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Abstract. Modern development environments integrate various static analyses
into the build process. Analyses that analyze the whole project whenever the
project changes are impractical in this context. We present an approach to au-
tomatic incrementalization of analyses that are specified as tabled logic programs
and evaluated using incremental tabled evaluation, a technique for efficiently up-
dating memo tables in response to changes in facts and rules. The approach has
been implemented and integrated into the Eclipse IDE. Our measurements show
that this technique is effective for automatically incrementalizing a broad range
of static analyses.

1 Introduction

Static analysis is becoming increasingly important for software developers [2]. For ex-
ample, many APIs and frameworks define restrictions that cannot be expressed by func-
tion or method signatures alone. If such restrictions are not statically checked, subtle
bugs can arise at runtime.1 Enforcement of style or design guidelines, detection of bug
patterns and security holes are other example areas of applying static analyses [1, 15,
19].

In this context, static analyses are most effective when they are integrated into the
build process of integrated development environments (IDEs). This allows analyses to
run “behind the scenes”, ensuring continuous quality inspection during project devel-
opment and providing the developer with immediate feedback.

However, such an integration also puts constraints on the time and space complexity
of static analyses to be integrated; long build times that slow down the code-save-build
cycle are unacceptable. To this end, it is desirable to compute the result of static analyses
in an incremental way, whenever possible.

One option is to design an incremental version of each single static analysis. While
this may be acceptable for standard analyses, it would be very inconvenient for analyses
that are specific to a particular domain, framework, or company; in the latter case, it
should be easy to extend the set of applicable analyses with little effort. The obligation

1 For examples cf. Enterprise JavaBeans 3.0 Specification – Core Contracts and Requirements



to design an incremental version of each individual new analysis would be a major
burden.

The work presented in this paper proposes automatic incrementalization of static
analyses as a key technique for extensible static analysis platforms that are integrated
into the incremental build process offered by modern IDEs.

We consider an analysis to be incremental if the following holds: Let R be the cur-
rent result of the analysis. Then, in response to the next changes made to the code, the
analysis only reprocesses those parts of the code that are necessary to compute the new
result from R. Determining the set of software elements to reanalyze in an incremen-
tal step is not trivial: A single change might require reanalyzing multiple classes. Yet,
typically this reanalyzed set represents only a small fraction of the whole project.

In our proposal, analyses are specified as Prolog programs that operate on a logic
database containing a representation of the source code. New analyses can be defined
declaratively, which is important for our goal of an extensible set of analyses. Specif-
ically, we use tabled logic programs [5, 9, 31] which employ memoization to cache
and reuse intermediate results. Tabling removes some of the shortcomings of Prolog’s
evaluation strategy, especially its susceptibility to infinite looping. For example, termi-
nation is guaranteed for Datalog programs (an important subset of Prolog); as such, it
is suitable for a variety of static analyses.

Our basis of automatic incrementalization of static analysis is incremental tabled
evaluation [26–30] which efficiently updates the memoized information in response to
the changes in the underlying data. We use the incremental algorithm for general logic
programs presented in [29] that is implemented on top of the tabled Prolog system XSB
(ver. 2.7.1)2. The advantage of basing the specification and evaluation of static analy-
ses on incremental tabled evaluation is that analyses become incremental for free, by
simply declaring them as tabled. Hence, results produced by previous evaluations of
analyses are automatically kept up-to-date and invalidated when needed. Incremental
tabled evaluation has been tested for a few exemplary analyses (e.g. pointer analysis,
push-down model checking) for C programs in [27, 28]. The work presented here gen-
eralizes and extends these preliminary results.

The contributions of this paper are as follows: FIRST, this is the first proposal to
use automatic incrementalization for analyses (of Java code) that are integrated into
the incremental build process of modern IDEs. To facilitate data-flow dependent anal-
yses, a 3-address based representation in static single assignment form is used as the
foundation. SECOND, we extended the capabilities of the incremental tabled evaluation
algorithm. Specifically, we incorporated functionality to abolish incrementally main-
tained tables when they are no longer needed. THIRD, we prove the effectiveness of
automatic incrementalization for a broad range of static analyses and for large changes.

