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Abstract
Multiprocessing is becoming steadily more important for raising the performance of computers. Par-

allel programming is the key to leveraging such increased processing power. However, parallelization

impedes the reasoning about side-effects of application code, which may cause data-races and, thus, non-

deterministic behavior. Synchronization via locks is one measure to overcome this menace, by serializing

conflicting parallel memory accesses. However, it can also impair an application’s run-time significantly.

This thesis shows how mbeddr’s first-class language extension support and IDE integration can be used to

partially overcome these issues for embedded software. The new language abstraction, ParallelMbeddr,

offers convenient-to-use concepts for explicit parallelization. It provides a thread-safe communication

approach by using the typesystem to prevent low-level data-races. Furthermore, it uses mbeddr’s com-

piler integration to prototypically optimize the generated code in terms of synchronization overhead.

The evaluation indicates that these goals are accomplished, although much potential for improvements

and enhancements remains.
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1 Introduction
Traditionally, the performance of processors is increased by raising their clock rates. Higher frequencies

in turn entail even bigger power consumption heightenings. Various techniques are applied by manu-

facturers to compensate this effect, mainly the reduction of voltages. However, with the advent of the

so-called power wall [68], the industry eventually had to and is still facing the problem of not being

able to achieve this goal any more. One way to escape this dilemma that is of growing importance is

the exchange of higher frequencies for more processor cores on a chip [43]. Instead of executing the

instructions of programs continually faster, the multi-core approach is to execute multiple instructions in

parallel. While multiple simultaneously running programs can thus be ran in parallel, with rising com-

putational complexity, it is also desirable to distribute the execution of single programs across multiple

cores. Yet, programs need to be accordingly designed in order to make use of the new architectures.

Parallel programming needs to be applied. The art of this programming technique has proven to be

substantially more difficult, since for programs, which run in parallel, program correctness is harder to

achieve. This risen difficulty, in turn, influences the productivity and the costs of produced software [41].

As the trend towards multiprocessing has also reached the embedded domain [27][6], this domain is

facing the same problems. One tool to “boost the productivity”[2] for this area is mbeddr. It offers

new language-abstractions and integrated solutions for the development process. This is done by a

compiler-based extension of the underlying programming language C: language abstractions are repeat-

edly reduced into more basic language concepts until plain C code is obtained. In spite of mbeddr’s

variety of language abstractions, it still misses native language support for parallel programming. While

it is possible for the user to use according existing libraries, it is a laborious task to prepare mbeddr in

this way. Even more important, the programmer is faced with the usual problems of such a library-based

approach: the danger of data-races and the drawback of unnecessary computational overhead due to

suboptimal countermeasures. Hand-based optimization of this overhead, in turn, introduces the poten-

tial for compromising the correctness of programs and is a tedious and costly process. It is therefore

desirable to have native support for parallel programming in mbeddr. This thesis thus aims at providing

the user with language concepts that enable him1 to write parallel code more easily while simultane-

ously mitigating the risks of incorrect execution. Additionally, this work will show how to reduce the

design-based performance overhead, which the abstractions for data-race safety naturally entail. Due to

the complexity of the underlying language C, the presented optimization techniques are implemented

prototypically.

The text has the following structure. Chapter 2 will provide the reader with the necessary background to

understand the reasoning of the following discussions. It gives short introductions to parallel program-

ming, the character of the embedded domain and the language C that is extended. The 3rd chapter will

then introduce the concepts of the new language abstraction ParallelMbeddr. To this end, the extension’s

1 In this text, for simplicity reasons, ‘he’, ‘him’ and ‘his’ is used in a generic way and will always denote both sexes.
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design is presented, accompanied by the translation to the basic concepts that are provided by mbeddr.

After this, chapter 4 will show first techniques for compiler-based optimizations of the generated code

of ParallelMbeddr. This is done in a declarative algorithmic way. Furthermore, the text will depict the

difficulties which arose in the prototypical implementation of the algorithms, and propose solution ap-

proaches therefor. The evaluation in chapter 5 will show the benefits and shortcomings of the design

and implementation. Both the user-written and generated code for general parallelization examples will

be investigated. Furthermore, the results of an optimization measurement will be shown and will re-

veal the performance potential for the compiler-based enhancement of C. The same chapter then gives

a short comparison to relevant related work in the parallel-programming field. Finally, chapter 6 will

summarize the achievements and results of this work and briefly list promising fields of future research

for ParallelMbeddr.
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2 Background
This chapter gives a concise introduction into the basic topics of this work. First, the main aspects of par-

allel programming are explained, in order to give the reader the essential knowledge that is mandatory

to understand the problem tackled by this thesis. After that, the embedded domain and the tools that

are used to create software for it (mbeddr and C) are presented.

2.1 Parallel Programming

Parallel programming is a technique to speed up the classical sequential execution of programs which

are suited for parallelization in the limits of Amdahl’s law [10][49]. The law gives an upper bound on the

possible speed up of an algorithm based on the amount of parallelizeable code.2 The pitfalls of the often

mandatory communication in parallel programming arise from race conditions and countermeasures

thereof.

Processes and Threads

Every program in execution which may be delayed or interrupted is represented by a process. A process

typically has its own protected data (via virtual memory) and execution state and consists of one or more

threads. A thread, also known as lightweight process, shares some of the memory with its process but has

its own execution state and thread-local storage as needed [32, p. 20]. In the course of programming

language and operating system development, several variants of threads have been devised, among

others green threads, fibers and coroutines which mainly differ in how they are managed.

Parallelism and Concurrency

If multiple threads are “in the middle of executing code at the same time” [46, p. 14] they are processed

concurrently. They can be executed at the same time on different processors or interleaved on a single

processor, which means that they are executed in an alternating way. The former is also called paral-

lelism. Parallelism, generalized to “the quality of occurring at the same time” [23, p. 91], can manifest

in at least four different ways: From an application programmer’s view there exist bit-level parallelism

and instruction-level parallelism at a very low level. Bit-level parallelism is concerned with increasing

the word size of processors in order to reduce the amount of cycles that are needed to perform an in-

struction [21, p. 15]. Instruction-level parallelism, also called pipelining, is the simultaneous utilization

of multiple stages of the processor’s execution pipeline. Both bit-level parallelism and instruction-level

2 This work, however, is not about finding appropriate patterns for this purpose but about giving a generic approach. Thus,

Amdahl’s law will not be further considered.
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parallelism primarily reside on the hardware level and the operating system level and thus are irrelevant

to this work. Data parallelism is present if the same calculation is performed on multiple sets of data.

It can be regarded as a specialization of task parallelism, which denotes the simultaneous execution of

different calculations “on either the same or different data” [21, p. 125]. This work focuses on the latter

form of parallelism, since it is the more general approach to application-level parallelism.

Implicit vs. Explicit Parallelism

Another way to distinguish parallelism is the way it is expressed in the programmer’s code. Traditionally,

the programmer has to define explicitly how and when parallelization shall be performed and where

communication between separate units of execution takes place. Instead, with implicit programming,

the programmer declares dependencies between data and the compiler uses this information to detect

parallelizable code segments which it may then be executed in parallel [26, p. 334].

Data Races

When a process consists of multiple concurrently running threads which have access to the shared data

of their process, a class of errors that is unique to parallel (and distributed) programming arises. These

so-called synchronization errors occur due to data races and are a result of the general non-atomicity of

computations and memory references. Data races – also known as race conditions – are defined as at least

“two unsynchronized memory references by two processes on one memory location, of which at least

one reference is a write access” [24, p. 327].3 Such data races can result in inconsistent program states

and non-deterministic program behavior since the order in which the concerned memory is accessed

might change. In order to deal with this issue, three main paradigms have been conceived in parallel

programming: shared memory, message passing and transactional memory.

Communication Model: Shared Memory

The memory model that implicitly underlay the former treatment of processes, which share some data

with their threads, is formally known as shared memory . In this model, communication between entities

is realized by shared-memory regions, which are written to and read from [36, p. 138].4 Data races

can be avoided by employing the low-level synchronization primitive called mutex.5 A mutex can only

be locked by exactly one thread at a given time. Any other thread that tries to lock the same mutex is

3 As the definition implies, data races are not limited to threads and the shared process data alone, e.g. file-based race

conditions can even occur between two different processes [70]. Since this work is about parallelization of single

processes, other kinds of race conditions are not considered further. Additionally, as will be shown later on, higher-level

data races may occur if the scope of synchronizations does not correctly take the dependencies of data into account.
4 As for race conditions, the model is not limited to intra-process communication via threads or similar approaches to

parallelization. Communication between two processes can also be realized via shared memory, however, this topic will

not be addressed further in this thesis.
5 Semaphores, as a second synchronization primitive, are closely related to mutexes. Since they are irrelevant for this

paper, they are not further investigated.
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blocked until the locking thread releases the mutex [48]. Thus, code regions can be protected by having

threads synchronize over mutexes that protect these regions.6 One of the disadvantages of mutexes is

that they are not tightly coupled to the data or computation that they protect. It is the programmer’s duty

to take care of the sound utilization of a certain mutex. Therefore, various higher-level synchronization

measures like monitors in Java [31, p. 42] and synchronized classes in the programming language D [8]

were developed. These measures are usually built on top of mutexes [42, p. 25]. Due to their approach

of achieving synchronization via locks, mutexes are vulnerable for deadlocks. This means that multiple

threads are in a state where “each is waiting for release of a resource which is currently held by some

other” [57, p. 119] thread. As a result, no thread will ever finish executing [25, p. 2-3].

Communication Model: Message Passing

Whereas communication in the shared memory paradigm happens rather implicitly, it is done explicitly

in the message passing paradigm. Message passing originates from Hoare’s paper on Communicating

Sequential Processes (CSP) [40]. In CSP, messages are sent from one entity to another. “The sender

waits until the receiver has accepted the message (synchronous message passing)” [61, p. 138] before it

continues its execution. Message passing with asynchronous message sends were deployed by the actor

model [39] and pi calculus [53]. Although message passing avoids shared data and realizes communica-

tion generally via copies of data,7 it still suffers from potential race conditions [55] when the atomicity

of operations is not properly regarded by the implementation.

Communication Model: Transactional Memory

Transactional memory provides a non-blocking8 memory model, which enables communication via

“lightweight, in-memory transactions” [35, p. 3]. Transactions are code blocks that, from a programmer’s

perspective, are executed atomically. The illusion of atomicity is realized by the underlying transaction

system, which may execute transactions in parallel and has to take care of conflicting reads and writes in

transactions [38].9 Transactional memory can either be realized in hardware or in software. While the

former promises a better performance, it demands specific hardware. Software transactional memory on

the other hand seems to suffer from comparatively “poor performance” [13, p. 13].

6 For brevity reasons, in this work, the synchronization of computations via a mutex a will also be called a ‘synchronization

of a’.
7 Actually, shared data is often used in implementations of message passing models in order to enhance the performance.

Furthermore it exists on the language level, for example as monitors, which were developed by Hoare to reduce deadlocks

in CSP. The main notion of the message passing concept nevertheless does not use shared data.
8 Non-blocking means that at least one parallel unit of execution is guaranteed to make progress in a finite amount of time

[34]. This property clearly presumes the absence of deadlocks.
9 To this end, the corresponding transactions may need to be re-executed as a whole.
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Coarse- and Fine-grained Synchronization

In order to keep data and computations synchronized, the simplest measure to avoid data races is to

use the available instruments like locks or transactions as broadly as possible. E.g. transactions could

be widened to hold every operation a thread has to execute. As every synchronization is basically a

serialization of otherwise parallel executed code, such coarse-grained synchronization would eliminate

the benefits of parallel execution. On the other hand, fine-grained synchronization can introduce race

conditions if the programmer misses some locking policy. In addition, the acquisition of every lock

takes time, which can become an issue with increasing locking counts. Therefore, a trade-off between

locking-overhead and scalability problems has to be found [35, pp. 1-2].

2.2 Embedded Programming with Mbeddr

In the course of this thesis, parallelization is introduced into the programming language C which is, due

to its performance and computational predictability, a natural choice for the embedded progamming

domain. mbeddr thrives to make the development of software in this domain both easier and safer by

giving advanced tool support.

Embedded Programming

“An embedded system is a computerized system that is purpose-built for its application.” [77, p. 1]

Due to its narrow scope and monetary constraints induced by the application domain, the hardware

of such systems is often constrained to the point that it simply accomplishes the job [77]. As a result,

the memory consumption of the resulting program is one main issue to be considered in embedded

programming. Additionally, for real-time systems, which constitute a subclass of embedded systems, not

only the correctness of computations but also the consumed time determine their quality and usefulness

[19, pp. 1-2]. Therefore, the predictability of the program’s execution time becomes an issue for real-

time systems. To this end, predetermined dead-lines of computations are used. In accordance to the

consequences of timely missed dead-lines, multiple levels of real-time systems have been conceived.

These, however, will not be further discussed.10

MPS and Mbeddr

“JetBrains MPS11 is an open source [...] language workbench developed over the last ten years by Jet-

Brains.” [75] As such, it provides a projectional editor which lets the user work directly on the abstract

10 The reason for this decision is that this work tries to cover a rather broad domain, instead of focusing on any particular

embedded sub-domain. Furthermore, mbeddr does not provide support for the quantification of related parameters

like the worst-case execution time (WCET) [19, p. 8], yet. In consequence, predictability is a lesser concern of this

thesis and will be reflected primarily in the careful consideration of the CPU consumption and processing time of the

implementation.
11 http://jetbrains.com/mps, accessed: 2014-07-18
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syntax tree (AST) of the program [29]. It supports the development and composition of potentially syn-

tactically ambiguous modular language extensions in combination with the development of integrated

development environments (IDEs) or extensions thereof. Mbeddr is an extension of MPS tailored for

the embedded software development in C. Every program written in the mbeddr IDE is translated to

C99 source code which can then be further processed by the gcc tool chain.12 Every new language con-

struct that is introduced as an extension of the existing language of mbeddr (and any existing language

element) is represented by a concept.

concept

properties:
<< >>

children:
<< >>

references:
<< >>

structure

node cell layout:

editor

inference rule

non-typesystem rules

typesystem

[- ... -]

               typeof_... 

           check ...

reduction rule

pre-processing script
post-processing script

generator

concept   ...
condition ...

--> 

Figure 1: Concepts and language aspects in MPS

The complete definition of a concept comprises the definition of certain language aspects: the structure

of a concept is defined in a structure aspect which contains the definition of the concept’s abstract syntax

in the abstract syntax tree (AST) of the program. The visual representation of the concept, its concrete

syntax, is defined in the editor aspect. The typesystem aspect of a concept may contain a type inference

rule for it and further non-typesystem rules, which restrict the way it may be used. In a formal meta-

language, the latter are usually part of the inference rules but are kept separately in MPS to diminish

the complexity of inference rules and facilitate an easy extension of them. The generator “defines the

denotational semantics for the concepts in the language” [69]. Thus, this aspect describes the translation

(in the following also called reduction and transformation) of concepts into concepts of the base language.

The implementation of C in mbeddr does not only provide extensions to the core of C but also offers a

few differences to the basis of the C99 standard. They will be introduced as needed.

C

The semantics of C differ from modern object-oriented languages like Java in various ways. In order

to clarify some of the choices that were made for the design and implementation of ParallelMbeddr,
12 http://gcc.gnu.org/, accessed: 2014-07-18
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in the following, the most relevant differences shall be outlined. Like Java, C leverages pass-by-value

semantics for function parameters. In contrast to Java though, which copies the references themselves,

C copies the referenced values into the memory that is allocated to the parameters of function calls.

Thus, a change to a field of a structure (struct) instance that was copied in such a way does not affect

the original struct instance.13 On the other hand, arrays are treated like pointers, i.e. memory addresses

as values, which becomes evident when they are passed to functions. Hence, a change of an entry of

an array argument actually changes the array that is referred to by a variable on the caller site. For

an array to be copied entirely into a function (not just by its address), it can be declared as a struct

field, which, due to the copy semantics for structs, ensures that like any other field of the struct instance

the array’s value is copied into the newly created struct instance. The copy semantics are not restricted

to function arguments but also extend to function return values and variable assignments. The ‘pass-

by-pointer-value’ semantics for arrays in C implies that arrays cannot be returned from functions as is

done in Java. Instead, corresponding pointers are returned. This means that it is not safe to return an

array, respectively a pointer thereof, from a function if the array resides in the area of the stack that

was allocated for this function.14 A peculiarity of C is that global variables may only be initialized with

constant expressions, which makes it impossible to initialize a global variable with an arbitrary function

call of a proper type [17, p. 48]. In C, the type of a pointer to a value of type t is written t*.

13 The only way to avoid this behavior is to copy the memory addresses of values as pointers into functions.
14 Otherwise the pointed-to memory of the returned array pointer would become deallocated after the return of the called

function. This again would cause the return of a dangling pointer into the receiver of the returned value, i.e. a pointer

that does not point to a valid memory address.
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3 Design and Translation
In this chapter, the extension of mbeddr for parallel programming, called ParallelMbeddr, is introduced.

To this end, the new language features for C are explained, each in terms of their design and the trans-

lation to plain mbeddr C code.15 In order to illustrate the presented features, a running example is

incrementally built. Further examples are depicted whenever the running example does not provide the

right structure to clarify a feature. At the end of this chapter, the measures implemented to make the

extension sufficiently thread-safe16 are explained.

Notation

In the following sections, the concepts of the language of mbeddr are iteratively extended with new

elements. For this purpose, based on the notation presented by Pierce [59], the syntax of new concepts

is described by notations like the following:

e ::= ...|e′ (1)

This exemplary line extends the set of expressions of mbeddr by the expression e’ which may contain

arbitrary meta-variables like e. In order to fit into the type system of mbeddr, these concepts are equipped

with type inference rules, each of which, given a list of premises, derives the type of some concept in the

conclusion:

NewConcept
premise1, ...,premisen

e ` t
(2)

The premises of the concepts are kept minimal but not exhaustive, which means that complex premises

are given as informal explanations and are mostly explained in section 3.4. This way, the type inference

rules are kept comprehensible and the discussion of the safety measures of ParallelMbeddr are kept

closely together. Additionally, this separation reflects MPS’ separation of type inference rules and non-

typesystem rules.

The translation of a new concept in ParallelMbeddr to a base concept of mbeddr will be shown informally

by listing the resulting code that is generated by the IDE after it was given some input code. To this end,

if not expressed in the text, the symbol =⇒ will denote the translation of code c1 to some other code

c2 in c1 =⇒ c2. The translation to basic concepts will often entail the generation of additional code

somewhere else in the program as a side effect, e.g. the translation of an expression to a function call

may force the generator of mbeddr to generate the declaration of the called function first. These side

effects will also be demonstrated by listings of the generated code.
15 For the sake of legibility, the syntax of the generated mbeddr code is depicted in a simplified manner where deemed

necessary.
16 Data-races should be prevented as well as possible. However, the user always has the opportunity to introduce data races

if his requested synchronizations for the modifications of data, which are used by multiple units of execution, do not

correctly take into account the data dependencies of variables.
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3.1 Tasks

The basic parallelization element is a task. It denotes a parallel unit of execution and, as the name

suggests, aims at task parallelism. As the implementation of the underlying parallelization technique

might change in the future it is reasonable to abstract the terminology from it. The most basic task

which always exists executes the code of the entry (main) function of the program. A task can also be

regarded as a closure of the expression that shall be run in parallel. The reader should distinguish this

‘execution template’ from the actual running instance of a task. The latter will further on be addressed

as a running task.

3.1.1 Design

The syntax e of expressions in mbeddr is extended by

e ::= ...| |e| (3)

When executed, a task term yields a handle to a parallel unit of execution. This way, the initialization of

the task and the actual execution are decoupled and can happen independently. When a task is run the

embraced expression is executed and its value is returned. If the type of the expression is void then no

value will be returned. The type of a task reflects its return value:

t ::= ...| Task<t> (4)

Due to implementation reasons (see 3.2.2 for details), the embraced return type of a task must be either

void or a pointer to the type of the embraced expression:

VoidTask
e ` void

|e| ` Task<void>
NonVoidTask

e ` t t 6= void

|e| ` Task<void*>
(5)

When a task is not used anymore to produce running instances of itself, it should be cleared in order to

free the memory that it implicitly occupies in the heap:

e ::= ...| e.clear (6)

Clear
|e| ` Task<t>

e.clear `void
(7)

If a task (template) is copied by the pass-by-value semantics of C, the copied task will share the heap-

managed data, i.e. the reference environment of its free variables, with the original task. Therefore,

a task needs to be cleared only once in order to avoid memory leaks. It has to be kept in mind that a

running instance of a task will not be affected by the clearance of its task template. The clearance of a

task is only necessary if the task is stored somewhere. Thus, a task that is directly run via |e|.run does

need not to be cleared, which makes such expressions memory-safe.
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3.1.2 Translation

The POSIX Threads standard and library (pthreads) was chosen as a means to realize concurrency in

the translated code. It supports all necessary parallelization features and provides a more direct control

of the generated code when compared to frameworks like OpenMP.17 Every task in ParallelMbeddr is

represented by a thread as provided by the POSIX threads standard, a so-called pthread.18 As the thread

initialization function of pthreads takes a function pointer of type void* -> void*, the computation of

the translated task is represented by an according function:

1 void* parFun_X(void* voidArgs) {...}

Listing 3.1: Generated function of a task

The X in the name indicates that for every task a unique adaptee of this function with the prefix parFun_

and some unique suffix chosen by the framework is generated.19 As the function signature indicates, a

pthread and therefore a task which is to be run can be parameterized with values and can return a value

which will be explained in the following paragraphs.

If a task contains any references to local variables or function arguments, they need to be bound to

capture the variable states at the time of the task initiliazation. Such states are represented by an

‘argument’ struct:

1 struct Args_X {

2 t_1 v_1;

3 ...

4 t_n v_n;

5 }

Listing 3.2: Struct for a task expression with references v_1 to v_n

where in the task expression every v_i represents an equally named reference to a variable or argument

of type t_i. The generated function parFun_X is then given an instance of Args_X, which it uses to bind

the references of the task expression to. The full function definition of a task e of type Task<t*> is, thus:

1 void* parFun_X(void* voidArgs) {

2 t* result = malloc(sizeof(t));

3 Args_X* args = (Args_X*) voidArgs;

4 *result = e’;

5 free(voidArgs);

6 return result;

7 }

Listing 3.3: Structure of the generated function of a task

17 http://openmp.org/
18 In the following sections, pthreads will denote both the library and multiple thread instances of the library. The context

should always implicitly clarify which one is currently meant.
19 In the following explanations, X will always denote some arbitrary suffix. It has to be kept in mind, though, that these

suffixes do not necessarily coincide with each other for different kinds of components.
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where e’ is the expression obtained when every local variable reference and function argument reference

r in e is substituted by a reference to an equally named and typed field in args:

r / args–>r (8)

If the embraced expression of a task does not contain any reference of this kind (e.g. only references to

global variables) the argument related lines 3 and 5 are omitted as is clearly the – otherwise empty –

declaration of struct Args_X. In this case e’ equals e except for other reductions of e that might occur

in the translation process of mbeddr.

The generated function of a task of type Task<void> omits the result-related statements:

1 void* parFun_X(void* voidArgs) {

2 t* result = malloc(sizeof(t));

3 Args_X* args = (Args_X*) voidArgs;

4 e’;

5 free(voidArgs);

6 }

Listing 3.4: Structure of the generated function of a void task

Again, any argument-related code is generated as needed.

The aforementioned handle that a task yields is represented by an instance of a corresponding struct

which captures both the initialization state and the computation of the embraced expression.20 The

void pointer of the arguments voidArgs does not keep the arguments’ type information and with it their

byte size. Therefore, an additional field argsSize is needed in order to be able to create copies of the

arguments later on (see 3.2.2 for details).

1 exported struct Task {

2 void* args;

3 (void*) => (void*) fun;

4 size_t argsSize;

5 }

Listing 3.5: Generic struct generated for tasks

As opposed to the unique definitions of other elements that need to be defined for every occurrence

of a task (the ones with the X suffixes), struct Task is generic and is reused for every task. Generic

declarations are kept in fixed, separately generated modules (in which code is organized in mbeddr) and

are imported into the user-defined modules. With these components in mind, the actual translation of a

task expression |.| that contains references v_1 to v_n, which need to be bound, becomes an mbeddr

block expression:21

20 (void*) => (void*) fun is mbeddr syntax for the not easily edible function pointer void *(*fun) (void *) in stan-

dard C99.
21 A block expression contains a list of statements of which the mandatory yield statement returns the result value.
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1 {

2 Args_X* args_X =

3 malloc(sizeof(Args_X));

4 args_X->v_1 = v_1;

5 ...

6 args_X->v_n = v_n;

7 yield (Task){ args_X, parFun_X,

8 sizeof(Args_X) };

9 }

=⇒

1 taskInit(v_1, ..., v_n)

with function declaration

1 inline Args_X taskInit(t_1 v_1, ..., t_n v_n) {

2 Args_X* args_X = malloc(sizeof(Args_X));

3 args_X->v_1 = v_1;

4 ...

