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Abstract. Most aspect-oriented languages provide only a fixed, built-in set of pointcut

designators whose denotation is only described informally. As a consequence, these lan-

guages do not provide operations to manipulate or reason about pointcuts beyond weav-

ing. In this paper, we investigate the usage of the functional query language XQuery

for the specification of pointcuts. Due to its abstraction and module facilities, XQuery

enables powerful composition and reusability mechanisms for pointcuts.

1 Introduction

Join points and pointcuts are pivotal concepts of aspect-oriented programming
(AOP for short). Join points are points in the code (static join point) and/or
execution (dynamic join point) of a program. A pointcut is a set of join points
that share common properties, e.g., the set of all execution points of a certain
program, where one would like to control access rights. Pointcuts are defined
by means of pointcut designators - predicates on join points. Once a pointcut
is specified, semantic effect at the referenced join points can be defined in a
uniform way, e.g., implementing a certain access control policy.

AspectJ-like languages come with a set of predefined pointcut designators,
such as e.g., call and get, that are used as predicates over join points. One
disadvantage of this approach is that there is no general-purpose mechanism
in AspectJ to relate different join points, only some special-purpose predicates
such as cflow allow pointcuts to go beyond a single join point. To convey an
intuition of this limitation, let us consider identifying all join points where the
value of a variable is changed that is previously read in the control flow of a
method display, the goal being that we would like to recall display at any
such point. Assuming a hypothetical AspectJ compiler that employs some static
analysis techniques to predict control flows, one can write a pointcut p1 that
selects all getters in the predicted control flow of display. However, it is not
possible to combine p1 with another pointcut p2 which takes the result of p1 as
a parameter, retrieves the names of the variables read in the join points selected
by p1, and then selects the set of join points where one of these variables is
changed. What we need is the ability to reason about join points in p1 and p2
simultaneously.

In this paper we argue that a pointcut language should have a general purpose
mechanism to define predicates that relate different join points. In order to show



the value and the feasibility of such AO languages we have implemented an
AOP model in which pointcuts are sets of nodes in a tree representation of
the program’s modular structure, and such sets are selected by queries on node
attributes written in a query language and can be passed around to other query
functions as parameters.

These concepts are exemplified in the Java context, as follows. We have cre-
ated an XML-to-class file assembler/disassembler that can be used to create an
XML representation of a class file and convert an XML file back into a class file
on the basis of our BAT [1] bytecode framework. On top of this XML repre-
sentation of the program structure, we use XQuery, a standard functional XML
query language as our pointcut language. The choice for XML and XQuery is
not conceptual, though; the decision was mainly a matter of reusing existing
tools - it would have also been possible to define the query language directly on
class files but then we could not reuse existing XQuery implementations.

Pointcuts specified as functional queries over some representation of a pro-
gram have three main benefits. First, queries enable to write precise specifica-
tions of pointcuts. In current languages, pointcuts are only described informally
and have a complicated, imperative implementation. Formal specifications of
AspectJ-like pointcut languages exist but the implementation of the poincuts is
separated from their specification. On the contrary, queries allow a short and
precise specification of the meaning of a pointcut construct (assuming that the
semantics of the XQuery primitives themselves is clear – in the case of XQuery,
this is backed up by the existence of a formal semantics [20]). Second, poin-
cuts as functional queries enable open pointcut languages in a very natural way.
By means of our query language users can extend the pointcut language with
their own pointcuts: It becomes possible to create libraries of domain-specific
pointcuts, e.g., for synchronization, or for optimizations.

Last but not least, a pointcut query language allows to create more semantic
pointcut mechanisms [6, 10]. Since we consider the support for more semantic
pointcuts an important goal of our work, let us clarify what we mean by a
semantic pointcut mechanism. We will use for this purpose the display updat-
ing example, basically an instantiation of the observer pattern [5], used as a
canonical example for AspectJ [10]. In the example, graphical objects of type
FigureElement, such as Points and Lines are shown on a singleton Display
object (the classes involved are shown in Fig. 1). Furthermore, it is required that
any change on the part of the state of the graphical objects which is read during
the execution of FigureElement.draw() should trigger an update of the display
object by calling the method Display.update().