The remainder of this paper is organized as follows. In Section 2, we discuss the
implementation of analyses in Prolog as well as their automatic incrementalization.
The section ends with an overview how the analyses are embedded into the incremental
build process of Eclipse. Section 3 evaluates the proposed approach. The paper ends
with the discussion of related work followed by a short summary and outlook to future
work.

2 http://xsb.sourceforge.net



1 package bat;
2 public class Node{ void accept(Visitor visitor){visitor.visit(this);} }
3 public class SubNode extends Node{ /∗ empty ∗/ }
4
5 @Visitor(Node.class)
6 public class StructureVisitor{ public void visit(Node node){...} }

Listing 1.1. Sample source code

1 % class(PackageName,ClassName,AccessSpecifier,IsAbstract,IsFinal,SuperClass)
2 % classAnn(Class,Annotation)
3 % method(Id,DeclaringClassName,Name,AccessSpecifier,...,ReturnType,

ListofParam,ListofAnnotations)
4
5 class(’bat’,ref(’bat.Node’),public,false,false,ref(’java.lang.Object’)).
6 method(4,ref(’bat.Node’),’accept’,default,...,void,[parameter(ref(’bat.Visitor’),[])],[]).
7
8 class(’bat’,ref(’bat.StructureVisitor’),public,false,false,ref(’java.lang.Object’)).
9 classAnn(ref(’bat.StructureVisitor’),annotation(type(’Visitor’),value(ref(’bat.Node’)))).

10 method(2,ref(’bat.StructureVisitor’),’visit’,public,...,void,[parameter(ref(’bat.Node’),[])
],[]).

11
12 class(’bat’,ref(’bat.SubNode’),public,false,false,ref(’bat.Node’)).

Listing 1.2. Encoding of sample source code as Prolog database

2 Analyses in Tabled Prolog integrated into an IDE

2.1 Data Model and Prolog based Analyses

We use two example analyses to illustrate our approach to specifying static analyses as
tabled Prolog queries.

The first analysis detects violations of a best practice in applying the Visitor pattern
[17]. The best practice states that a visitor is expected to implement a special visit
method for each type in the hierarchy it visits. The second analysis detects methods
which return the self reference this. Such data-flow analyses are often required when
implementing advanced type systems, such as, Confined Types [32].

For illustration of the analysis which detects violations of the Visitor pattern, con-
sider the Java code in Listing 1.1. The classes Node (Line 2) and StructureVisitor
(Line 6) are defined together at some point in time. Later on, the class SubNode (Line
3) is added to the code base. This violates the best practice, since StructureVisitor
does not implement a visit method for SubNode. Nevertheless, the compiler will
not generate any warning. A Prolog-based static analysis for detecting such a violation
is shown in the following.

Listing 1.2 shows a Prolog encoding of the source code. A class fact (Line 5, 8, or
12) consists of the package name, the fully-qualified class name, the visibility, boolean



1 % the subtype relation is computed by invInherits and transInvInherits
2 invInherits(SuperClass,Class):− class( ,Class, , , ,SuperClass).
3 % transitive reflexive hull of invInherits
4 :− table transInvInherits/2.
5 transInvInherits(X,Y) :− invInherits(X,Y).
6 transInvInherits(X,X).
7 transInvInherits(X,Y) :− invInherits(X,Z), transInvInherits(Z,Y).
8
9 :− table visitor/1.

10 visitor(Class):− classAnn(Visitor,annotation(type(’Visitor’),value(Node))),
11 transInvInherits(Node,Class),
12 not(method( ,Visitor,’visit’, , , , , , , ,[parameter(Class, )], )).

Listing 1.3. Visitor Query

values denoting whether the class is final or abstract, and the name of the superclass.
The first value in method facts (e.g. 4 in Line 6) is a generated unique identifier for
a method; after that, the declaring class is specified, followed by the method’s name,
its visibility (default), an encoding of the method’s modifiers using boolean values
(omitted for brevity), the return type, the parameter types along with parameter annota-
tions and the list of declared exceptions.3

The analysis is specified as the visitor(Class) query in Listing 1.3 Line 10.
The query identifies visitor classes that do not implement a visit method for every sub-
type of the annotation parameter, but which are marked with the @Visitor(Type)
annotation. For doing so, the query first selects classes with the @Visitor annotation
to get the root of the visited hierarchy: Node in our example. Next, it applies the rule
transInvInherits/2 to find all classes which extend Node; for any such class,
the query verifies that the Visitor has a corresponding visit method and if not the
class is bound to the variable Class.

