ [Erd-
weg et al. 2011b,a]. Like SugarHaskell, SugarJ is a syntactically
extensible programming language that integrates syntactic exten-
sions into the module system of the host language, that is, Java.
To realize SugarHaskell, we significantly reengineered the SugarJ
compiler to factor out host-language-specific components and to
hide them behind an abstract data type. This way it becomes rela-
tively easy to make additional languages syntactically extensible.

3.1 Background on SugarJ
The SugarJ compiler processes a source file by first parsing it into
an AST, then desugaring the AST into an AST that contains no
syntactic extensions, and finally compiling the desugared program.
However, since in SugarJ syntactic language extensions are inte-
grated into the module system of the host language, the SugarJ
compiler needs to support two particular features: First, to react to a
sugar-library import, the compiler needs to understand the module-
relevant structure of source files. Second, to activate a sugar library
dynamically, the compiler needs to be able to adapt the parser and
desugaring transformation while processing a source file.

We realized the first requirement by incorporating knowledge
about the relevant AST nodes into the compiler, so that the com-
piler recognizes ASTs and can react appropriately. For example,
when the compiler encounters an import statement, it inspects the
imported library to determine whether it is a regular library or a
sugar library. If the library is a sugar library, the compiler activates
it right away by adapting the parser and desugaring transformation.

To realize the second requirement, the compiler processes
source files incrementally. It dissects any source file into a sequence
of top-level entities that it parses, desugars, and compiles one af-
ter another. Examples of top-level entities in Java include package
declarations, import statements, class declarations, and sugar dec-
larations. For Haskell, we recognize module declarations, import
statements, and the body of a module as top-level entities. To han-
dle a source file incrementally, the compiler repeatedly parses the
next top-level entity as an AST and the remainder of the file as a
character string. It then desugars the parsed top-level entity, stores
it for compilation, and possibly adapts the parser and desugaring
transformation for the next iteration. Hence, the syntax of a SugarJ
program can change after any top-level entity. For more details, we
refer the reader to our prior work [Erdweg et al. 2011b].

3.2 The Haskell language library
We reengineered the SugarJ compiler to support host languages
other than Java. To this end, we designed an abstract data type
LanguageLib that encapsulates host-language specific components
of the compiler. To date, we have implemented three instances of
LanguageLib: JavaLib, HaskellLib, and PrologLib [Rieger 2012].

The important categories of abstract methods in LanguageLib
are:

• Initialization, which comprises methods that set up the initial
grammar, desugaring transformation, and editor services for the
sugared language. For SugarHaskell, the initial grammar con-
sists of full Haskell amended with SDF and Stratego grammars
for specifying sugar libraries.
• AST predicates, which comprises methods to reflect on the

parsed top-level entity. Each concrete language library needs
to distinguish declarations of a module or namespace, import
statements, language-specific entities, sugar libraries, and editor
services. The SugarJ compiler uses these AST predicates to
dispatch on the parsed AST.

• Host-language processing, which comprises methods to pro-
cess host-language code. In particular, LanguageLib requires
methods for processing a module declaration, import state-
ments, and a module’s body. The standard way of implement-
ing these methods is to generate a host-language source file that
contains pretty prints of the host-language entities. In addition,
LanguageLib requires a method that compiles the generated
source file.

Notably, the SugarJ compiler handles declarations of sugar libraries
and editor services independent of concrete language libraries.
Moreover, a language library can perform static checking and no-
tify the programmer at compile time. For example, HaskellLib en-
sures that imports of Haskell modules are resolvable by calling
ghc-pkg.

3.3 Layout-sensitive generalized parsing
Layout-sensitive languages typically do not belong to the class of
context-free languages because counting and comparing indenta-
tion is required. Therefore, due to the context-sensitive nature of
layout-sensitive languages, off-the-shelf parsers are not applicable
and efficiency cannot be guaranteed.

We have developed a layout-sensitive variant of generalized LR
parsing where layout constraints are declared as part of a grammar
and restrict the valid applications of a production [Erdweg et al.
2012b].5 Conceptually, we ignore layout at parse time and filter the
resulting parse forest by enforcing the layout constraints at disam-
biguation time. However, the number of ambiguities is overwhelm-
ing so that this naive approach fails for performance reasons. To
improve efficiency, we identified a subclass of layout constraints
that in fact is context-free and can be enforced at parse time. In par-
ticular, layout constraints that only use the first(...) node selector
can safely be enforced at parse time. For example, in accordance
with the constraint on the last line of Figure 5, our parser never
considers an ArrImplStmtList where the head and the tail of the list
do not start on the same column.