5 args_X->v_n = v_n;

6 return (Task){ args_X, parFun_X,

7 sizeof(Args_X) };

8 }

Listing 3.6: Reduction of a task expression to a block expression and further on to a function call

The expression of the yield statement is a C compound literal, which on evaluation creates an instance

of the aforementioned struct Task. The block expression is then further reduced by mbeddr to a call of

a newly generated inline function.22 Without any references to bind, a task is reduced to the compound

literal:

1 (Task_X){ null, parFun_X, 0 }

Listing 3.7: Reduction of a task without references to bind

The reduction of a task is accomplished differently if the task is immediately run via |e|.run. Section

3.2.2 will show how this is done. By the definition of Args_X in listing 3.6, it becomes clear that, due

to the call of malloc in line 3, the arguments of a task – its environment – are stored in the heap before

execution.23 This approach was chosen mainly in order to simplify the generation of the resulting code.

In consequence, the arguments of a task (template) have to be deleted by the programmer by hand

with e.clear. However, one advantage of the chosen implementation is that a task may be passed by

value, e.g. when using a builder function to create tasks, without the possible need to copy multiple

arguments. Instead just the pointer to the heap-managed data is copied. The results of tasks also reside

in the heap, for reasons which are explained later, and must therefore be manually deleted, as well (with

the standard C function free). For this reason, it becomes apparent that the return type of a task must

either be a void type or a pointer type, as was mentioned in the design section.

In the translated code, the clearance e.clear of a task becomes a call of the free function of C, param-

eterized with the arguments of the translated task e’:

1 free(e’.args)

Listing 3.8: Reduction of a task clearance expression

22 Whereas in C for a struct type T, a typedef has to be manually defined by the programmer, this definition is done implicitly

in mbeddr, in order to reference this type directly with T instead of struct T.
23 This memory allocation in the heap should not be mixed up with the one in line 2 of listing 3.4 which will be explained

later on.
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3.1.3 Example Code

The running example concerns itself with the calculation of π, based on the definition given in the

concurrent-pi example for the programming language Go.24 π is approximated by the summation of a

certain number n of terms where n determines the deviation of the result from the actual value of π, i.e.

the result’s precision:

πapprox =
n
∑

i=0

4 ∗
−1i

2i + 1
(9)

In the first scenario, the amount of work is distributed among a certain number of tasks, each of which

calculates the contribution of summands for a range of indices i. The calculation of such a partial sum

for a range [start, end[ (block) of indices is done by the functions:

1 long double calcPiBlock(uint32 start, uint32 end) {

2 long double partialSum = 0;

3 for (uint32 i = start; i < end; ++i) { partialSum += calcPiItem(i); }

4 return partialSum;

5 }

6

7 long double calcPiItem(uint32 index) {

8 return 4.0 * (pow (-1.0, index) / (2.0 * index + 1.0));

9 }

Listing 3.9: Calculation of π via equation 9

The work can be distributed among e.g. 4 tasks, where each task calculates a partial sum for an equally

long block, which is given by:

1 #constant BLOCKSIZE = 300000000;

2 #constant BLOCKCOUNT = 4;

3 #constant THRESHOLD = BLOCKSIZE * BLOCKCOUNT;

These values are then used to initialize an array of tasks:

1 int32 main(int32 argc, string[] argv) {

2 ...

3 Task<long double*>[BLOCKCOUNT] calculators;

4 for (i ++ in [0..BLOCKCOUNT[) {

5 uint32 start = i * BLOCKSIZE;

6 uint32 end = start + BLOCKSIZE;

7 calculators[i] = |calcPiBlock(start, end)|;

8 } ...

9 }

Listing 3.10: Main function of parallel π calculation

24 https://github.com/foamdino/learning-go/blob/master/concurrent-pi/concurrent-pi.go, accessed: 2014-07-03
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The final summation of the calculated blocks will be shown after the presentation of futures in section

3.2.3. The code is translated25 to the building blocks that were introduced in 3.1.2:

1 int32 main(int32 argc, string[] argv) {

2 ...

3 Task[BLOCKCOUNT] calculators;

4 for (int8 __i = 0; __i < BLOCKCOUNT; __i++) {

5 uint32 start = __i * BLOCKSIZE;

6 uint32 end = start + BLOCKSIZE;

7 calculators[__i] = taskInit_0(start, end);

8 }

9 ...

10 }

11

12 struct Args_0 {

13 uint32 start;

14 uint32 end;

15 };

16

17 inline Task taskInit_0(uint32 start, uint32 end) {

18 Args_0* args_0 = malloc(sizeof(Args_0));

19 Args_0->start = start;

20 Args_0->end = end;

21 return (Task){ args_0 , :parFun_0 , sizeof (Args_0)};

22 }

23

24 void* parFun_0(void* voidArgs) {

25 long double* result = malloc(sizeof(long double));

26 Args_0* args = ((Args_0*) voidArgs);

27 *result = calcPiBlock((args)->start, (args)->end);

28 free(voidArgs);

29 return result;

30 }

Listing 3.11: Reduced code of parallel π calculation

The type of calculators is translated into an array type of the generic Task struct type such that the type

specification long double*, which is not needed in the translated code, gets lost in this process. The

task expression |calcPiBlock(start, end)| is translated into a function call of the generated inline

function taskInit_0. This function stores the values of the referenced local variables start and end

in a structure which will later be used as the input for the parallel executed function parFun_0. This

function, the wrapped arguments and their total size are stored in a generic Task structure instance

25 For legibility reasons, the code shown in the following listing and any other mbeddr code presented is a simplified

version of the intermediate code that mbeddr actually generates. The performed changes are restricted to renaming and

negligible syntax changes.
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which is the handle that will later be used to initiate the task. parFun_0 takes its arguments generically

(as is required by the POSIX threads standard) and also returns its result generically via the heap. As the

arguments reside in the heap and are uniquely allocated (which will be explained in 3.2.2), they must be

freed before parFun_0 returns. The calculation of the result in line 27 is straightforwardly given by the

execution of the expression of the original task sub-expression calcPiBlock(start, end) except that

the two variable references are substituted by references to the according fields in the argument struct

instance voidArgs which is cast to the appropriate type Args_0.

3.2 Futures

Whenever a task t is run, a future is generated. Futures in ParallelMbeddr are based on Halstead’s

definition of a future [37]. A future is a handle to a running task that can be used to retrieve the result

of this task from within some other task u. As soon as this happens, the formerly in parallel running

task u joins t, which means that it waits for t to finish execution in order to get t’s result value. The

asynchronous execution is, thus, synchronized.

3.2.1 Design

The syntax e of expressions in mbeddr is extended by:26

e ::= ...| e.run | e.result | e.join

t ::= ...| Future<t>
(10)

Like with tasks, the type of a future is parameterized by its return type. e.run denotes the launch of task

e whereas e.result joins a running task that is represented by a future handle e – i.e. the expression is

used to halt the execution of the calling task until e’s execution is finished – and returns its result. The

last expression e.join can be used to join tasks that return nothing. These properties are reflected in

the typing rules:

Future
e ` Task<t>

e.run ` Future<t>
FutureResult

e ` Task<t*>
e.result ` t*

FutureJoin
e ` Task<void>

e.join ` void
(11)

As was already depicted in the previous section, result returns a pointer to a heap-managed value.

Hence the programmer has to free the value eventually.

3.2.2 Translation

A future of type Future<t*> is translated to an instance of a generic struct that contains a handle of

the thread, a storage for the result value – which is dropped for futures of type Future<void> – and a

flag that indicates whether the thread is already finished:
26 If the expression e has a pointer type the dots (.) are replaced by arrows (->).
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1 exported struct Future {

2 pthread_t pth;

3 boolean finished;

4 void* result;

5 };

Listing 3.12: Struct generated for all futures of type Future<t*>

For every task and future expression shown above, a generic function reflects the semantics in the trans-

lation. The run of a task involves taking a task (line 1), creating a pthread with the task’s function

pointer and arguments (lines 4 and 8), and generating a future27 with the initialized thread handle (line

10):28

1 Future runTaskAndGetFuture(Task task) {

2 pthread_t pth;

3 if ( task.argsSize == 0 ) {

4 pthread_create(&pth, 0, task.fun, 0);

5 } else {

6 void* args = malloc(task.argsSize);

7 memcpy(args, task.args, task.argsSize);

8 pthread_create(&pth, 0, task.fun, args);

9 }

10 return ( Future ){ .pth = pth };

11 }

Listing 3.13: Generic function generated for the reduction of run

The code shows that the arguments to be provided for the thread are copied onto a new location in

the heap, although they already reside in the heap as was shown in section 3.1.2. It is necessary to do

so in order to avoid dangling pointers. These could arise when a task is cleared so that its arguments

get deleted while one or more running instances (pthreads) of this task are not finished yet. Further-

more, generally every thread needs its own copy of the argument data in case it modifies it. A function

corresponding to the previous function, called runTaskAndGetVoidFuture, is generated for futures that

return nothing.

The signature of pthread_create indicates how the result of a threaded function can be received. As

was already , pthread_create expects a function pointer of type void* -> void*, which is the reason

why the function generated for a task is equally typed. The result is thus a generic void pointer. This

implies that the threaded function could generally return the address of a stack-managed value, i.e. a

local variable. Since the existence of the value after thread termination cannot be guaranteed in such

27 In the following a future will always denote either the according concept or an instance thereof. A Future, on the other

hand, will either denote the struct that is used for futures, an instance thereof or the according struct type – the respective

meaning will be explicitly clarified if necessary.
28 Obviously the thread handle is copied into the Future. This is safe as can be seen when looking at the POSIX function

pthread_t pthread_self(void), which also returns a copy of a thread handle. This useful property is worth mentioning

since it does not hold for all POSIX related data structures as is explained in footnote 40.
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a case, a dangling pointer [63] could emerge, which resembles the aforementioned problem for thread

arguments. The only safe alternative that fits the task-future structure well is to allocate memory from

the heap and return the address of this memory (see section 3.1.2). The translation of the result retrieval

is a call of the following function:

1 void* getFutureResult(Future* future) {

2 if (!future->finished) {

3 pthread_join (future->pth, &(future->result));

4 future->finished = true;

5 }

6 return future->result;

7 }

Listing 3.14: Generic function generated for the reduction of result

First, the future is used to join the according thread which blocks the execution until the thread is

finished. Additionally, the result is copied into the designated slot of the future struct instance. Finally,

the result is returned. In POSIX, a thread can only be joined once; every subsequent call causes a

runtime error. In order to allow the user to request the result multiple times nevertheless, the finished

flag is used to determine whether a join should happen. The same basic structure can be found in the

translation of the join function for a future of type Future<void>. The main difference is the missing

result-related code:

1 void joinVoidFuture(VoidFuture* future) {

2 if (!future->finished) {

3 pthread_join (future->pth, null);

4 future->finished = true;

5 }

6 }

Listing 3.15: Generic function generated for the reduction of join

Both aforementioned generated functions take their future parameters by address. This is necessary

to make the setting of the future data work. If struct instances of futures would be passed to these

functions as is, then due to C’s pass-by-value semantics only copies of the provided future arguments

would be filled with data. Thus, the result of a task would never arrive in the original future struct

instance. Furthermore, subsequent calls to these functions would always work with false finished flags

and ultimately trigger runtime errors (for this reason, futures should generally not be copied). The

necessity for future pointers in turn does not assort well with chained future expressions like:

1 Task<int32*> task = |(int32)23|;

2 int32* result23 = task.run.result;

Listing 3.16: Chained future expression task.run.result

In this sample code, the future emerging from task.run is requested for it’s result. Since according to

listing 3.13 this expression returns a value of type Future and result expects a pointer thereof the code
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conflicts with the definition of the translation of result in listing 3.14. A first approach to solve this

problem would be to change the line to:

1 int32* result23 = (&(task.run))->result;

Listing 3.17: Naïve solution for chained future expression

This, however, is not allowed because task.run is no lvalue [60, pp. 147-148] which prohibits the

utilization of the address operator on this expression. Instead, in order to allow for chainings like

task.run.result, two wrapper functions, one for each join and result, are provided. These functions

each take a future by argument, thus binding it to an addressable location, and call the generated

functions that correspond to join, respectively result, in turn:

1 void* saveFutureAndGetResult(Future future) {

2 return getFutureResult(&future);

3 }

4

5 void saveAndJoinVoidFuture(VoidFuture future) {

6 joinVoidFuture(&future);

7 }

Listing 3.18: Helper functions for chained future expressions

By making use of the presented functions, the reductions of e.run, e.join (e->join) and e.result

(e->result) – where e’ is the reduced value of e – directly become function calls thereof:

1 runTaskAndGetFuture(e’) // e.run

2 runTaskAndGetVoidFuture(e’) // e.run, if e is of type void

3 ((t)getFutureResult(&e’)) // e.result => e is of type Future

4 ((t)getFutureResult(e’)) // e->result => e is of type Future*

5 joinFuture(&e’) // e.join => e is of type Future

6 joinFuture(e’) // e->join => e is of type Future*

Listing 3.19: Reductions of run, result and join

The type cast of the result returned by getFutureResult(&e’) is necessary since it returns a generic

pointer of type void* which may not be compatible with the receiver of the value. In consequence, the

result is cast to the result type of the future for which e.result was type checked. For expressions of

the kind |e|.run, the reduction to a call of runTaskAndGetFuture() is not applied. Instead, a call to

a specific function futureInit_X that combines both the logic of the task initialization and the future

initialization is created. If e contains references to local variables or arguments, then similar to the

taskInit_X() expression block from section 3.1.2, the future initialization function first allocates mem-

ory from the heap for the values of the referred variables. To this end, it uses an instance of the Args_X

struct that was created for the task to store the values. Afterwards, instead of wrapping the arguments

struct inside a Task struct instance, the function directly declares a pthread and initializes it with the

arguments and a pointer to the function parFun_X that was created for the task:
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1 Future futureInit_X(t_1 v_1, ..., t_n v_n) {

2 Args_X* args_X = malloc(sizeof(Args_X));

3 args_X->v_1 = v_1;

4 ...

5 args_X->v_n = v_n;

6 pthread_t pth;

7 pthread_create (&pth, null, :parFun_X, args_X);

8 return (Future){ .pth = pth };

9 }

Listing 3.20: Generated function for |e|.run

If e does not contain any references to local variables or function arguments the arguments-related code

is omitted and null is given as argument parameter to pthread_create():

1 Future futureInit_X() {

2 pthread_t pth;

3 pthread_create(&pth, null, :parFun_X, null);

4 return (Future){ .pth = pth };

5 }

Listing 3.21: Generated function for |e|.run if e contains no references to bind

If the type of e is void, the struct type Future is replaced by VoidFuture in either declaration of

futureInit_X. The code shows why no clearance of the arguments for a task in the case of a direct

run of the task is required, as was mentioned in section 3.1.1: Since the struct instance args_X is only

used for exactly one running task, no further copies of the arguments are needed. Hence, the freeing of

the heap-allocated memory can be left to the function parFun_X. futureInit_X is called in the reduction

of |e|.run:

1 futureInit_X(v_1, ..., v_n)

Listing 3.22: Reduction of |e|.run

Whereas the following section shows example code for the generation of expressions e.run to calls of

runTaskAndGetFuture, the reduction to a call of futureInit_X will be depicted in section 3.3.4.

3.2.3 Example Code

The running example concerning the π approximation from section 3.1.3 can now be extended with

the result-related code. The tasks that were previously declared – and can be regarded as templates for

according running instances of task – are used to initiate a running task instance of each:

1 int32 main(int32 argc, string[] argv) {

2 Task<long double*>[BLOCKCOUNT] calculators;

3 Future<long double*>[BLOCKCOUNT] partialResults;

4 // ... task declarations
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5

6 for (i ++ in [0..BLOCKCOUNT[) {

7 partialResults[i] = calculators[i].run;

8 calculators[i].clear;

9 }

10

11 for (i ++ in [0..BLOCKCOUNT[) {

12 result += *(partialResults[i].result);

13 free(partialResults[i].result);

14 }

15 }

Listing 3.23: Result-related code of the main function of parallel π calculatoin

For every task that is run, a future of the same type is created. After the initialization, the tasks (i.e. task

templates) are cleared in order to avoid memory leaks. The programmer is free to choose whether he

is willing to do so. If only a very limited amount of memory is used by the tasks, the clearance might

not be deemed necessary. In the second loop, the futures of all running tasks are used to retrieve and

accumulate all partial π results. In the end, their memory is freed since they are located in the heap.

Like with tasks, the freeing of future results is up to the programmer and, at the end of the program,

might not be even useful. The translation of the new code becomes:

1 int32 main(int32 argc, string[] argv) {

2 Task[RANGECOUNT] calculators;

3 Future[RANGECOUNT] partialResults;

4 // ... task declarations

5

6 for (int8 __i = 0; __i < RANGECOUNT; __i++) {

7 partialResults[__i] = runTaskAndGetFuture(calculators[__i]);

8 free (calculators[__i].args);

9 }

10

11 for (int8 __i = 0; __i < RANGECOUNT; __i++) {

12 result += *(((long double*) getFutureResult(&partialResults[__i])));

13 free((long double*) getFutureResult(&partialResults[__i]));

14 }

Listing 3.24: Reduction of result-related code of the main function

As the code shows, the future type becomes the type of the according generic Future struct. Like

the translation of the task type it loses the type parameterization long double*, which is not nec-

essary any more. The task running expression calculators[i].run and result retrieval expres-

sion partialResults[i].result are translated to calls of the newly generated generic functions

runTaskAndGetFuture(), respectively getFutureResult(). Their definitions can be found in the pre-

vious section 3.1.2. Due to its genericity, runTaskAndGetFuture() returns a result of type void*. In

consequence, its result must be cast by the compiler to an appropriate pointer type which in this case
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is long double* like in the original task and future definitions. Finally, the task clearance is simply

reduced to a call of C’s free function, which is given the pointer to the argument struct instance that the

task calculators[i] holds.

3.3 Shared Memory

The previous chapters introduced the means to enable parallel execution of code in terms of tasks and

futures. Still missing from a discussion of ParallelMbeddr’s building blocks is the communication between

tasks. The communication model of choice for ParallelMbeddr is shared memory. The reason for this

choice follows from the objectives for a communication model: it should offer a reasonable performance,

considering that it is supposed to be used in embedded systems; it should be reasonably thread-safe by

design in order to avoid the trip hazards that are involved with low-level synchronization approaches

like mutexes. For performance reasons, transactional memory seems not to be ready for the embedded

domain. By following argumentation, for a first communication design, message passing does not offer

profound advantages in comparison to shared memory if the access to the shared memory is controlled in

a sound way. Usually message passing forbids shared memory between two parallel units of execution.

Instead, communication is realized via message sends. A strict separation of memory does not fit the

usual C work-flow concerning pointer arithmetic. Therefore, in order to reduce performance losses due

to expensive memory copies, some form of memory sharing would have to be introduced into a message

passing model. As this would lead to the same problems that already arise with the general shared

memory model, the opposite way is chosen: Instead of introducing shared memory in a message passing

model, a shared memory model is designed, on top of which message passing can be attached in order

to simplify the communication between tasks.29

Memory that is to be shared between two tasks must be explicitly declared by an according type. A

variable of this type denotes a shared resource. Thus, a shared resource can be regarded as a wrapper

of data that is to be shared. In order to make use of a shared resource it has to be synchronized first.

Specific language elements are used to access and change the value of a shared resource. The chosen

approach enables the programmer to use shared data both globally and locally and, like with any other

data, nest them inside structs and arrays. Additionally, the new data type enables the IDE to ensure –

despite the (almost) unlimited possibilities to structuring shared resources – that data are shared in a

sound30 way.

3.3.1 Design

The resources to be shared are typed with the shared resource type:

t ::= ...| shared<u> | shared<shared<u>∗>

u ::= t void 6= u 6= t∗
(12)

29 Such an extension would be a future concern and is not implemented in this work.
30 ‘Sound’ in this context means ‘atomic’. Only one task at a time should be able to access a shared datum.
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The type parameterization denotes the base type of a shared type, i.e. the type of the data that is wrapped

by a shared resource. The base type of a shared resource can be either of mbeddr’s C-types, with two

exceptions. It must not be void because a shared resource has to wrap an actual value. Furthermore

due to reasons that will be explained in 3.4, the base type may not denote a pointer to a value that is not

shared.31 Further restrictions apply to shared types, which are also discussed in 3.4. The same applies to

the .set expression by which the value of a shared resource can be modified; the value can be retrieved

via .get:

e ::= e.get | e.set(e) (13)

SharedGet
e ` shared<t>

e.get ` t
SharedSet

e ` shared<t> e′ ` t ′ t ′ <: t
e.set(e′) ` void

(14)

In order to access (read or write) the value via .get or .set it must be synchronized first. For this

purpose the syntax stmts of statements in mbeddr is extended by the synchronization statement sync.

sync contains a synchronization list of shared resources to synchronize and a block of statements:

stmt ::= ...| sync(res, ..., res){ stmt...stmt } (15)

res denotes the syntax of possible synchronization resources. Each synchronization resource res wraps

an expression e which evaluates to a shared resource. e can be either of type shared<t> or of type

shared<t>*. A shared resource can be synchronized as it is (as a synchronization resource) or be named

(the synchronization resource then becomes a named resource):

res ::= e | e as [name] (16)

The latter allows the programmer inside the sync statement to refer to the result of an arbitrary complex

expression, which evaluates to a shared resource, inside the synchronization statement. Hence, a named

resource (i.e. a synchronization resource with a name) can be seen as syntactic sugar for a local variable

declaration, initialized with a shared resource, and a synchronization resource with a reference thereof.

The type of such a reference is given by the shared resource that the expression wrapped by the named

resource evaluates to. Due to C’s copy semantics, this type is restricted to shared<t>*. This enforcement

ensures that the named resource actually synchronizes the original shared resource and not a copy

thereof, of which a synchronization would be useless. The scope of a named resource is restricted

to the according synchronization statement. More precisely, a named resource n of a synchronization

statement s can be referenced from anywhere inside the abstract syntax tree (AST) of the statement list

31 In other words: A pointer wrapped in a shared resource must point to a shared resource itself. Due to the comprehensive

type system that mbeddr is equipped with and that is only partially existent in C99, the compatibility of base types of

shared types was mainly tested with the primitive types of C99 as well as pointer types, array types, struct types and type

definitions (typedefs). Future work will have to be done to demonstrate and establish full compatibility with the rest of

mbeddr’s types.
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of s. Furthermore, it can be referenced from within the expression of any synchronization resource that

follows n in the synchronization list of s, e.g.:

1 shared<shared<int32>> v;

2 // vContent is declared before it is used in the list => valid

3 sync(v, &(v.get) as vContent, &vContent->get as vContentContent) {

4 vContentContent->set(0);

5 }

6 // vContentContent is not in scope, here => invalid

7 vContentContent->set(1);

Listing 3.25: Synchronization statement with named resources

The introduction of named resources was mainly motivated by the lexical scoping of synchronization

resources: In order to determine whether the target of .get or .set is synchronized, ParallelMbeddr

checks whether the target is a reference to a visible and synchronized variable or to a named resource.

This implies that shared resource expressions other than variable references (e.g. paths and function

calls) must be bound by named resources, in order to be able to access their wrapped values via .get or

.set.

In contrast to Java’s synchronization blocks and methods [67, p. 279], the synchronization of tasks is

not computation oriented, but data oriented. The crucial difference is that a synchronized block A in

Java is only protected against simultaneous executions by multiple threads. Thus, it is valid to access the

data that are accessed during the execution of A via some other computation whose protecting block (if

any) is unrelated to A. Since low-level data races can obviously not be guaranteed to be excluded with

this scheme, ParallelMbeddr ties the protection to the data that is to be shared. Every shared resource,

i.e. block of shareable data, is therefore protected separately and application-wide. ParallelMbeddr does

not yet face higher-level data races, which involve multiple shared resources. Dependencies between

shared resources must be resolved by the programmer who has to wrap the dependent data inside a

single shared resource, e.g. as fields of a struct. Concluding, if two synchronization blocks, which

are about to be executed in parallel, contain synchronization references that overlap in terms of their

referenced shared resources, their executions will be serialized. For instance let t1 and t2 be two tasks

that have access to the same shared resource which is referenced by a global variable value. t1 wants

to synchronize value, simultaneously t2 wants to synchronize valuePointer which points to value’s

shared resource and some other shared resource that is available via the variable other:

1 shared<int32> value;

2 shared<int32>* valuePointer = &value;

3 shared<double> other;

Listing 3.26: Variables that reference equal shared resources

The synchronization semantics will then cause one thread to wait for the other to finish the execution

of the conflicting, and thus blocking, synchronization statement before it starts the execution of its own

synchronization statement. The execution order might therefore be changed in the following manner:
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Task 1

 

sync(value) {  
  value.set(0);
}

 

Task 2

 

  sync(other, value) { 
    value.set(0) 
  }

 

Conflicting
simultaneous

synchronization

−→
actual execution

Task 1

 

sync(value) {  
  value.set(0);
}

 

Task 2

 

  sync(other, value) { 
    value.set(0) 
  }

wait for finish

...