For each answer to the query, i.e., each binding of the variable Class, a warning
message is generated indicating that the class violates the best practice.

The second example analysis, which checks that a method does not return the self
reference (this), illustrates writing analyses using the 3-address based code represen-
tation in static single assignment form. A violation is shown in Line 4 on the left hand
side of the following listing: this is assigned to the variable o which may be returned
later on.
1 public Object violate(){
2 Object o;
3 if (...)
4 o = this;
5 else
6 o = null;
7 return o;
8 }

1 method(4,ref(’C’),’violate’,public,...).
2 if(4,2,4,...,operator,...,1).
3 label(4,3,4).
4 goto(4,4,4,2).
5 label(4,5,1).
6 label(4,7,2).
7 phi(4,8,8,p7,[phiElem(this,4),phiElem(null,1)]).
8 return(4,9,8,p7).

3 All facts are properly indexed (not shown in the listing) for efficient query response.



The Prolog encoding of the method is shown on the right hand side. In general,
the first value of each fact (Lines 2–8) is the id of the method and the second one is
the number of the instruction. The third value is the line number of the corresponding
source code — except for labels (Lines 3,5,6) where the third value is a method-
wide unique id. The last values of if and goto statements (Lines 2,4) are the id’s of
labels which are the jump targets. Labels are also defined for each basic block of the
control flow graph. The phi statement is a result of the transformation into static single
assignment form and states that the value of the variable p7 (Line 7) is control flow
dependent: If the id of the basic block of the last executed instruction is 4 the value of
p7 will be this. If the basic block’s id is 1 the value will be null.

The query to detect the violation is shown in the Listing below. The helper predi-
cate initializedWithThis/2 (Lines 1,2) binds its second argument to a variable
directly initialized with this or this itself. The analysis is defined in Lines 4 – 6.
Line 5 binds RetVal to variables that are directly or indirectly initialized with this.
Line 6 succeeds for those methods that return such a value.

1 initializedWithThis(MethodID, Variable) :−
2 phi( , , ,Variable,Phis), member(phiElem(this, ),Phis).
3
4 returnsThis(MethodID) :−
5 initializedWithThis(MethodID, Val), propagate(Val, RetVal),
6 return(MethodID, , ,RetVal).

The tabled predicate propagate/2 (Line 2,3) is the reflexive and transitive clo-
sure of all initializations of a variable; dpropagate/2 (Line 1) implements the ini-
tialization relation.

1 dpropagate(V1, V2) :− phi( , , ,V2,Phis), member(phiElem(V1, ), Phis).
2 propagate(V,V).
3 propagate(V1,V2) :− dpropagate(V1,V3), propagate(V3,V2).

As shown by the propagate/2 predicate, analyzing the data-flow is simplified
as each variable is initialized exactly once and the data-flow is explicitly encoded in the
phi facts.

2.2 Tabled Evaluation

Tabled logic programs declare certain predicates as tabled. Recursive predicates (for
ensuring termination) and predicates that are reused multiple times are good candidates
to be declared as tabled. Tabled resolution systems evaluate programs by memoizing
subgoals of tabled predicates (referred to as calls) and their provable instances (referred
to as answers) in a set of tables.

Calls are stored in a call table and all answers corresponding to a call are stored
in a corresponding answer table. During resolution, if a subgoal is present in the call
table, then it is resolved against the answers recorded in the corresponding answer table
(answer clause resolution); otherwise, the subgoal is entered in the call table, its an-
swers are computed by resolving the subgoal against program clauses (program clause
resolution), and are entered in the answer table.



classAnn(_,annotation(type(’Visitor’),value(_))) method(_,ref(’bat.StructureVisitor’),’visit’,_,_,_,[parameter(ref(’bat.Node’),[]),_)

method(_,ref(’bat.StructureVisitor’),’visit’,_,_,_,[parameter(ref(’bat.SubNode’),[]),_)

class(_,_,_,_,_,ref(’bat.Node’))
class(_,_,_,_,_,ref(’bat.SubNode’))

transInvInherits(ref(’bat.Node’),_)

transInvInherits(ref(’bat.SubNode’),_)

visitorViolation(_)

Fig. 1. Called-by Graph for Visitor Example

We exemplify the principles of tabling with the visitor example. As shown in
Listing 1.3 Line 4, the recursive predicate transInvInherits/2 is declared as
tabled. Also the top level predicate visitor/1 is declared as tabled (Line 9); a query
visitor(Class) can be resolved by looking up the visitor(Class)’s answer
table if the latter is non-empty. When visitor(Class) is executed for the first time,
tabling creates an entry visitor(Class) in the call table and uses the rule for the
visitor predicate to find results.