We have evaluated our parser on all of Hackage. Results are
promising: Of the 24 219 files that the haskell-src-exts parser could
parse with a small, fixed selection of extensions, our parser was
able to successfully parse 94 percent (resulting in the same parse
tree as with explicit layout) with a median parse time of 17ms.
We sampled the remaining files and found the following errors:
First, we reject statements that start with a block comment on
the same line since the comment is ignored and the statement
appears to be indented too far (5 files). Second, our parser timed
out after 30 seconds (40 files). Third, the haskell-src-exts parser
wrongly ignores the language option NondecreasingIndentation
whereas we enforce non-decreasing indentation (274 files). Finally,
our parser failed to parse 1651 files even with explicit layout.
Since this is independent of layout, we suspect inaccuracies in
the SDF Haskell grammar, which we adapted from the Haskell
transformation framework HSX6 to feature layout constraints. In
summary, these results suggest that our parser is working correctly
for the majority of all files, but our test framework and the Haskell
SDF grammar require a bit more work.

3.4 IDE support and static analyses
The SugarJ system also comes with Eclipse-based editor sup-
port [Erdweg et al. 2011a]. However, in contrast to other language
frameworks, SugarJ’s editor services are not predetermined. In-
stead, a programmer can declare custom editor services in edi-

5 The implementation and raw evaluation data is open-source and available
at https://github.com/seba--/layout-parsing.
6 http://strategoxt.org/Stratego/HSX
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tor libraries, which are integrated into the host-language mod-
ule system. This way programmers can declare domain-specific
syntax coloring, code folding, outlining, content completion, ref-
erence resolving, and hover help. Like any other library, an im-
port statement brings an editor library into scope of a module
and activates the contained editor services. These editor services
match on extension-specific parts of the AST and provide accord-
ing tool support. Since editor services of independent syntactic
extensions match on independent parts of the AST, editor services
compose [Erdweg et al. 2011a].

Similarly, a programmer can declare static analyses within a li-
brary. A static analysis is written in Stratego and matches on the
non-desugared AST to produce a list of errors. Essentially, SugarJ
supports a form of pluggable type system [Bracha 2004] where
language designers can formalize and enforce domain-specific lan-
guage invariants. In combination with syntactic sugar for metalan-
guages, this enables the definition of domain-specific type systems
such as XML Schema, which we implemented in prior work [Erd-
weg et al. 2011b].

Since SugarHaskell is built on top of SugarJ, the same IDE in-
tegration and pluggable type system are available for SugarHaskell
programmers. However, editor services and static analyses are not
the focus of this work.

4. Case study
To demonstrate the flexibility and usefulness of SugarHaskell, we
implemented a sugar library that extends Haskell with a DSL for
syntax declarations, namely EBNF. A Haskell programmer can use
this extension to specify an EBNF grammar, which we desugar into
an algebraic data type (the abstract syntax) and Haskell functions
to parse a concrete-syntax string into instances of that data type.
Moreover, from a concrete EBNF grammar we generate yet another
syntactic extension that allows programmers to use their own con-
crete syntax in Haskell code to pattern-match or construct values of
their abstract syntax (the generated data type).

This case study particularly highlights two features of Sug-
arHaskell. First, syntax extensions can go beyond simple syntac-
tic sugar to increase the expressivity of a language. Second, the
extension mechanism of SugarHaskell is self-applicable, that is,
syntactic extensions can desugar into definitions of further syntac-
tic extensions. Consequently, SugarHaskell supports an unlimited
number of metalevels.

4.1 EBNF: A DSL for syntax declarations
Haskell’s declarative nature and expressivity make it a good plat-
form for experimenting with the design and implementation of
other programming languages. For example, it is comparatively
easy to write interpreters or type checkers in Haskell. However,
in our own experience, experimentation and testing are often lim-
ited by the format in which example programs have to be fed into
the interpreter, that is, as instances of an algebraic data type. Con-
sequently, programmers experiment with their interpreter or type
checker only on a small number of examples of very limited size.

To make writing examples easier, one could implement a parser.
However, writing parsers is tedious and distracting. For that reason,
we propose a syntactic integration of EBNF with which program-
mers can simultaneously declare the abstract and concrete syntax
of the language under design. For example, Figure 6 shows a Sug-
arHaskell program that specifies the concrete and abstract syntax
of the lambda calculus using our EBNF embedding.

