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Abstract

To improve the productivity of the development pro-
cess, more and more tools for static software analysis
are tightly integrated into the incremental build pro-
cess of an IDE. If multiple interdependent analyses are
used simultaneously, the coordination between the anal-
yses becomes a major obstacle to keep the set of anal-
yses open. We propose an approach to integrating and
scheduling an open set of static analyses which decou-
ples the individual analyses and coordinates the anal-
ysis executions such that the overall time and space
consumption is minimized. The approach has been im-
plemented for the Eclipse IDE and has been used to
integrate a wide range of analyses such as finding bug
patterns, detecting violations of design guidelines, or
type system extensions for Java.

1 Introduction

Static analyses are used to check that certain desired
properties hold before software is deployed. Tradition-
ally, static analyses check properties that are indepen-
dent of an application’s domain, such as array index
out of bounds, null-pointer dereferences or buffer over-
flows. Recently, the attention is shifting towards do-
main and project specific analyses for, e.g., Web and
EJB applications [15, 22, 25, 26], to check the correct
usage of specific APIs [3], to find violations of security
constraints [23], and to enforce design or programming
guidelines [20].

Static analysis tools that support only a fixed set of
analyses [1, 16, 22, 24] are not well-suited for project-
specific analyses. Hence, we propose an open platform
that allows to add or remove analyses as needed. Fur-
thermore, we feature a tight integration of the platform
into the incremental build process of an IDE. The user
is allowed to select a subset of the available analyses to
run along the incremental build process. As a result,
the developer receives immediate feedback on the effect

of source code changes.
An open platform can replace a multitude of spe-

cialized tools. In doing so, it has the potential to re-
duce the engineering effort for developing new analyses
and to support more efficient use of computational re-
sources needed to execute the analyses, which is an
important prerequisite for integration into the incre-
mental build. However, in order for this potential to
become reality, open platforms require an open data
model to store the results of analyses, which in turn
requires means of coordination between analyses that
write and read the data model. In the following, we
elaborate on the statements made in this paragraph in
terms of the sample analyses shown in Tab. 1 along
with the data they depend on.

The table illustrates that static analyses differ
widely in the data they require, but they also share sub-
sets of data. For example, both the SA and the CFT
checker require data flow information. Each analysis
could of course compute all the data it requires from
the raw source code or from a generic representation
of the project. However, implementing and running
several instances of an algorithm for data flow analy-
sis wastes both engineering effort and computational
resources. Furthermore, analyses may consume only
information about a part of the project. For example,
the EH analysis requires only information about the
interfaces of Java classes; method bodies or other ar-
tifacts such as deployment descriptors are irrelevant.
Hence, it is a waste of resources to reify a generic rep-
resentation of the entire software.

To cope with the issues stated in the previous para-
graph, it is desirable to divide the analyses into small
modular producer-consumer units. Analyses such as
SA and CFT can share the results produced by a base
analysis for data flow information; similarly, EH can
consume the results of an analysis that produces infor-
mation about the interfaces of Java classes only. This
requires that analyses are run in a well defined order to
satisfy their data-producer-consumer relations. These
relations cannot, however, be expressed by a total or-
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ID Description Required Data
NSF Searches for finalize methods that do not call

super.finalize.
control flow graph (CFG)

EH Searches for Java classes overriding either
equals(boolean) or hashCode(), but not both.

interfaces of Java classes

SA Searches for String.append(..) invocations
where the return value is ignored.

data flow information

CTAV Searches for Enterprise Java Beans that use
declarative and programmatic transaction de-
marcation [8].

type hierarchy, method bodies, EJB deployment
descriptors

CFT Realization of Confined Types[12] based on Java
annotations.

type hierarchy, type hierarchy changes, data flow
information, public interfaces of libraries

Table 1. Sample analyses and the data they depend on

der, since the set of analyses is open. It is also desirable
to automatically select and run only analyses that pro-
duce information consumed by those analyses directly
selected by the user. A base analysis, e.g., for get-
ting the type hierarchy, should only run if its result is
needed by a user selected analysis.

The producer-consumer dependencies cannot be
represented by a partial order graph either. For better
performance, some analyses should be able to trans-
form and modify existing analysis data instead of gen-
erating new data. Furthermore, several analyses that
generate the same information can co-exist within the
platform and it should be ensured that at most one
of them is run. Both cases are not expressible by a
partial order. Last but not least, to leverage mod-
ern multi-processor architectures, it is also desirable to
parallelize analysis executions whenever possible.