Resolving the first subgoal of the visitor predicate binds the variables Node
and Visitor to ref(’bat.Node’) and ref(’bat.StructureVisitor’)
respectively. The transInvInherits/2 predicate is evaluated with
the call transInvInherits(ref(’bat.Node’),Class), which is
stored in the call table. The answers Class=ref(’bat.Node’) and
Class=ref(’bat.Subnode’) of this call are obtained by resolu-
tion of the second clause of transInvInherits/2, and by resolution
of the first clause of transInvInherits/2 and invInherits/2,
respectively. These answers are stored in the answer table of the
transInvInherits(ref(’bat.Node’),Class) call. The resolution of
the last subgoal in the body of the visitor predicate generates only the answer
Class=ref(’bat.Subnode’) for the call visitor(Class), as the last
subgoal fails for the substitution Class=ref(’bat.Node’). Since visitor/1
is tabled, any subsequent visitor(X) call will be resolved from its answer table.

2.3 Incremental Evaluation

Any change to a Java program causes the addition and deletion of facts to the Prolog
fact base. Changes in the fact base can, in turn, render already evaluated tables stale:
They may not have all the answers or the answers in the tables may be incorrect. The
non-incremental approach to this problem is to abolish all the call and answer tables,
and reissue the query. This is often wasteful, especially when the effect of the changes
to the fact base is small. On the contrary, the incremental evaluation algorithm, that
we use, tries to identify the calls that are changed and reissues only these calls. The
algorithm is presented in [29] and is shortly described in the following.

A call is deemed changed iff the set of answers corresponding to the call before the
change differs from that after the change. However, it is not possible to identify the set
of changed calls before reevaluating any calls. Thus the incremental algorithm in [29]



over-approximates the set of changed calls by the set of affected calls, which are calls
that can be potentially changed.

To determine the set of affected calls, the incremental algorithm maintains a data
structure which keeps the dependency between calls and facts that can be changed
(known as volatile facts). The data structure, known as called-by graph, is central to
the incremental algorithm and is described below using our visitor example.

The called-by graph is a directed graph whose nodes consist of calls and subgoals
that unify with the volatile predicates. A path from a node c1 to node c2 indicates that c1

is a tabled subgoal (or a call to a volatile predicate) that was called while resolving the
tabled subgoal c2. Each edge describes the immediate dependency between calls. The
graph captures the dependencies between tabled calls and calls to volatile predicates. It
is first generated in the initial (non-incremental) run, and maintained over subsequent
incremental runs.

The called-by graph for visitor(Class) is given in Figure 1. The edges
from nodes classAnn( ,annotation(type(’Visitor’),value( ))),
transInvInherits(ref(‘bat.Node’), ), and two method nodes to node
visitor( ) correspond to the first, second and two calls to the third subgoal in the
body of clause visitor(Class), respectively.

The incremental algorithm works in two phases: an invalidation phase and a reeval-
uation phase. The invalidation phase finds affected calls by bottom-up traversal of the
called-by graph starting from the vertices that unify with added or deleted facts. Edges
in the called-by graph are directed from callee to caller which enables us to compute
the affected calls by traversing the called-by graph. For an illustration, consider the
addition of a StructureVisitor.visit(bat.SubNode) method. This adds a
fact similar to the one in Line 10 of Listing 1.2, which instead of bat.Node refers
to bat.SubNode. The invalidation phase determines the visitor( ) call as af-
fected, because the added fact unifies with the method node of the called-by graph
that has ref(’bat.SubNode’) as a parameter, which, in turn, has a path to node
visitor( ).

If an added/deleted fact does not unify with any leaf of the called-by graph, none
of the calls are affected, i.e., the change has no effect to the present set of calls and
answers. For example, if we add a class bat.Foo that does not affect the class hierar-
chy of bat.Node, none of the existing leaves will unify with the added class fact for
bat.Foo. Hence, none of the existing calls are affected and reevaluated. Nonetheless,
a non-incremental evaluation will reevaluate all existing calls.