EBNF grammars are organized by nonterminal. For the lambda
calculus, we use three nonterminals Var, Exp, and String, where
String is primitive and describes sequences of non-whitespace
characters. The concrete syntax of all other nonterminals is user-
supplied. In addition to concrete syntax, a programmer specifies

module Lambda.Syntax where

import Data.EBNF.Syntax
import Data.EBNF.Data
import Data.EBNF.Parser

Var ::= String {Var}

Exp ::= Var {EVar}
| ”(” Exp Exp ”)” {EApp}
| ”lambda” Var ”.” Exp {EAbs}
| ”(” Exp ”)”

Figure 6. Declaration of concrete and abstract syntax of the
lambda calculus using the EBNF sugar library.

abstract syntax by supplying the names of AST nodes in curly
braces. If no node name is supplied, the corresponding production
only forwards its children to the surrounding production but does
not produce an AST node itself. For example, according to the
lambda-calculus grammar, the string ”lambda f. lambda x. (f x)” is
concrete syntax for:

EAbs(Var ”f”, EAbs(Var ”x”, EApp(EVar(Var ”f”), EVar(Var ”x”))))

We desugar an EBNF grammar into multiple artifacts. First, to
represent the abstract syntax, an EBNF grammar desugars into an
algebraic data type using the following translation scheme:

EBNF Haskell
nonterminal definition data-type declaration
alternative with AST node name constructor
nonterminal in concrete syntax constructor field

Accordingly, the grammar from Figure 6 desugars into the follow-
ing data-type declarations:

data Var = Var String
data Exp = EVar Var

| EApp Exp Exp
| EAbs Var Exp

To encode the concrete syntax of an EBNF grammar, we gen-
erate the definition of a Haskell function that parses a string into
instances of the previous data types. The generated functions em-
ploy Parsec [Leijen and Meijer 2001] to parse the input and are used
to derive an instance of the Read type class. Hence, the following
declarations are generated for the lambda-calculus grammar:

parseVar :: ParsecT String Identity Var
parseVar = ...
instance Read Var where

readsPrec input = ... runParser parseVar ...

parseExp :: ParsecT String Identity Exp
parseExp = ... (parseVar >>= return . EVar) <|> ...
instance Read Exp where

readsPrec input = ... runParser parseExp ...

By generating a Parsec parser from EBNF, we also inherit Par-
sec’s limitations: The parser of a left-recursive EBNF grammar
will not terminate and if multiple productions are applicable, the
parser always uses the first one and completely ignores the others.
We address these problems in two ways. First, we implemented
a domain-specific static analysis in SugarHaskell (cf. Section 3.4)
that approximates whether an EBNF grammar is left-recursive and
issues a domain-specific error message to the programmer if that
is the case. Second, in the generated parser, we prefer productions
that start with a keyword matching the input. The resulting parser



can be used to describe example lambda-calculus expressions in
concrete syntax:

ident = read ”lambda x. x” :: Exp
app = read ”lambda f. lambda x. (f x)” :: Exp

We have designed the EBNF sugar library such that clients can
configure which artifacts to generate from the grammar. To this end,
the main desugaring of EBNF calls a fixed set of pattern-matching
Stratego rules, each of which supports no input at all and always
fails. Stratego’s extensibility mechanism allows programmers to
amend those rules in other modules to handle further input (a
rule is only executed once even if definitions overlap) [Hemel
et al. 2010]. Thus, by bringing further sugar libraries into scope, a
programmer can effectively configure the desugaring of an EBNF
grammar. This design is visible in Figure 6, where we activate
the desugaring into data-type and parser declarations through the
imports of Data and Parser, respectively. If we do not want a parser,
we can drop the corresponding import to deactivate its generation.
On the other hand, it is not possible to only deactivate the data-
type generation because the generated parser depends on it. Hence,
Parser reexports Data and an import of Parser activates Data as
well. In addition to Data and Parser, a client of the EBNF sugar
library can import Data.EBNF.MetaSyntax to activate a desugaring
that employs SugarHaskell’s self-applicability as we explain in the
following subsection.

4.2 EBNF: A meta-DSL
The EBNF sugar library allows programmers to simultaneously de-
fine concrete and abstract syntax. Programmers can use the gener-
ated Parsec parser to declare example programs of their language
in concrete syntax, which the parser translates into instances of
the generated algebraic data type. However, in a syntactically ex-
tensible programming language like SugarHaskell such indirection
is unnecessary—the example program could be parsed at compile
time. Moreover, the generated Parsec parser does not allow pro-
grammers to use their concrete syntax for building compound ASTs
such as EAbs (Var ”x”) (EApp ident (EVar (Var ”x”))) or for pat-
tern matching on ASTs.