Our approach coordinates analyses based on solv-
ing constraint systems that represent the dependencies
between the analyses. The coordination unit, which
we call the scheduler, treats analyses as modules that
write, read or maintain the open data model. Each
analysis describes its properties and dependencies in
a special analysis specification language (ASL). These
specifications are mapped onto a constraint system
which is fed to a constraint solver. Adding objective
functions to the set of constraints allows to calculate a
schedule that is optimal with regard to the number of
internal analyses to run. We have implemented our ap-
proach as the core of the open static analysis platform
Magellan [10].

The remainder of the paper is organized as follows.
Section 2 presents the data model used as the founda-
tion for the analysis specification language (ASL) pre-
sented in Section 3. Section 4 discusses how a valid
schedule can be calculated. Section 5 evaluates the
implementation of the scheduler. Section 6 discusses

related work. Section 7 summarizes the paper.

2 The Analysis Data Model

The analysis data in our platform is stored in the
whole-program database (WPDB). The WPDB is an
object graph built-up cooperatively by the executed
analyses. The WPDB has a set of designated root ob-
jects which are called facts. The architecture of the
fact objects is shown within the box on the left-hand
side of Fig. 1, entitled ”Class diagram of the WPDB”.
We distinguish between three different types of facts.

For each resource (file) in the project a document
fact is created (an object of class DocumentFact in
Fig. 1), which keeps a reference to the underlying file.
A document fact enables analyses to attach derived in-
formation to the set of facts (implementations of the
IFact interface) it aggregates. For example, a repre-
sentation of a Java class file is a typical example of a
fact aggregated within a document fact. Instances of
the class ClassFile — within the box in the middle of
Fig. 1 — represent individual Java class files produced
by the Java Bytecode Analysis Toolkit BAT [11].

A document fact is automatically created, added to,
and removed from the database corresponding to the
type of action on the underlying file. The set of all
document facts that are created or removed from the
database in a build is also directly made available to
the analyses. This enables analyses which can perform
their work incrementally per document to process only
the delta to the previous build.

Information that cannot directly be associated with
specific documents is stored in the database using whole
program facts. A whole program fact always needs to
be maintained by the analysis that creates it. After
a full build, the analysis has to re-create the whole
program fact; after an incremental build, the analy-
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Figure 1. A part of the LSV and its mapping to the WPDB

sis has to bring the information up-to-date to reflect
the current project’s state. For example, an analysis
that makes the type hierarchy information available
has to update the type hierarchy whenever the devel-
oper makes a change that invalidates the “old” type
hierarchy. Information that is only valid during a build
step is stored in temporary facts. All temporary facts
are automatically deleted before each build. For exam-
ple, a type hierarchy analysis could also make informa-
tion about the changes to the type hierarchy available
for the benefit of subsequent analyses. However, this
information is only valid for the current build.

Data dependencies in the WPDB are expressed in
the logical structure view (LSV). The logical structure
view is a directed acyclic graph. Every node in the
LSV stands for a part of the WPDB, whereby a part
of the WPDB can be a selection of objects or, even
more fine-grained, a selection of field values of the ob-
jects in the WPDB. We call nodes in the LSV entities.
Fig. 1 shows a part of the LSV on the right-hand side.
Also, its mapping to the corresponding parts of the
WPDB is shown by the gray boxes around elements of
the WPDB and BAT class diagrams. Consider for an
example the gray box labeled ”Method” surrounding
the class Method and Attribute in the BAT class di-
agram. This boxing states that a LSV method entity
is mapped to a WPDB method and all its attributes.
We refer to entities in the LSV by using paths in the
LSV starting at the WPDB vertex; e.g., to refer to
the BCode entity we write: Document/CF/Method/
BCode.

Edges in the LSV express data dependencies as fol-
lows: If data in the WPDB is changed that belongs to
an LSV entity v, then all data in the WPDB that is in-

validated by the change is associated to entities w such
that there is a path from w to v in the LSV. Declaring
an entity w as dependent on an entity v implies that
there are no conflicts between an analysis that changes
the data associated to w or any of its dependent entities
and those that just read the data associated to v. Fur-
ther, analyses that access siblings do not conflict. For
example, Field and Method are declared as dependent
entities of CF. Hence, an invalidation of the information
on a class entity automatically invalidates information
on its fields and methods. But, there are no conflicts
between analyses that process Field and Method enti-
ties respectively. These properties are leveraged by the
scheduler to parallelize analysis executions. Though a
fined-grained LSV increases the possibilities for paral-
lelization, it decreases the ease of describing and un-
derstanding the dependencies among analysis data.