Figure 2: Serialized execution of conflicting synchronization statements

The possibility to refer to multiple shared resources in the synchronization list of a synchronization

statement is not mere syntactic sugar for nested synchronization statements. Instead, the semantics

of a synchronization list are that all referenced shared resources are synchronized at once, but with

a possible time delay. Due to the design of the underlying implementation, deadlocks, as a result of

competing synchronization statements, are thus avoided.32

As a result of the fact that generally the access to shared resources is resource-centric, a value wrapped

in a shared resource which in turn contains nested shared resources is independently protected from the

latter. Therefore, a shared resource of a struct with a shared member b is independently synchronized

from b:

1 struct A {

2 int32 a;

3 shared<int32> b;

4 }

5 shared<A> sharedA;

6 shared<int32>* sharedB;

7 sync(sharedA) { sharedB = &(sharedA.get.b); }

Task 1

 

 sync(sharedA) {
   sharedA.get.a = 0; 
 }  

 

Task 2

 

    sync(sharedB) { 
      b->set(1); 
    }

 

Independent 
synchronization

Figure 3: Parallel execution of non-conflicting synchronization statements

For this reason, dependent data should not be separately protected by shared resources, since otherwise

data-races could emerge.

32 Nevertheless, deadlocks can obviously still occur if nested synchronization statements compete for the same resources in

an unsorted order.
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The translation of shared resources is currently only supported for executable programs. Therefore, it is

not safe to use shared types and synchronization statements in libraries that are written with mbeddr. The

explanations of the following section are thus limited to according scenarios, although the translation

for library code would only change in details.

3.3.2 Translation of Shared Types

In order to fully understand the translation of synchronization statements, the translation of shared types

is given first. For the implementation of shared types in C, two main solutions are conceivable, which

differ in the coupling that they exhibit between the data that is to be shared and the additional data

required for access restriction, i.e. synchronization. In any case, a solution must make use of additional

data that can be used to synchronize two threads which try to read or write the shared data. To this end,

the most basic synchronization primitive was chosen: each protected data item is assigned exactly one

mutex.

In the first solution, the data to be shared is stored as if no protection scheme existed at all. Additionally,

all mutexes that are created by the application are stored in one global map, which indexes each mutex by

the memory address of its corresponding shared datum. This approach offers the advantage that access

to the data itself is not influenced by the mutex protection: Every access e.get of the value of a shared

resource can directly be translated into a reference to the wrapped value. Additionally, since the mutexes

are globally managed, all data that is returned by a library can be easily made (pseudo-) synchronization

safe. For instance, if a pointer to an arbitrary memory location loc is returned, the pointed-to address

can be used to create a new mutex and add a mapping to the global mutex map. However, this on-

the-fly protection of memory locations can incur synchronization leaks: The compiler cannot guarantee

that address returning functions with unknown implementation will not leak their returned values to

some other computation which accesses the according memory unsynchronized. This implies that such

protection would only be safe if every reference to loc was wrapped in some shared resource which,

in this scenario, is not feasible. Hence, a design was chosen that does not allow for such protection

(the interaction with library code is a concern for the future). Consequently, a global map would not

be beneficial in this regard. A map solution would entail a space-time trade-off. For instance, Google’s

C++ dense_hash_map, 33 provides comparatively fast access to its members but imposes additional

memory requirements in comparison to slower hash map implementations34. In spite of their constant

time-complexity for accesses, a disadvantage of hash maps is the non-deterministic performance35 and

increased access time caused by hash collisions [44].

The second solution for the implementation of shared types keeps each shareable datum and its mutex

together. An instance of a struct with member fields for both components is used in place of the bare

33 http://goog-sparsehash.sourceforge.net/doc/dense_hash_map.html, accessed: 2014-07-25
34 See http://incise.org/hash-table-benchmarks.html, accessed 2014-07-25, for details. This examplary library should be

considered as an illustrative example for the general space-time trade-off that is inherent with maps.
35 Although real-time applications with their time-wise constraints are not a primary concern of this work, it should never-

theless be kept in mind that they are part of the embedded domain. Therefore, a solution that considers the characteristics

of this domain for the crucial implementation decisions of ParallelMbeddr is at least regarded advantageous.
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datum to be shared. In contrast to the aforementioned solution, a reference to the value e.get needs

one level of indirection via the struct instance. However, the access to a mutex is simplified. As with the

value, it can be retrieved by a member access to the corresponding struct field, whereas the map solution

requires a map lookup to get the mutex (plus additional delay to make any modifying access to the map

thread-safe). The computational overhead imposed by a struct member lookup is deemed negligible in

the overall application performance. On the other hand, the space required for the struct equals that

of the individual fields (value and mutex) plus additional padding [50, pp. 303 ff.] that is required to

arrange the struct fields along valid memory addresses. The latter depends on the size of the data to be

stored. In order to keep the padding as small as possible, smart member ordering should be applied.

For this work, the struct solution was chosen in order to keep the access time of mutex lookups small

and deterministic (except for unforeseeable delays produced by the memory layout) while not imposing

too much space and computation overhead for datum lookups. For each kind of shared type shared<t>

with the translated base type t’ a separate struct is generated:

1 struct SharedOf_t {

2 pthread_mutex_t mutex;

3 t’ value;

4 }

Listing 3.27: Struct generated for a shared type

Any nested shared types are, hence, translated first. For implementation reasons, nested typedefs and

constants used in array types are also resolved in this process.36 Depending on the base type of the shared

type, the generated struct declaration is stored either in a generic module or in a newly generated other

module. The following illustration depicts the tree for a type shared<t> whose nodes are made of

types and whose edges are formed by the base type relationship of shared types, array types and pointer

types,37 e.g:

36 Although the resolution of typedefs and constants impedes corresponding (test-wise) adjustments made by the program-

mer in the translated C code, this is currently not deemed an issue since, generally, changes should always be made from

within mbeddr, i.e. on the original code.
37 Clearly, this tree will have only one branch.
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1 struct A { int32 val; }

2 shared<shared<A[10][20]>*>
−→

the simplified type AST

shared<.>

has base type

.*

has base type

shared<.>

has base type

.[10][20]

has base type

struct A

Figure 4: Abstract syntax tree of a nested shared resource type

If the leave of the tree is a primitive C type the struct declaration is stored in a generic module. In any

other case the leave must be some struct type s. In order to preserve the visibility of the corresponding

struct in the newly generated struct SharedOf_t, the latter is stored in the same module. Since the

generation of code related to shared types can diminish the legibility of the resulting code profoundly

for every such module, a specific SharedTypes_X module is created and imported into the module that

declares s. SharedTypes_X is used to store struct declarations like SharedOf_t. Furthermore s is lifted

into it in order to make it visible in the member declaration value of SharedOf_t. For any field of

s whose type tree contains another user-defined struct type, the corresponding struct declaration is

either lifted as well (and recursively treated in the same way), or imported by its module. Should this

separation of generated code used for shared type declarations and other user-defined code not proof

well in praxis, it could easily be deactivated. With the former generation of the struct declaration in

mind, a type shared<t> is reduced to:

1 SharedOf_t

Listing 3.28: Reduction of a shared resource type

The reduction of the expressions e.get and e.set(f) makes use of the value field of the SharedOf_t

struct. The expressions are basically reduced to a retrieval of the field, respectively an assignment to the

field:

1 e’.value respectively 1 e’.value = f’

Listing 3.29: Reductions of get and set

If e’ has a pointer type, the expressions e->get and e->set(f) are reduced to:
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1 e’->value respectively 1 e’->value = f’

Listing 3.30: Reductions of get and set for a pointer

The mutex of the struct SharedOf_t in the equally named struct field mutex, which is used to synchronize

one variable of an according type, must be initialized prior to any usage. This is done implicitly by

generated code, in order to free the programmer from this task. Accordingly, mutexes must be released

before they get out of scope to prevent memory leaks. In the generated code, both functionalities make

use of corresponding functions, i.e. for every type – which is one of the following types – a pair of

mutexInit–mutexDestroy functions is generated:

• shared types whose base types are shared types or for whom mutex functions are recursively gen-

erated;

• array types which are not base types of array types themselves and whose base types are either

shared types or struct types for whom mutex functions are recursively generated;

• struct types whose structs contain at least one field with a type for which the same relation holds

as for the aforementioned types.

For example, a type shared<int32>[42][24] would enforce the generation of one mutex initialization

and one mutex destruction function. shared<int32>* on the other hand would not. Any variable v of

the latter type would point to a shared resource which must be referenced directly by another variable

v’ of type shared<int32> or be contained in the memory-addressable value of some variable v” of a

more complex type. The declaration of v’, respectively v”, would then trigger the initialization of the

mutex of the shared resource that v points to. The resulting mutex initialization functions for shared

types of the aforementioned kind are declared as follows:

1 // for a proper shared type shared<t> and the type t’ that t is reduced to

2 void mutexInit_X(SharedOf_t’* var) {

3 pthread_mutex_init(&var->mutex, &mutexAttribute);

4

5 // either if t is a shared type or a struct type:

6 mutexInit_X’(&var->value);

7

8 // or if t is an array type t[i_1]...[i_n] of 1 to n dimensions:

9 mutexInit_X’((SharedOf_t’*...*)var->value, i_1, ..., i_n);

10 }

Listing 3.31: Mutex initialization functions

For a shared resource, first the mutex of the corresponding translated struct is initialized by a call to the

POSIX function pthread_mutex_init(), which takes a mutex pointer and a mutex attribute pointer.38

Then – since by aforementioned conditions the shared resource contains another shared resource – a call

38 The meaning of the mutex attribute will be explained later on.
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to the appropriate mutex function for the contained value is triggered. Depending on whether the base

type of the current shared type is an array, additionally the dimension sizes for this base type may need

to be provided as well (see below for details).

For shared ressoures that are nested in arrays, a nested iteration over all elements of the correspond-

ing possibly multidimensional array with calls to either the generated mutex functions or the function

defined by the POSIX standard are triggered.

1 // for a proper array type t[]...[] of 1 to n dimensions where ’...’ denotes the occurrence of

2 // an according number of symbols and t’ denotes the reduced-to type

3 void mutexInit_X(t’*...* var, int32 size_0, ..., int32 size_n) {

4 for (int32 __i_0 = 0; __i_0 < size_0; __i_0++) {

5 ...

6 for (int32 __i_n = 0; __i_n < size_n; __i_n++) {

7 // in case t is a struct type

8 mutexInit_X’(&var[__i_0]...[__i_n]);

9

10 // or, in case t is a shared type with generic C base type:

11 pthread_mutex_init(&var[__i_0]...[__i_n].mutex, &mutexAttribute);

12 }

13 ...

14 }

15 }

Listing 3.32: Mutex initialization function for multi-dimensional arrays

For structs with nested shared resources, for each field that is or contains a shared resource, either the

pthread_mutex_init() function is called directly or the mutex initialization is done by a call to the

already generated function that is type compatible with this field (by possibly providing additional array

dimensions):

1 // for a proper struct type t of a struct t { u_1 f_1; ...; u_n f_n } and according reduced

2 // field types u_1’ to u_n’

3 void mutexInit_X(SharedOf_t* var) {

4 ...

5 // if u_i demands further initialization and it is a struct type or a shared type

6 mutexInit_X’(&var->f_i);

7

8 // if u_i demands further initialization and is an array type u_i[j_1]...[j_n] of 1 to n dim.

9 mutexInit_X’((SharedOf_u_i’*...*)var->f_i, j_1, ..., j_n);

10

11 // or, if u_i is a shared type with a generic C base type:

12 pthread_mutex_init(&var->f_i.mutex, &mutexAttribute);

13 ...

14 }

Listing 3.33: Mutex initialization function for structs
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The signature of mutexInit_X() for arrays in line 3 of listing 3.32 shows that those are not passed as

arrays to the mutex functions, but as pointers. This is due to the necessity of declaring multidimensional

arrays at least partially with the size for each dimension (e.g. int[][] would be missing at least one

dimension size). Nevertheless it would not make sense to declare one mutex function for each shape

of dimension size. Since arrays are treated like pointers internally when they are passed as function

arguments, it is completely safe to cast them to appropriate pointer types and to use equal types for the

according function parameters.

The deletion of mutexes is defined quite similar to the initialization, with the main difference that the

utilized according pthreads function only takes one mutex. Therefore, only the deletion of mutexes

nested in resources of shared types is shown:

1 void mutexDestroy_X(SharedOf_t’* var) {

2 pthread_mutex_destroy (&var->mutex);

3 // ... further call to a mutexDestroy_X function equivalent to mutexInit_X shown above

4 }

Listing 3.34: Mutex destruction function

The presented functions are used to initialize mutexes at the beginning of their life span and delete them

right before the corresponding end. For mutexes referred to by global variables this means that they must

be initialized at the beginning of the entry function of the program.39 As already forced for executable

programs by mbeddr, the programmer thus has to specify a main function (the construction of libraries

is not supported by ParallelMbeddr, yet). Similarly, mutexes of local variables are initialized right after

their declaration, whereas mutexes of function arguments are declared at the beginning of the related

function.40 The deletion of mutexes for shared resources must be accomplished before they get out of

scope which, again, depends on the kind of variables they are referred to.

Mutexes for global variables need not be destroyed at all in order to avoid memory leaks. Their lifetimes

span the whole program execution so that the memory allocated to these mutexes will be cleaned up

by the operating system. On the other hand, the mutexes of local variables must be destroyed before

they get out of scope. Hence, mutex destruction calls are added at the end of the surrounding scopes of

mutexes. If control flow breaking statements (return, break, continue, goto) are present, additional calls

39 Due to the way mutexes are used in ParallelMbeddr (recursively and nested in structs – as will be shown in the following

paragraphs) and the peculiarities of C and the POSIX standard, there is no way to combine the definition and the

initialization of mutexes.
40 It is not an obvious choice to enable the programmer to use function arguments of shared resources: C’s pass-by-value

semantics of function parameters causes parameters to be copied into functions. Therefore, a shared resource which

is not passed by its address but by its actual value will provoke the generation of another, equal shared resource at

the beginning of the function execution. This copy is synchronization-wise completely unrelated to the original shared

resource, since mutex copies cannot be used to lock with their origins [5]. Furthermore, they have to be initialized

and destroyed separately. The use of shared resources in such a manner can confuse programmers who are not aware

of this fact. Nevertheless, ParallelMbeddr allows this kind of utilization of shared resources in order to not burden the

programmer with having to copy large structs that contain shared resources component-wise if the shared resource data

is not of relevance. Depending on the feedback of future users, it should be considered whether warnings for unintended

misuse of shared resources in this way might be helpful.
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are inserted according to the following rules. Let c denote a control-flow-breaking statement that occurs

in the AST of the same function as the declaration l of some local variable, which refers to a (nested)

shared resource. If c is part of the AST of any statement that follows l41 and

• c is a return statement and refers to a function or a closure whose AST contains l or

• c is a break statement and refers to a loop or a switch statement case whose AST contains l or

• c is a continue statement and refers to a loop whose AST contains l or

• c is a goto statement and refers to a label outside the AST of any statement that follows l,42

c must be preceded with a destruction call of the mutex of the shared resource of l (compare with the

synchronization stopping rules below). Allocated memory that is not freed at the end of the program

is automatically released by the operating system. Hence, a return statement that refers to the entry

function of the program need not be preceded with destruction calls of its local shared resources. The

proper destruction of a mutex of an argument of function f just requires according function calls at the

end of f and before any return statement that refers to f.

Like inside the declarations of the mutex initialization functions explained above, the actual initialization

function to call for a variable or argument is either one of the mutexInit_X() functions or a direct call

of pthread_mutex_init() for ‘simple’ shared resources of generic C types, e.g.:43

1 // simple shared resource

2 shared<int32> v1;

3

4 // complex shared resource

5 shared<int32>[2][3] v2;

=⇒

1 SharedOf_int32_0 v1;

2 pthread_mutex_init(&v1.mutex, &mutexAttribute);

3

4 SharedOf_int32_0[2][3] v2;

5 mutexInit_0((SharedOf_int32_0**)v2, 2, 3);

Listing 3.35: Mutex initialization calls for local variables

To recap: The mutex of a shared resource is either directly initialized and destroyed via appropriate

pthreads functions or it is indirectly handled via functions that are based on the types of the values

that shared resources are nested in. This approach was chosen in order to reduce the amount of code

duplication that would occur if mutexes of shared resources would be handled inline for every accord-

ing variable. As a result, the generated code’s readability is enhanced. The additional computational

overhead due to function calls and returns should be regarded as an optimization concern of a further

compilation step by a compiler like gcc.

41 In other words, only those control-flow-breaking statements cs that are either one of the statements stmts which have the

same AST parent p and follow l in the statement list of p or are contained in the AST of some stmt are considered.
42 Since goto statements can considerably disorganize the program flow they should be only used with great care in Paral-

lelMbeddr. Specifically the initialization of mutexes is not protected against misuse of these statements.
43 The same reasoning holds for calls of mutex destruction functions.
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ParallelMbeddr does not prevent the programmer from structuring the synchronization statements in

such a way that a task will synchronize a variable of a shared resource multiple times (recursive synchro-

nization). The following code depicts such behavior:

1 shared<int32> sharedValue;

2 sync(sharedValue) {

3 sync(sharedValue) {

4 sharedValue.set(42);

5 }

6 }

Listing 3.36: Recursive synchronization

Since each synchronization statement locks the mutexes of the referred shared resources (see below for

details), a recursive synchronization results in a recursive lock of the corresponding mutex. Mutexes as

defined by the POSIX standard must be specifically initialized in order to allow for this behavior:44 A

mutex attribute that specifies the recursiveness must be defined and initialized first. It can then be used

by any number of mutexes. For this purpose, an application-wide attribute is defined in a generic module

that is imported by all user-defined modules. It is initialized at the beginning of the main function:

1 // inside the generic module:

2 pthread_mutexattr_t mutexAttribute

3 // at the beginning of main:

4 pthread_mutexattr_init(&mutexAttribute);

5 pthread_mutexattr_settype(&mutexAttribute, PTHREAD_MUTEX_RECURSIVE);

Listing 3.37: Global mutex attribute for recursive mutexes

3.3.3 Translation of Synchronization Statements

Every synchronization statement is reduced to its statement list – as a block –, surrounded with calls to

functions that control the synchronization of the mutexes. The reduction of such a statement is given

either by

1 sync(e) stmt_list =⇒

1 startSyncFor1Mutex(&e.mutex);

2 stmt_list’

3 stopSyncFor1Mutex(&e.mutex);

Listing 3.38: Reduction of a synchronization statement

in case it contains only one synchronized resource, or else by
44 By default, a recursive lock results in undefined behaviour because a default mutex does not have a lock count which is

required to make recursive locks work: http://linux.die.net/man/3/pthread_mutex_trylock, accessed: 2014-07-28.
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1 sync(e_1, ..., e_n) stmt_list =⇒

1 startSyncForNMutexes(&e_1.mutex, ..., &e_n.mutex);

2 stmt_list’

3 stopSyncForNMutexes(&e_1.mutex, ..., &e_n.mutex);

Listing 3.39: Reduction of a synchronization statement with multiple synchronization resources

The statements are kept inside their statement list block in order to preserve the scope of local variables

inside synchronization statements. A synchronization statement list block is reduced to another block

where each statements that breaks the program flow structure may be preceded by an identical call

of the stopSyncForNMutexes() function as in line 3: Let s be a synchronization statement and c be a

control-flow-breaking statement which is nested in the AST of s’ statement list. Then c is preceded with

a call to stopSyncForNMutexes() if one of the following cases holds:

• c is a return statement and refers to a function or a closure whose AST contains s;

• c is a break statement and refers to a loop or a switch statement case whose AST contains s;

• c is a continue statement and refers to a loop whose AST contains s;

• c is a goto statement and refers to a label outside the AST of s.45

In this manner, inconsistent synchronization states of shared resources due to a control flow break by

the aforementioned statements are omitted. Since the occurrence of such a statement may also force

ParallelMbeddr to insert mutexDestroy_X() calls, a careless mixture of mutex unlocking and destruction

calls can cause runtime errors [5]. The generator therefore ensures that any destruction calls are put

behind the generated unlocking calls.

For each arity of synchronization resources, separate versions of the start- and stopSyncForNMutexes()

functions are declared inside a generic C module. A stopSyncForNMutexes() function straightforwardly

redirects its mutex parameters to calls of the pthread_mutex_unlock function:

1 // the corresponding function ’stopSyncFor1Mutex()’ for exactly one mutex is skipped here

2 void stopSyncForNMutexes(pthread_mutex_t* mutex_1, ..., pthread_mutex_t* mutex_n) {

3 pthread_mutex_unlock (mutex_1);

4 ...

5 pthread_mutex_unlock (mutex_n);

6 }

Listing 3.40: Synchronization stopping function

Abstracted from the details of the actual implementation, synchronization statements synchronize their

resources atomically, as was mentioned in the preceding design section. Since one or more mutexes

can be tentatively locked by multiple threads simultaneously, specific contention management has to be

45 Similarly to the aforementioned problem with mutex management functions, goto statements can impair synchronization

states and should therefore be used with great care. This holds particularly for goto statements which cause jumps into

synchronization statements from outside.
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conducted. The illusion of atomic synchronization is realized by an implementation of the obstruction-

free46 busy-wait protocol Polite. In order to resolve conflicts, Polite uses exponential back-off. The

according back-off function is explained further down. The synchronization function tries to lock every

mutex as given by its arguments. On failure, it releases every mutex that was locked so far, uses the back-

off function to delay its execution for a randomized amount of time, and repeats afterwards. This scheme

enables competing threads to (partially) proceed and avoid deadlocks due to unordered overlapping

mutex locks.47

1 // again, the equivalent function declaration for one mutex is skipped

2 void startSyncForNMutexes(pthread_mutex_t* mutex_0, ...,

3 pthread_mutex_t* mutex_m, pthread_mutex_t* mutex_n) {

4 uint8 waitingCounter = 0;

5 uint16 mask = 16;

6 uint32 seed = (uint32)(uintptr_t) &waitingCounter;

7

8 while (true) {

9 if ([| pthread_mutex_trylock (mutex_0) |] != 0) {

10 backoffExponentially(&waitingCounter, &mask, &seed);

11 }

12 else if ([| pthread_mutex_trylock (mutex_1) |] != 0) {

13 [| pthread_mutex_unlock (mutex_0) |];

14 backoffExponentially(&waitingCounter, &mask, &seed);

15 } ...

16 else if ([| pthread_mutex_trylock (mutex_n) |] != 0) {

17 [| pthread_mutex_unlock (mutex_m) |];

18 ...

19 [| pthread_mutex_unlock (mutex_0) |];

20 backoffExponentially(&waitingCounter, &mask, &seed);

21 }

22 else { break; }

23 }

24 }

Listing 3.41: Synchronization starting function

46 Busy-waiting means that the thread will repeatedly test a condition until it is met, without doing actual useful work [56,

p. 166]. Thus, it is an alternative to suspending a thread and revoking it later on when some condition is met (which can,

e.g., be realized by condition variables as provided by POSIX threads [18, p. 77]). Obstruction-free means that the execu-

tion of any thread will progress when at some time the thread is run in isolation, i.e. when the execution of obstructing

other threads is interrupted meanwhile. The existence of obstruction-freedom guarantees that no deadlocks will occur

[12]. However, livelocks and starvation are not necessarily avoided. Stronger degrees of non-blocking algorithms like

lock-freedom and wait-freedom tackle these problems (partially), but are not relevant for this work. Further informa-

tion on the latter is for instance provided by http://preshing.com/20120612/an-introduction-to-lock-free-programming/,

accessed: 2014-07-28.
47 Again, the presented scheme does not prevent the programmer from nesting the synchronization statements in such a

manner that deadlocks in nested synchronization statements occur. It is rather a prevention of deadlocks that are caused

solely by synchronization statements on the same nesting level.
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The back-off realized by Polite delays the execution by less than limit = 2n+k ns [66] in a randomized

fashion. n denotes the retry counter and k denotes some constant offset which can be machine-tuned.

The randomized wait time of the exponential back-off is used to avoid livelocks which could happen

if two threads would repeatedly compete for the same resources and delay their execution for equal

amounts of time. In the current implementation backoffExponentially() of the contention manage-

ment, the offset k is set to 4 and a threshold m of 17 denotes the number of rounds after which k is

reset.48 Thus, maximum delays of about 100 ms (specifically 131 ms) are allowed.49

1 inline void backoffExponentially(uint8* waitingCounter, uint16* mask, uint32* seed) {

2 *mask |= 1 << *waitingCounter;

3 randomWithXorShift(seed);

4 struct timespec sleepingTime = (struct timespec){ .tv_nsec = *seed & *mask };

5 nanosleep(&sleepingTime, null);

6 *waitingCounter = (*waitingCounter + 1) % 13;

7 }

Listing 3.42: Exponential back-off function

It has to be noted that backoffExponentially() keeps its main state inside the startSyncForNMutexes()

function. The state will therefore be re-initialized before the execution of every synchronization block.