The specific actions taken in the invalidation phase, e.g., whether the affected calls
are deleted or not, depend on the strategy of the reevaluation phase of the algorithm.
However, for brevity we only describe the implemented reevaluation strategy in the
following.

The algorithm approximates the changed set, called the recomputed set which rep-
resents the smallest set of calls that need to be reevaluated. The intuition behind the
recomputed set is based on the following observations:

– Every changed call needs to be reevaluated.
– Every call that immediately depends on a changed call needs to be reevaluated

(even if it itself is not changed). Note that the called-by graph contains no qualita-



tive information on how the change of a call affects another. Only the program has
this information embedded in it and, hence, the only way to determine whether or
not such a call changes, is to reevaluate it.

– If a reevaluated call is in a strongly connected component (SCC), then all calls in
that SCC need to be reevaluated.

The algorithm reevaluates only the calls in the recomputed set. Two basic mecha-
nisms are used to accomplish this:

1. Determine whether a reevaluated call is changed by comparing its answer table
before and after update.

2. Evaluate the calls “bottom-up” through the called-by graph: Trigger reevaluations
at higher levels only if the lower-level calls have changed.

For illustration, consider the change of the visibility modifier of bat.SubNode.
It causes the call transInvInherits(ref(’bat.SubNode’),Class) to be
reevaluated but without any changes. Hence, the calls to transInvInherits(
ref(’bat.Node’),Class) and visitor(Class) are not recomputed. Thus,
among the three affected tabled calls the algorithm recomputes only one call.

2.4 Deletion of Incrementally Maintained Tables

The algorithm presented in [29] incrementally maintains tables in response to changes
to volatile predicates. The data structures and tables are maintained as long as the ses-
sion is running. However, in our case a user can always select or deselect analyses and
in case that an analysis is deselected, the maintenance of the tables that are used solely
by the deselected analysis is no longer necessary. Deletion of such tables is important
to reclaim unused resources and to avoid the unnecessary maintenance during incre-
mental builds. In this paper, we therefore extend the functionality of incremental tabled
evaluation to enable reclamation of incremental tables.

We provide a builtin abolish call(C) which takes as the argument an incre-
mental call C which is intended to be abolished and tries to abolish C and all calls that
are directly or indirectly called by C. For example, when the visitor analysis is dese-
lected, abolish call(visitor( )) is executed. Subsequently all table space of
the calls identified by abolish call is reclaimed.

Below we define the set of calls that are deleted when a particular incremental call
is called for deletion.

Definition 1. Given a called-by graph G = (V,E), the set not deleted(C) defines
the set of calls that should not be deleted when abolish call(C) is called. The set
not deleted(C) is the least set satisfying the relation below:
C ′ ∈ not deleted(C) if

– C is not reachable (reflexive and transitive) from C ′ in called-by graph
– ∃C ′′ ∈ not deleted(C) and (C ′, C ′′) ∈ E (i.e C ′′ depends on C ′).

The set of deleted calls (denoted by deleted(C)) due to abolishing incremental call
C is the complement of the set not deleted(C) over all incrementally maintained calls
present in the called-by graph.



We developed a called-by graph based algorithm for determining the set
deleted(C). The algorithm is non-trivial because of cycles in called-by graphs. It has
three phases: marking, checking assumption, and deletion. The marking phase overap-
proximates the calls that need to be deleted and subsequent phases prune the overap-
proximation. Due to limited space we do not provide the algorithm here, but it can be
found in an accompanying technical report [16].

2.5 IDE Integration

We have integrated the XSB Prolog engine — extended with the algorithm for incre-
mental tabled evaluation as described in the previous sections — with the Eclipse IDE
using Magellan4. Magellan takes care of translating every source-file of a project into
its corresponding Prolog encoding. More specifically, the BAT bytecode toolkit5 is used
to convert Java class files to a 3-address based representation in static single assignment
form [12] and then to convert this data into its Prolog encoding.