The LSV is derived from the set of analysis specifi-
cations, as detailed in Section 4. The mapping between
the LSV and the WPDB is specified informally in the
documentation of the respective WPDB elements.

If the user of the platform would like to extend the
predefined LSV and WPDB, for example to make the
intra-procedural control-dependence graphs (CDG) of
methods available, he first needs to determine where
to store the information. Our representation for class
files enables extension of its object graph by means
of attributes. Hence, the user could implement a set
of classes for managing the CDG and store instances
of them as attributes of the corresponding code object.
Since the CDG is derived from the code of the method,
the LSV is extended with a new node CDG which is
associated with all CDG objects in the WPDB, and an
edge to, e.g., BCode to represent the dependency.
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1 analysis CFP (∗ creates class file representation ∗)
2 writes Document/CF, Document/CF/Field, Document/CF/Method, Document/CF/Method/BCode
3 analysis DDP writes Document/EJBDD (∗ creates EJB Deployment Descriptor representation ∗)

Listing 1. Analyses that make the base representations available (Processors)

1 analysis BCFG writes Document/CF/Method/BCode/CFG (∗ creates the control−flow graph (CFG) ∗)
2 analysis BtoQ (∗ transforms the Bytecode in 3−address SSA form ∗)
3 reads Document/CF/Method/BCode
4 invalidates Document/CF/Method/BCode
5 writes Document/CF/Method/QCodeSSA
6 analysis LIB (∗ maintains the repository of used library classes ∗)
7 reads Document/CF/Method/BCode
8 reads−global Document/CF
9 maintains Library/CF/Field NON PRIVATE, Library/CF/Method NON PRIVATE

10 analysis TH (∗ maintains the type hierarchy ∗)
11 reads−global Document/CF, Library/CF
12 writes−temporary TypeHierarchyChange
13 maintains TypeHierarchy
14 analysis CTA1 (∗ programmatic and declarative transaction demarcation is used ∗)
15 reads Document/EJBDD
16 reads−global TypeHierarchy, Document/CF/Method/BCode
17 writes CTAViolations
18 analysis CTA2 (∗ alternative CTA analysis ∗)
19 reads Document/EJBDD
20 reads−global TypeHierarchy, Document/CF/Method/QCodeSSA
21 writes CTAViolations

Listing 2. Analyses that read, create and transform the database (Base Analyses)

1 analysis NSF reads Document/CF/Method/QCode/CFG (∗ finalize does not call super.finalize() ∗)
2 analysis EH reads Document/CF/Method (∗ equals and hashcode have to be implemented pairwise ∗)
3 analysis SA reads Document/CF/Method/QCodeSSA (∗ String.Append() must not be ignored ∗)
4 analysis CFT (∗ realizes Confined Types ∗)
5 reads TypeHierarchyChange
6 reads−global TypeHierarchy, Document/CF/Method/QCodeSSA,
7 Library/CF/Method NON PRIVATE
8 analysis CTAV reads CTAViolations (∗ wraps CTA and CTA2 ∗)

Listing 3. Analyses that just read the database (Checkers)

Figure 2. Examples of analyses specifications developed to test the framework

AS ::= analysis ID STATEMENT*

STATEMENT ::= DEPENDENCY PATH*
DEPENDENCY ::= reads-global | reads | writes | invalidates | maintains | writes-temporary
PATH ::= ID [/ PATH]

Figure 3. The ASL grammar

4



3 Specifications of Analyses

The analysis specification language (ASL) is used to
declare the data required and provided by each analy-
sis in terms of the logical structure view described in
the previous section. The ASL supports six different
types of dependencies as shown in the ASL grammar in
Fig. 3. Listing 1-3 (in Fig. 2) illustrate the specification
of the sample analyses from Tab. 1.