The generation of the pseudo-randomized delay is realized via utilization of the Marsaglia’s Xorshift

random number generator [52]:

1 void randomWithXorShift(uint32* seed) {

2 *seed ^= *seed << 13;

3 *seed ^= *seed >> 17;

4 *seed ^= *seed << 5;

5 }

Listing 3.43: Pseudo randomization via Xorshift

The generator was chosen for its high performance, low memory consumption, and thread-safety due to

the utilization of the seed parameter which points to a stack-managed local variable as opposed to the

global state usage of the standard C random generator rand(). The fact that after a certain number –

which may be smaller than in other generators – of repeated calls with the same seed value, repetitions

of the sequence of calculated numbers will occur is not of relevance for the purpose of this work.

3.3.4 Example Code

In the previous sections 3.1.3 and 3.2.3 the running example approximated the number π by using tasks

which calculate exactly one fraction of the result each and by retrieving their results via futures. The

48 k’s value is reflected in the initial value (24 = 16) of mask whereas m’s value is composed of mask’s base and the divisor

(13) in the calculation of the next waitingCounter.
49 The search for machine- or application-specific optimal offsets and thresholds is a task for future enhancements of

ParallelMbeddr.
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amount of work was therefore partitioned in advance. In this section, a more dynamic approach is

chosen instead: The logic of every task comprises major and minor rounds. A minor round is equivalent

to the full calculation loop in the previous π solution. In every step of a major round, a minor round is

initiated by first coordinating with the other tasks which range of π the current task should calculate.

After having calculated the sum in a minor round, the task then uses a queue to store its next partial

result. A dedicated task is used to collect these partial results from the queue and accumulate them to a

complete sum, which eventually becomes the result of the over-all approximated π. The communication-

based solution can be seen as a map-reduce implementation where partial results are mapped onto the

queue by a certain number of tasks and from there reduced to a final result by a separate task (compare

with [22]). In order to understand the new implementation, the following example is given: A thread-

safe queue of type long double with a certain number of slots is to be viewed as a black box. Further, it

has to be supposed that functions for the initialization, for adding a value and getting the next value (or

wait for the next value), exist:

1 struct Queue {...}

2 void queueInit(shared<Queue>* queue);

3 void queueSafeAdd(shared<Queue>* queue, long double item);

4 void queueSafeGet(shared<Queue>* queue, long double* result);

Listing 3.44: Function definitions for the queue

As in the previous approach, the amount of work to be done is defined by a range size (number of minor

task rounds) and the number of ranges altogether. Additionally, the number of mapper tasks is set to a

certain value that should be in the order of the number of processor cores:

1 #constant BLOCKSIZE = 300000000;

2 #constant BLOCKCOUNT = 4;

3 #constant THRESHOLD = BLOCKSIZE * BLOCKCOUNT;

4 #constant MAPPERCOUNT = 2;

These constants are used to initialize the mappers and the reducer in the main function appropriately:

1 exported int32 main(int32 argc, string[] argv) {

2 shared<Queue> queue;

3 queueInit(&queue);

4 shared<Queue>* queuePointer = &queue;

5

6 shared<uint32> counter;

7 shared<uint32>* counterPointer = &counter;

8 sync(counter) { counter.set(0); }

9

10 Task<void> mapperTask = |map(THRESHOLD, counterPointer, queuePointer)|;

11 Future<void>[MAPPERCOUNT] mappers;

12 for (i ++ in [0..MAPPERCOUNT[) {

13 mappers[i] = mapperTask.run;

14 }
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15 mapperTask.clear;

16

17 shared<long double> result;

18 shared<long double>* resultPointer = &result;

19

20 |reduce(BLOCKCOUNT, resultPointer, queuePointer)|.run.join;

21

22 return 0;

23 }

Listing 3.45: Initialization of the mappers and the reducer

First, the queue is defined as being shared in order to be accessible by all tasks. After the initialization,

a pointer to the queue is created, which is necessary since any other reference inside a task expression

to the queue variable would otherwise cause a copy of the queue struct instance into the task, regardless

of whether later on the address of the referred value is retrieved via the & operator. This ‘shortcoming’

of the current semantics could be addressed by the introduction of a new address operator that creates

a temporary variable of the addressed value and should be considered for future extensions of Paral-

lelMbeddr. Similar to the queue, a counter variable is introduced which will be used by the tasks to

check and communicate how many blocks have been processed so far. Then, one mapper task is defined

and initialized with a task expression of a call to the map() function. For communication purposes, the

mapper gets the queue pointer and the counter pointer. Additionally, although due to the use of con-

stants not necessary in the current example, the mapper task is told the maximum number of items that

need to be calculated. This single task template50 is used to create multiple running tasks and store their

handles as futures in a mappers array. The reducer uses a pointer to the memory location of result

to store its result. Furthermore, it gets access to the queue via a pointer thereof and is told how many

items (BLOCKCOUNT) it shall read from the queue before termination. In line 20, the code shows the first

example of a task expression chain: First the task is declared, then an instance of it is run in parallel

and immediately the main task joins the reducer. Since nothing is done in the main task between the

run and the join, the serialized execution could also be realized by a simple function call to reduce().

For demonstrative purposes, the code was chosen this way nevertheless. The main task solely joins the

reducer task, since after its termination every mapper task will also be finished. The map() function

iteratively calculates complete ranges (blocks) of fractions of π until the maximum number of items, as

given by threshold, is reached:

1 void map(uint32 threshold, shared<uint32>* counter, shared<Queue>* resultQueue) {

2 while (true) {

3 uint32 start;

4 uint32 end;

5

6 sync(counter) {

7 start = counter->get;

8 if (start == threshold) {

50 mapperTask can be seen as a template for actual running mapper task instances.
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9 break;

10 }

11 uint32 possibleEnd = start + BLOCKSIZE;

12 end = (possibleEnd <= threshold)?(possibleEnd):(threshold);

13 counter->set(end);

14 }

15

16 queueSafeAdd(resultQueue, calcPiBlock(start, end));

17 }

18 }

Listing 3.46: Mapper function

In every iteration, the function synchronizes the shared resources that counter points to in order to

retrieve its value and increment it by the number of items that map() is going to calculate in the current

round. It uses the calcPiBlock() function that was presented in section 3.1.3 to calculate a partial sum.

Afterwards, the result is added to the queue. The reduce() function uses the queue to iteratively read

all partial results and update the value of the shared resource of the final result accordingly:

1 void reduce(uint32 numberOfItems, shared<long double>* finalResult,

2 shared<Queue>* partialResultQueue) {

3 sync(finalResult) {

4 for (uint32 i = 0; i < numberOfItems; ++i) {

5 long double item;

6 queueSafeGet(partialResultQueue, &item);

7 finalResult->set(item + finalResult->get);

8 }

9 }

10 }

Listing 3.47: Reducer function

During the whole calculation, reduce() synchronizes the result in order to keep the overall synchroniza-

tion overhead small. It is able to do this because no other task will try to access the result before the

termination of the single reducer task.

In the beginning of the translated main function, the global mutex attribute, which will be reused for

every mutex, is initialized. Afterwards, the declared queue is initialized:

1 pthread_mutexattr_settype(&mutexAttribute_0, PTHREAD_MUTEX_RECURSIVE);

2 pthread_mutexattr_init(&mutexAttribute_0);

3 initAllGlobalMutexes_0();

4 SharedOf_Queue_0 queue;

5 mutexInit_2(&queue);

6 queueInit(&queue);

7 SharedOf_Queue_0* queuePointer = &queue;

Listing 3.48: Reduction of the queue variable inside the main function
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The translated struct type SharedOf_Queue_0 of the original type shared<Queue> denotes a struct that

contains a field for the protected queue and a mutex field:

1 struct SharedOf_Queue_0 {

2 pthread_mutex_t mutex;

3 Queue value;

4 };

Listing 3.49: Reduction of the queue’s type

The mutex initialization function mutexInit_2() initializes the mutex of the shared queue and calls an-

other initialization function which, in turn, initializes any nested mutexes of the Queue struct. Similarly,

a destruction function is generated:

1 void mutexInit_2(SharedOf_Queue_0* var) {

2 pthread_mutex_init(&var->mutex, &mutexAttribute_0);

3 mutexInit_1(&var->value);

4 }

5 void mutexDestroy_2(SharedOf_Queue_0* var) {

6 pthread_mutex_destroy(&var->mutex);

7 mutexDestroy_1(&var->value);

8 }

Listing 3.50: Mutex management functions for type shared<Queue>

Similar to the declarations for the queue, the mbeddr generator creates declarations of a struct for the

result variable. The initialization and destruction of result is accomplished inline by calls to the

pthreads functions, since no nested mutexes for the fields of the struct exist:

1 struct SharedOf_long_double_0 {

2 pthread_mutex_t mutex;

3 long double value;

4 };

5 ... // in main()

6 SharedOf_long_double_0 result;

7 pthread_mutex_init(&result.mutex, &mutexAttribute_0);

8 SharedOf_long_double_0* resultPointer = &result;

Listing 3.51: Reduction of the result variable

Lastly, the counter variable shows how translated shared resources can be synchronized.51 For the

duration of the setting of counter’s value, its mutex is locked. The setting of the value is done by an

assignment to the value field of the generated struct that keeps the value of the shared resource:

1 SharedOf_uint32_0 counter;

2 pthread_mutex_init(&counter.mutex, &mutexAttribute_0);

3 SharedOf_uint32_0* counterPointer = &counter;

51 The declarations of the struct and the mutex functions for the counter variable are skipped.
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4

5 startSyncFor1Mutex(&counter.mutex);

6 { counter.value = 0; }

7 stopSyncFor1Mutex(&counter.mutex);

Listing 3.52: Reduction of the counter variable

The mutexes of all shared resources are destroyed at the end of the main function. Although this should

not be necessary for local variables of the entry function of the program, the compiler currently does

not distinguish between the main function and any other function for which such calls would be neces-

sary:

1 mutexDestroy_2(&queue);

2 pthread_mutex_destroy(&counter.mutex);

3 pthread_mutex_destroy(&result.mutex);

Listing 3.53: Mutex destructions at the end of the main function

The initializations of the tasks and the declarations of the futures are quite similar to those in section

3.1.3:

1 Task mapperTask = taskInit_0(queuePointer, counterPointer);

2 // mappers:

3 VoidFuture[MAPPERCOUNT] mappers;

4 for (int8 __i = 0; __i < MAPPERCOUNT; __i++) {

5 mappers[__i] = runTaskAndGetVoidFuture(mapperTask);

6 }

7 free(mapperTask.args);

8

9 // reducer:

10 saveAndJoinVoidFuture(futureInit_0(resultPointer, queuePointer));

Listing 3.54: Reductions of tasks and futures

Since in the new solution, the tasks do not return any results directly, the VoidFuture struct and respec-

tive functions are used.52 The reduction of the original code |reduce(RANGECOUNT, resultPointer,

queuePointer)|.run.join to the code in line 10 of listing 3.54 is done in the following manner. As

was shown in section 3.2.2, the run call and the task declaration are reduced to a call of a function

which combines the initialization of a task with the one of a future of a parallel running instance of this

task. This call is reflected by futureInit_0(resultPointer, queuePointer). Furthermore, the join

of the task must first bind the created future handle to some addressable location before it can use this

handle by its address. For this reason saveAndJoinVoidFuture is used in place of joinVoidFuture. The

declaration of futureInit_0 follows:

52 As the declarations of the taskInit_0() function and the Args_X structs resemble equivalent declarations of previously

discussed code examples they are skipped here.
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1 VoidFuture futureInit_0(SharedOf_long_double_0* resultPointer, SharedOf_Queue_0* queuePointer) {

2 Args_1* args_1 = malloc(sizeof(Args_1));

3 args_1->resultPointer = resultPointer;

4 args_1->queuePointer = queuePointer;

5 pthread_t pth;

6 pthread_create (&pth, null, :parFun_1, args_1) |];

7 return (VoidFuture){ .pth = pth };

8 }

Listing 3.55: Future initialization function generated for the queue

The original declaration of the reducer task contains references to the local variables resultPointer

and queuePointer, which is why they are bound to equally named fields in the argument struct. An

instance of the VoidFuture struct is returned because the parallel task does not return a value and, thus,

has the type task<void>.

Inside the helper function map(), the synchronization statement of counter is replaced by its statement

list, which is surrounded by calls to appropriate functions:

1 while (true) {

2 uint32 start;

3 uint32 end;

4

5 startSyncFor1Mutex(&counter->mutex);

6 {

7 start = counter->value;

8 if (start == threshold) {

9 stopSyncFor1Mutex(&counter->mutex);

10 break;

11 }

12 uint32 possibleEnd = start + BLOCKSIZE;

13 end = (possibleEnd <= threshold)?(possibleEnd):(threshold);

14 counter->value = end;

15 }

16 stopSyncFor1Mutex(&counter->mutex);

17

18 queueSafeAdd(resultQueue, calcPiBlock(start, end));

19 }

Listing 3.56: Reduction of the synchronization statement inside map()

The break statement in line 10 is preceded by another call to the synchronization stop function, as the

function would otherwise return in a state where counter would still be locked, which would ultimately

cause the program to fail. The former expressions to get and set the value of counter are translated into

accesses of the translated value field of the counter struct instance. The synchronization statement of

reduce() is likewise translated into its statement list with surrounding synchronization calls. In line 6,
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the translation of the expression finalResult->set(item + finalResult->get) contains two accesses

to the aforementioned value field, one for .set and one for .get:

1 startSyncFor1Mutex(&result->mutex);

2 {

3 for (uint32 i = 0; i < numberOfItems; ++i) {

4 long double item;

5 queueSafeGet(resultQueue, &item);

6 result->value = item + result->value;

7 }

8 }

9 stopSyncFor1Mutex(&result->mutex);

Listing 3.57: Reduction of the synchronization statement inside reduce()

3.4 Safety Measures

So far the basic blocks that constitute parallel code execution and shared data synchronization, namely

tasks, shared resources and synchronization thereof, were introduced. Not discussed so far were most

of the rules which ensure that only shared resources may be shared and that these can only be used

in a sane way. The current section fills this gap by giving an informal overview of the rules that were

implemented in ParallelMbeddr, categorized by their objectives. In the following paragraphs, t denotes

some arbitrary type.

3.4.1 Avoidance of Implicitly Shared Unprotected Data

Global variables can be accessed by any function for which they are visible. Therefore, they must have

a type shared<t> in order to restrict any modifications of their values to synchronized contexts. This

restriction can be too strong if a global variable is only accessed by exactly one thread. Nevertheless, in

this paper, the conservative approach was chosen in order to establish a safe foundation. Future static

code analysis should be leveraged to reliably detect the cases where restrictions can be loosened. Another

class of data that is inherently vulnerable for unsafe data sharing arises from static variables. In C, local

variables that are declared static have a “global lifetime” [54, p. 439], which means that as with global

variables, the addresses of their allocated memory does not change. Thus, they keep their values from

one function call to the next. The main difference between static local variables and global variables

is the respective visibility. Consequently, static variables must have a type shared<t> as well. Finally,

a base type t of a shared type may never be a pointer type with a base type other than a shared type.

Otherwise the value of a shared resource would point to data that is not synchronized and would enable

unprotected inter-task communication. For instance, in the following example the functions foo() and

bar() do not block one another since they synchronize different shared resources. Nevertheless they

both write to the same location in memory, which causes a data race.
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1 // global variables:

2 shared<int32*> v1;

3 shared<int32*> v2;

4

5 int32 main(int32 argc, string[] argv) {

6 int32 sharedValue;

7 sync(v1, v2) {

8 v1.set(&sharedValue);

9 v2.set(&sharedValue);

10 }

11 |foo()|.run;

12 |bar()|.run;

13 }

14

15 foo() {

16 sync(v1) { *v1.get = 0; }

17 }

18 bar() {

19 sync(v2) { *v2.get = 1; }

20 }

Listing 3.58: Synchronization violation for shared resources of unsynchronized pointers

3.4.2 Copying Pointers to Unshared Data into Tasks

The pass-by-value semantics of C generally already ensure that any local data which is referred to from

within a task expression is safely copied into the task. On execution, the task will not access the original

data, but a copy thereof. On the other hand, this approach becomes unsafe as soon as local variables are

copied whose values are plain pointers (pointers to something else than shared resources). When such a

copied pointer is used inside a task to access a pointed-to memory location in an unsynchronized manner,

it accesses data that might simultaneously be accessed by another task, e.g. the task by which this task

was created, which knows the address of the data. To avoid this behavior, every pointer that might be

copied into a task by accessing a local variable or a function argument from within a task expression

must point to a shared resource, i.e. must be of type shared<t>*. It has to be noted that this does not

only hold for the variables themselves, but also for nested fields of struct instances and array elements.

Furthermore, arrays must not be copied into tasks unless they are wrapped in a struct field. Due to the

internal treatment of pointers in C (see section 2.2), the access to an array holding local variable would

cause a copy of the address of the array into the task as a pointer. In consequence, references of local

variables and arguments with type t[]...[] inside task expressions are not allowed. On the other hand,

it is safe to have a struct with a an array field be copied into a task. In contrast to the former case, the

array would then be entirely copied along its surrounding struct instance.
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3.4.3 Unsynchronized Access to Synchronizable Data

As was already mentioned in section 3.3, the value of a shared resource can only be accessed (retrieved or

rewritten) from within a proper synchronization context. This approach ensures that no write to shared

data invalidates any other write or read of the data. The according rule is that an expression e.get

or e.set is only allowed if e is either a reference to a named resource in scope, i.e. a shared resource

which is synchronized in a surrounding synchronization statement and bound to a new name; or if e is

a reference to a variable with a shared resource as value that is also referred to by a synchronization

resource of a surrounding synchronization statement. By this restriction, the following code would

trigger an error message in ParallelMbeddr:

1 shared<shared<int32>> v;

2 sync(v) {

3 sync(v.get) {

4 // error: e.get seems to be unsynchronized

5 e.get.set(0);

6 }

7 }

Listing 3.59: Consequence of the lexical scoping of synchronization resources

Although the previous code would not produce any synchronization gap, ParallelMbeddr does not recog-

nize this since the expression e.get does not refer to a named resource or a variable with a synchronized

shared resource. Instead, for exactly this purpose, named resources were implemented which allow to

rewrite the code in the following valid manner:

1 shared<shared<int32>> v;

2 sync(v) {

3 sync(&(v.get) as w) {

4 w->set(0);

5 }

6 }

Listing 3.60: Access to synchronized shared resource according to lexical scoping

The reasoning behind this was to simplify the implementation of the safety checking analysis. Again,

the chosen approach can in certain cases be overly conservative. If write conflicts can never happen

for a shared resource and, in consequence, data races thereof are impossible, it would be safe to access

the variable outside any synchronization context despite the error message that is generated by the IDE.

Moreover, by the applied lexical scoping, ParallelMbeddr is not able to detect whether a shared resource

is recursively synchronized across function calls:

1 shared<int32> v;

2 sync(v) { foo(&v); }

3 ...

4
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5 void foo(shared<int32>* v) {

6 sync(v) { v->set(0); }

7 }

Listing 3.61: Synchronization across function multiples

3.4.4 Address Leakage of Shared Resource Values

In order to restrict any writes or reads of the values of shared resources to synchronization contexts, it is

crucial to not leak the memory addresses of these values outside the protected synchronization context

from where they could be accessed via the address operator (&). The measures to keep the addresses

encapsulated constrain the use of the address operator and the use of arrays: The first rule forbids any

expressions &e where e contains a sub path eSub.get and e does not evaluate to a shared resource. The

latter condition allows the programmer to get the address of an encapsulated shared resource, which is

unproblematic since shared resources may not be overwritten as is explained in 3.4.5. The second rule

states that an expression e of some array type is forbidden, if e contains a sub path eSub.get and the

parent of e does not access a specific element of e. Thus, any access to an (multidimensional) array that

is encapsulated in a shared resource must actually be extended to an access of the innermost elements of

the array. Otherwise it would be possible to assign the array itself or, in the case of a multidimensional

array, take an element of the array which itself is an array and assign it to an unprotected pointer

variable. Hence, the address of the array or of an element of this array would be leaked. For instance, in

the following example, ParallelMbeddr would complain about an address leakage of the first element of

the array wrapped inside v:

1 shared<int32[5][10]> v;

2 int32* pointer;

3 // address leakage!

4 sync(v) { pointer = v.get[0]; }

Listing 3.62: Leakage of an array address

3.4.5 Overwriting Shared Resources

Shared resources may never be overwritten. The reason for this regulation results from the following

consideration. If a shared resource r shall be overwritten, e.g. by a direct assignment or by a set if

r is nested inside another shared resource, it must be synchronized first since the overwriting could

overlap with another access to r from within another task. Before the resource is rewritten, the mutex

of r must be destroyed in order to prevent memory leaks. Furthermore, after the rewriting is done,

the newly created mutex for r must be initialized prior to any usage. Hence, in the span between the

destruction and the re-initialization, the mutex of r (respectively r’ after the rewrite is done, because

the variable will refer to a new value) cannot be accessed in the synchronization attempt of any other
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simultaneously executed synchronization statement. Any such task would thus have to be blocked, which

would complicate the compiler and decrease the performance of the executed code without offering any

worthy advantage. In addition to this problem, the overwriting of a shared resource of a struct instance,

which itself contains a shared resource field f, would invalidate any pointer p to f. p could therefore

not be used anymore afterwards, which may comply with the usual C semantics, but does not fit the

safety-first approach of ParallelMbeddr.

Nevertheless, it is safe to copy a shared resource into the memory of a local variable declaration or

of a function argument, i.e. a pass of a shared resource to a function or an initialization of a newly

created local variable with a shared resource is valid. In these cases, the shared resources copies must

be initialized prior to any usage.

The safety enforcing rules are as follows: A variable that refers to a shared resource or to a value that

contains a nested shared resource may not be assigned a new value (the initialization of a declaration

is not a classical assignment). Additionally, an expression e.set(e’) is not allowed if e’ is a shared

resource or contains a shared resource, because e.set(e’) is translated into an assignment (see section

3.3.2).

3.4.6 Overwriting Pointers to Shared Resources

Not only references to variables of shared resources can be used for the definition of synchronization

references, but also expressions that evaluate to pointers of shared resources. While providing more

flexibility, this approach facilitates the introduction of data races via the following two techniques. For

the first problem, the following example is given:

1 struct Container {

2 shared<int32> value;

3 shared<int32>* pointer;

4 }

5

6 shared<Container> c; // somewhere in the code

7 sync(c, &c.get.value as valueP, c.get.pointer as pointerP) { // somewhere else

8 /* make use of valueP and pointerP */

9 }

Listing 3.63: Named resource threatened by overwriting

Generally, the semantics of the synchronization statement would be that c, valueP and pointerP would

be synchronized altogether by repeatedly trying to lock their mutexes. The translation of the named

resources would introduce local variables which bind the values of the expressions &c.get.value and

c.get.pointer:

1 shared<int32>* valueP = &c.get.value;

2 shared<int32>* pointerP = c.get.pointer;

3 sync(c, valueP, pointerP) {...}

Listing 3.64: Invalidation of a synchronization resource
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The intermediary translated code reveals the problem: The initialization values of the pointers to the

shared resources are, due to eager evaluation, evaluated as soon as they are declared. In the case of

valueP this does not matter, since the value field may never be overwritten. pointerP, on the other

hand, is a copy of the field pointer which may be overwritten by any task that has access to c. This

means that between the declaration of pointer and its use in the synchronization statement its value

may become out of date. Hence, the atomicity semantics of the synchronization of sync would be

violated. The translation could be fixed to safely support such cases. Yet, due to the possibility to make

use of control-flow-breaking statements inside synchronization statements, the translated code would

become considerably more complicated. For this reason, the opposite path was chosen: Cases like the

depicted one are forbidden by the following rule. If inside the synchronization list l of a synchronization

statement the expression of a well-typed named resource n – which must have the type shared<t>* –

is no address reference expression &e but contains either a reference to a previous named resource in l

or a reference to a variable that is synchronized by a previous synchronization resource in l, then n is

invalid.

The second problem is illustrated by the following example:

1 shared<int32> value1;

2 shared<int32> value2;

3 shared<int32>* p = &value1;

4 shared<int32>* q = &value2;

5 // somewhere else

6 sync(p) {

7 p = q;

8 p.set(42);

9 }

Since both p and q are pointers to shared resources they can be used for synchronization resources.

Furthermore, according to the previous rules of this chapter, they may be arbitrarily assigned new values.