A full build process runs as follows: FIRST, the Prolog database is cleared, the
rules used by the selected analyses are added to the database, and the Prolog facts
for all Java class files are generated and added to the database. SECOND, Magellan
executes the Prolog-based analyses. Each Prolog query is wrapped into a small Java
class, which is responsible for (a) calling the Prolog engine to execute the query, and (b)
post-processing the results, e.g., by retrieving the source code locations and by adding
the error messages to Eclipse’s problem view.

An incremental build maintains the database rather than rebuilding it from scratch:
FIRST, whenever a document is added, changed, or removed Magellan calls the mainte-
nance analysis and passes on the information about the edited documents. Currently, the
units of change are whole classes, i.e., even when a single class’ comment is modified,
the maintenance analysis retracts all facts related to that class from the database and
adds the class again. SECOND, the maintenance analysis then adds/removes the facts
corresponding to the edited classes to/from the database and calls update on the Pro-
log database to propagate the changes to the tables. THIRD, Magellan re-evaluates the
queries by simply reading the values of the corresponding tables and updates dependent
IDE views such as the problems view correspondingly.

3 Evaluation

In this section, we evaluate the performance of our approach. First, the set of analyses
that are used for the evaluation is presented. After that we discuss the evaluation setup
and the performance figures.

3.1 Used Analyses

The analyses used for the evaluation require different kinds of information about the
code and are ordered w.r.t. the extent of the required information.

4 http://www.st.informatik.tu-darmstadt.de/Magellan
5 http://www.st.informatik.tu-darmstadt.de/BAT



The first analysis detects classes which violate the contract defined in java.
lang.Object stating that subclasses should always implement the equals(...)
and hashCode() methods pairwise. A violation of this contract in a class C can lead
to subtle errors when instances of C are stored in, e.g., HashSets.

The second analysis detects covariant definitions of equals(Object). Such def-
initions are error prone, as methods with covariant parameter definitions do not override
methods defined in superclasses.

The two analyses above require only information about method signatures. The third
analysis is the previously discussed analysis that checks the implementation of the Vis-
itor design pattern [17]; hence, it requires type hierarchy information.

Finally, we added a set of 17 analyses for controlling aliasing in object-oriented
systems based on confined types [32]; the basic idea is to confine the creation of aliases
to a certain protection domain, in this case, to a Java package. These analyses require
information about the type hierarchy and the method implementations, e.g., to analyze
that a confined type is not casted to an unconfined type. Four of these analyses also
require (intra-procedural) data-flow information.

3.2 Evaluation Setup and Results

The evaluation was done on a P IV, 3 Ghz with 1024 MB RAM and Sun JDK 5.
The analyzed test project is the BAT bytecode toolkit (cf. Section 2.5). This project

consists of 22 packages, 790 classes, 45 interfaces, 55068 methods and approx. 395.000
facts are required to represent the method implementations. BAT contains an interface
called IStructureElementwhich is implemented by 252 non-abstract classes. The
visitor attached with this interface contains 504 methods. Applied on this project, the
visitor query (Listing 1.3) produced 2 warnings; further, one class was identified that
violated the equals/hashCode contract, and three covariant definitions of equals
were found.

The test set was supplemented by 17 classes from a second project spread over 3
packages which implement a small part of a public key infrastructure. Initially, confined
types were used in two of the packages. When performing the changes described in
Table 1, classes in the third package were also made confined. Initially, 17 different
errors related to confined types were in the code.

In case of a full build, the time to create the Prolog facts takes 3300 msecs. This
includes the transformation of the Java files into the 3-address representation and the
creation of the Prolog facts; to add the generated facts to the database, XSB requires
another 5200 msecs. Since all tables are initally empty, the first evaluation of the queries
takes 328 msecs.

Changes shown in Table 1 were executed in the given order. The first eight changes
affect core classes of the BAT project by modifying a comment, adding a field, adding
a method, renaming a class file, or adding a new class. Changes 9 to 16 simulate the use
of confined types in the project by marking classes as confined or unconfined.