A reads dependency on some LSV entities means
that the analysis works incrementally on the specified
input data. For example, the EH checker (Listing 3,
Line 2) specifies that the analysis will read the enti-
ties referred to by the path expression Document/CF
/Method. A reads−global dependency, on the other
hand, means that the analysis needs data of the speci-
fied kind for all documents, not just those processed in
the current build. The current implementation of the
type hierarchy analysis, e.g., needs access to all class
files, not just those changed; hence, the corresponding
reads−global dependency in Listing 2, Line 11.

A writes dependency specifies that the analysis
provides data of the specified type for documents that
are changed in the current build step only. For ex-
ample, the DDP analysis (Listing 1, Line 3) specifies
that it writes the EJBDD entity and implicitly reads
the preceding entities, i.e. the Document entity. If all
path elements would be considered as written it would
not be possible to have a second analysis that writes
a dependent entity, but which does not write the pre-
ceding entities; e.g., it would not be possible to spec-
ify that an analysis just writes a BCode’s CFG and
not the BCode. A writes−temporary dependency
is used for data that is automatically invalidated (and
hence removed by the platform) before the next build.
For example, the type hierarchy analysis (Listing 2,
Line 10) also provides information about changes to
the type hierarchy between the current and the pre-
vious build. Since this information is only valid for
one specific build step, it is declared using writes−
temporary. As in case of writes, only the last entity
of the path is written and the previous entities are read.

The invalidates dependency specifies that after
executing the analysis the last entity referred to by
the given path expression is no longer valid. This is
usually the case if an analysis provides its result by
transforming existing data in the WPDB. For exam-
ple, the analysis which transforms a method’s bytecode
representation into the 3-address based representation
(Listing 2, Line 2) specifies that the BCode entity will
become invalid when the analysis is executed because
the analysis changes the existing data in the WPDB.

Finally, maintains is used by an analysis to de-

clare that it creates an entity and updates it during
the following builds. For example, the type hierarchy
analysis declares to maintain (Listing 2, Line 13) the
TypeHierarchy entity.

Analyses may overlap in both their input and out-
put data. If multiple analyses are present that can
produce the same data, the scheduler decides which of
these analyses will be executed. There can also be mul-
tiple analysis specifications for the same analysis. This
can be used to express that an analysis needs one entity
or another kind of entity. For example, the checker for
detecting conflicting transaction demarcations (CTAV
- Listing 3, Line 8) needs either the byte code (BCode
- Listing 2, Line 14) or the SSA-transformed code

(QCodeSSA - Listing 2, Line 18), hence there are two
analysis specifications for this analysis. Such alterna-
tives give the scheduler more leeway in scheduling an
analysis.

An analysis specification also serves as a contract
on what the analysis implementation is allowed to do
with the WPDB. The result of an analysis must only
depend on data in the WPDB whose entity in the LSV
is read. The analysis must not add any data to WPDB
entities which are not marked as writes or writes−
temporary nor change any data that is not marked as
invalidates or maintains, respectively. The schedule
computed by the scheduler is correct if and only if all
analyses are correct w.r.t. their specification and if the
LSV correctly models the dependency relations in the
WPDB.

4 Scheduling Analyses

To calculate an execution schedule for a set of anal-
yses, their ASL specifications are mapped onto a con-
straint system, which is solved by means of integer pro-
gramming. Before we discuss the calculation of the
schedule, we first show how the logical structure view
(LSV) of the program is generated from ASL specifica-
tions. For this purpose, each ASL statement is parsed
and a new entity is created for each path element that
is not yet represented in the LSV. The special entity for
Document is present by default. Moreover, each entity
is directly connected with its parent entity. For exam-
ple, for the path statement Document/CF/Method we
generate two entities: one for CF and one for Method;
furthermore, the entity for Method is added to the LSV
graph as a dependent entity of the CF entity. While
constructing the LSV we check that the LSV does not
contain cycles.