An example implementation of the display updating functionality in AspectJ
is shown in Listing 1.1. The aspect modularizes the decisions about (a) where to
trigger the update of the display object, as well as, (b) how the triggering should
be performed. The “how” is to call Display.update() after any element of the
“where” set. The “where” consists of invocations of methods whose name starts
with set declared in FigureElement+ (”+” denotes subclasses FigureElement),
or of the method FigureElement.moveBy(int,int).



Fig. 1. UML diagram of the FigureElement example

While nicely modularizing the decision about where to trigger the display
updating functionality1, the pointcut in Listing 1.1 is problematic in terms of
modular composition of the aspect and the graphical objects [6, 10]. Instead of
expressing our intention to “select points in the execution that modify variables
previously read within the control flow of the method FigureElement+.draw()”,
the pointcut actually relies on implementation details of how the interesting
points actually appear in the program code. The problem with such a specifi-
cation is that it makes the pointcut fragile w.r.t. changes in graphical object
classes. E.g., if one adds a new field that does not have a setter method, but is
actually read in the control flow of any method FigureElement+.draw, changes
to this field would escape the aspect, if the latter is not accordingly modified.

Listing 1.1. Display Updating in AspectJ
1 after(): call(void FigureElement+.set*(..)) ||
2 call(void FigureElement.moveBy(int, int)) { Display.update(); }

To convey the intuition behind more semantic pointcut mechanisms Kiczales
[10] gives the example of the pcflow pseudo-pointcut2 shown in Listing 1.2. The
pointcut is meant to say: “ (a) predict the control flow of FigureElement+.draw()
and find field reading execution points within it, (b) retrieve the set of the fields
being read (denoted by <displayState()>), and (c) trigger a display update at
any execution point where a field contained in <displayState()> is modified”.
This specification describes the set of the join points we want to select by their
semantics - it describes “what” the interesting points are, rather than “how”
they are implemented. We call this an implementation-shy pointcut3. As such,
it remains stable toward changes in the implementation mentioned above. One
can conclude that implementation-shy pointcut mechanisms make AOP more
useful, more principled, more robust.

1 In an object-oriented solution, the programmer would have to spread the code for
triggering the update of the display around the classes Point and Line.

2 The “*” after the keyword pointcut stands for “pseudo”.
3 This is in analogy to the notion of structure-shy behavior supported by traversal

strategies in Demeter [14].



Listing 1.2. PCFlow Pseudo-Code
1 pointcut* displayState(): pcflow(execution(void FigureElement+.draw()))
2 && get(* FigureElement+.*);
3 after set(<displayState()>)(): { Display.update(); }

Unfortunately, implementation-shy pointcuts are not properly supported by
AOP languages so far. As we already mentioned, the key problem is that with
current technology there is no general-purpose support to relate different join
points. However, the pseudo-notation <displayState()> stands for a reifica-
tion of the result produced by the displayState pointcut, so that the names
of the accessed fields can be retrieved and passed as a parameter to the set
pointcut. We will demonstrate how pointcuts as the one in Listing 1.2 can be
expressed as queries.

In this paper, we focus only on static pointcuts, i.e., pointcuts that corre-
spond directly to locations in the source-code/byte-code, also called join point
shadows in the terminology introduced in [15]. AspectJ’s dynamic pointcuts such
as target, this, and cflow are not in the focus of this paper. The reason is that
these pointcuts do not by themselves define new shadows and are implemented
by the AspectJ compiler by inserting conditional logic at shadows selected by
static pointcuts [7]. Our focus on static pointcuts is due to the use of the static
structure of the program as the data over which to run queries. Also, one of
the first usages of this pointcut language is in the context of our XIRC tool [4],
whose purpose is to visualize crosscutting structure in the code. However, we
think that the notion of pointcuts as functional queries can be applied to any
representation of a program, e.g., a representation of the dynamic control flow.
This would allow to express dynamic join points more elegantly but is also chal-
lenging to implement efficiently. The generalization of our approach to queries
on the dynamic call graph is actually the next step in our future work.

The reminder of this paper is structured as follows. In Sec. 2 we give an
overview of our representation of class files as XML trees. In Sec. 3, we give a
short introduction to XQuery and show how basic and advanced pointcuts can
be implemented as queries. In addition, we present first performance results of
our implementation, indicating that an efficient implementation is feasible. Sec.
4 presents related work. Sec. 5 concludes.