To address these concerns, we provide another desugaring of
EBNF grammars defined in Data.EBNF.MetaSyntax. This desugar-
ing generates a syntactic extension of Haskell specific to a concrete
EBNF grammar. To illustrate the generated sugar, Figure 7 displays
a definition of the small-step operational semantics of the lambda
calculus.

The function reduce realizes the reduction relation using con-
crete lambda-calculus syntax in pattern matching and data con-
struction. Concrete syntax is wrapped in brackets |[...]| to distin-
guish it from regular Haskell code. Within concrete syntax, $ can be
used to escape to the metalanguage, that is, Haskell. Accordingly,
in the first equation of reduce, the pattern |[ ((lambda $v. $b) $e) ]|
corresponds to the Haskell pattern (EApp (EAbs v b) e) that binds
the pattern variables v, b, and e. Similarly, on the right-hand side of
the second equation of reduce, concrete syntax is used to produce
a new lambda-calculus expression: |[ ($(reduce e1) $e2) ]| corre-
sponds to the Haskell expression EApp (reduce e1) e2.

As visible in the last equation of reduce, MetaSyntax also in-
corporates some disambiguation mechanisms. The problem is that
a pattern |[ $v ]| can be understood in different ways. It could ei-
ther refer to a variable v, to an expression v, or to an expression
variable (EVar v). Therefore, programmers can denote the syntactic
category a concrete-syntax expression belongs to as |[ Exp | ... ]|,
which rules out the first interpretation of |[ $v ]|. To distinguish the
remaining possibilities, a programmer can also declare which syn-
tactic category an escaped metaexpression belongs to. Hence, Var$
prefixes a metaexpression that describes a Var instance, whereas
Exp$ prefixes an Exp expression.

module Lambda.Eval where

import Lambda.Syntax

reduce |[ ((lambda $v. $b) $e) ]|
| isVal e = subst v e b

reduce |[ ($e1 $e2) ]|
| not (isVal e1) = |[ ($(reduce e1) $e2) ]|
| not (isVal e2) = |[ ($e1 $(reduce e2)) ]|

reduce |[ Exp | Var$v ]| = error (”free variable ” ++ show v)

isVal |[ lambda $v. $e ]| = True
isVal = False

eval e
| isVal e = e
| otherwise = eval (reduce e)

app = |[ lambda f. lambda x. (f x) ]|
ident = |[ lambda x. x ]|
identEta = |[ lambda x. ($ident x) ]|

Figure 7. Small-step operational semantics of the lambda calculus
using MetaSyntax.

Technically, MetaSyntax desugars an EBNF grammar into a
syntactic extension of Haskell. It produces productions that de-
scribe the concrete syntax in SDF

context-free syntax
MSVar -> MSExp {cons(”MS-EVar”)}
”(” MSExp MSExp ”)” -> MSExp {cons(”MS-EApp”)}
”lambda” MSVar ”.” MSExp -> MSExp {cons(”MS-EAbs”)}
”(” MSExp ”)” -> MSExp {cons(”NoConstr”)}

as well as SDF productions that describe the integration into
Haskell syntax:

context-free syntax
”|[” MSExp ”]|” -> HaskellExp {cons(”ToHaskellExp”)}
”|[” MSExp ”]|” -> HaskellAPat {cons(”ToHaskellAPat”)}
”$” HaskellExp -> MSExp {cons(”FromHaskellExp”)}

In addition, MetaSyntax provides a generic desugaring that trans-
lates concrete-syntax expressions into Haskell expressions. For ex-
ample, this desugaring translates the AST of identEta in Figure 7

ToHaskellExp(MS-EAbs(MS-Var(”x”),MS-EApp(
FromHaskellExp(HSVar(”ident”)),
MS-EVar(MS-Var(”x”)))))

into the corresponding Haskell expression:

EAbs (Var ”x”) (EApp ident (EVar (Var ”x”)))

Like all other desugarings in SugarHaskell, this translation is per-
formed at compile time; there is no runtime overhead.

The essential feature of SugarHaskell, which also separates it
from most other syntax extenders, is the self-applicability of the
extension mechanism: Sugar libraries can declare syntactic sugar
for defining further sugar libraries. In particular, EBNF can be seen
as a DSL for declaring further user-specific language extensions.
Therefore, we call such a language a meta-DSL [Erdweg et al.
2011b], that is, a DSL for defining DSLs.