Once the LSV is generated, we record for each entity
which analyses accesses it and how. This information is
needed for the generation of the constraint system. We
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distinguish the following six sets, whereby A denotes
the set of all (installed) analyses a, and E denotes the
set of all entities e in the LSV:
• R denotes for each entity — belonging to the set of
currently added documents — the set of analyses that
read the entity. An analysis is also added to this set
for each entity on the paths of writes or invalidates
statements that are not written or invalidated by the
analysis. Recall, only the last entity on a writes or
invalidates path is actually written or invalidated.
• W denotes the set of analyses that specify to write
or to write-temporary the entity. In case of writes
−temporary, the corresponding entity is marked as
temporary and it is checked that all dependent enti-
ties are also marked as temporary.
• I denotes the set of analyses that directly invalidate
an entity. An analysis a invalidates an entity e in two
cases: (1) a explicitly declares e in an invalidates
statement, and (2) a reads e and directly invalidates
some other entity, on which e depends.
• IP denotes the set of analyses that implicitly invali-
date the entity e. An analysis a implicitly invalidates
an entity e, if a neither reads nor directly invalidates
e, but declares to directly invalidate some other entity,
on which e depends. For example, an analysis that ex-
plicitly invalidates the Method entity and which does
not read any of its dependent entities implicitly inval-
idates BCode, QCode and all other entities depending
on Method. Nevertheless, the analysis does not conflict
with an analysis that previously explicitly invalidates
BCode.
• RG denotes the set of analyses that specify to reads
−global the entity; i.e., the analysis requires access to
the currently added documents as well as documents
that have been processed in an earlier build.
• M denotes the set of analyses that maintain the in-
formation of the entity.

Based on the LSV, the constraint system is gener-
ated to calculate the schedule. The constraint system
ensures that every calculated schedule is valid - in fact,
the constraint system can be seen as a declarative spec-
ification of the semantics of the ASL. A schedule is
valid if all requirements of all analyses are met; i.e. the
entities the analysis specifies to read were made avail-
able in a previous step and are not (yet) invalidated.
Further, a dependent entity is available only if the par-
ent is also available. Moreover, every entity is made
available at most once and is also explicitly invalidated
at most once. The constraints ensure that an analysis
that writes an entity is guaranteed to have exclusive
access to the entity and race conditions cannot occur.
If the constraints have no solution, an error is reported.
In the following:

• TS
a , a ∈ A denotes the point in time (execution step)

in the schedule S, at which an analysis a is executed.
TS

a = 0 means that the analysis a is not scheduled.
• V S

e , e ∈ E denotes the point in time at which e
becomes valid. V S

e = 0 means that e will never be
available.
• IS

e , e ∈ E denotes the point in time at which e be-
comes invalid. V S

e > 0 ∧ IS
e = 0 means that e is avail-

able during the next build.
The generated constraints make use of the fol-

lowing definitions: For any entity e the functions
w,m, r, rg, i, ip return the sets W, M, R, RG, I, and
IP respectively. Given an entity e, the predicate
isTemporary(e) returns true if e is marked as tem-
porary and false otherwise.

The range of the variables must be bounded in order
to solve the constraint system using integer program-
ming. The domain of the variables TS

a , V S
e and IS

e is
[0, ...,MAX] where MAX is 2 ∗m + n (m = |E| being
the number of entities and n = |A| being the number
of installed analyses). MAX defines the theoretical
maximum value of the variables TS

a , V S
e , and IS

e . To
schedule n analyses that process m entities, we need at
most 2∗m+n time slots. 2∗m, because each entity e is
associated with two time slots: V S

e and IS
e . This covers

the worst-case where all analyses are executed sequen-
tially, all analyses create only one entity, the analyses
do not conflict and entities are also invalidated.

The constraints are shown in Fig. 4 and their pur-
pose is explained in the following. The variables V S

Doc

and IS
Doc (equation 1) are the variables for the spe-

cial Document entity. The Document entity is — by
definition — available at the very beginning of the
schedule available at the very beginning of the schedule
(V S

Doc = 1) and must not be invalidated (IS
Doc = 0).

Implication (2) requires that — except for the doc-
ument entity which is provided by the framework —
every entity that becomes available during the analysis
process is actually created by an analysis. The con-
straint ensures that at least one analysis is scheduled
that writes e. The implication (3) ensures that an en-
tity is created at most once. Implication (4) defines
that a specific entity e is available in the step immedi-
ately following an analysis that writes e and (5) spec-
ifies that an entity e is available before an analysis is
executed that reads e. Hence, (4) and (5) ensure the
correct order between analyses that write and read an
entity.