2 Data Model

The data model on top of which pointcut queries are formulated is closely related,
although not identical (see below), to Java bytecode. As mentioned before, all
pointcut queries operate on an XML representation of a class file. This XML
representation is generated by analyzing the bytecode of a class and can always
be transformed back into bytecode. The BAT2XML tool is used for this purpose4.
Representing a class file as an XML document, i.e., as a tree structure, is a very
natural thing to do: A class defines methods and fields and each method in turn

4 The tool can be downloaded from: http://www.st.informatik.tu-darmstadt.de/BAT



defines its functionality by an ordered sequence of (bytecode) instructions. If
necessary, sub-sequences of instructions can be further grouped.

The meta-structure of the generated XML representation is shown in Fig. 2.
A top-level all node represents a program space for which we want to determine
shadows corresponding to a pointcut designator5. All classes belonging to the
program space at hand are represented by the children of all. The children
of a class node, in turn, define the inherited classes and interfaces as well as
the declared fields and methods. While a class node can have many field and
method children it can have at most one inherits child node. The inherits
node can have one class node and an arbitrary number of interface children.
A field node basically defines the name and the type of a field. A method node
represents a method declaration, consisting of two children, the node representing
the signature of the method and the node representing its code. If the method
is native or abstract the code child does not exist. However, if it exists, it has
one to many children representing the instructions of the method.

Fig. 2. The meta structure of the XML representation of a program.

The <modifiers> of a class, method or field are represented by attributes
with boolean values, i.e., if a class is abstract the corresponding node has an at-
tribute abstract with the boolean value true. The visibility modifiers (public,
protected and private) are represented by the visibility attribute the value
of which is the name of the visibility identifier. E.g., the XML representation of
the field definition private final int length would be:
1 <field visibility="private" final="true" type="int" name="length"/>

Our XML representation abstracts over some details of Java bytecode to
make the XML representation accessible to a query writer at a higher-level of
abstraction. For instance, a field read access is represented in Java bytecode
either as a getfield or as a getstatic instruction, depending on whether the
field is static or not. In the XML representation both bytecode instructions are
uniformly represented by a get node with an attribute indicating whether or

5 Several strategies similar to those employed in AspectJ, (e.g., .lst files) can be used
to determine this scope.



not the field is static. The declaringClassName and the fieldName are the
attributes of every get or put instruction, as shown below:
1 <get declaringClassName="AbstractLine" fieldName="p1"
2 static="false" type="Point" />

In a similar way, there are different invocation operations in Java byte-code
for virtual and static methods. All invoke bytecode instructions are represented
by one invoke node. The attributes of an invoke instruction are the name of
the invoked method, the name of the declaring class, and the signature of the
method including its return type, as shown below:
1 <invoke declaringClassName="FigureElement" methodName="moveBy">
2 <signature>
3 <returns type="void"/><parameter type="int"/><parameter type="int"/>
4 </signature>
5 </invoke>

All in all, the XML presentation of the byte code is roughly equivalent to
an abstract syntax tree of the source code, modulo some peculiarities of the
byte-code format6.

Note that the introduced abstraction does not lead to loss of expressiveness
in writing queries. For most queries (especially queries to express AspectJ point-
cuts) the only information we need is that a certain field is read/written by a
get/put instruction, or that a method is invoked. The abstraction brings our
data model a little closer to the structure of the source code. Nevertheless, we do
not fully abstract from bytecode details, e.g., there are no explicit get, invoke
instructions in source code.