Thus, the line p = q should be fine. Nevertheless, this assignment introduces the potential for data races,

since q’s target value2 and thus its modification via p.set(42) is not synchronized. In addition, at the

end of the synchronization statement the program will try to release the lock of value2’s mutex although

only value1’s mutex was previously locked. To solve this problem, pointers to shared resources should

never be overwritten if they are simultaneously used for synchronization purposes. For this purpose,

a synchronization resource whose type is shared<t>* must be named. Additionally, a named resource

may not be treated like an lvalue which means that neither it may be assigned any value nor its address

may be retrieved (to prevent overwritings via address dereferences).
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4 Optimization
The previous chapter introduced the means to enable parallel execution of code via tasks and establish

communication between tasks via shared resources. In order to make the communication thread-safe,

synchronization statements were presented which provide synchronization contexts of atomic thread-

safe blocks for the shared resources that they synchronize. For the purpose of both simplicity of the

design and thread-safety of the user-code, conservative restrictions were made: in the variability of the

code and the scopes of synchronization contexts. While this strategy simplifies the construction of correct

programs for the user, it may induce unnecessary serialization during program execution if potential data

hazards will actually never manifest at runtime [62]. While the synchronization overhead reflects the

optimization potential in the time-wise dimension, there is also a space-dimension which originates from

the way mutexes are used in the implementation.

4.1 Space Optimization

As was briefly addressed in 3.3.2, the runtime memory consumption of the translated code is extended

by the amount of memory that is occupied by the mutex maintenance. In addition to the obvious

memory consumption of the handle and some internal management data, the realization of the choice

to make mutexes robust against recursive locks requires a counter field to be maintained throughout

the lifetime of each mutex. This property impairs both the space and computation time overhead of the

implementation unnecessarily if shared resources are never recursively synchronized. If such cases are

detected (which they are, as will be shown in the next section), the generator could decide to declare the

according mutexes as non-recursive. This optimization is left for future extensions of ParallelMbeddr.

Another starting point for the optimization of space consumption would be the reduction of padding,

i.e. unused data, that is automatically introduced by the compiler into the struct instances of shared

resources. Padding is added into structs in order to retrieve data from memory more efficiently by

aligning it along proper addresses [30, p. 27]. The amount of padding that is inserted depends on the

difference among the byte sizes of the individual fields, as well as the order of these fields [30]. Since

the “art of C structure packing”53 is no trivial task and space optimization is no primary concern of this

paper, according work is left to future research.

4.2 Time Optimization

Various optimizations for lock-based synchronizations have been conceived. The general goal of all

approaches is to minimize the overhead of synchronization measures. Among others, this can be accom-

plished in two different ways: First, the amount of synchronization management, i.e. the time spent for

53 See http://www.catb.org/esr/structure-packing/, accessed: 2014-08-19, for details.
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acquiring and releasing locks, can be reduced by diminishing the number of performed locks. This tech-

nique is called lock elision. Secondly, the waiting time of threads for the release of locks which they try to

acquire, also known as lock contention, can be diminished. While the classic approaches try to optimize

the code at compile-time, increasing effort is performed towards optimizations which occur at run-time.

The latter kind primarily resides in the domain of the transactional memory model [62][64]. Due to the

complexity and overhead of such techniques this thesis focuses on compile-time optimizations.

The applicable measures for optimizations differ in their coverage of ‘perceived potential’ and their per-

formance. Superior techniques often require more comprehensive information, which, in turn, demands

more sophisticated analyses. Such analyses, however, usually come with an increase of complexity.

Typical candidates are pointer analysis and data-flow analysis.

4.2.1 Pointer Analysis

Pointer analysis, also known as points-to analysis, tries to find the set of memory locations to which a

pointer may point [65]. Pointers with coinciding pointed-to addresses are called aliases of one another

(in the following, though, ‘alias’ will rather be used as the pointed-to destination which, for shared re-

sources, remains its value and can, thus, be identified with the stored shared resource). The information

delivered by the pointer-analysis will be heavily used in the static analysis of this chapter. The following

example illustrates the basic principle of pointer analyses. At the end of the if-else statement, p may

point to the location of either v or of w. Due to the copy-semantics of assignments in C, q will have the

same value as p after the assignment in line 5. p can therefore be regarded as an alias of q.

1 int32 v, w;

2 int32* p;

3 if (condition) p = &v;

4 else p = &w;

5 int32* q = p;

Listing 4.1: Aliases of a pointer

The quality of a pointer analysis is reflected by its precision. Two properties – that are relevant for this

work – influence the precision: whether the analysis is flow-sensitive or -insensitive and whether it is

inter-procedural or intra-procedural [11].54 The first property distinguishes whether the particular flow

of data and with it the order of statements is taken into account of the analysis. For an illustration,

the previous code listing is reconsidered. In a flow-insensitive analysis, the set of locations for p would

contain the locations of both v and w in either branch. A flow-sensitive analysis, on the other hand, would

precisely assign v or w to the points-to set (differing from above definition of aliases, in the following also

called alias set) of p. The second property distinguishes how precisely the calculation of points-to sets

regards effects across functions, i.e. the context flow across function calls. The following example shall

illustrate the difference between the two shapes. According to Andersen, an intra-procedural analysis

would merge the calls of bar() so that the points-to set of p would contain both v and w. Likewise, the

54 The latter property is also called context-sensitivity [76].

50



sets of vP and wP would contain the same elements. On the other hand, an inter-procedural analysis

would distinguish the calls so that, in the end, the sets of vP and wP would contain exactly v, respectively

w.

1 void foo() {

2 int32 v, w;

3 int32* vP = bar(&v);

4 int32* wP = bar(&w);

5 }

6 void bar(int32* p) {

7 return p;

8 }

Listing 4.2: Aliases across function calls

At times, it is necessary to not compute the aliases that a pointer can have in the course of a program

run. Instead the set of locations that a pointer will point to on every possible path through the program

might be needed.55 While the former is called a may point-to analysis, the latter is called a must point-to

analysis [11]. Currently, mbeddr does not provide any form of pointer analysis.

4.2.2 Optimization Opportunities

Static analysis offers a variety of optimization opportunities. These differ both in their optimization

potential and the information needed for their realizations. Due to the similarity of shared resources to

the synchronization concept of Java’s monitors and the ongoing research in this area, the optimization

ideas were (mainly) influenced by the according literature [7][33][16]. The opportunities are arranged

in the order in which they are applied in ParallelMbeddr. The first three of the following paragraphs

concern themselves with the elision of unnecessary locks and, hence, the computational overhead of

synchronization management. The fourth focuses on the reduction of lock contention.

Single-Task Locks

The most obvious case in which locks for shared resources can be removed is when synchronized data is

only accessed by one task. This may happen for a limited amount of time, for instance in the time span

from the declaration of a local variable of a shared resource to its first sharing with other tasks:

1 void foo() {

2 shared<int32> v;

3 shared<int32>* vP = &v;

4 init(vP);

5 |task(vP)|;

6 }

7

55 An application of this demand will be shown later on.
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8 void init(shared<int32>* var) {

9 sync(var as varToSet) {

10 varToSet->set(0);

11 }

12 }

13

14 void task(shared<int32>* var) {

15 sync(var as varToGet) {

16 int32 val = varToGet->get;

17 }

18 }

Listing 4.3: Shared resource with a ‘temporary’ single-task lock

Whereas varToSet in init() does not need to be synchronized, since it is not yet shared with another

task, varToGet obviously needs to be synchronized inside task().

Furthermore, during the whole run of a program, a shared resource could be accessed by one task only.

This can happen if the programmer does not work attentively. More importantly, the re-use of existing

data structures and according functions for single-task data can cause the same effect. For instance, a

thread-safe queue and functions to manage this queue could be re-used by the user for data that resides

in only one task. It would then be helpful to distinguish the necessity of locks (i.e. sync resources)

depending on the use of queue.

Read-only Locks

In ParallelMbeddr, shared resources might actually never be set. For primitive data, e.g. of the type

shared<int32> this should seldom be the case, if the user creates the code carefully. However, he might

decide to use structs in order to pack independently synchronizable data:

1 struct QueueContainer {

2 shared<Queue> queue; // Queue is given as a black-box

3 shared<boolean> isFull;

4 shared<int32> itemCount;

5 }

6

7 void foo() {

8 shared<QueueContainer> queueC;

9 shared<QueueContainer>* queueCP = &queueC;

10 // ...

11 sync(queueC) {

12 sync(&queueC.get.isFull as isFull) { isFull->set(true); }

13 }

14 }

Listing 4.4: Shared resource with read-only lock
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Because of the semantics for variables of shared resources, QueueContainer can never be overwritten by

another value. This is accomplished by mbeddr’s non-typesystem rules. Therefore, any synchronization

of queueC and any of its aliases is not necessary. However, the user still needs to pack the data into a

shared resource in order to be able to safely share it with other tasks. Although the IDE could infer that

queueC never needs to be synchronized, the user has to annotate the synchronization in line 11. If, on the

other hand, such synchronization would not be required for queueC, additional synchronizations would

have to be added if QueueContainer is eventually equipped with non-shared data. The current approach

omits this change.56 Nevertheless, the compiler should take care of eliminating locks for such data. If

functions are called with both read-only shared resources and written shared resources as argument

data, the necessity of synchronizing them might depend on the respective calls (equivalent to single-

task locks). This could for instance be the case for logging functions which only read the data of their

arguments that shall be logged.

Recursive Locks

ParallelMbeddr does not prevent the user from acquiring locks for shared resources recursively. Instead,

due to the scoping rules of synchronization resources and their contexts the programmer might be forced

to synchronize shared resources recursively. In chapter 5.1.2, such a case arises for the access to a thread-

safe queue implementation.

Lock Contention

Besides the removal of locks, an important optimization opportunity is the reduction of lock contention.

In order to accomplish this goal, the synchronization lists of synchronization statements should be shrunk

to the absolute minimum. In the following, this technique is called lock narrowing. For instance, the user

might decide to apply coarse-grained synchronization by defining one big synchronization context inside

a function:

1 void calculate(shared<double>* result) {

2 sync(result as myResult) {

3 double pi = calculatePi(); // do something that is expensive and unrelated to the argument

4 myResult->set(pi); // now use myArg

5 log(pi); // again, something unrelated

6 }

7 }

8

9 double calculatePi() {...}

10 void log(double arg) {...}

Listing 4.5: Lock contention caused by coarse-grained synchronization

56 Of course, it is discussable which approach would be better.
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The statements in lines 3 and 5 do not make any use of the synchronized argument result. Hence, it

would be safe to move these statements out of the synchronization context:

1 void calculate(shared<double>* result) {

2 double pi = calculatePi();

3 sync(result as myResult) { myResult->set(pi); }

4 log(pi);

5 }

Listing 4.6: Optimization of lock contention

One could argue that synchronization lists could even be split into multiple parts in order to separate

statements whose evaluations access the current synchronization resources from those that do not:

1 void increment(shared<int32>* c) {

2 int32 current, next;

3 sync(c as myC) {

4 current = myC->get;

5 next = current + 1;

6 myC->set(next);

7 }

8 }

−→
split

1 void increment(shared<int32>* c) {

2 int32 current, next;

3 sync(c as myC) { current = myC->get; }

4

5 next = current + 1;

6

7 sync(c as myC) { myC->set(next); }

8 }

Listing 4.7: Aggressive narrowing introduces possible data-race

Yet, with such an aggressive strategy, the optimizer might split the code across data dependencies which

were formerly taken account of in the code by the scope of a synchronization statement. For instance, in

the previous example, the split does not take into consideration the data dependencies between current,

next and myC. Therefore, when another call of increment() is executed in an interleaved fashion, the

resulting code introduces data races for the shared resource that c points to.

4.2.3 Performed Optimizations

The optimizations that were performed in this work are direct realizations of the aforementioned opti-

mization opportunities. For the lack of supporting analyses in mbeddr at the time that this thesis was

written, the optimizations assume that all threads are executed simultaneously in order to fit the scope of

this work. Thus, since mbeddr was missing a pointer-analysis, at first a simplified pointer analysis for the

application in the optimization algorithms was conceived. In this analysis, differing from the usual ap-

proach, a separate alias set is computed for each local variable, argument and reference of both kinds.57

Additionally, divergent from the usual terminology, an alias in this context is a variable or argument of

type shared<t>. These differences result from the following facts

57 The analysis is therefore inclusion-based, i.e. alias sets may overlap [76].
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• only shared resources are considered;

• shared resources are bound to memory locations, as they may not be rewritten;

• shared resources inside structured data like arrays and structs are not considered.

Also, it is assumed that everything which has a type shared<t> or shared<t>* (i.e. variables, arguments

and expressions) has an alias set. For the former type, this is clearly the location of the resource itself.

Pointer analysis

As was mentioned before, the analysis that was implemented in the course of this thesis makes several

simplifications in order to fit the scope of this work. The analysis is intra-procedural. For the lack of

assignment consideration flow-sensitivity is irrelevant for the regarded language concepts. The analysis

can either compute must point-to or may point-to alias sets. As a starting point, a simplified directed data-

flow graph is constructed. The nodes of this graph consist of local variable declarations, arguments58

and references to either kind. For each reference r to a local variable or an argument x , an arc (x , r)

is added to the graph. Furthermore, for each local variable v of type shared<u> or shared<u>*, whose

initialization expression is a reference r ′ to a local variable or argument of the same type, an arc (r ′, v )

is added. The same is done for local variables of type shared<u>* whose initialization expressions

reference local variables or arguments of type shared<u> by address. Equivalently to local variables and

initialization expressions, arcs (r, a) are added to the graph for according pairs of argument values r and

arguments a.

Figure 5 illustrates the principle: For each reference to the local variable container, an edge going from

container to this reference is inserted. The same happens for the function arguments c and cV, as well

as for the local variables myC and myCV. Furthermore, an edge connects the container reference with

the argument c. On the other hand, cV has no incoming edge, since due to the simplifications of the

algorithm only such expressions may be nodes that are direct or address (&) references to variables or

arguments:

58 Although generally, arguments are the values that are passed to function parameters, in the course of this work, no such

distinction is made. Instead, the formal function parameters are called arguments and the values, which are passed to

functions, are called argument values. This terminology is closer to the one established in mbeddr.
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1 int32 main(int32 argc string[] argv) {

2 shared<shared<int32>> container;

3 sync(container) {

4 foo(&container, container->get);

5 }

6 }

7

8 void foo(shared<shared<int32>>* c,

9 shared<int32>* cV) {

10 sync(c as myC, cV as myCV) {

11 cV = myC->get;

12 myCV->set(0);

13 }

14 }

⇓ resolve named resources ⇓

1 ...

2 void foo(shared<shared<int32>>* c,

3 shared<int32>* cV) {

4 shared<shared<int32>>* myC = c;

5 shared<int32>* myCV = cV;

6 sync(myC, myCV) {

7 cV = myC->get;

8 myCV->set(0);

9 }

10 }

container
[&container]

container

container
[container]

container
[&container->get]

c cV

c
[  = c]

cV
[  = cV]

cV
[cV =  ]

myC myCV

myC
[  = myC->get]

myCV
[myCV->set(0)]

Figure 5: Simplified data-flow graph of shared resources

The data-flow graph is used to perform a pointer analysis. The output of the analysis is a directed alias

graph whose nodes comprise the nodes of the data-flow graph. Each arc (u, v ) of the alias graph connects

a variable, argument or reference u with a variable or argument v . In doing so, either v is an alias for u

or u refers to another variable which has an arc to v .59 Trivially, loops (u, u) for a variable or argument

u of a shared resource are contained, since every shared resource is an alias for itself. With this initial

setting, the algorithm works as follows:

59 This may for instance be the case for a local variable of a shared resource pointer which is initialized with the value of

another such pointer which in turn is initialized with the address of a variable of a shared resource. Thus, the alias graph

is not one in the classical sense.
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function ALIASES(g, strict) . g is an inverse data-flow graph

for all v ← VARIABLES AND ARGUMENTS(g) of type shared<t> do

ADD(a, (v , v )) . a is the new alias graph

end for

repeat

find some (n, m)← ARCS(g) where a[n] does not contain all a[m]

. in strict mode, only must-aliases are considered

. all in-nodes must then have the same aliases

if strict, and n is an argument and there are i, j ∈ g[n] where a[i] 6= a[ j] then

skip (n, m)

else

a[n].ADD ALL(a[m])

if n is a local variable then

for all r ← FOLLOWING REFERENCES(n) whose targets are in a[n] do

a[r].ADD ALL(a[n])

end for

end if

end if

until no more changes possible

end function

Listing 4.8: Simplified alias-analysis algorithm

Aliases propagates alias information through the alias graph as long as changes are possible. It repeatedly

tries to find a node n which does not contain all aliases of a node m for which an arc (m, n) resides in the

original data-flow graph. In such a case, n gets connected to the missing aliases. If must point-to aliases

need to be calculated (which is currently necessary for the recursive-lock elision algorithm), all nodes l

for which an arc (l, n) exists must have equal aliases in order to be applicable for an alias augmentation

of n. Due to the simplifications of the analysis, this can only be the case for value-to-argument arcs in

the data-flow graph, i.e. for function calls, since no other branches are considered.

Removal of Single-Task Locks

In order to remove synchronization resources of variables which are only used in one task, the aforemen-

tioned alias analysis is performed. It is fed with the inverse of a data-flow graph, exactly as it is delivered

by the aforementioned function.
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function REMOVE SINGLES(g, a, d) . g = inverse data-flow graph, a = aliases, d = additional data

for all v ← d.variables do

if there is no (n, m) in g where a[n] contains v and n and m reside in different tasks then

c.ADD(v ) . c = single (clean) task variables

end if

end for

REMOVE CLEAN LOCKS(c, a, d)

end function

Listing 4.9: Removal algorithm for single-task locks

Remove Singles gathers all variables which never leave their defining task contexts. This is accomplished

by investigating for each variable v all references whose alias set contains v . If any of these references

leave the task context of the variable or argument x that they reference – which may happen if they

reside in a task expression but x does not –, then v is no single task variable. The sought variables are

thus gathered. The actual lock removal is accomplished by Remove Clean Locks, which is also used for

the removal of read-only locks. The following pseudo-code depicts the general approach of the function:

function REMOVE CLEAN LOCKS(c, a, d) . c = clean variables, a = aliases, d = additional data

for all s← SYNC RESOURCES(data) do

if c contains all a[s.expr] then . s.expr evaluates to a shared resources or pointer thereof

s.REMOVE

else

f_to_s[function ofs].ADD(s) . f_to_s contains functions with partially clean sync resources

end if

end for

for all ( f , s̄← f_to_s do

TRY TO DUPLICATE( f , s̄, c, a, d)

end for

end function

Listing 4.10: Removal of locks for single-task and read-only variables

Every synchronization resource s is either directly removed or deferred. If all aliases of the expression of

s are clean (e.g. they are all single task variables), s can clearly be removed, since its synchronization is

useless. Otherwise at least some of its aliases might be clean. In case of single-task locks, these aliases

would ideally originate from an argument like those in the following example:

1 void shareXButNotY() {

2 shared<int32> x;

3 shared<int32>* xP = &x;

4 shared<int32> y;

5 |xP|; // important: for |x| or |&x|, x would not be shared but copied

6 syncXOrY(&x);
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7 syncXOrY(&y);

8 }

9

10 void syncXOrY(shared<int32>* xOrY) {

11 sync(xOrY as val) { val.set(0); }

12 }

Listing 4.11: Straightforward single-task

In this example, x is shared, but y is not. Therefore, the set of clean variables c in Remove Clean Locks

would only contain y. On the other hand, the set of aliases a[xOrY] would contain both variables, as

they would be forwarded to xOrY via the calls syncXOrY(&x) and syncXOrY(&y) in the aliasing analy-

sis.60 In this case the function Try To Duplicate would distinguish the respective calls and learn that for

syncXOrY(&y) no synchronization is needed for xOrY. In such a case, the function could be inlined for

the safe call and the clean synchronization resource could be removed. Alternatively, as is done by Try

To Duplicate, the function can be duplicated and accordingly optimized:61

1 //...

2 syncXOrY(&x);

3 syncXOrY_1(&y);

4 }

5 void syncXOrY(shared<int32>* xOrY) {

6 sync(xOrY as val) { val.set(0); }

7 }

8 void syncXOrY_1(shared<int32>* xOrY) {

9 shared<int32>* val = xOrY;

10 sync() { val.set(0); } // the empty sync will be removed

11 }

Listing 4.12: Function duplication for partial single-task lock

However, if the aliases of the synchronization resource’s expression e are not received via paths to the

arguments of the surrounding function, function inlining (or duplication) will not help. This may for

instance be the case if e refers to a local variable of type shared<t> that resides in the same function.

Another possibility is that it refers to a global variable whose value was set inside another function. In

order to match the simplified pointer analysis, currently only synchronization resources, whose expres-

sions directly refer to one of the arguments of the surrounding function (like in the previous example),

are considered. The Try To Duplicate function works as follows:

60 This merge is caused by the intra-procedural property of the current alias analysis. In case of an inter-procedural pointer

analysis, the following analysis would be facilitated. Of course, this simplification, in turn, requires a more complex

algorithm for the conduction of the alias analysis.
61 Function duplication instead of inlining is done since this approach also works for recursive functions.
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. f = function, ds = partially clean sync resources, c = clean variables, a = aliases, d = add. data

function TRY TO DUPLICATE( f , ds, c, a, d)

for all ds← ds do . for each call find the sync resources that are clean

da = a[ds.expression] which is not in c . da = dirty aliases for ds

for all l ← CLEAN CALLS FOR(ds, da, f , a) do . l = clean calls for ds

l_to_cs[l].ADD(ds) . l_to_cs = clean syncs for call l

end for

end for

for all l, cs← l_to_cs do . pack the calls by equal sets of clean sync resources

cs_to_l[cs].ADD(l)

end for

for all cs, l ← cs_to_l do . duplicate the function for calls of equal sets of clean sync resources

DUPLICATE FUNCTION( f , cs, l)

end for

end function

Listing 4.13: Function duplication algorithm for partially clean locks

Try To Duplicate first considers all partially clean synchronization resources ds, i.e. synchronization

resources whose expression aliases are clean for at least one function call. For each ds of these ds it

uses the function Clean Calls For to determine the function calls l, which do not need ds. This means

that ds actually needs to get its aliases from one of the arguments of its function (otherwise function

inlining would be useless). Furthermore, every call in l must not contain any of the dirty aliases of ds.

Hence, they can only originate from some other call. In case of an inter-procedural pointer analysis, this

information would certainly be easier to gather. For each synchronization resource ds with a non-empty

set l for each call, a mapping to ds is established. These mappings are then used to cluster calls which

have equal sets of clean synchronization resources. These clusters, in turn, are used by Duplicate Function

to generate optimized versions of the current functions. For the lack of valuable insight, the definitions

of Clean Calls For and Duplicate Function are skipped.

Removal of Read-only Locks

Read-only locks are removed equivalently to single-task locks. The according algorithm differs in the

condition that it uses to determine whether locks for a specific variable may be removed:
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function REMOVE READONLYS(g, a, d) . g = inverse data-flow graph, a = aliases, d = additional data

for all v ← d.variables do

if ∃ e.set(_) in d.sharedSets where a[e] contains v then

skip v

else if ∃ e.get in d.sharedGets where a[e] contains v and ∃ e′ = _ where e′ contains e then

skip v

end if

c.ADD(v ) . c = readonly (clean) task variables

end for

REMOVE CLEAN LOCKS(c, a, d)

end function

Listing 4.14: Removal algorithm for read-only locks

A few things should be noted for the last two optimizations. First, in the actual implementation, the

gathering of ‘clean variables’ is separated from the actual call of Remove Clean Locks. Instead, variants of

the two algorithms, called Get Singles and Get Readonlys, are used to first gather all variables for which

locks can be removed. Only then Remove Clean Locks is applied to the union of both variable sets. This

way, a function may be duplicated only once if it is called multiple times with (a) shared resources that

are actually shared and written, (b) read-only shared resources and (c) single-task shared resources. The

second thing to consider is that this process is actually repeated as often as some optimization by the

application of the algorithms is possible. Otherwise, optimizations might not be possible if an argument

value is itself ‘partially clean’, like var in line 13 of the following example:

1 void send() {

2 shared<int32> a;

3 shared<int32> b; // b is never shared or written

4 shared<int32>* aP = &a;

5 |aP|;

6 sync(a) { a.set(0); }

7 forward(&a);

8 forward(&b);

9 }

10

11 void forward(shared<int32>* var) {

12 sync(var as myVar) { myVar.get; }

13 receive(var);

14 }

15

16 void receive(shared<int32>* var) {

17 sync(var as myVar) { myVar.get; }

18 }

Listing 4.15: Partially clean argument value
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Since b is never shared or written, its synchronizations inside forward() and receive() are useless. a,

on the other hand, must always be synchronized. In the first optimization round, the values of the calls of

forward can strictly be separated into the ‘clean’ value b and the ‘dirty’ value a. Therefore, an optimized

variant for forward(&b) can be generated. On the other hand, there is only one call for receive()

and the aliases of its value are currently merged, because the pointer-analysis is intra-procedural. Thus,

another round of optimizations has to be applied where the two calls of the now separated functions

forward() (for a) and forward_0() (for b) can be distinguished. An intra-procedural pointer-analysis

could directly deliver this information. The third point to consider is that function duplication does

not work across functions which do not split the aliases of their arguments themselves, as was done by

forward(). If the synchronization statement was removed in this function, the algorithm would not

detect that a duplication of forward() might help. In consequence, receive() would not be duplicated

as well. For this reason, in the future, cross-function duplications should also be made available. On the

other hand, like function inlining, duplication can lead to a ‘code explosion’ if it is used too aggressively.