Implication (6) enforces that entities that will be
(re-)read or maintained during the next build cycle(s)
are not invalidated. Note that we handle an analysis
that maintains an entity as if the corresponding en-
tity is written and read again by the analysis during
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V S
Doc = 1 ∧ IS

Doc = 0(1)

Availability (validation) of entities:

V S
e > 0 ⇒

X
a∈(w(e)∪m(e))

T S
a > 0, for each e ∈ (E − {Doc})(2)

∀a ∈ (w(e) ∪m(e)), T S
a > 0 ⇒

X
x∈(w(e)∪m(e))

T S
x = T S

a , for each e ∈ E(3)

∀a ∈ (w(e) ∪m(e)), T S
a > 0 ⇒T S

a + 1 = V S
e , for each e ∈ E(4)

∀a ∈ (r(e) ∪ rg(e)), T S
a > 0 ⇒0 < V S

e < T S
a , for each e ∈ E(5)

Invalidation of entities:

∀a ∈ (rg(e) ∪m(e)), T S
a > 0 ⇒IS

e = 0, for each e ∈ E(6)

isTemporary(e) ⇒V S
e ≤ IS

e , for each e ∈ E(7)

IS
e > 0 ⇒0 < V S

e < IS
e , for each e ∈ E(8)

∀a ∈ i(e), T S
a > 0 ⇒IS

e = T S
a ∧

X
x∈i(e)

T S
x = T S

a , for each e ∈ E(9)

∀a ∈ ip(e), T S
a > 0 ∧ V S

e > 0 ⇒0 < IS
e < T S

a , for each e ∈ E(10)

∀a ∈ (r(e)− i(e)), T S
a > 0 ∧ IS

e > 0 ⇒T S
a < IS

e , for each e ∈ E(11)

Objective function:

minimize

 X
a∈A

T S
a +

X
e∈E

V S
e

!
(12)

Figure 4. Constraint system for calculating the schedule

the next build; but the write does not have to precede
the read operation. The analysis reads and writes the
entity in the same step. For an entity that is marked
as temporary, constraint (7) ensures, that we are able
to determine a point in time at which the entity can
become invalid.

Constraint (8) ensures that only entities are inval-
idated that were created previously. Constraint (9)
enforces that the invalidation of an entity happens in
the same step as the analysis that explicitly declares
the invalidation and that only one analysis explicitly
invalidates the entity.

Constraint (10) states the relation between the point
in time where an analysis a is executed and the time
where entities e are invalidated that are implicitly in-
validated by a. If e exists (V S

e > 0), we require that e
is invalidated at an earlier point in time than the exe-
cution of a. This allows another analysis to explicitly
invalidate e before a is scheduled.

Constraint (11) specifies that an analysis is executed
before the invalidation of the entities that the analysis
declares to read.

The objective function (12) is the minimum of the
sum of all analysis times and points in time where the
entities become valid. Minimizing the sum of the anal-
yses times is equivalent to finding a schedule that exe-
cutes only necessary analyses as early as possible. By
including the points in time at which an entity becomes
available we make sure that only those analyses are
scheduled that create the minimum number of entities
necessary for satisfying all constraints.

If we directly solve the constraint system in Fig. 4,
no analysis is scheduled; the TS

a values for all analyses
will be zero as this minimizes the objective function. To
calculate a meaningful schedule, for any user selected
analysis a we add the constraint: TS

a > 0
Tab. 2 shows an example schedule that is calculated

when the user selects all analyses in Fig. 2, Listing 3 ex-
cept for the CTAV analysis. The schedule shows which
analysis has to be executed in which step and which
entity becomes valid, respectively invalid, in a step.
In step 1 the Document (Doc) entity becomes valid.
In step 2 the CFP analysis is executed; as a result,
in step 3 the CF, Field (F), Method (M) and, BCode
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step 1 2 3 4 5 6 7 8 9 10 11

VDoc TCFP VCF

VF VM

VBC

TBCFG

TLIB

TEH

VCFG

VL

VLCF

VLF

VLM

TNSF

TTH

VTHC

VTHF

ICFG

TBtoQ

IBC

VQC TNSF

TCFT

ITHC

Table 2. Example schedule

(BC) entities are available for all documents added in
the current build step. Next, the BCFG analysis can
run in parallel with the LIB and the EH analysis. As a
result, the CFG for each method of all added class files
is available in step 5, as well as information about the
used libraries (library L, library class file LCF, public
fields in the library LF and public methods of the li-
brary LM). Next, the TH and NSF analyses can run
in parallel in step 6. The type hierarchy (THF) and
the information about type hierarchy changes (THC)
is then available in step 7. Further, the CFG entity
is invalidated. In step 8, the analysis that transforms
the method bodies in the 3-address based representa-
tion (BtoQ) is executed which directly invalidates the
BCode entity (BC)1. When the 3-address based infor-
mation (QC) is available the CFT analysis and the
NSF checker is executed. In the last step (11), the type
hierarchy change information (THC) is invalidated, be-
cause it is marked as temporary. The values of all other
variables, i.e., the variables not shown in the schedule,
such as e.g., TCTAV, ICF, IF, etc. are zero.