To better assess the effect of a change, the number of affected classes is shown in
the third column of Table 1; further, the number of methods defined by the classes and
the total number of facts that were removed and added is given. In the fourth column,
the results produced by the queries after performing the changes is given: The first is



Run Description of the Changes removed /
added Classes,
Methods, Facts

Results msecs.
no incr.
XSB

msecs.
incr.
XSB

1 inserted two empty lines into a class 1, 504, 2779 /
1, 504, 2779

1/3/2/17 673 390

2 deleted a small method and the implemen-
tation of another small method

1, 504, 2779 /
1, 503, 2771

1/3/3/17 627 390

3 created a new field along with the cor-
responding getter method; further a new
empty method is created in a different class

2, 41, 430 /
2, 43, 447

1/3/3/17 468 156

4 ten fields and corresponding getters and set-
ters are created

1, 9, 40 /
1, 29, 141

1/3/3/17 454 78

5 refactored the name of a class which has 6
children; hence 7 classes are affected

7, 112, 2690 /
7, 112, 2690

1/3/3/17 812 578

6 added a blank into the comment of a small
class

1, 9, 41 /
1, 9, 41

1/3/3/17 437 78

7 deleted six small methods as a whole and
also deleted the content of another six meth-
ods

1, 503, 2771 /
1, 497, 2723

1/3/9/17 669 390

8 added a new class which implements an in-
terface

0, 0, 0 /
1, 3, 11

1/3/10/17 406 63

9 added a new method which leads to a viola-
tion of a widening constraint

1, 3, 15 /
1, 4, 19

1/3/10/18 389 48

10 added a new method 1, 3, 15 /
1, 4, 18

1/3/10/18 392 78

11 deleted the method which was added in the
previous change

1, 4, 18 /
1, 3, 15

1/3/10/18 405 78

12 changed the superclass, modified a small
method, added a new field and a another
small method which violates a widening
constraint

1, 3, 15 /
1, 4, 31

1/3/10/25 453 141

13 created a new interface which is imple-
mented by two classes, deleted parts of a
method

3, 9, 72 /
2, 9, 65

1/3/10/25 454 172

14 declared a class as confined 1, 5, 32 /
1, 5, 32

1/3/10/24 454 141

15 changed the implementation of a method 1, 4, 19 /
1, 4, 22

1/3/10/24 469 78

16 a new field is added to three different con-
fined classes

3, 10, 69 /
3, 10, 73

1/3/10/27 500 187

in average ø503,8 ø190,4

Table 1. Change description and timing results



the number of violations of the equals/hashCode contract, the second is the num-
ber of covariant equals methods, the third is the number of violations related to the
Visitor design pattern, and the fourth is the number of violations of confinement
rules.

The last two columns of Table 1 compare the time required to update the database
and to retrieve the new set of results using tabling without incremental evaluation of
XSB and using tabling with incremental evaluation.

The numbers for incremental evaluation (last column in Table 1) result from sum-
ming the time for removing and adding facts with the time for incrementally maintain-
ing the tables. All queries are evaluated in roughly 0 msecs independent of the code
change that triggers the evaluation. This is because query results are tabled and the ex-
traction of the answers from a table only depends on the number of identified errors.
With non-incremental evaluation, the time to execute the queries also remains constant
at roughly 300 msecs. The difference between this 300 msecs and the numbers in the
corresponding column in Table 1 is spent to add/remove facts.

To summarize, we the draw following conclusions: FIRST, the approach is fast
enough to execute a reasonable number of analyses along with the incremental build
process for projects with at least 1000 classes; executing all discussed analyses simul-
taneously is feasible. Even in case of changes that affect large numbers of facts (Runs
1,2,5,7) the execution times are acceptable. SECOND, in comparison to non-incremental
evaluation, our system is between 1.4 and 8 times faster. In case of non-incremental
evaluation, the queries need to be reevaluated from scratch after every change; in par-
ticular it is necessary to explicitly delete all tables, as the tables are not maintained
incrementally. THIRD, most of the time required by the incremental build goes to main-
tain the tables. This time is largely dependent on the number of facts that need to be
removed and added. Hence, if the granularity of a change would be more fine-grained
than an entire class, the overall time could be further improved.

4 Related Work

Writing analyses using a logic language, such as, Prolog is not new. Many classical
program analysis problems can be readily encoded into deductive frameworks [13] and
various practical implementations have been stemmed based on such encodings. E.g.,
Besson and Jensen [3] discuss the implementation of a class analysis using Datalog.