Thus, it should be controllable by the programmer.

Removal of Recursive Locks

In contrast to the previous optimization techniques, in this section, the property, which must be proven

in order to be able to remove a lock, does not hold for entire variables. Instead, the recursiveness of a

lock has to be shown separately for every synchronization resource. For the basic idea of a recursive-lock

removal algorithm, an arbitrary synchronization resource r of an expression e is considered. If it can

be shown that for all aliases of the pointer or shared resource, which e evaluates to, e must already be

synchronized, then r can be removed. In order to facilitate the analysis, the data-flow graph, which is

necessarily used in such an algorithm, should be preprocessed in the following way: First, edges caused

by recursive function calls should be removed. The rationale behind this constraint is that recursive

functions should not be able to synchronize their arguments on their own. In the following code listing,

an analysis of recursive() could otherwise detect that value1 and value2 are already synchronized at

the beginning of the function.

1 void recursive(shared<int32>* value1, shared<int32>* value2) {

2 sync(value2 as myValue2) {

3 myValue2.set(2);

4 }

5 sync(value1 as myValue1) {

6 myValue1.set(5);

7 recursive(myValue1, myValue1);

8 }

9 }

Listing 4.16: Recursive function with recursive lock

Additionally, if there is another call to recursive() from outside the cyclic call structure the algorithm

need not first check whether any of the calls to recursive() originates from a recursive call path in
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order to treat it differently. Furthermore, while in the previous example recursions would be easy to

detect, indirect recursions across multiple functions are more complicated to handle. For these reasons,

the directed data-flow graph should be created by starting in the main function and avoiding edges that

close cycles in the corresponding call graph. Secondly, edges between nodes of different task contexts in

the data-flow graph should be ignored. As a result, false recursive locks across tasks are omitted:

1 void task1(shared<int32>* value) {

2 sync(value as myValue) { value.set(1);

3 |task2(value)|.run // here, value is not synced anymore

4 }

5 }

6

7 void task2(shared<int32>* value) {

8 sync(value as myValue) { value.set(2); }

9 }

Listing 4.17: False recursive lock across tasks

Since every task needs to synchronize its shared resources on its own, the synchronization context of

sync in task1 cannot be forwarded to task2. Additionally, it should be noted that synchronization

contexts may not be forwarded to other tasks via the wrapped values of shared resources. For instance,

in the following example, the reference to myValue is a reference to a synchronized value. Yet, this

synchronization information may not be forwarded into myContainer. Otherwise a different task which

accesses the value of myContainer would not have to synchronize the value any more.

1 void task1(shared<int32>* var, shared<shared<int32>*>* container) {

2 sync(var as myVar, container as myContainer) {

3 myContainer->set(myVar);

4 }

5 }

Listing 4.18: False synchronization forwarding via shared resource container

The construction of the alias graph should, however, only omit cyclic edges, since aliases across tasks are

completely valid. In the following, two algorithms for the recursive-lock removal are presented.62 The

first algorithm uses the alias graph to locally mark variable references inside synchronization statements

whose aliases are all synchronized. It uses the data-flow graph to push the synchronization states forward

across function contexts:

62 The former algorithm was implemented for its simplicity in light of the simplified scenarios. The second one, on the other

hand, avoids the incremental flow of synchronization contexts through the data flow graph and might be better suited

for more complicated scenarios with concepts like assignments, shared resources nested in structures and arrays and

multidimensional pointers (e.g. shared<int32>**). It has, however, not been tested by an according implementation.
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. g = data-flow graph (dfg) w/o recursions/task-crossings, i = inv. dfg, a = aliases, d = add. data

function REMOVE RECURSIVE LOCKS 1(g, i, a, d)

for all s← d.syncResources do . spread the sync contexts locally

for all r ← REFERENCES IN(s) do

if r 6= s.expr and TASK(r) = TASK(s) and a[s.expr] ⊇ a[r] 6= ; then

s.ADD(r) . s = references to synchronized shared resources

end if

end for

end for

repeat . spread the sync contextes globally

for all s← s do

if there is some n in d[s] which is not in s and s.CONTAINSALL(i[n]) then . n = next node

s.ADD(n)

end if

end for

until no more change is possible

for all s← d.syncResources do . remove recursive locks

if s.CONTAINS(s.expr) then

remove s

end if

end for

end function

Listing 4.19: Removal algorithm for recursive locks

After the synchronization contexts have been flowed through the data-flow graph, the function can

determine whether the expression of any synchronization resource s evaluates to an already synchronized

shared resource. In such a case s can safely be removed. It should be noted that code resulting from the

implementation of the algorithm is currently not able to remove recursive locks across functions reliably.

This limitation results from the fact that the applied primitive pointer analysis works intra-procedural.

In consequence, the aliases for a function argument would usually be merged for different calls of a

function. For an illustration, the following example is given:

1 void foo() {

2 shared<int32> p1;

3 shared<int32>* p1P = &p1;

4 shared<int32> p2;

5 shared<int32>* p2P = &p2;

6 |p1P|;

7 |p2P|;

8 bar(p1P, p1P);

9 bar(p2P, p1P);

10 }
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11

12 void bar(shared<int32>* v1, shared<int32>* v2) {

13 sync(v2 as myV2, v1 as myV1) {

14 myV1->set(1);

15 myV2->set(2);

16 }

17 }

Listing 4.20: Alias-set equality due to intra-procedural alias-analysis

Due to the merge, the alias set of myV1 becomes {p1, p2} and dominates the alias set {p1} of myV2. Hence,

in the recursive lock algorithm, the synchronization resource myV2 would removed. The optimized code

would therefore become:

1 ...

2 void bar(shared<int32>* v1, shared<int32>* v2) {

3 shared<int32>* myV2 = v2;

4 shared<int32>* myV1 = v1;

5 sync(myV1) {

6 myV1->set(1);

7 myV2->set(2);

8 }

9 }

Listing 4.21: False recursive-lock removal due to intra-procedural alias-analysis

Thus, for both calls bar(p1P, p1P) and bar(p2P, p1P) only myV1 would be synchronized. In conse-

quence, in the second call, only the shared resource of p2 would be synchronized, although both p2 and

p1 would be modified via myV1->set(1), respectively myV2->set(2). This problem is currently faced by

applying a must point-to pointer-analysis for this optimization technique. As a result, the alias sets in the

example would become empty. Hence, for the algorithm to be able to decide that the alias set of a syn-

chronization resource s is superfluous, the condition a[s.expr] ⊇ a[r] 6= ; in the algorithm requires that

the alias set of s is not empty. For testing purposes, this restriction can be deactivated (which happens in

the evaluation chapter). In the future, an inter-procedural data-flow sensitive pointer analysis should be

applied in order to check whether for every function call a specific synchronization resource s is covered

by another synchronization resource t (t ’s alias set is a superset of s’ alias set). If that is the case, it

may be removed. The non-emptyness condition can then be omitted. As in the previous algorithms, it

would further make sense to apply function inlining/duplication to remove synchronization resources

for arguments – of a function f –, which are used recursively only for a strict subset of calls of f .

Another problem results from the restricted range of expressions and types that are currently supported

in the optimization algorithm. If for instance a shared resource is nested inside an array a of type

shared<int32>[100] and accessed via an array-access expression &a[5], the optimizer is not able to

identify the accessed shared resource. Thus, if this expression is used for the initialization of a local

variable v of type shared<int32>*, the alias-set of v will become empty. The same property holds

for structs. For this reason, the data-flow construction and alias-analysis can be optionally used with
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support for pseudo aliases. A pseudo alias denotes a shared resource that is not directly supported by

the algorithm. Thus, whenever a pointer to a shared resource is accessed via an array-access or struct-

access expression and assigned to a local variable or an argument x , then a pseudo-alias (currently

represented by an local variable without a name) is added to the alias-set of x . This way, the optimizer

can generally also detect recursive locks for not supported data structures, which is illustrated by the

following example:

1 struct Container { shared<int32> value; }

2 void foo() {

3 Container c;

4 // ... share c with some other task

5 sync(&c.value as myValue) {

6 myValue->set(0);

7 bar(myValue);

8 }

9 }

10

11 void bar(shared<int32>* value) {

12 sync(value as myValue) { myValue->set(1); }

13 }

Listing 4.22: Recursive lock of a nested shared resource

The alias set of the local variable myValue, which the named resource in line 5 is reduced to, will be

added a pseudo-alias l. l will be forwarded to value in bar() and reach the local variable myValue in

the same function. Since the synchronization context of myValue in foo() will take the same path, the

compiler will find that the synchronization of myValue in bar() can be removed. However, this approach

does not enable the detection of equal pseudo-aliases if they result from different expressions. Therefore,

more extensive data structure support should be aimed for in the future.

The second algorithm uses the alias graph and the call graph, which connects the main function with all

other functions that are induced by the data-flow graph. It considers every synchronization resource s

exactly once by determining whether the respective expression e is synchronized for all aliased shared

resources that e might evaluate to. Every alias x must be covered by a synchronization statement, either

in the same function f that s resides in or in one of the functions that lie on the paths from the main

function to f in the call graph. Hence, either s must have an ancestor synchronization statement in the

abstract syntax tree of f that has another synchronization statement s′, whose aliases contain x ’s aliases

(given an inter-procedural, data-flow sensitive pointer-analysis). Or, on every path from f to main there

must be at least one call that itself is nested in a synchronization statement with a synchronization

resource whose alias set contains x ’s alias set. If for a synchronization resource this property holds,

it can be removed. The algorithm expects an inter-procedural analysis. Hence, in order to handle

synchronization resources with references to function arguments correctly, it checks the alias-coverage

for every call of f separately.
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. a = aliases, d = add. data, f_to_c = function to main paths’ calls

function REMOVE RECURSIVE LOCKS 2(a, d, f_to_c)

for all l ← CALLS OF FUNCTION OF(s) do

for all s← d.syncResources in l do

r := true . indicates whether s can be removed

for all x ← a[s.expr] do

r := r∧ (ALIAS COVERED IN SYNC(x , s, a) ∨ ALIAS COVERED IN PATHS(x , s, a, f_to_c))

end for

if r then

remove s

end if

end for

end for

end function

. x = alias, n = current node, a = all aliases

function ALIAS COVERED IN SYNC(x , n, a)

return ∃ sync resource s in SURROUNDINGSYNCS(n) . TASK(n) = TASK(s) and a[s.expr].CONTAINS(x)

end function

. x = alias, s = sync resource, a = all aliases, f_to_c = function to main paths’ calls

function ALIAS COVERED IN PATHS(x , s, a, f_to_c)

for all c← f_to_c [FUNCTION(s)] do . consider all paths to the main function

if there is no c in c with ALIAS COVERED IN SYNC(x , c, a, f_to_c) then

return false

end if

end for

return true

end function

Listing 4.23: Alternative removal algorithm for recursive locks

Narrowing Synchronization Statements

Synchronization statements are narrowed by iteratively moving statements from the beginning of the

statement lists to outside the synchronization statements. This process stops as soon as a statement is

encountered for which the movement could introduce new data-races. Likewise, statements at the end

of each list are moved outside. In order to not interfere with the scopes of local variables, currently all

moved statements of a synchronization statement s and s itself are nested inside a new statement block:
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1 void foo(shared<int32>* var) {

2 boolean b = true;

3 sync(var as myVar) {

4 boolean b = false;

5 myVar->set(0);

6 }

7 }

−→
narrow

1 void foo(shared<int32>* var) {

2 boolean b = true;

3 {

4 boolean b = false;

5 sync(var as myVar) { myVar->set(0); }

6 }

7 }

Listing 4.24: Result of a narrowing optimization

The crucial aspect of the narrowing algorithm is how to decide whether a statement may be moved. If

no other optimization has taken place before, a trivial approach would be to check whether a first or

last statement of the statement list of a synchronization statement s contains any references to a variable

that is also referenced by a synchronization resource of s.63 Due to the locality of synchronization

contexts from a user’s perspective, one could argue that this attempt would suffice. However, with

the advent of the previous optimization techniques, this simple attempt could fail. If recursive locks

are removed, the .set and .get expressions, which previously referred to according variables, then

receive their synchronization contexts from other synchronization resources. This entails for example

that synchronization resources need no longer be synchronized locally (in the same function), but can

be synchronized across functions. The above mentioned simple approach would not regard such cases.

Therefore, not the directly referred variables are compared, but the according aliases. The algorithm is

depicted by the following pseudo-code:

. a = aliases, d = add. data, ro = read-only aliases, st = single-task aliases

function NARROW SYNCS(a, d, ro, st)

for all s← d.syncStatements do

while there is t = FIRST STATEMENT IN(s) where CAN BE SHIFTED(t) do

t.MOVE TO END OF(l1) . l1 = list of first shifted statements

end while

while there is t = LAST STATEMENT IN(s) where CAN BE SHIFTED(t) do

t.MOVE TO START OF(l2) . l2 = list of first shifted statements

end while

if either l1 or l2 is not empty then

replace old s with new block { l1.members, s, l2.members }
end if

end for

end function

Listing 4.25: Synchronization statement narrowing algorithm

63 References to named resources need not be considered because they are resolved before any optimization takes place.
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The helper function Can Be Shifted gathers all expressions e.get and e.set(_) that may be evaluated

for the execution of a specific statement t. For this purpose, it searches for such expressions: first in the

AST of t itself and then in the ASTs of all functions that might be called for the evaluation of t. To this

end, the complete function call branching of t64 is investigated. A shift is declared as safe, if it is safe

for every e in the found expressions e.get and e.set(_). In turn, for e, the shift is unsafe, if its alias set

is contained in one of the alias sets of the synchronization resources of the synchronization statement

s. For this check, only those aliases need to be considered that are not read-only or single-task shared

resources. The pseudo-code for Can Be Shifted is:

. t = statement, s = sync statement, a = aliases, ro = read-only aliases, st = single-task aliases

function CAN BE SHIFTED(t, s, a , ro, st)

for all e.set(_) and e.get in AST of t or in AST of every function of CALL BRANCHING(t) do

if there is a sync resource r in s with a[r.expr].CONTAINS ALL(a[e]\(ro∪ st)) then

return false

end if

end for

return true

end function

Listing 4.26: Helper function which decides if a statement may be shifted outside

Again, an intra-procedural analysis should be preferred in order to be able to optimize more aggressively.

In the current implementation, however, the optimization does not use such precise information and

instead optimizes quite conservatively. Therefore, the optimizer must instead check whether any alias of

the variable reference e is contained in the alias set of a synchronization resource r.

64 This branching comprises all directed subtrees (= aborescences) – of called functions – whose roots lie in the AST of t.
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5 Evaluation

5.1 Code and Measurements

In order to show the advantages and disadvantages of the language design, the generator and the opti-

mizer of ParallelMbeddr, two scenarios are investigated: The calculation of π and the sorting algorithm

Quicksort. For both scenarios different solutions are presented. This is done to demonstrate the different

aspects of the implemented optimization and depict further optimization potential for future enhance-

ments of ParallelMbeddr. The measurements of the execution times of the implemented algorithms were

performed under Windows 8 on a machine with the Intel Core i5 CPU M540, which operates at 2.53

GHz and has 2 cores as well as Hyper-threading, and 4 GB of RAM.

5.1.1 Quicksort

The Quicksort scenario concerns itself with the sorting of an array of items. In order to get noticeable

execution times for the program runs, the length of arrays usually has to be quite large. Since general

support for the heap is currently missing in mbeddr and ParallelMbeddr, the array needs to be stored on

the stack. Due to the limited usable memory on the stack, the arrays were chosen rather small. To create

noticeable execution times nevertheless, the comparison of two items was artificially complicated by a

function doHeavyWork() that simulates complex comparisons. At the beginning, the arrays are initiated

with random values in each example. Afterwards, the usual divide-and-conquer approach of Quicksort

is recursively applied. Although generally no synchronization is needed for a Quicksort algorithm, this

example is nevertheless chosen to show the effects of lock elision as it clarifies the general effects of

performed optimizations.

Serial variant

For comparison reasons, first the serial variant is given. As was mentioned, initially a certain number of

randomized items, in this case 200, is added to an array. The items are instances of the struct Item,

which has an Integer-typed value field. Item should be regarded as an element of an arbitrary type.

1 #constant numberOfItems = 200;

2 struct Item { int32 value; };

3

4 int32 main(int32 argc, string[] argv) {

5 Item[numberOfItems] items;

6 initItems(items); // initialize the array with randomized items
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7 quickSort(items, 0, numberOfItems - 1);

8 return 0;

9 }

Listing 5.1: Main function of serial Quicksort

Not surprisingly, the quickSort() function divides the provided interval. As usual with Quicksort, the

division is accomplished by sorting the provided interval of the array into two sub-intervals that contain

items which are smaller, respectively bigger, than a chosen pivot element:

1 void quickSort(Item[numberOfItems] items, int32 left, int32 right) {

2 if (left < right) {

3 int32 middle = partition(items, left, right);

4 quickSort(items, left, middle - 1);

5 quickSort(items, middle + 1, right);

6 }

7 }

8 int32 partition(Item[numberOfItems] items, int32 left, int32 right) {

9 Item pivot = items[left];

10 int32 i = left;

11 int32 j = right + 1;

12

13 while (true) {

14 do { ++i; } while ( !(biggerThan(items[i], pivot)) && i < right );

15 do { --j; } while ( biggerThan(items[j], pivot) );

16 if (i >= j) { break; }

17 swap(items, i, j);

18 }

19 if (left != j) { swap(items, left, j); }

20 return j;

21 }

Listing 5.2: Implementation of serial Quicksort

The comparison function biggerThan() compares the two items and simulates computationally complex

work by calling doHeavyWork():

1 boolean biggerThan(Item item1, Item item2) {

2 doHeavyWork();

3 return item1.value > item2.value;

4 }

5 void doHeavyWork() {

6 for (i ++ in [0..heavyWorkSize[) {

7 for (j ++ in [0..heavyWorkSize[) { j * j * j; }

8 }

9 }

Listing 5.3: Artificially complex comparison function
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Unsafe parallelism

A trivial approach to parallelize the Quicksort algorithm would make use of the parallelization concepts,

i.e. tasks and futures, while omitting safe communication via shared resources:

1 void quickSort(Item[numberOfItems] items, int32 left, int32 right) {

2 if (left < right) {

3 int32 middle = partition(items, left, right);

4

5 if (middle - left > threshold && right - middle > threshold) {

6 // This is unsafe and should generally be avoided. In the current example, however,

7 // the sync leak is harmless.

8 Future<void> sorter1 = |quickSort(items, left, middle - 1)|.run;

9 Future<void> sorter2 = |quickSort(items, middle + 1, right)|.run;

10 sorter1.join;

11 sorter2.join;

12 } else {

13 quickSort(items, left, middle - 1);

14 quickSort(items, middle + 1, right);

15 }

16 }

17 }

Listing 5.4: Unsafe parallelization approach for Quicksort

The function now decides whether two sub-intervals (slices) of the given interval of the array shall be

recursively sorted like in the original example. If the intervals are long enough – have at least 20 items –

the calls of quickSort() are handed to new tasks, which are immediately run. Future handles are then

used to wait for the ending of the sub-tasks. This fork-join pattern is used so that in the end the first call

to quickSort() does not return before the array is actually sorted. The futures cannot be directly joined,

because otherwise line 9 would not be executed before the finish of sorter1, which ultimately would

serialize the program. In the IDE, the code is marked with error messages at lines 8 and 9. Although

every slice of the array is only processed by exactly one task, the type checker of the IDE recognizes

a potential shared data leak: the pointer items is given to another task, which makes every access to

the pointed-to data potentially thread-unsafe. ParallelMbeddr is, thus, currently not able to determine

if the elements of shared arrays are actually accessed by multiple tasks. For this reason, arrays must be

wrapped in shared resources.

Coarse-Grained Protection

The first solution to the aforementioned problem is to wrap the whole array of items inside a shared re-

source shared<Item[numberOfItems]> items. By doing so, the distribution of pointers thereof becomes

safe. The example code is changed to show the optimization potential for synchronization narrowing:
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1 boolean biggerThan(shared<Item[numberOfItems]>* items, int32 index1, int32 index2) {

2 // There is no noticeable synchronization management overhead in this example since the sync

3 // overhead is dominated by the not synchronized heavy work. With doHeavyWork() inside

4 // sync(...) the program is basically serialized. Therefore, apply lock narrowing to reduce

5 // the amount of lock contention.

6 sync(items as myItems) {

7 doHeavyWork();

8 return myItems->get[index1].value > myItems->get[index2].value;

9 }

10 }

Listing 5.5: Comparison function with intentional lock contention

As can be seen, doHeavyWork() does not make use of the items pointers so that it should actually not

reside inside the synchronization context. In the given code, this structure would cause unnecessary

lock contention.65 The items pointer is used for the synchronization of the array. The IDE demands that

items must be named, to prevent the user from writing code which causes unsafe changes of the pointer

that is used for accessing the array, as was explained in 3.4.6. For many synchronizations via pointers,

this naming necessity can become quite tedious, yet it is currently the only way to guarantee thread-safe

access via pointers. Synchronization is now also necessary inside the initialization function and the swap

funtion:

1 void initItems(shared<Item[numberOfItems]>* items) {

2 for (i ++ in [0..numberOfItems[) {

3 // Such fine-grained synchronization is a bad choice, ParallelMbeddr is, however,

4 // currently not able to optimize this code.

5 sync(items as myItems) { myItems->get[i].value = rand(); }

6 }

7 }

8

9 int32 partition(shared<Item[numberOfItems]>* items, int32 left, int32 right) {

10 Item pivot;

11 // Items may not be taken by address since they are not shared resources themselves.

12 // Since the elements of the considered array interval are not changed by another task,

13 // in terms of data dependencies, however, it is safe to just copy the element to pivot.

14 sync(items as myItems) { pivot = myItems->get[left]; }

15 //...

16 }

17

18 void swap(shared<Item[numberOfItems]>* items, int32 i, int32 j) {

19 sync(items as myItems) {

20 Item temp = myItems->get[i];

65 Again, in spite of this artificial structure, like every following code listing, the example is only meant to demonstrate the

optimization potential for ParallelMbeddr.
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21 myItems->get[i] = myItems->get[j];

22 myItems->get[j] = temp;

23 }

24 }

Listing 5.6: Synchronizations for coarse-grained parallel Quicksort

As the code for of the quickSort() function in the user code, which was shown in listing 5.4,

is only changed in terms of the type of the items argument it is skipped in this discussion. The

generator translates the type shared<Item[numberOfItems]> to the type of the generated struct

SharedOf_ArrayOf_Item_0_t that stores the array and a mutex which is used for synchronization pur-

poses. The future type Future<void> is reduced to the void future type VoidFuture_t. The task and

future initialization expressions in lines 8 and 9 of listing 5.4 are reduced to calls of futureInit_X()

functions. The following listing shows the generated code for the line 8:

1 // line 8...

2 VoidFuture_t sorter1 = futureInit_0(middle, items, left);

3

4 VoidFuture_t futureInit_0(int32 middle, SharedOf_ArrayOf_Item_0_t* items, int32 right) {

5 // the type and variable names are simplified for better legibility

6 Args_0_t* args_0 = malloc(sizeof(Args_0_t));

7 args_0->middle = middle;

8 args_0->items = items;

9 args_0->right = right;

10 pthread_t pth;

11 pthread_create(&pth, null, :parFun_0, args_0);

12 return ( VoidFuture_t ){ .pth = node: pth };

13 }

Listing 5.7: Reduction of future declaration with parallellized quicksort call

The generated code for line 9 is equivalent to the one for line 8 except for names of the arguments

and struct fields of Args_1. This shows that, if many tasks are defined, the generated code may grow

substantially by the definition of futureInit_X() functions and argument structure declarations. In

the current example, actually a single structure and initialization function would suffice as the types of

arguments are equal. However, ParallelMbeddr does not optimize the code in this regard yet. In the

future, equivalency checks of task expressions should therefore be implemented to reduce the amount of

generated code.

Every synchronization statement is translated to a statement block like the one in the function

biggerThan():
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1 boolean biggerThan(SharedOf_ArrayOf_Item_0_t* items, int32 index1, int32 index2) {

2 {

3 SharedOf_ArrayOf_Item_0_t* myItems = items;

4 {

5 doHeavyWork();

6 startSyncFor1Mutex(&(myItems)->mutex);

7 {

8 stopSyncFor1Mutex(&(myItems)->mutex);

9 return myItems->value[index1].value > myItems->value[index2].value;

10 }

11 stopSyncFor1Mutex(&(myItems)->mutex);

12 }

13 }

14 }

Listing 5.8: Reduction of the coarse-grained comparison function

As expected, the synchronization statement is translated to mutex synchronization functions. An addi-

tional call for stopSyncFor1Mutex() is added before the return statement in order to prevent inconsis-

tent synchronization states. The next according call in line 11 is therefore useless and could generally

be omitted. Yet, ParallelMbeddr does not perform an analysis to prevent the insertion of unreachable

‘stop’ calls. An according analysis should therefore be added in the future, when the built-in data-flow

analysis of mbeddr reaches a reliable state. The statement block indicated by the braces in lines 7 and

10 are added to keep a clear distinction between the scopes of local variables inside the synchronization

statement and the scopes of named resources. An alternative to this approach would be to prohibit name

equalities of inner local variables and named resources. Line 5 shows that the call of doHeavyWork()

was moved out of the synchronization context, which was accomplished by synchronization narrowing.