For illustration, listing 1.3 shows the XML representation generated for the
following Java source code:
1 abstract class AbstractLine extends FigureElement {
2 Point p1 = new Point(); Point p2 = new Point();
3 FigureElement(){ super(); }
4 void setP1(Point point) {this.p1 = point;}
5 void setP2(Point point) {this.p2 = point;}
6 void moveBy(int x,int y){
7 this.p1.moveBy(x, y); this.p2.moveBy(x, y);
8 }
9 abstract void draw();

10 }

Listing 1.3. XML Representation of the Java class AbstractLine.
1 <class abstract="true" name="AbstractLine">
2 <inherits><class name="FigureElement"/></inherits>
3 <field type="Point" name="p1"/>
4 <field type="Point" name="p2"/>
5 <method name="<init>">
6 <signature><returns type="void"/></signature>
7 <code>...</code>
8 </method>
9 <method name="setP1">

10 <signature> <returns type="void"/>
11 <parameter type="Point"/>
12 </signature>
13 <code>

6 For example, exception handling in byte code can in general not be mapped back to
the original try-catch-finally form



14 <load index="0"/>
15 <load index="1"/>
16 <put declaringClassName="AbstractLine" fieldName="p1"/>
17 <return/>
18 </code>
19 </method>
20 <method name="setP2">... as ”setP1” but setting p2 </method>
21 <method name="moveBy">
22 <signature> <returns type="void"/>
23 <parameter type="int"/><parameter type="int"/>
24 </signature>
25 <code>...</code>
26 </method>
27 <method abstract="true" name="draw">
28 <signature><returns type="void"/></signature>
29 </method>
30 </class>

The XML representation defines the same methods (line 9,20,21,27) and fields
(line 3,4) as the source code. The constructor is represented by the method
<init> (line 5) with return type void (line 6). The code of the constructor
(line 7,27) and the moveBy methods are omitted for brevity. To understand the
representation of the setP1 method it is important to know that the Java Virtual
Machine (JVM) is a stack machine. The instruction <load index="0"/> (line
14) puts the value stored in the local variable with index 0 onto the stack. This
value is this and is always stored in the local variable with index 0 at the
beginning of an instance method. The parameters passed to a method are stored
in the following local variables. In this case, the instance of Point that will be
assigned to the field p1 is stored in the local variable with index 1 (line 15) and
is also put onto the stack. The put instruction (line 16) pops both values from
the stack and assigns the top value to the field p1 of the instance referenced by
the 2nd top-most value. Finally, the return instruction terminates the method.

3 Queries

We will first introduce XQuery. Subsequently, we show how AspectJ’s primitive
pointcuts, such as execution, call, and within, as well as pattern matching
on signatures can be expressed in XQuery. The goal is to give the reader an intu-
ition of the pointcuts-as-queries metaphor by the relation to something known.
The remaining static pointcuts of AspectJ, such as staticinitialization, set,
and get, can be expressed in a similar way, and will not be discussed for brevity
reasons. Finally, we will demonstrate the power of our approach by a more so-
phisticated pointcut example and discuss weaving and performance issues.

3.1 XQuery

XQuery [19] is a query language for Extensible Markup Language (XML) data
sources. While XQuery is a fully functional language comprised of several kinds
of expressions that can be nested and composed with full generality, we will only
elaborate on the parts that are relevant to the purpose of this paper. For our
purposes, the most important part of XQuery is the notion of path expressions.



In a nutshell, a path expression selects nodes in a (XML-)tree. For example, the
path expression $all/class/method selects all method nodes of the tree corre-
sponding to the XML document from listing 1.3. In general, a path expression
consists of a series of steps, separated by the slash character. The path expression
above has two steps: the child steps class and method. The result of each path
expression is a sequence of nodes; in this case all method nodes from Listing 1.3.

XQuery supports different directions in navigating through a tree, called axes.
In the path expression above we have seen the child axis. Other axes relevant for
this paper are the descendant axis (denoted by “//”), the parent axis (denoted
by “..”), and the attribute axis (denoted by “@”). Using the descendants axis
rather than the child axis means that one step may traverse multiple levels of the
hierarchy. For example, the above query could be rewritten as $all//method.
The attribute axis selects an attribute of the given context node, whereas the
parent axis selects the parent of a given node. For example, the path expression
$all//code/../@name selects all name attributes of all method nodes that have
a code child, i.e., which are not abstract or native methods. Another important
feature of XQuery is its notion of predicates - (boolean) expressions enclosed
in square brackets, used to filter a sequence of values. For example, the query
$all//method[@name="setP1"] selects all methods whose name is setP1.