5 Evaluation

The approach has been implemented as the sched-
uler of Magellan [10] — an open platform for static
analyses tightly integrated into Eclipse [9]. The con-
straint systems is realized using ZIMPL [21] as the
mathematical programming language and lp solve [4]
for solving it. The set of analyses used for evaluation
includes: analyses listed in Fig. 2, 20 other analyses
that check the use of the standard Java API, as well
as an incremental inter-procedural call-graph analysis,
which is used by some of the checkers.

The evaluation considers two aspects. First, our pri-
mary concern is the time needed to complete an in-
cremental build process. That is, to determine how
efficient the calculated schedules are. Second, the effi-
ciency of the scheduling process itself is also assessed
to determine how well the scheduling approach scales
in terms of the number of analyses that it can support.

1Direct invalidations happen in the same step to prevent other
analysis to still use them.

By construction, the produced schedules, beyond
being feasible in terms of inter-analyses dependencies,
also minimize the number of analyses performed, as
well as the number of data produced. Furthermore, the
scheduler is able to determine analyses that can run in
parallel because the data they depend on is disjoint.
However, the approach does not take into considera-
tion the execution time of analyses: each analysis is
assigned one time slot. As a result, it is possible that
— on a multiprocessor system — a long running analy-
sis uses one processor while the other processor is idle.

To make better use of multi-processor architectures,
Magellan implements data parallelism for all so-called
resource-based analyses — analyses that process one
document after another and do not need write access
to other entities. For example, the NSF checker can be
executed for all class files in parallel since it analyzes
the finalize methods and does not write any entities.
Other candidates are analyses that do not write access
the same entity, in particular those that make no use of
maintains, or writes−temporary. For such analyses,
multiple instances run in parallel on different partitions
of the data set to be analyzed.

For analyses that are not automatically parallelized
(e.g. the inter-procedural call graph analysis), Magel-
lan provides additional functionality to help the devel-
oper parallelize the execution. Automatic and manual
parallelizations are complemented by the strategy that
whole program analyses are executed before resource-
based analysis in the same time slot.

To evaluate our strategy, we ran 25 checkers on a
project with approximately 100K lines of code (Jedit)
on single and dual CPU systems. On a single proces-
sor system with a P4/3GHz CPU, the time for a full
build was 16 seconds. Using a dual processor system
with two P4/3GHZ CPUs the time is 11 seconds. The
time for an incremental build, when only one class is
changed at a time, ranges between 30ms and 62ms on
the dual CPU system and between 53ms and 100ms on
the single CPU system, depending on the size of the
edited class and the type of change.

The evaluation suggests that the scheduler makes
good usage of multi-processor architectures; compen-
sating for assigning only one time slot to each analysis.
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However, a more detailed evaluation of the choice of
the objective function — w.r.t. the minimization of
the overall analysis time — is left for future work. A
larger number of analyses needs to be available to thor-
oughly compare different objective functions.

We also briefly consider the second aspect of our
evaluation - the performance of the scheduling process
expressed in terms of the number of analyses that can
be scheduled in a reasonable time. Scheduling a set of
more than 60 analyses takes less than 10 seconds on
a P4/3GHz and is done only once everytime the user
changes the set of analyses that should be executed
along with the build process. Using a commercial grade
integer programming solver the schedule is even calcu-
lated in less than 0.5 seconds. Hence, the calculation
of the schedule is not a limiting factor even if we would
have several hundred analyses 2.

6 Related Work

Several extensible tools for analyzing software
projects have been developed. These tools can be di-
vided in two broad categories. In the first category,
there are tools that enable the developer to implement
new analyses using declarative query languages. For
instance, PQL [23] is a specially developed query lan-
guage, CodeQuest [18] uses Datalog [27], XIRC [13]
uses XQuery [5] and Xgcc [17, 2, 19] uses its own state-
machine based language Metal. The second category
consists of tools that provide an API for developing
analyses, such as IRC [14], FindBugs [20] or PMD [6].