For this reason, another statement block (lines 4 and 12) was added, again for the separation of local

variable scopes. The outer-most block does the same for outer local variables and local variables result-

ing from the reduction of named resources. Since in this example code, no conflicting variables exist,

these scopes are completely unnecessary and should only be generated on demand in the future.

Fine-Grained Protection

In the former approach, for every access to the array, the whole array had to be synchronized. Alterna-

tively, every element can be separately protected by a shared resource. The type of the items variable

is then changed to shared<shared<Item>[numberOfItems]>. Although the whole array still needs to

be protected and synchronized in the user code, the compiler will find that all synchronizations of the

complete array can be removed, since none of its members are ever overwritten:66 Neither the array

66 Actually, non of the items can ever be overwritten, since the IDE would otherwise detect an unsafe, thus not allowed,

overwrite of a shared resource and trigger an error message.
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itself nor any of its items. The user’s code must be changed to take into account the element-wise

synchronizations:

1 void initItems(shared<shared<Item>[numberOfItems]>* items) {

2 for (i ++ in [0..numberOfItems[) {

3 sync(items as myItems) {

4 sync(&myItems->get[i] as itemI) { itemI->get.value = rand(); }

5 }

6 }

7 }

8 int32 partition(shared<shared<Item>[numberOfItems]>* items, int32 left, int32 right) {

9 shared<Item>* pivot;

10 sync(items as myItems, &myItems->get[left] as itemLeft) { pivot = itemLeft; }

11 // ...

12 }

13 boolean biggerThan(shared<shared<Item>[numberOfItems]>* items, int32 index1, int32 index2) {

14 sync(items as myItems) {

15 doHeavyWork();

16 sync(&myItems->get[index1] as item1, &myItems->get[index2] as item2) {

17 return item1->get.value > item2->get.value;

18 }

19 }

20 return false;

21 }

22 void swap(shared<shared<Item>[numberOfItems]>* items, int32 i, int32 j) {

23 sync(items as myItems) {

24 sync(&myItems->get[i] as itemI, &myItems->get[j] as itemJ) {

25 Item temp = itemI->get;

26 temp = itemI->get;

27 itemI->set(itemJ->get);

28 itemJ->set(itemI->get);

29 }

30 }

31 }

Listing 5.9: Fine-grained synchronization for Quicksort

Again, the reduction of biggerThan() shows the performed optimizations:

1 boolean biggerThan(SharedOf_ArrayOf_SharedOf_Item_0_0_t* items, int32 index1, int32 index2) {

2 {

3 SharedOf_ArrayOf_SharedOf_Item_0_0_t* myItems = items;

4 {

5 doHeavyWork();

6 {

7 SharedOf_Item_0_t* item1 = &myItems->value[index1];

8 SharedOf_Item_0_t* item2 = &myItems->value[index2];
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9 startSyncFor2Mutexes(&(item1)->mutex, &(item2)->mutex);

10 {

11 stopSyncFor2Mutexes(&(item1)->mutex, &(item2)->mutex);

12 return item1->value.value > item2->value.value;

13 }

14 stopSyncFor2Mutexes(&(item1)->mutex, &(item2)->mutex);

15 }

16 }

17 }

18 }

Listing 5.10: Reduction of the fine-grained comparison function

The call doHeavyWork() is again shifted outside the synchronization context. Furthermore, the lock of

myItems is dropped. In consequence, only the single array elements need to be locked. Thus, the lock

contention of the previous approach was replaced by a synchronization management overhead for the

individual elements.

Measurements

The presented approaches – except for the unsafe variant of the Quicksort algorithm – were measured for

their execution times. The synchronization based programs were both tested with and without applied

optimizations. The constants numberOfItems and heavyWorkSize (n and h in the following text) were

adjusted to provide different constellations:

• for all approaches: h= 1000 with n= 50, n= 100 and n= 200

• for the fine-grained approach: n= 20000 with h= 100, h= 50 and h= 0

Every timing-test was executed 10 times in order to account for measuring errors. The values for the

average means and the standard deviations are given in seconds.

n 50 100 200

average mean 0.721 1.693 3.920

standard deviation 0.006 0.005 0.015

Table 1: Execution times for serial Quicksort

The timings in tables 1 and 2 show that the non-optimized version of the coarse-grained implementation

of Quicksort shows basically the same performance as the serialized one (which is obviously not opti-

mized). This is no surprise as the code serializes most of the work that is performed by the algorithm.

The optimized version shows the potential of lock narrowing: The speed-up of the optimized version

converges to 2, which is also the maximum speed-up that can be achieved by the two processor cores

on the test-system (if caching effects are excluded). This indicates, that the synchronization overhead
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non-optimized optimized

n 50 100 200 50 100 200

average mean 0.718 1.707 3.944 0.723 1.117 2.135

standard deviation 0.001 0.006 0.009 0.004 0.005 0.011

Table 2: Execution times for coarse-grained Quicksort

in the optimized variant is dominated by the work of doHeavyWork(). For n = 50 no speed-up can be

determined (the additional 5 ms can be attributed to measuring errors) which indicates that the number

of items is too small too allow for parallel execution. Thus, no further tasks are initiated.

non-optimized optimized

n 50 100 200 50 100 200

average mean 0.756 1.832 4.364 0.743 1.365 2.488

standard deviation 0.007 0.014 0.012 0.005 0.007 0.012

Table 3: Execution times for fine-grained Quicksort with h= 1000

For the according configuration of the fine-grained implementation of Quicksort, table 3 indicates only

a small performance overhead when compared to the serial variant. The times result from the fact that

the main work is again serialized, while additional synchronization for the single items is performed.

The overhead increases with the number of items that are sorted. This overhead is also reflected in the

optimized version, which is thus slower than the coarse-grained implementation. The numbers of table

2 suggest that due to the dominance of doHeavyWork() the synchronization of the whole array seems

to be negligible (when optimized). On the other hand, table 3 shows that the synchronization of the

single elements noticeably decelerates the algorithm. Thus, the numbers suggest that such fine-grained

synchronization can generally cause a significant performance loss, even if no actual lock clashes happen

(since every element is only accessed by one task at a time). However, the timings in table 4 reveal that

due to reduction contention also coarse-grained synchronization can cause severe performance losses.

In this setting, the impact of doHeavyWork() is mitigated by adjusting h to 0, 50 and 100. In exchange,

the number of items is set to 20000, in order to register a noticeable synchronization overhead. The

numbers of the optimized version suggest that the main part of the execution time results from the

amount of additional comparison work of doHeavyWork(). For h= 0, the execution time converges to 0.

On the other hand, the execution times of the non-optimized version are significantly worse than those

of the former runs. Even with no additional comparison overhead (h = 0), the program is slowed down

to twice the worst execution time of the optimized variant.

These numbers show that the removal of read-only locks can at times lead to a significant performance

boost, which is true also for the narrowing of synchronization statements.
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non-optimized optimized

h 0 50 100 0 50 100

average mean 6.587 8.609 13.354 0.132 0.809 3.129

standard deviation 0.116 0.085 0.101 0.001 0.006 0.025

Table 4: Execution times for fine-grained Quicksort with n= 20000

5.1.2 π

The π scenario is a continuation of the running example from chapter 3. To recap the idea: The number

π is calculated by iteratively adding numbers which are given by a function on the natural numbers. The

precision of the resulting π approximation correlates to the numbers that are added.

Serial Variant

The serial variant of this algorithm just adds the mapped values of 0 up to a certain threshold n to the

result. The following code listing already indicates the block approach which is used by the parallel

variants of this algorithm:

1 #constant BLOCKSIZE = 30000000;

2 #constant BLOCKCOUNT = 4;

3 #constant THRESHOLD = BLOCKSIZE * BLOCKCOUNT;

4

5 exported int32 main(int32 argc, string[] argv) {

6 double result;

7 for (int32 i = 0; i < THRESHOLD; i += BLOCKSIZE) {

8 calcPiBlock(&result, i, i + BLOCKSIZE);

9 }

10 return 0;

11 }

12

13 long double calcPiBlock(uint32 start, uint32 end) {

14 long double result = 0;

15 for (uint32 i = start; i < end; ++i) { result += calcPiItem(i); }

16 return result;

17 }

18

19 long double calcPiItem(uint32 index) {

20 return 4.0 * (pow(-1.0, index) / (2.0 * index + 1.0));

21 }

Listing 5.11: Serial calculation of π
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Parallel Variant without Synchronization

The first parallel variant that is evaluated is the future-based algorithm whose translation was shown in

3.1.3:

1 exported int32 main(int32 argc, string[] argv) {

2 long double result = 0;

3 Task<long double*>[BLOCKCOUNT] calculators;

4 Future<long double*>[BLOCKCOUNT] partialResults;

5

6 for (i ++ in [0..BLOCKCOUNT[) {

7 uint32 start = ((uint32) i) * BLOCKSIZE;

8 uint32 end = start + BLOCKSIZE;

9 calculators[i] = |calcPiBlock(start, end)|;

10 }

11

12 for (i ++ in [0..BLOCKCOUNT[) {

13 partialResults[i] = calculators[i].run;

14 calculators[i].clear;

15 }

16

17 for (i ++ in [0..BLOCKCOUNT[) {

18 result += *(partialResults[i].result);

19 free(partialResults[i].result);

20 }

21

22 return 0;

23 }

Listing 5.12: Parallel calculation of π without synchronization

The algorithm divides the interval of numbers, which will be mapped to the terms that ultimately add

up to the result, into blocks. Each block is assigned to a task that calculates partial sums according to

the numbers of its block. The partial sums are then accessed in line 18 via the future handles of the

running tasks. The memory of the results, which reside in the heap, are then freed, although this is

usually not necessary at the end of the program. No synchronization is used in the given code as all

communication happens implicitly and moves uni-directional from the calculator tasks to the main task

via the result values. The translation of the code is skipped, since it was already shown in 3.1.3 and, for

lack of applied optimization, would not enrich the discussion of this chapter.

Simple Map-Reduce Approach

The second variant of the π algorithm equals the one presented in 3.3.4: The blocks are now no longer

assigned at the definition of the tasks but via communication among the tasks. The mapper tasks use
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a counter to communicate the current progress of processed blocks. Furthermore, their partial sums

are no longer received by the result values of their future handles. Instead, a shared queue is used to

communicate the partial sum of each block to a reducer task:

1 exported int32 main(int32 argc, string[] argv) {

2 shared<Queue> queue;

3 queueInit(&queue); // set all slots to 0

4 shared<Queue>* queuePointer = &queue;

5 shared<uint32> counter;

6 shared<uint32>* counterPointer = &counter;

7 sync(counter) { counter.set(0); }

8

9 Task<void> mapperTask = |map(THRESHOLD, counterPointer, queuePointer)|;

10 Future<void>[MAPPERCOUNT] mappers;

11 for (i ++ in [0..MAPPERCOUNT[) { mappers[i] = mapperTask.run; }

12 mapperTask.clear;

13

14 shared<long double> result;

15 shared<long double>* resultPointer = &result;

16 |reduce(BLOCKCOUNT, resultPointer, queuePointer)|.run.join;

17

18 return 0;

19 }

20

21 void map(uint32 threshold, shared<uint32>* counter, shared<Queue>* resultQueue) {

22 while (true) {

23 uint32 start, end;

24

25 sync(counter as myCounter) {

26 start = myCounter->get;

27 if (start == threshold) { break; }

28 uint32 possibleEnd = start + BLOCKSIZE;

29 end = (possibleEnd <= threshold)?(possibleEnd):(threshold);

30 myCounter->set(end);

31 }

32

33 queueSafeAdd(resultQueue, calcPiBlock(start, end));

34 }

35 }

36

37 void reduce(uint32 numberOfItems, shared<long double>* result, shared<Queue>* resultQueue) {

38 sync(result as myResult) {

39 myResult->set(0);

40 for (uint32 i = 0; i < numberOfItems; ++i) {

41 long double item;
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42 queueSafeGet(resultQueue, &item);

43 myResult->set(item + myResult->get);

44 }

45 }

46 }

Listing 5.13: Parallel calculation of π with simple map-reduce approach

The reducer task knows in advance how many blocks it is going to receive. It can therefore count

the received elements in line 40 to determine when it is finished. For simplicity reasons, the reducer

synchronizes the shared resource of the result variable during its whole lifetime. While such patterns

can generally lead to deadlocks, it is safe in the current example as no other task acquires the result

before the finish of the reducer. The mapper tasks do not know in advance the number of blocks that

they will process, which is why they use an unconditional loop in line 22. They can, however, identify

the last block via threshold and stop as soon as the counter variable has reached this value. It is crucial

for the mappers to synchronize the counter variable from line 25 to line 31 and not apply fine-grained

synchronization in order to avoid race conditions. It is the responsibility of the programmer to identify

the according data dependencies and synchronize appropriately. For atomicity patterns like the one in

the example code (read a shared resource, process its value and overwrite its value), it might be possible

to give first-class support in mbeddr in the future. However, the programmer would still have to identify

shared resources whose utilizations match such patterns.

The queue whose functions are called in lines 3, 33 and 42 manages two fields, insertAt and deleteAt,

which keep the indices of the next free, respectively occupied slot of the queue. Every item of the queue

is separately shared:

1 exported struct Queue {

2 int32 insertAt;

3 int32 deleteAt;

4 shared<long double>[QUEUESIZE] data;

5 };

Listing 5.14: Declaration of the queue of map-reduce

The queue works like a ring buffer: Items are always added at the front and removed at the back, while

the according indices insertAt and deleteAt are managed as if the last and the first slot of the array

were connected. The implementation of the queue functions are not optimized for best performance in

the user code. Instead, they are written in a way that shows how the optimizations of the compiler may

take place. The called functions are defined as follows:

1 void queueInit(shared<Queue>* queue) {

2 sync(queue as myQueue) { myQueue->get.insertAt = myQueue->get.deleteAt = 0; }

3 }

4

5 void queueSafeAdd(shared<Queue>* queue, long double item) {

6 while (true) {

7 sync(queue as myQueue) {
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8 int32 newInsertAt = (queueGetInsertAt(queue) + 1) % QUEUESIZE;

9 int32 deleteAt = queueGetDeleteAt(queue);

10 if (deleteAt == newInsertAt) { continue; }

11 queueSetItemAt(queue, queueGetInsertAt(queue), item);

12 queueSetInsertAt(queue, newInsertAt);

13 break;

14 }

15 }

16 }

17

18 void queueSafeGet(shared<Queue>* queue, long double* result) {

19 while (true) {

20 sync(queue as myQueue) {

21 // see above at queueSafeAdd()

22 if (queueGetDeleteAt(queue) == queueGetInsertAt(queue)) { continue; }

23 *result = queueGetItemAt(queue, queueGetDeleteAt(queue));

24 int32 newDeleteAt = (queueGetDeleteAt(queue) + 1) % QUEUESIZE;

25 queueSetDeleteAt(queue, newDeleteAt);

26 return;

27 }

28 }

29 }

Listing 5.15: Functions for the queue of map-reduce

queueSafeAdd() and queueSafeGet() repeatedly check the indices of the queue for free, respectively

occupied slots. If none are available, the check is repeated in a busy-wait manner. As the repetitions do

not perform a wait after an unsuccessful check, the code will ultimately cause unnecessary workload for

the CPUs. The user should therefore force the tasks to sleep for a certain amount of time in between

two executions of the loop. Yet, it may be difficult to balance the waiting time for acceptable responding

times and CPU occupancy. For this reason, it might be helpful in the future to offer condition variables

which, in the current example, would allow queueSafeGet() to wait for a free or occupied slot without

having to worry about the implementation of a performant busy-wait approach. Such condition variables

could either suspend a thread until the declared conditions are fulfilled or realize a busy-wait protocal

similar to the one for the acquisition of locks. The two functions queueSafeAdd() and queueSafeGet()

synchronize all statements in the busy-wait loops. This is done to prevent interfering changes of the

index variables of the queue. The accesses to the queue thus become serialized (for this reason, in this

example, the separate protection of each queue slot is actually superfluous). Therefore, the locks’s re-

peated acquisition and release for the queue, which causes unnecessary synchronization management

overhead, could be optimized by instead nesting the loops inside the synchronization statements. How-

ever, this optimization technique, called lock coarsening, must be used with care in order to not impair

the responsiveness due to added lock contention (see also section 5.2.5).
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Of the queue’s remaining functions, the function queueSetItemAt() is presented. The other helper

functions have the same structure.

1 void queueSetItemAt(shared<Queue>* queue, int32 index, long double newItem) {

2 sync(queue as myQueue) {

3 sync(&myQueue->get.data[index] as wrappedItem) { wrappedItem->set(newItem); }

4 }

5 }

Listing 5.16: Exemplary helper function for the queue of map-reduce

queueSetItemAt() first has to synchronize the access to the shared queue. It then does the same for

the slot of the queue whose value is to be overwritten. At this point, two optimizations are possible.

First, the queue does not need to be locked, since for the only call of this function the queue is already

synchronized. Thus, recursive-lock optimization can be performed. Furthermore, since every synchro-

nization of the queue slots happens in a context where the whole queue is also synchronized, the latter

synchronization dominates the former. Therefore, the slots actually do not need to be synchronized.

This technique is similar to the removal of enclosed monitor locks in Java (see 5.2.5). If the necessary

properties for these optimizations only hold for some calls of queueSetItemAt() function inlining or du-

plication could be performed (see 4.2.3). A look at the generated code for the current example reveals

that of the presented optimizations the removal of the recursive lock is performed:

1 void queueSetItemAt(SharedOf_Queue_0_t* queue, int32 index, long double newItem) {

2 {

3 SharedOf_Queue_0_t* myQueue = queue;

4 {

5 {

6 SharedOf_long_double_0_t* wrappedItem = &[| node: myQueue -> value |].data[index];

7 startSyncFor1Mutex(&(wrappedItem)->mutex);

8 { wrappedItem->value = newItem; }

9 stopSyncFor1Mutex(&(wrappedItem)->mutex);

10 }

11 }

12 }

13 }

Listing 5.17: Reduction of the helper function for the queue

The synchronization for myQueue is removed, whereas the one for wrappedItem remains, which is the

expected result of the implemented optimizer. On the other hand, the synchronizations of the queue in

the aforementioned functions queueSafeGet(), queueSafeAdd() and queueInit() remain, as expected.
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Extended Map-Reduce Approach

While in the last version of the π algorithm the mappers shared a single queue, the extended variant

assigns one queue to each mapper. The reducer gets access to each of these queues. Furthermore another

container is introduced for the queues:

1 struct FlaggedQueue {

2 shared<int32> itemCount;

3 shared<Queue> queue;

4 shared<boolean> isFull;

5 shared<boolean> isFinished;

6 };

Listing 5.18: Container for a queue with additional communication flags

This container is used in the following way. Whereas in the former approach partial sums were com-

municated, in the extended variant, a mapper adds every single item to the queue (this is of course an

approach which, for performance reasons, would not be pursued in real life). The mapper repeatedly

fills the queue with as many items as possible, which depends on the number of free slots left in the

queue and on the items left to be calculated for the current block of numbers. After each such round,

the mapper signals the reducer via isFull that it is done for the moment and via itemCount how many

items were actually added to the queue (since the queue itself does not offer an according functionality).

When the mapper is finished, it informs the reducer via isFinished; thus, the reducer finally knows

when it is finished itself. The result queues are declared in the main function:

1 exported int32 main(int32 argc, string[] argv) {

2 // ...

3 shared<shared<FlaggedQueue>[MAPPERCOUNT]> resultQueues;

4 shared<shared<FlaggedQueue>[MAPPERCOUNT]>* resultQueuesPointer = &resultQueues;

5 Future<void>[MAPPERCOUNT] mappers;

6 for (i ++ in [0..MAPPERCOUNT[) {

7 sync(resultQueues, &resultQueues.get[i] as resultQueue) {

8 sync(&resultQueue->get.itemCount as itemCount) { itemCount->set(0); }

9 sync(&resultQueue->get.isFull as isFull) { isFull->set(false); }

10 sync(&resultQueue->get.isFinished as isFinished) { isFinished->set(false); }

11 queueInit(&resultQueue->get.queue);

12 mappers[i] = |map(THRESHOLD, counterPointer, resultQueue)|.run;

13 }

14 }

15

16 shared<long double> result;

17 shared<long double>* resultPointer = &result;

18 |reduce(resultPointer, resultQueuesPointer)|.run.join;

19 }

Listing 5.19: Adopted main function of the extended map-reduce approach for π
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The result queues have to be wrapped inside a shared resource to be safely shareable with the reducer.

In lines 4, 17 and 18, the code reveals a circuitousness which results from the copy-semantics of tasks:

In order to actually share resultQueues and result with the reducer, according pointers have to be

defined in advance. If the programmer would instead reference these data via address such as

1 |reduce(&result, &resultQueues)|.run.join;

then not addresses of the original shared resources would actually be copied. Instead, the shared re-

sources would be copied themselves and pointers to these copies would in turn be copied into the reducer

task. Ultimately, this would lead to erroneous code. This results from the fact that the value of every

referenced variable inside a task expression is copied into the arguments structure, which the thread for

this task is fed at runtime. In the future, the semantics should probably be distinguished in this regard,

such that every address-referenced variable of a shared resource is actually copied by its address, not by

its value. The aforementioned mapper and calcPiBlock are changed to the following code:

1 void map(uint32 threshold, shared<uint32>* counter, shared<FlaggedQueue>* partialResultQueue) {

2 while (true) {

3 uint32 start, end;

4 // ...

5 calcPiBlock(start, end, partialResultQueue);

6 }

7 sync(partialResultQueue as myQueue, &myQueue->get.isFinished as isFinished)

8 { isFinished->set(true); }

9 }

10

11 void calcPiBlock(uint32 start, uint32 end, shared<FlaggedQueue>* resultQueue) {

12 int32 mapCounter = 0;

13 for (uint32 i = start; i < end; ++i) {

14 sync(resultQueue as queue) { queueSafeAdd(&queue->get.queue, calcPiItem(i)); }

15 ++mapCounter;

16

17 if (mapCounter == QUEUESIZE - 1 || i == end - 1) {

18 sync(resultQueue as queue, &queue->get.itemCount as itemCount)

19 { itemCount->set(mapCounter); }

20 sync(resultQueue as queue, &queue->get.isFull as isFull) { isFull->set(true); }

21 mapCounter = 0;

22 while (true) {

23 sync(resultQueue as queue, &queue->get.isFull as isFull) {if (!isFull->get) { break; }}

24 timespec sleepingTime = (struct timespec){ .tv_nsec = };

25 nanosleep(&sleepingTime, null);

26 }

27 }

28 }

29 }

Listing 5.20: Mapper functionality for the extended map-reduce approach for π
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As already explained, inside calcPiBlock(), the mapper adds as many items to the queue as possible.

It then changes the flags itemCount and isFull so that the reducer will empty the queue. The mapper

thus subsequently waits in a busy-wait manner for the isFull flag to become invalid.