One can bind the result of an expression to a variable by means of a let ex-
pression. Variables in XQuery are marked with the $ character. As already men-
tioned, we will use the variable name $all for the root element node containing
all classes on which we want the queries to operate. XQuery also offers a number
of set operators to combine sequences of nodes, namely union, intersect, and
except, with the usual set-theoretic denotation, except that the result is again
a sequence in document order. The last important feature of XQuery used in
this paper is its notion of a function definition. The following function definition
subtracts the results of two pointcuts passed to it as parameters. Note that all
selection operations in XQuery work on sequences of selected nodes: $p1, $p2
being of type element()* means that they are sequences of selected elements.
Hence, it is possible to pass the result of another pointcut query to this function.
1 declare function diff($p1 as element()*,$p2 as element()*) as element()*
2 { $p1/.. except $p2/.. }

3.2 Method Execution and Pattern Matching

Let us start with the execution pointcut designator (PCD) in AspectJ. As an
example, consider finding executions of the method void setX(int i) declared
in class Point. In AspectJ, this would be expressed by the PCD execution(*
Point.setX(..)). The same semantics can be expressed in our approach by the
query $all/class[@name="Point"]/method[@name="setX"]. We start with the
set of all nodes ($all), search from there for class nodes with the name attribute
Point (recall that the @ operator selects attributes) and select direct method
sub-nodes of the latter with the name attribute equal to setX.

Note how AspectJ’s notion of wild cards corresponds to specifying or omit-
ting additional query constraints. E.g., to find all methods named setX in all



classes (corresponding to execution(* *.setX(..)) in AspectJ), we would
write: $all//method[@name="setX"]. Constraints on the signature can be ex-
pressed by appropriate conditions. For example, the query
$all//method/signature/parameter[1][@type="int"]/../..
selects methods whose first parameter is of type int. Note that /../.. selects
the ancestor method node of the int parameter node at hand. Similarly, one can
select based on return types or modifiers.

XQuery provides a rich library of functions for pattern matching on names.
E.g., $all/class[@name="Point"])/method[starts-with(@name,"set")] se-
lects all methods whose name starts with set in class Point (corresponding
to execution( * Point.set*(..)) in AspectJ), whereby starts-with is a li-
brary function of XQuery. Similarly, other name patterns can be expressed by
appropriate calls to these library functions.

3.3 Method Calls and Subtype Predicates

Another important category of pointcuts are method calls, corresponding to As-
pectJ’s call PCDs. For such slightly more sophisticated pointcuts, it makes
sense to define a reusable XQuery function. This is illustrated by the function
call below, which given a set of nodes from which to select, denoted by $all,
and a set of (previously selected) method nodes, $meths, passed to it as param-
eters, selects from $all any call instruction to one of the methods in $meths.
The = operator in XQuery is implicitly existentially quantified if it is used on
sets/sequences of values: If there exists a node in the set $meths whose name is
the same as @methodName the condition evaluates to true.
1 declare function call($all element(), $meths as element()*) as element()* {
2 $all//invoke[(@methodName = $meths/@name) and
3 (@declaringClassName = $meths/../@name)]
4 }

Given the definition of call, the following expression selects all calls to any
method whose first parameter is of type int (corresponding to the PCD call(*
*.*(int, ..)) in AspectJ). This usage of the call query function demonstrates
the idea of relating different join points: The query parameter passed to the call
function is itself a pointcut.

call($all,$all//method/signature/parameter[1][@type="int"]/../..)

An important operation in the context of method calls is the ability to reason
about all subtypes of a given type. This is important for expressing predicates of
the kind “calls to a method m of class C or any of its subclasses”, corresponding to
PCDs of the form call(* *.C+.m(..)) in AspectJ. All subtypes of a given set
$types of previously selected classes can be retrieved by the recursive function
definition subtypes below. This function computes the direct subtypes of $types
in $s. If $s is empty, then $types is already the result, otherwise the result is
the union of $types with the result of the recursive call subtypes($all, $s).
1 declare function subtypes($all as element()*, $types as element()*)
2 as element()* {
3 let $s := $all/class[./inherits//@name = $types/@name]
4 return if (empty($s)) then $types else $types union subtypes($all, $s)
5 }



For illustration, the function subtypes is used in the following query to
select calls to methods in class FigureElement or any of its subclasses, whose
name starts with the string set (PCD call(* FigureElement+.set*(..)) in
AspectJ).
1 call($all,subtypes($all,$all/class[@name="FigureElement"])
2 /method[starts-with(@name,"set")])