Various approaches use declarative query languages to implement static analyses
[34, 14, 21]. For example, the Program Query Language (PQL) presented in [23] al-
lows programmers to express queries in application specific context and allows them to
specify actions along with the queries. PQL is then transformed into Datalog which is
evaluated using the BDD based evaluation framework BDDBDDB. Soul [35] is a logic
meta-language implemented in Smalltalk to express and extract structural relationships
(Prolog like) in class-based object-oriented systems. ASTLOG [11] is also a Prolog like
language to identify bug patterns primarily in C/C++ code. ASTLOG directly operates
on top of the source syntactic structures to get a better performance when compared
with using a Prolog database. Spine [4] is a typed first-order logic similar to Prolog for
describing design patterns and their constraints. Given a Spine specification of a design



pattern the Hedgehog proof system [4] is then used to reason about the implementation
of design patterns in Java. However, none of the above techniques supports incremental-
ization, i.e., in case of small changes to the source code, all analyses have to be repeated
for the whole program to get an up-to-date view.

CodeQuest [18] uses Datalog for querying code. Unlike the above approaches, it
realizes the importance of incremental updates. CodeQuest incrementally maintains the
database of facts. When notified by the Eclipse platform about a change to a compila-
tion unit, CodeQuest removes from the database all facts that are directly or indirectly
related to the compilation unit (determined using ad-hoc stored procedures); it then re-
parses the compilation unit and populates the database with the new facts. Compared to
CodeQuest, our approach also employs incremental maintenance of query results.

The problem of incremental evaluation has been addressed in various fields of re-
search, such as view maintenance in databases, model checking, program analysis, logic
programming, functional programming, attribute grammar evaluation, and AI. In the
focus of this discussion is only the problem of incremental evaluation in the area of
program analysis. Most of the existing work addressing incremental evaluation in the
latter area is catered toward particular kinds of static analyses, e.g., pointer analysis,
data-flow analysis, MOD analysis, and verification of safety properties, and cannot be
readily generalized to a wide range of analyses.

An incremental alias analysis is presented in [37] which is based on Landi-Ryders’s
flow- and context-sensitive alias analysis [20]. A variety of incremental algorithms have
been developed for data flow analysis problems. Some of them use the elimination
method [6, 8, 25]; others are based on restarting iterations [24], while both techniques
are combined in [22]. A comparison of incremental iterative algorithms for data flow
analysis can be found in [7]. The effectiveness of incremental analysis has been shown
for MOD analysis of C programs [36]. Pollock and Soffa [24] presented a precise incre-
mental iterative algorithm using change classification and reinitialization for bitvector
problems. In [10], an algorithm is presented that incrementally analyzes the verifica-
tion of safety properties of a program. In [33], an incremental algorithm is presented
which analyzes part of the program assuming no previous analysis result. This algo-
rithm monitors the analysis results incrementally in each phase to direct the analysis
in those parts of the program which offer the highest expected optimized return. This
work does not consider the problem of updating existing analysis results to reflect the
effect of program changes.

The above approaches to incremental evaluation of static analysis are specific to
the analysis considered and the used techniques are not easy to generalize for incre-
mental evaluation of other static analyses. The first step toward developing techniques
for automatic incrementalization of a broad range of analysis is the work by Saha and
Ramakrishnan on incremental evaluation of tabled logic programs [26, 28, 30]. Tabled
logic programs offer a declarative way of encoding a large variety of program anal-
ysis [13]. As discussed in this paper, incremental tabled evaluation offers a generic
approach to incrementalizing static analysis.



5 Summary and Future Work

In this paper, we proposed to use incremental tabled Prolog for the automatic incremen-
talization of static analyses. This enables developers to write static analyses with the
full-build case in mind. The analyses are automatically incrementalized by the Prolog
engine, i.e., in case of changes to the fact-base only the necessary parts of the project are
reanalyzed. The analyses are implemented on top of a 3-address based representation in
SSA form. This representation proved to be well-suited for intra-procedural data-flow
analyses and enables an efficient implementation of static analyses.

The automatic incrementalization frees the developer from the burden of developing
incremental algorithms for each single analysis and, thus, facilitates the development of
new domain and project specific static analyses. As shown in the evaluation section, the
proposal significantly improves the performance of static analyses compared to their
non-incremental versions and enables to tightly integrate them with the incremental
build process of an IDE.

Further performance improvements will be in the focus of future work. One pos-
sibility to improve performance is by decreasing the change granularity, which is cur-
rently at the class level. By pushing the granularity down, e.g., to the level of instruc-
tions, further overall performance improvements are expected.
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