1 void reduce(shared<long double>* result,

2 shared<shared<FlaggedQueue>[MAPPERCOUNT]>* resultQueues) {

3 sync(result as myResult) { myResult->set(0); }

4

5 boolean[MAPPERCOUNT] areFinished;

6 for (i ++ in [0..MAPPERCOUNT[) { areFinished[i] = false; }

7 int32 isFinishedCount = 0;

8

9 while (true) {

10 // try to read from one queue if any one is available

11 for (i ++ in [0..MAPPERCOUNT[) {

12 if (areFinished[i]) { continue; }

13 sync(resultQueues as myQueues, &myQueues->get[i] as resultQueue) {

14 sync(&resultQueue->get.isFull as isFull, &resultQueue->get.isFinished as isFinished) {

15 if (isFull->get) {

16 addPartialResults(result, &resultQueue->get.itemCount, &resultQueue->get.queue,

17 &resultQueue->get.isFull);

18 } else if (isFinished->get && setFinished(i, areFinished, &isFinishedCount)) {

19 return;

20 }

21 }

22 }

23 }

24 timespec sleepingTime = (struct timespec){ .tv_nsec = DELAY };

25 nanosleep(&sleepingTime, null);

26 }

27 }

Listing 5.21: Reducer function of the extended map-reduce approach for π

The synchronizer busy-waits for one of the tasks to be either finished (line 18) or for the queue of the

respective task to become full (line 15). In the latter case, addPartialResults adds the items of the

filled slots to the overall result, and invalidates the isFull flag:

1 void addPartialResults(shared<long double>* result, shared<int32>* itemCount,

2 shared<Queue>* queue, shared<boolean>* isFullFlag) {

3 sync(queue as myQueue, itemCount as myItemCount) {

4 for (i ++ in [0..myItemCount->get[) {

5 sync(result as myResult) {

6 long double tempResult;

7 queueSafeGet(myQueue, &tempResult);

8 myResult->set(myResult->get + tempResult);
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9 }

10 }

11 }

12 sync(isFullFlag as flag) { flag->set(false); }

13 }

Listing 5.22: Actual reduce functionality for the reducer

The previous code listings show some optimization potential. First, resultQueues does not need to be

synchronized in line 13 of listing 5.21, since array elements are not allowed to be overwritten. The

same holds for the container resultQueue in the same line. On the other hand, since the container

resultQueue and its counterparts in lines 7, 14, 18, 20 and 23 of listing 5.20 always dominate the struct

fields itemCount, isFull and isFinished synchronization-wise, an optimization algorithm might find

that the synchronization of the whole queue and a removal of the synchronizations of its fields may lead

to better performing code. Such optimization assessments would require some sort of heuristics and

should be considered for future extensions of ParallelMbeddr. Nevertheless, in line 3 of listing 5.22, the

synchronization of myQueue causes the queue to be always synchronized in queueSafeGet(), since line

7 contains the only call for this function. Hence, the synchronization inside this function, which was

shown in the previous parallelization approach, can be removed; along with all recursive locks in the

helper functions for the queue. Another subtle optimization could be applied for every synchronization

of the queue: Since the use of isFull forbids the mappers to add new items to the queue as long as this

flag evaluates to false and vice versa for the reducer, there can actually never be any conflicting accesses

to the queues fields. The utilization of the queue, thus, induces two states that are determined by the

value of isFull. It is left to future research how such state-dependent synchronization can be exploited

for the elision of locks. The actual performed optimizations concern the synchronizations of the overall

resultQueues container and those of the individual actual queues. The optimizer detects the read-

only usage of resultQueues and infers that locks thereof can be removed. It should be noted that the

optimizer is not able to detect this usage pattern for each queue container in the array of resultQueues

since the according optimization for nested shared resources is not supported, yet. However, due to the

use of pseudo-aliases, in an unsafe optimization mode, the optimizer detects the recursive locks of the

individual queues in queueSafeGet() as well as the helper functions for the queue and deletes them.

Since it is not of relevance, the optimized code is omitted in this discussion.

Measurements

All variants of the π approximation algorithm were timed with different configurations. Every configu-

ration was executed 10 times. The configurations adjust different values for the constants BLOCKSIZE,

BLOCKCOUNT and MAPPERCOUNT (s, c and m). The tests aim at performing an equal number of item calcula-

tions for π (THRESHOLD = 120,000,000), which was not possible to achieve for the complex queue-based

solution of the previous section. By calculating the same items for every configuration of a solution,

the impact of the parameters becomes evident. Thus, general scalability was not of concern for the π

scenario.
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s = 15k, c = 8k s = 30k, c = 4k s = 60k, c = 2k

average mean 4.826 4.801 4.814

standard deviation 0.031 0.038 0.022

Table 5: Execution times for serial π

As expected, varying block-sizes do not have a significant impact on the performance of the serial vari-

ant. For the non-synchronized variant, presented in 5.1.2, a small performance degradation towards

increasing block sizes is measurable. This results from the fact that the block size, and with it the block

count, determines the number of simultaneously executed tasks: For each block, one task is run.

s = 944882, c = 127 s = 60000k, c = 2

average mean 2.816 3.003

standard deviation 0.014 0.047

Table 6: Execution times for the non-synchronization approach for π

The indicated performance improvement of the parallel approach towards the serial one does not reach

factor 2, which would be the ideal case on a dual-core machine. Furthermore, the performance peak

is not bound to the configuration with two blocks. Additionally, the solution could not be performed

with more than 127 blocks (hence, 127 calculator tasks and threads). While the last, surprising result

strongly indicates a limitation of the underlying POSIX library, it remains to be detected if the other

issues are caused by the implementation of the library, the outline of the machine or some other reason.

The limitation of such a small number of efficiently simultaneously executed tasks, however, shows that

the mapping of tasks to pthreads will not fit highly concurrent scenarios.

The next solution, simple map-reduce, was performed with a varying mapper count m (1, 2, 10, 11, 12)

for each of the settings that was also used for the serial variant. In every setting, the queue had a size of

10 slots.

m 1 2 10 11 12

s = 15k, c = 8k
average mean 152.758 218.937 115.428 114.453 143.307

standard deviation 3.173 4.716 3.601 2.273 3.213

s = 30k, c = 4k
average mean 76.174 110.354 56.707 54.488 74.698

standard deviation 3.102 1.795 4.862 1.650 6.079

s = 60k, c = 2k
average mean 24.998 48.178 28.050 28.365 38.051

standard deviation 1.392 1.974 1.628 2.911 3.327

Table 7: Execution times for the simple non-optimized map-reduce approach for π

When compared to the non-optimized variant of the simple map-reduce approach (table 7), the op-

timized version (table 8) reveals a performance enhancement which ranges from almost factor 2.5
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m 1 2 10 11 12

s = 15k, c = 8k
average mean 50.527 59.390 17.112 15.501 48.650

standard deviation 0.726 1.014 0.592 0.953 1.710

s = 30k, c = 4k
average mean 25.345 33.020 8.699 8.018 23.821

standard deviation 0.570 0.784 0.524 0.274 0.700

s = 60k, c = 2k
average mean 10.427 16.683 5.085 4.697 11.610

standard deviation 0.288 0.509 0.181 0.260 0.563

Table 8: Execution times for the simple optimized map-reduce approach for π

(s = 60, c = 2k, m = 1) to almost factor 10 (s = 15k, c = 8k, m = 10). For this implementation,

the optimization of recursive locks, thus, improves the execution times significantly. The second obser-

vation is that in most cases the execution time is almost proportional to the number of processed blocks:

half as many blocks entail a halved execution time. This outcome is probably a consequence of the pro-

portionality of number of blocks and synchronization overhead for the counter and for the queue that are

shared among the mappers. The next, and most obvious observation is that none of the configurations

except s = 60k, c = 2k and m = 11 for the optimized variant entail a better performance than the serial

π implementation. In consequence, the synchronization overhead generally seems to over-compensate

the lessened work that every mapper task has to do. This assumption is confirmed by the varying exe-

cution times of the particular mapper counts. An enhancement of one mapper to two mappers increases

the execution times (see tables 7 and 8), which is probably caused by the additional synchronization

overhead between the two mappers. Up until 11 mappers, however the execution times considerably

improve and are also lower than the single-mapper configurations. This property indicates that either

the work division can compensate at least part of the reduced performance due to the synchronization

overhead or, more probable, that the better exhaustion of the queue causes the reducer task to spend

less time with costly busy-waiting for new reducible values. A utilization of more workers than queue

slots (10), however, eventually (for m= 12) causes an overall performance degradation, which probably

results from a congestion of the queue.

For the more complex map-reduce implementation, the total number of calculated items was decreased

to 2,000,000 in order to achieve acceptable execution times. For all settings, the individual queues for

all mappers were set to a size of 1000 slots. This size was chosen rather arbitrarily since it did not seem

to have a significant impact on the execution times, which indicates that the employment of task-specific

queues can diminish the congestions thereof.

The general performance reduction of this approach, when compared to the former ones, does not sur-

prise, since the code contains many bad design choices performance-wise. For this reason it is also not

astonishing that the performed optimizations (removal of read-only locks and recursive locks) do not

entail significant improvements. However, both tables 9 and 10 show that the utilization of 4 mappers

even causes a slight increase of execution times: 13.915 sec vs. 12.889 sec, respectively 2.718 sec vs.

2.567 sec. While the reason for this peculiarity could not be found by the author, the result shows that
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non-optimized optimized

m 4 10 20 4 10 20

average mean 12.889 3.822 1.775 13.915 3.777 1.718

standard deviation 0.401 0.122 0.101 0.297 0.210 0.046

Table 9: Execution times for the extended map-reduce approach for π with s = 100 and c = 2000

non-optimized optimized

m 4 10 20 4 10 20

average mean 2.567 1.125 0.688 2.718 1.014 0.498

standard deviation 0.070 0.068 0.088 0.110 0.095 0.048

Table 10: Execution times for the extended map-reduce approach for π with s = 1000 and c = 200

lock elision does not necessarily entail better performance; in some cases it may even cause the opposite

effect. The different adjustments for the mapper m count show that an increasement of mappers gener-

ally causes an improvement of the execution times. Thus, as in the previous solution, the busy-waiting

of the reducer probably has a considerable negative impact on the overall performance. Additionally,

larger blocks (s = 1000) generate decreased timings, since less synchronization for the counter variable

has to be performed by the tasks.

The map-reduce approaches show that it is generally difficult to implement a performant message-

passing-like communication layer with ParallelMbeddr. For this reason, future research should include a

native, performance-tuned implementation thereof in ParallelMbeddr to prevent the programmer from

some of the pitfalls that were encountered in this chapter.

5.2 Comparison with other Parallelization Approaches

A variety of approaches to thread-safety of code parallelization on the one hand, and performance op-

timization on the other hand have been conceived. The following paragraphs will present a selection

of languages that either already influenced the design and optimization of ParallelMbeddr or might do

so in the future. The comparison starts with a discussion of the achievements of parallel programming

approaches for C in terms of thread-safety and performance optimization.

5.2.1 C

While there are multiple approaches to parallel programming in C, research for optimization techniques

seem to focus primarily on the transactional memory[28][51]. This might result from the property

that due to its general optimistic approach (execute transactions in parallel and repeat this process if
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conflicts occur), the model itself can be seen as a sort of optimization67. Another possible reason is

that the overhead of transactional memory [51] facilitates the use of dynamic optimization techniques.

Approaches in the domain of classical shared-memory based parallelization in C usually neglect data-

races [15] and leave the task of detecting them to the user. [68] suggests an approach with which to

“convert global and static variables in parallel programs into thread-safe storage” [68]. This paper does,

however, not mention how the thread-safety of pointers can be handled. A prominent representative

of the shared-memory model is OpenMP.68 OpenMP is an API to parallel programming for C/C++ and

Fortran[3, p. 1]. It supports both task parallelism and data parallelism. OpenMP is used by extending

valid C code with the #pragma directive,69 which instructs the compiler how to parallelize a program.

It can therefore be seen as a declarative way of enriching single-threaded programs with parallelism.

However, OpenMP does not check the code for correctness regarding thread-safety. This means that it is

the programmer’s responsibility to ensure that data dependencies do not entail data races. For the lack

of an in-built solution, multiple approaches to data-race detection in OpenMP have been proposed [47].

[58] argues that static data-race detection for such programs is difficult to perform and suggests the

additional utilization of dynamic test-based data-race detection. Concerning low-level data races, these

problems are circumvented in ParallelMbeddr by restricting the programmer’s means of sharing data,

which is possible due to the compiler integration of mbeddr. On the other hand, [15] argues that in

some cases, data-races are harmless. For according algorithms, the safety-first concept of ParallelMbeddr

might be inappropriate due to the enforced synchronization overhead.

Nevertheless, OpenMP provides extensive support for parallelization. For instance, it offers multiple

strategies to distribute the processing of arrays onto multiple threads. This, of course, is much easier to

realize with the absence of strong thread-safety guarantees. The following language, on the other hand,

fills this gap by combining explicit parallelization of array-like data structures with thread-safety. In this

regard it might serve as one possible Paragon for the future development of ParallelMbeddr.

5.2.2 ParaSail

The programming language ParaSail offers implicit parallelism. It does so by guaranteeing at compile

time that, theoretically, every valid expression can be evaluated in parallel. In contrast to ‘pure’ languages

like Haskell, it does not sacrifice side-effects for this purpose [74]. However, in order to automatically

prove the safeness of parallel executions, it avoids concepts that are crucial to languages like C, like

pointers and global variables [73]. In these regards, it differs from the focus of this work. Nevertheless,

its approach to data collections may also provide ideas for future research: ParaSail makes heavy use of

indexable containers like lists or trees. When equipped with proper pre- and postconditions, containers

can be sliced in a thread-safe manner [72]. This means that they must be designed in a way which

lets the compiler prove that slices (i.e. sub-intervals) of their elements do not overlap. In such a case,

segmented views of the original container can be manipulated in a thread-safe manner in parallel. While

67 It should be kept in mind that this does not mean that transactional memory generally improves execution times and

outperforms other approaches [20].
68 http://openmp.org/wp/, accessed: 2014-08-23
69 See https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html, accessed 2014-08-22, for details.
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this feature seems to be promising for future enhancements of ParallelMbeddr, it should be noted that

the presence of pointers in C could impede an according realization of containers.

5.2.3 Æminium

Like ParaSail, the programming language Æminium realizes implicit parallelism. As opposed to ParaSail,

it uses explicit annotations on methods by the user to guarantee thread-safety. These annotations declare

access permissions [14] on the parameters of function arguments and return values. The compiler uses

these access permissions (shared, immutable, unique) to prove the correctness of programs in terms of

thread-safety. If possible, executions are parallelized automatically. This may for instance happen if only

immutable data is involved. The presence of mutable shared data, however, requires the programmer to

wrap according statements inside atomic blocks. While atomic blocks could be inferred by the compiler,

the language pursues this path “for granularity reasons” [71]. This approach equals ParallelMbeddr’s

requirement to annotate synchronization blocks explicitly. Both languages thus enable the user to “have

fine-grain control over the size of critical sections” [71]. In consequence, the user controls the trade-off

between the responsiveness (the synchronization contention, i.e. the time that threads are blocked by

others) of the system and the synchronization management overhead. Furthermore, the approach can

directly influence the presence of higher-level data dependencies, that “cannot [be] directly inferred via

data dependencies” [71]. To this end, Æminium offers data groups that allow the user to specify which

data must be synchronized together. An according language feature would enrich ParallelMbeddr with

better support for higher-level dependencies. Furthermore, data groups would allow the compiler to

make use of less mutexes.

5.2.4 D

A similar feature to data groups in Æminium is offered by the multi-paradigm language D.70 D provides

a thread-safety-first approach to parallelization. The programmer has to manually protect data that

is shared between threads. One way of achieving this goal is by synchronizing classes. If a class is

synchronized, its data must be private, and every call of one of its methods is locked for unique access.

If fields themselves have non-primitive types, i.e. class-types, their classes must also be synchronized. In

order to tie the protection of such a field and an object more closely, D allows objects to be owned by

others in terms of their mutexes. An owned object uses the mutex of its owner. D thus enables semantics

similar to data groups in Æminium. While this feature is still lacking in ParallelMbeddr, the language

offers D’s support for explicit synchronization for multiple objects in one synchronization statement for

coarse-grained, deadlock-free synchronization. While ParallelMbeddr uses a busy-waiting approach to

achieve this goal, D uses mutex ordering, which acquires mutexes in the same order in all threads,

regardless of the syntactic order in the programmer’s code [9].71

70 http://dlang.org/, accessed: 2014-08-23
71 For general information on this technique, see https://www.securecoding.cert.org/confluence/display/seccode/POS51-

C.+Avoid+deadlock+with+POSIX+threads+by+locking+in+predefined+order, accessed: 2014-08-23.
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5.2.5 Java

The programming language Java has a form of synchronization similar to D’s. However, its guaran-

tees concerning thread-safety are considerably weaker. In Java, the focus of synchronizations is rather

computation-oriented than data-oriented. The programmer is himself responsible for identifying the

blocks of statements and methods that need to be synchronized, and needs to annotate them. Unlike

in D, a class can thus have synchronized and not synchronized methods. Furthermore, although the

access through a method m of such a monitor (i.e. an object which applies the explained form of syn-

chronization) is synchronized, simultaneous access via unsynchronized other methods to the same data,

which m accesses, is still possible. In spite of these limitations, the research on lock-related optimiza-

tions in Java was used as a starting point for similar optimizations in ParallelMbeddr. The optimizations

accomplished in Java include lock-elision for re-entrant monitors, i.e. monitors whose synchronized

methods are called recursively. Furthermore, enclosed and thread-local monitors are optimized. The

latter relates to single-task lock elision in ParallelMbeddr. The former can be seen as an optimization

technique that was not applied in ParallelMbeddr. If the field f of a monitor m is always accessed by

a synchronized method of m, and f is itself a monitor, then the synchronizations for f ’s methods can

be omitted. Similar, in ParallelMbeddr the synchronizations for a shared resource n, which is nested

inside another one s, could be omitted, if n is always synchronized inside a synchronization context of s

[7]. Another optimization applied in Java is lock-coarsening, which tries to reduce the synchronization

management overhead by broadening synchronization contexts [33]. Such optimization can increase

the amount of lock contention. For this reason, good heuristics are mandatory. Another optimization is

adaptive locking, which switches between spinning (for short time intervals) and suspension (for longer

ones) when a thread waits for the release of a lock. Yet another technique, which was proposed for Java,

is lock reservation [45]. Lock reservation assumes that locks are repeatedly requested by one thread at

a time. It exploits this property by storing at runtime for each lock an owner-thread which might change

anytime. While accesses via a lock l of the owner thread o need not be locked, other threads have to

lock l. Hence, if for a certain amount of time o is the only thread to enter the synchronized methods of a

monitor protected by l, then meanwhile no locking for l has to be applied. It remains to be investigated

whether such optimization is suitable for the resource-constraint embedded domain.

5.2.6 Rust

While Java tries to reduce the amount of necessary locks at compilation time, the programming lan-

guage Rust72 cedes this effort to the programmer by providing appropriate data types. As a systems

programming language, Rust targets performance, but also memory-safety (i.e. null pointers and dan-

gling pointers are prevented) and thread-safety. Among other things, the latter is accomplished by the

use of owned and borrowed pointers. If data is owned by a thread, the thread can safely access it with-

out the need of synchronization. The data can be used inside functions by borrowing a pointer to the

function. This pointer has a limited lifetime and can never leave its creator thread. However, ownership

72 http://www.rust-lang.org/, accessed: 2014-23-08
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can be transfered to other threads. For data that need to be accessed from multiple threads, Rust offers

the wrapper type Mutex<T> which “provides synchronized access to the underlying data” [4]. A mutex in

Rust is the equivalent to a shared resource in ParallelMbeddr. Any access to the underlying data must be

accompanied by a lock of the mutex container. Rust further offers a signal-wait approach via condition

variables for the type Mutex<T>. Concluding, with the depicted language features and various others,

Rust offers manifold opportunities to avoid locks in the first place. For this reason, Rust can serve as a

prototype for future language-based enhancements of ParallelMbeddr.
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6 Conclusion
This thesis showed an approach to leverageing mbeddr’s language extensibility support for providing

advanced support for parallel programming in the embedded domain with C. By developing the new

language abstraction ParallelMbeddr on top of mbeddr, the work provided an explicit parallelization ap-

proach for task based parallelism. For this purpose the concepts ‘task’ and ‘future’ were developed. It was

found that these concepts enable a convenient approach to parallel execution of code: The definition of

code that shall be executed in parallel is significantly facilitated when compared to working with low

level libraries like POSIX threads (as can be seen at the generated code which makes use of pthreads).

The thread-safe communication between tasks was realized by shared resources which wrap data to be

shared between tasks. The communication via shared resources was restricted to explicit synchroniza-

tion contexts that the user had to define by making use of the synchronization statement concept. By

enhancing the type system with a shared data type for shared resources and restricting the ways shared

resources may be used, ParallelMbeddr thus simplifies reasoning of side-effects of communication be-

tween tasks. As a result, the creation of thread-safe code should be facilitated. By applying explicit

synchronization, the system forces the programmer to think about the right scoping of synchronization

contexts. The guaranteed thread-safety, however, is currently limited to low-level data-dependencies.

Languages like Æminium show how to approach this problem and should be used as paragons for future

extensions of ParallelMbeddr: Dependencies between data should be expressed at the definition of the

data, not only when it is used. Otherwise, the language suffers from the danger of data-races resulting

from higher-level data-dependencies just as Java does with low-level data-dependencies, if methods or

statement blocks are not properly synchronized.

As in mbeddr the safety checks happen in the background in real-time, the user directly receives feed-

back concerning safety issue of the written code. However, this approach demands the checks to be

not too complex computation-wise. Hence, the code currently burdens the user with lexical scopes of

synchronization statements. One approach to mitigate this problem in the future is the introduction of

further data types or type annotations (for instance synced<t>) by the user, which diminish the use of

synchronization – hence, locks in the generated code – in the first place. Another type-based approach

would be the introduction of owned pointers and borrowed pointers, as they are implemented in Rust,

which eliminate the necessity for synchronization altogether. Such type advances could both make the

code more explicit (and certainly more complicated) and accelerate the generated code. While these

approaches cede the reduction of locks to the user, inspired by research on Java, this work showed how

to perform performance optimizations in the compilation process. It presented algorithms for the re-

duction of single-task and read-only locks, which share the property of removing locks for whole shared

resources, whenever this is possible. Approaches for the removal of recursive locks were given next.

The test results in the evaluation showed evidence, that specifically for the current lexical scopes of

synchronizations (and the necessarily resulting recursively locks), such optimization should certainly be
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applied, in order to mitigate the resulting synchronization management overhead. On the other hand,

single-task locks seem to be either a code smell for an unnecessary utilization of shared data by the user.

Or they result from re-use of library code. The programming and re-use of library code which makes use

of ParallelMbeddr’s concepts is currently not supported and should be a concern of future research. As

the optimization algorithms generally benefit from an inter-procedural alias-analysis, which can not be

performed when libraries are written, optimizations of such code, too, is left to future research. While

for these reasons and the similarity to read-only locks, single-tasks where not evaluated (although ex-

tensively tested), the removal of read-only locks was. It was shown that the optimization of shared

containers of shared data can in some cases improve the performance of the generated code. The last

optimization, the data-dependence safe narrowing of synchronization statements can also improve the

performance of the executed code significantly. The presented optimizations should, however, be seen as

prototypes, since in the implementation they support only simple data structures. Additionally, the lack

of a precise alias analysis in mbeddr limits the scope of optimizations that can safely be executed with the

prototypical analysis that was implemented as a surrogate. For the evaluation, the recursive-lock reduc-

tion therefore was configured to perform optimizations which were safe for the considered scenarios, but

can be dangerous – in terms of thread-safety – for others. Two important fields of future research should

therefore be the extension of mbeddr with a precise alias-analysis and general optimization support for

more complex data structures. The presented algorithms should greatly profit from this.

Another task for the future is the development of algorithms which do not, unlike the presented ones,

assume a simultaneous execution of threads but, instead, take the succeeding and interleaved execution

of tasks into account. This way, those locks could for instance be removed which synchronize data that

up until a certain point are only used by a single task. Additonally, apart from static analysis for the

detection of shared data of interleaved tasks which are guaranteed to be used by only one task at a time,

model checkers like CBMC could be employed for the same purpose. CBMC can be used to perform test-

runs of code which makes use of assertions. Additionally, for programs that are simple enough, CBMC

can verify the absence of false assertions by unwinding all possible paths through the program [1].73

An optimization analysis could exploit this feature by assigning access counters to shared resources,

removing synchronization statements and asserting that despite this removal, in every possible run of

the program, a certain shared resource is always executed by at most one task at a time. For such

resources the according locks could be removed. The utilization of CBMC could specifically help to

remove locks, for which static analysis cannot easily detect thread-safety like for shared resources whose

only synchronizations occur in conditional statements whose complex conditions will never hold. At the

time this thesis was written, however, CBMC was not ready to be used yet for multi-threading. In this

regard the concrete applicability of CBMC for optimizations has to be left to future research.

Apart from optimization concerns, the scenarios presented in this work showed that for instance the

implementation of shared resources as C structures may entail the generation of many according dec-

larations. Without concrete scenarios from the industry it remains uncertain whether the amount of

generated code has a negative impact on the applicability of ParallelMbeddr. Nevertheless, future re-

73 If loops and recursive functions need to be evaluated more often than the user allows, they will limit the assertions that

CBMC can verify.
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search should investigate the impact of padding that may be inserted into the generated structs and

whether according optimization should be pursued. The scenarios further showed that general paral-

lelization problems, like the dining philosophers problem and map-reduce via communication queues,

can be implemented with ParallelMbeddr. The performance and scalability of the resulting code does

not only depend on the quality of performed optimizations, but also on the general utilization of syn-

chronization. For instance, the pi-example of section 5.1.2 showed that the implementation of a queue

and communication via the queue require a busy-wait approach in the user code. Although concepts

like message passing can therefore in a sense also be implemented by the user, it is questionable if the

performance and usability of an implementation like the presented one have already reached their limits.

Hence, native support for concepts like message-passing or condition variables could both improve the

usability and may, in certain cases, enhance the performance of the written code.

Overall, the thesis showed, how first-class language support on top of an existing language can both

ease the writing of parallel data-race free code and use the compiler for optimizing the resulting code in

terms of synchronization overhead. To the knowledge of the writer, it also gave the first implementation

of such an approach for C in a real-world setting, the development environment mbeddr. While this

work laid the foundation for parallelization support for mbeddr, it showed how much potential reside in

the chosen approach and how further enhancements can raise the accomplishments. From an industrial

point of view, one main task for the future will be the complete integration of ParallelMbeddr with all of

mbeddr’s various language concepts and the stabilization for real-world applications.
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