3.4 Lexical Restrictions and PCD Composition

Lexical predicates on join points such as “within the code of class X ”, expressed
by the primitive pointcut within in AspectJ, can be expressed in two different
ways as queries, which we will illustrate by AspectJ’s PCD within(Line) &&
get(* *.p1). One way is to select by the name of the unit (class or method) serv-
ing as the lexical scope. E.g., $all//class[@name="Line"]//get[@name="p1"]
selects all field read instructions accessing a field p1 inside the code of the class
Line. The same PCD can be expressed by $all//class[@name="Line"]//*
intersect $all//get[@name="p1"], using the path selection operation //*,
which selects all sub-nodes of a given node.

Note the use of XQuery’s set operation intersect above. Together with the
path selection operation, it enables to combine lexical restrictions with any other,
arbitrary sophisticated, query. For illustration, consider the following query,
which corresponds to AspectJ’s PCD within(Line) && call(* Point.getX(
.. )). The same semantics would be hard to express by the approach to lexical
restrictions based on predicates on the name of the lexical element.
1 let $c := call($all,$all//class[@name="Point"]/method[@name="getX"])
2 $all//class[@name="Line"]//* intersect $c

The example just discussed brings us to the issue of composing queries. The
logical PCD composition operations from AspectJ, or (||), and (&&) and not
(!) can be very naturally expressed in our approach by the corresponding set
operators of XQuery, as shown below.
1 pc1 && pc2 <--> pc1 intersect pc2
2 pc1 || pc2 <--> pc1 union pc2
3 !pc1 <--> $all except pc1

3.5 Advanced Pointcuts

In the introduction, we discussed the need to support more abstract pointcuts
and discussed a pointcut designator proposed by Kiczales [10] that predicts the
control flow of methods. We presented such a semantic-based pointcut in the
introduction and argued that in order to support it, support for relating different
join points is needed. In the following we show how the desired semantic can be
expressed by pointcut queries.

A very simple (and not very precise) mechanism of predicting the control
flow of a set of methods $m is specified by the following query. The local variable
$pcflow1 selects all methods that are called inside $m. If this set is empty, then $m



is already the result, otherwise we compute the next level of methods that are not
yet contained in the predicted control flow. The condition except $m//method
guarantees that the function terminates in the presence of cyclic call structures.

1 declare function pcflow($all as element()*, $m as element()*)
2 as element()* {
3 let $pcfl1 := $all//method[@name = $m//invoke/@method] except $m//method
4 return if (empty($pcfl1)) then $m else pcflow($all, $m union $pcfl1)
5 }

This algorithm for predicting the control flow is not very precise because it
considers only method names and not subtyping restrictions or control flow/data
flow analysis inside method bodies. Of course, we could define more sophisticated
predictions using control- and dataflow techniques, but this is not in the scope of
this paper7. The purpose of the example is primarily to illustrate the generality
and expressiveness of our queries. To serve this purpose, let us take a look at
how this function can be used in our observer example focusing on how it can be
used to make the pointcut specification more robust. The following query selects
all assignment instructions to fields that are read in the predicted control flow
of the method FigureElement+.draw(), thereby expressing the pcflow pseudo
PCD from the introduction.

1 $all//put[@name = pcflow($all,
2 subtypes($all,$all/class[@name="FigureElement"])
3 /method[@name="draw"])//get/@name ]

Note how an aspect that defines an advice (e.g., to call Display.update())
with this pointcut as a parameter abstracts over the control flow between Figure-
Element and Display objects. The advice would be “control flow shy”, which
means that it will not be affected by changes in the implementation of the base
software other than changing the name of the class FigureElement, or of the
methods draw and update, hence enhancing modular reasoning supported by
aspect modularity.

3.6 Weaving

The language to specify pointcuts is largely independent from the question on
how to use a pointcut. It can be used for different purposes, e.g., weaving of
advice code, generation of error/warning messages, visualization, support for
refactoring etc. In order to create a complete system we have implemented a
primitive weaving engine on top of our pointcut language that weaves calls to
a central aspect dispatcher before and after every join point of a query result.
At runtime, advices can be registered for a pointcut via a corresponding API.
Context information (caller, receiver, arguments etc.) can be received via API
calls. It would be straightforward to integrate advices like in AspectJ directly
into a programming language on top of this API.