5. Discussion and future work
The major goal of SugarHaskell is to support Haskell programmers
in writing elegant and concise programs. In this section, we reflect
on the practical advantages and limitations of using SugarHaskell.



5.1 Haskell integration
When proposing an extension of an existing system, it is important
to ensure interoperability between the extended and the original
system. SugarHaskell provides interoperability with Haskell by (1)
forwarding valid Haskell programs unchanged (except for parsing
and pretty printing) to GHC, (2) not relying on runtime support, (3)
using the GHC package database to locate imported modules and
(4) organizing and linking compiled files such that they can be used
both with SugarHaskell and GHC, where GHC simply ignores any
generated grammars and desugaring rules. Together, this supports
the following interoperation scenarios:

• A Haskell program is compiled by SugarHaskell. This is
supported because pure Haskell programs are forwarded un-
changed to GHC.
• A Haskell library is used in a SugarHaskell program. This

is supported because SugarHaskell uses the GHC package
database to locate the Haskell library.
• A SugarHaskell library is used in a Haskell program. This

is supported because extensions are just syntactic sugar: Sug-
arHaskell programs always desugar into pure Haskell programs
and no special runtime support is required. The library author
would use SugarHaskell to create a Haskell version of its library
and distribute that version to its users, who treat it like a usual
Haskell library.

Hence, programmers can transparently employ SugarHaskell with-
out letting their clients know.

Currently, SugarHaskell is not integrated in the Cabal build
system or the ghci interactive Haskell interpreter. In our future
work, we want to investigate whether such integration with cabal
or ghci is feasible. The following scenarios would be worthwhile
to enable:

• SugarHaskell programmers build SugarHaskell programs with
Cabal.
• SugarHaskell programmers distribute SugarHaskell packages

with Cabal and HackageDB.
• SugarHaskell programmers download, compile and install Sug-

arHaskell packages from Hackage with cabal-install.
• Haskell programmers download, compile and install Sug-

arHaskell packages from Hackage with cabal-install. This
means that the packages on Hackage need to contain the gener-
ated Haskell files.
• SugarHaskell programmers can import sugar libraries and use

syntactic sugar from the ghci prompt.
• SugarHaskell programmers can debug desugarings from the

ghci prompt.

This integration would go beyond the current state of the art of
preprocessor integration into the Haskell ecosystem. While Cabal
supports preprocessors, it cannot track whether a preprocessor is
available on the user’s system. Preprocessors are therefore not au-
tomatically installed by cabal-install. SugarHaskell libraries, how-
ever, would be tracked as ordinary package dependencies.

5.2 Extension composition
SugarHaskell promotes extension composition by making it simple
for programmers to use multiple extensions: A programmer just
imports all corresponding sugar libraries. Therefore, it is important
that SugarHaskell extensions actually can be used jointly, that is, it
is important that sugar libraries compose.

In general, SugarHaskell inherits much of its composability sup-
port from the metalanguages it employs, namely SDF and Stratego.

More specifically, SugarHaskell supports the composition of sugar
libraries that are syntactically unambiguous, which is the common
case [Erdweg et al. 2011b]. Such sugar libraries provide produc-
tions that extend different parts of the language or extend the same
part with different syntax. Furthermore, since desugaring transfor-
mations typically only translate a sugar library’s new syntax, there
is no conflict between desugaring transformations of independent
sugar libraries. All sugar libraries presented in this paper (idiom
brackets, arrow notation, EBNF, EBNF metasyntax) are syntacti-
cally unambiguous and can be easily used within the same module.

In case two sugar libraries overlap syntactically, programmers
can often use one of the disambiguation mechanisms of SDF [Heer-
ing et al. 1989]. For example, priorities declare precedence of one
production over another, whereas reject productions can be used to
restrict what can be parsed by a nonterminal. For example, we used
reject productions
lexical syntax

”proc” -> HaskellVARID {reject}
”-<” -> HaskellVARSYM {reject}
”-<<” -> HaskellVARSYM {reject}

in the arrow-notation sugar library to disallow the use of proc as
a variable name and to reserve -< and -<< for arrow notation.
Similarly, a programmer can disambiguate two conflicting sugar
libraries by adding a third sugar library that applies SDF disam-
biguation mechanisms. There is no need to alter previously defined
productions [Erdweg et al. 2012a].