The tools of the first category have in common that
the information that is made available about the pro-
grams is fixed. Analyses are strictly divided into two
categories. (1) Tool internal analyses to build up the
information about the project. (2) User defined queries
executed in a second step. In PQL [23], for example,
the source of information is a context-sensitive, flow-
insensitve, inclusion-based pointer alias analysis. How-
ever, the analyses that create the program database
are executed independently of the needs of the actual
queries.

Further, since the set of analyses that make up the
program database is fixed, these tools are targeted to-
ward a specific type of analysis. For example, PQL [23]
is particularly well-suited for data-flow related analy-
ses. XIRC, on the other hand, was designed to check
structural properties of classes. While being very use-
ful for detecting certain types of errors, and being ex-

2Though, the time for analyzing a project rises along with
the project’s size, the time for calculating the schedule is inde-
pendent of the size and just depends on the number of installed
and selected analyses.

tensible within a particular problem class, these tools
cannot be used as platforms for the implementation of
a broad range of analyses. A second consequence of
always executing a fixed set of base analyses is that,
if sophisticated non-incremental analyses, e.g., as in
case of PQL, are executed, the time to update the
database is too lengthy to enable an integration with
the incremental build process. An advantage of these
approaches is that conflicts between analyses that are
executed in parallel cannot occur; the queries perform
read-only access to the program database. Hence, an
explicit scheduling of analyses is not necessary.

Tools of the second category, i.e., tools that provide
an explicit API for the development of new analyses,
also provide a specific representation of the program’s
code that is to be used for the implementation of the
analyses. For example, FindBugs [20] uses the Java
bytecode library BCEL [7] as the basis for the repre-
sentation of the program’s code. BCEL provides an
object-oriented representation of a Java class file and
implements a basic intra-procedural data-flow analy-
sis. IRC [14] uses an approach comparable to Find-
bugs; PMD [6] uses the abstract syntax tree. Though,
it is technically possible that analyses implemented in
Java / C++ that operate on an object graph can re-
fine or transform the graph, these operations are not
supported by the frameworks. A transformed repre-
sentation might conflict with other analyses executed
thereafter. However, even when a developer decides to
extend a framework’s representation by implementing
a new analysis that additionally provides a higher-level
intermediate representation, the execution of analyses
that operate on top of the new intermediate represen-
tation is not supported. The tools do not provide basic
functionality for dependency management of analyses.
Handling dependencies between analyses is, however,
required to ensure the execution of an analysis that pro-
vides additional information before the analyses that
want to access the information.

Though the proposed approach can also be used to
realize a build management tool, such as Make, this is
not in the focus of our work. In case of a static anal-
ysis platform the execution of the user selected anal-
yses is the focus. The effect of the analyses on the
underlying data is not a concern of the user. In case
of a build management tool the user is just interested
in getting the result, e.g., the executable, which tasks
generated the result is irrelevant. However, when com-
pared with Make our approach provides a more fine
grained data model that also enables reasoning about
the inner structure of a file. Further, the proposed
model also supports the explicit invalidation of enti-
ties. In Make every entity is a file and a task must not
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invalidate (delete) files. Make on the other hand auto-
matically determines which tasks need to be executed
to create the new result, whereas our platform just calls
every analysis in case of a change and, basically, each
analysis has to determine the scope of entities that need
to be processed on its own.

7 Summary

This paper presented an approach for scheduling an
open set of analyses in a static analysis platform. Two
forces have driven this work. First, the ability to define
analyses independent from each other, which is crucial
in an open platform. Second, the ability to run static
analyses along with the incremental build process of-
fered by the Eclipse IDE.

To enable the integration of independently devel-
oped analyses, we have proposed a specification lan-
guage for analyses to describe the dependencies among
analyses. Given the specifications and a selection of
analyses by the end-user, we calculate a schedule using
integer programming that (a) derives a minimal set of
all analyses necessary to satisfy the requirements of the
end-user analyses, and (b) parallelizes scheduled analy-
ses. As the evaluation has shown, the specification lan-
guage provides sufficient means to specify analyses and
the calculated schedules can be efficiently executed.
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