7 We have implemented a more precise version of pcflow that takes subtyping into
account but we do not present it here due to space reasons.



3.7 Performance

Query Time in sec.
1 let $field := //field[@visibility="protected"]
2 return //get[@declaringClassName = $field/../@name
3 and @fieldName = $field/@name]

get(protected *.*)

0.81
(273 nodes)

2.15
1 //invoke[@declaringClassName="de.tud.BytecodePointcut"
2 and @methodName="getFilter"]

call(de.tud.BytecodePointcut.getFilter(..))

0.45
(5 nodes)

2.14
1 $all/class[starts-with(@name, "de.tud.")]
2 //invoke[@declaringClassName="de.tud.BytecodePointcut"
3 and @methodName="getFilter"]

call(de.tud.BytecodePointcut.getFilter(..)) && within (de.tud..*)

0.06
(5 nodes)

2.32
1 let $types :=
2 subtypes($all/class[@name="de.tud.Instruction"])/@name
3 return //invoke[@methodName="toString" and
4 @declaringClassName = $types]

call(de.tud.Instruction+.toString(..))

0.66
(26 nodes)

4.78
1 pcflow(//method[@name="toString" and not(.//parameter[1])])
2 //put

set(*.*) withincode <pcflow(*.toString())>

10.64
(14 nodes)

In order to show that our approach can be implemented with reasonable
performance we made an initial performance evaluation of pointcuts as queries.
We have measured the time needed to evaluate some pointcut queries using the
BAT toolkit itself as the code base 8, which has 704 class files (roughly 1.5MB
of uncompressed class files). The following table shows the evaluated queries
along with an equivalent AspectJ PCD (if possible) and the time required to
evaluate them together with the number of selected nodes. To measure the times
for AspectJ we have used an instrumented variant of the weaving class loader
in order to isolate the time to evaluate a pointcut as much as possible. We
simply used a declare warning statement such that no actual weaving took
place9. However, this should not be considered a hard, fair comparison because
the time to load the XML representation takes longer than reading the binary
representation of a class and more memory is required (roughly 3-4 times) to
hold the XML representation. Further, the time measured for the AspectJ weaver
includes the time to create its internal representation out of an in-memory byte
array, whereas in our case the input is parsed XML which does not need to be
further transformed. The purpose of these numbers is merely to indicate that the
performance does not explode in our system for queries that resemble AspectJ’s
pointcut designators. Indeed, they indicate that the performance is reasonable
and that the architecture can be used to prototype new queries and will deliver
8 Time measured on an AthlonXP 2600, 512MB Ram, WindowsXP and Sun JDK

1.5.0beta1
9 We used AspectJ version 1.2 for comparison.



comparable numbers. Note that for queries, such as e.g., the pcflow query, it
is necessary to further investigate if they can be implemented efficiently enough
for every day usage.

These preliminary measurements are very encouraging and show that the
usage of a full-fledged query pointcut language can be considered.

4 Related Work

The most relevant related works are approaches that propose crosscut languages
based on logic query languages [9, 6]. In these approaches, pointcuts are speci-
fied as logic queries in Prolog or Prolog-like languages. JQuery [9] is a browser
which allows users to select views of the program and to define how the selected
program elements should be ordered on the browser. The logic query pointcut
language proposed in [6] operates on top of a reification of static and/or dynamic
properties of Smalltalk programs.

The goal of these languages is quite similar to ours, the main difference being
the usage of a logic versus a functional query language. The pointcut language
of [6] can directly express dynamic join points, while the pointcut language
discussed in this paper can only express patterns relating static join points.
However, we think that this difference is mainly due to the different data model
on which the languages operate.

A more important difference is that, by the usage of unification, one gets a
powerful mechanism to retrieve context information from join points for free.
This is more complicated in our approach, where context information has to be
explicitly retrieved. On the other hand, in our approach one gets the advantage
of a statically-typed functional language with a powerful module system for free.
The possibility of creating user-defined pointcut libraries as in our approach is
not mentioned in [6]. We cannot yet give a final answer to the question which
of these approaches is better suited to express pointcuts, but we think that at
least our work provides a good basis for a comparison.