5.3 Transformation language
In SugarHaskell, we employ Stratego as metalanguage for term
transformation. From a language-design point of view, this is
unattractive because it lacks regularity: The metalanguage is dif-
ferent from the object language. It would be more appealing to use
the same language and language extensions on all metalevels.

However, we use Stratego for a good reason. As previously dis-
cussed in Section 2, the definition of a single Stratego rule can be
separated into multiple equations that are located in different mod-
ules. Essentially, each equation corresponds to a pattern-matching
case that can fail or succeed. When applying a transformation rule,
Stratego tries each equation currently in scope until one succeeds
or all have failed [Visser 2001; Hemel et al. 2010]. SugarHaskell
makes heavy use of this extensibility mechanism.

In particular, all sugar libraries contribute to a single Stratego
rule desugar through the declaration of desugarings. Whenever a
programmer activates another sugar library using an import, one
or more additional equations for desugar come into scope. Sug-
arHaskell applies the single resulting desugaring transformation
desugar to an AST bottom-up until a fixed point is reached. Hence,
a sugar library can also desugar into an AST that another sugar
library handles.

5.4 Hygiene
Hygienic transformations enable the transparent use of names in
code transformations and avoid two potential conflicts [Clinger and
Rees 1991]. First, when generating code that refers to a variable,
this variable may not be captured at the transformation’s call site.
Instead, the variable must be resolved in the context of the transfor-
mation’s definition. For example, the IdiomBrackets sugar library
from Section 1 generates references to pure and (<∗>). This should
be transparent to users of the sugar library and should not inter-
fere with local declarations of functions of the same name. Second,
a name capture can occur when a transformation introduces new
variable bindings. These bindings may not capture any variables at
the transformation’s call site.

SugarHaskell does not support hygienic transformations. Hence,
sugar libraries may produce accidental name capture. However,



we employ the convention of fully qualified names, which at
least avoids most potential naming conflicts of the first cate-
gory. For example, in the IdiomBrackets sugar library from Sec-
tion 1, we in fact generate references to Control.Applicative.pure
and Control.Applicative.(<∗>) as well as a qualified import of
Control.Applicative. In our experience, this convention makes un-
hygienic transformations much less harmful.

However, a clean solution to hygiene is desirable. Unfortu-
nately, we cannot directly apply solutions to hygiene known from
macro systems such as Scheme [Sperber et al. 2009; Clinger and
Rees 1991]. The reason is that we want to support user-defined
binding mechanisms that do not necessarily translate into a binding
in the generated code. Therefore, we cannot infer variable scop-
ing in the sugared syntax from the desugaring. Moreover, since we
pretty print and compile regular Haskell code, we cannot enhance
identifiers with context information; ultimately, each identifier must
be represented as a simple string. We plan to investigate these is-
sues in our future work.

5.5 Type-awareness
The preprocessor nature of SugarHaskell becomes most appar-
ent when considering type-system integration and error reporting.
While SugarHaskell supports user-defined static analyses before
desugaring (see Section 3.4), these analyses are independent of
Haskell’s type system. SugarHaskell delegates actual type check-
ing of desugared code to GHC, which consequently reports errors
in terms of generated code. We see the following potential use cases
of a tighter integration of type checking into SugarHaskell:

• Sugar libraries could declare extension-specific error messages
in case the generated code fails to type-check. One interest-
ing avenue of future work is to analyze the applicability of
type-inference instrumentation [Heeren et al. 2003] to achieve
extension-specific error messages.
• Type-dependent transformations could be used to generate spe-

cialized code for input of certain types, for example, to increase
efficiency or to circumvent run-time ad-hoc polymorphism.
• Type-based syntax disambiguation [Bravenboer et al. 2005]

could be used to select a parse tree in case there is a syntactic
ambiguity. For example, arrow notation would not need a sep-
arate syntactic category command since arrows can be distin-
guished by type. Similarly, the EBNF metasyntax disambigua-
tion |[ Exp | ... ]| would often be unnecessary because the ex-
pected syntactic category is implied by the expected type.

One interesting line of research that would enable these use
cases is to feature type checking itself as an extensible component
inside SugarHaskell. Instead of checking code generated from a
sugar library, the sugar library could declare a type-system exten-
sion that defines new type rules for the added syntax. For exam-
ple, the arrow-notation sugar library would declare type rules for
checking the well-typedness of commands. In such system, all er-
ror checking and all error reporting should be in terms of original
source code. However, there are many open research questions such
as how can we ensure that extensions retain the invariants of the
original type system? Further investigation is pending.

6. Related work
Syntactic extensibility has been the focus of researchers for a long
time, from macro processors [McIlroy 1960; Layzell 1985; Tobin-
Hochstadt et al. 2011], to attribute grammars [Knuth 1968; Van
Wyk et al. 2010], extensible compiler frameworks [Ekman and
Hedin 2007; Nystrom et al. 2003], and language workbenches [Kats
and Visser 2010; Voelter and Solomatov 2010]. In prior work, we

discussed the differences between these approaches and our frame-
work in detail [Erdweg et al. 2012a, 2011b]. In a nutshell, we are
different from most other approaches because our syntactic exten-
sion can use the full class of context-free languages, our extensions
compose, and our extensibility mechanism is self-applicable. Here,
we focus on related work that is more specific to Haskell.

6.1 TemplateHaskell
GHC supports compile-time metaprogramming with the Template-
Haskell language extension [Sheard and Peyton Jones 2002]. Tem-
plateHaskell supports arbitrary compile-time computation via Tem-
plateHaskell macros. They are written in Haskell and invoked ex-
plicitly with a special call syntax $(...). Macros can only be called
in a fixed set of syntactical contexts. TemplateHaskell is tightly in-
tegrated with GHC, and macros can even access GHC’s typing en-
vironment to analyze the program currently being compiled. Tem-
plateHaskell is therefore not available for other Haskell compilers.

SugarHaskell also supports compile-time computation in the
form of desugarings, but desugarings are written in Stratego and
invoked implicitly whenever they are in scope. Desugarings can
match on any constructors in the AST and even on constructors
that have been introduced by other sugar libraries. SugarHaskell
is independent of any specific Haskell compiler, but therefore also
does not integrate into a compiler’s typing environment. It would be
interesting to implement part of the static analysis of a Haskell pro-
gram, for example, name resolution, as a sugar library in Stratego
to support more TemplateHaskell programming patterns in Sug-
arHaskell.

GHC also supports a limited form of syntax extension via
quasiquotation [Mainland 2007]. Syntax extensions are specified
by writing a quasiquoter in Haskell, that is, essentially a stand-
alone TemplateHaskell macro of type String -> Q Exp. The new
syntax is used by explicitly invoking the quasiquoter with special
call syntax [foo|...|]. The part ... can be arbitrary text and is pro-
cessed by the quasiquoter foo at compile time. Quasiquotation is
only available in a fixed set of syntactical contexts. Quasiquotation
nests badly, because the outer quasiquoter would need to imple-
ment the quasiquotation mechanism manually in order to correctly
handle the inner quasiquoter.

SugarHaskell’s support for syntax extension is more declara-
tive, because it is based on grammar rules instead of hand-written
parsers. This means that SugarHaskell extensions compose better,
since Sugar libraries can extend all parts of the base Haskell syntax
as well as syntax introduced by other sugar libraries. In particular,
nesting works out of the box without extra effort by the implemen-
tors of sugar libraries.

6.2 Preprocessors
The Haskell toolbox contains numerous preprocessors. The Haskell
platform7, a collection of blessed Haskell libraries and developer
tools, includes the following preprocessors: the parser generator
Happy8, the lexer generator Alex9, and hsc2hs10, a generator for
bindings to C functions. The Haskell Common Architecture for
Building Applications and Libraries (Cabal)11, the most common
build and distribution system for Haskell, additionally supports

7 http://hackage.haskell.org/platform/
8 http://www.haskell.org/happy/
9 http://www.haskell.org/alex/
10 http://www.haskell.org/ghc/docs/latest/html/users_
guide/hsc2hs.html
11 http://www.haskell.org/cabal/

http://hackage.haskell.org/platform/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.haskell.org/ghc/docs/latest/html/users_guide/hsc2hs.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/hsc2hs.html
http://www.haskell.org/cabal/


two other binding generators (c2hs12 and greencard13) as well as
cpphs14, a reimplementation of the C preprocessor with better sup-
port for Haskell’s lexical syntax. The standard C preprocessor is di-
rectly supported by GHC and, on Windows, even distributed with
GHC.

The Strathclyde Haskell Enhancement (SHE)15 is a handwritten
preprocessor for Haskell. It is not based on a complete layout-
sensitive Haskell parser, but on a lexer with layout heuristics. We
have modeled our implementation of idiom brackets after SHE’s
implementation.