Josh [2] is an AspectJ-like language with an extensible pointcut mechanism
built on top of Javassist [3]. The Josh compiler takes an aspect as input and
produces a special weaver – a Java program that uses Javassist to perform the
weaving. The generated weaver iterates over all elements of a program that are
exposed as meta-objects by Javassist, such as classes, fields, constructors and
method objects, and adds the advice code if the element at hand represents a
join point shadow [11] that matches the pointcut designator of the advice. To
realize matching, the compiler generates calls to static methods corresponding
to pointcut designators provided by Josh. Such methods are implemented by a
developer in the process of extending Josh with new PCDs10.

There are significant differences between Josh and our approach. Especially,
Josh does not support declarative pointcut specifications. New PCDs are im-
10 In addition to pointcut matching, the methods also take care of injecting dynamic

checks as well as code needed for exposing context information at a join point to the
advice code.



plemented as meta-programs in Josh using the Javassist library. Josh basically
suffers from the problems of a meta-programming approach, especially with re-
spect to the composability of the PCDs implemented as meta-programs. In the
introduction, we claimed the precise specification of pointcuts as one of the bene-
fits of the pointcuts-as-queries approach as compared to current AOP languages,
where pointcuts have complicated, imperative semantics. This is worse in Josh,
where such complicated imperative meta-programming semantics can be written
by the developer.

Masuhara and Kawauchi presented in [16] a pointcut which selects join points
based on the flow of data. To be precise, the proposed dflow pointcut designator
selects join points with a specific value, if the value originated from a location
selected by a pointcut. We think that our query language would be a good basis
for specifying these kinds of pointcuts in a general-purpose framework, so this
is part of our future work.

We view our approach as contributing to the definition of an AOP language
capable to accommodate different join point models of different AOP approaches.
In this respect, it is related to the Concern Manipulation Environment [8] (CME)
which is intended to be an extensible, reusable, open, and customizable platform
on which AOSD tool developers can build and integrate tools. Opposed to CME’s
goal to provide a query engine as one of the components (tools) of a concern
manipulation environment, we argue for having crosscuts be first-class constructs
of an aspect-oriented language and for having built-in language expressions that
operate on these values. However, we also investigated the usage of queries over
the program in an IDE in the context of the XIRC tool [4], which can be used
to visualize crosscutting structure specified as a functional query.

We believe that an aspect-oriented language with a pointcut language such
as our query language is general enough to express a wide range of very different
pointcut models. Hyper/J [18] and Demeter [14, 17, 12] are two approaches to
AOP that have a very different pointcut model than AspectJ. Since Hyper/J uses
only static composition rules, we think that these rules can be directly expressed
as queries. For example, a composition rule such as mergeByName boils down
to finding methods/classes with the same name, which can easily be expressed
as a query.

Demeter is related in that both approaches use a notion of path expressions,
called traversal strategies in the context of Demeter. The aim is different, how-
ever. In Demeter, path expressions are used to find traversal paths in the object
graph whose edges are association and inheritance links, while we use path ex-
pressions over the program tree for selecting arbitrary sets of related join points.
Nevertheless, we think that it is possible to use a query to find traversal paths in
the sense of Demeter. We plan to create a query library for traversal strategies in
the future. In [13], Lieberherr tries to establish a common framework for relating
pointcut expressions a la AspectJ and traversal strategies as they are used in
Demeter, stating that in his view, both can be described by a two level graph
structure, with a selection language as the top-level. The work presented here
makes this relation very explicit.



5 Summary

In this paper, we have investigated the usage of the functional query language
XQuery for the specification of pointcuts. We have shown that XQuery enables
powerful composition and reusability mechanisms for pointcuts. While we have
investigated this approach only in terms of a static representation of the program,
we think that the general idea can be generalized to arbitrary representations of
the program semantics.

The aim and achievements of our work are similar to other approaches using
logic query languages. To a degree, a comparison between these approaches boils
down to a comparison between the respective paradigms, logic programming ver-
sus functional programming. We hope that our approach will be a good basis to
conduct this debate in terms of the specific requirements of a pointcut language.
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