These and similar tools play two important roles in the Haskell
ecosystem: (1) They extend the Haskell language with additional
special-purpose constructs that are very useful for some applica-
tions, but not generally useful enough to warrant inclusion in the
Haskell standard. (2) They allow language designers to provide
prototype implementations of language extensions to the commu-
nity. Unfortunately, it is impossible to compose these preprocessors
to extend an extended language further. For example, it is not pos-
sible to use SHE to enable idiom brackets in the parser actions in
a Happy parser because SHE does not produce a Happy grammar.
We therefore believe that such custom preprocessors would better
be implemented in a framework like SugarHaskell that supports the
composition of many language extensions to be used in the same
source file.

Priebe [2005] proposes a light-weight framework to implement
preprocessors using Template Haskell. His key idea is use an uni-
versal preprocessor that wraps a Haskell source file in a call to a
Template Haskell macro. The actual preprocessing is then done by
the macro, which can be defined in a library. Unlike SugarHaskell,
Priebe’s approach does not address syntactic extensions or the com-
position of different preprocessing libraries. Nevertheless, the idea
of combining a preprocessor (to define concrete syntax) and Tem-
plate Haskell (to define desugarings) seems promising. Future work
could investigate whether and how such a combined approach can
be implemented as a SugarHaskell library.

The Utrecht Haskell compiler (UHC) [Dijkstra et al. 2009] is an
extensible compiler for Haskell. It is heavily based on preproces-
sors that compose implementation fragments for different language
levels. Extensions have to be compiled into UHC. Parsing is imple-
mented with a hand-written combinator parser. In contrast, Sug-
arHaskell supports extensions as libraries and declarative grammar
extensions.

6.3 Camlp5
Camlp516 (as well as Camlp4) is an extensible preprocessor and
pretty-printer that is targeted especially at extending the syntax of
the functional language OCaml. Similar to SugarHaskell, Camlp5
parses a source file and applies desugaring rules. The resulting
OCaml abstract syntax tree is either directly handed over to an
OCaml compiler or pretty-printed into a text file.

The parsing stage of Camlp5 is based on an in-memory repre-
sentation of the current grammar that is interpreted by a recursive
descent parser. Backtracking can be enabled or disabled for individ-
ual rules. The parser operates on token streams that are produced
by a separate, hand-written scanner. This choice of technology re-
quires authors of language extension to consider operational details
of the parser framework in order to correctly specify syntax exten-
sions. Syntax extensions are written in OCaml and mutate the cur-

12 http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
13 http://hackage.haskell.org/package/greencard
14 http://projects.haskell.org/cpphs/
15 http://personal.cis.strath.ac.uk/conor.mcbride/pub/she
16 http://pauillac.inria.fr/~ddr/camlp5/

rent grammar in order to install additional rules. The parsing stage
of SugarHaskell is based on scannerless generalized parsing and
therefore allows more declarative specification of grammars.

The desugaring stage of Camlp5 is based on desugaring rules
written in OCaml. Desugaring rules have to fully desugar a lan-
guage extension into OCaml abstract syntax trees. In SugarHaskell,
desugaring rules are written in Stratego and they can produce code
written with arbitrary language extensions, because the result of
rule application will be further desugared, if necessary.

Like SugarHaskell, Camlp5 is self-applicable and in fact,
Camlp5 includes several extensions that are targeted at language
extension authors, including a special syntax for grammar rules
and desugarings and support for concrete syntax in transforma-
tions. The successful use of self-application in Camlp5 shows how
important that feature is.

Camlp5 can also be adapted for other languages than OCaml.
However, language extensions themselves would still have to be
written in OCaml, so the resulting system would not be as self-
applicable as Camlp5 for OCaml is. We also believe that the more
declarative approach of SDF and Stratego fits better with Haskell
than the extension-by-mutation philosophy of Camlp5.

7. Conclusion
Syntactic concerns are important for programmers in practice.
While semantics make code run, it is syntax that programmers
interact with every day. Therefore, we believe it is important to
support programmers in describing not only what their programs
do, but also how their programs look. SugarHaskell addresses this
belief and provides programmers with syntactic extensibility that
allows extensions to use the full class of context-free languages
enriched with layout sensitivity. SugarHaskell extensions compose
and can affect object language and metalanguages equally eas-
ily. While there are some open issues regarding integration with
Cabal, HackageDB, and Haskell’s type system, SugarHaskell is
operational and we invite programmers and language designers to
experiment with SugarHaskell and its IDE.
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