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ABSTRACT
A widespread implementation approach for the join point
mechanism of aspect-oriented languages is to instrument ar-
eas in code that match the static part of pointcut designa-
tors, inserting dynamic checks for that part of matching that
depends on run-time conditions, if needed. For performance
reasons, such dynamic checks should be avoided whenever
possible. One way to do so is to postpone weaving of advice
calls until run-time, when conditions determining the emer-
gence of join points hold. This calls for fluid code—code that
adapts itself to the join point emergence at run-time, and
suggests that AOP concepts should be integrated into the
execution model underlying a VM. In this paper, we present
first steps toward such an integration in Steamloom, an ex-
tension of IBM’s Jikes Research Virtual Machine. Steam-
loom is fairly restricted, but our initial experimental results
indicate that aspect-aware VMs and fluid code are promising
w.r.t performance. While the focus in this paper is on per-
formance, there are other advantages of aspect-aware VMs
to be investigated in the future.

1. INTRODUCTION
Dedicated support for fluid code at virtual machine level

is needed for an efficient implementation of dynamic join
points. This is the message we want to put forward in this
section. We start by explaining our understanding of dy-
namic crosscutting, followed by a discussion of strategies to
enable it. Next, we discuss why dynamic crosscutting should
have VM support for fluid code, especially (but not only) for
performance reasons, and present in a nutshell our approach
to such support.

1.1 Dynamic Join Points
The notion of join points is an important concept of aspect-

oriented programming. Crosscuts are sets of related join
points which are defined by pointcut designators. A special
class of pointcuts are those that can directly be mapped to
locations in the program code. A method execution point-
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cut, e. g., can be directly mapped to the place(s) in the code
implementing the method. In the following, we call such
crosscuts code-level crosscuts. Other crosscuts such as the
one described by “whenever x is executed in the control flow
of y” cannot directly be mapped to a location in the code.
They rather emerge depending on the dynamics of the pro-
gram execution, hence, we call them dynamic crosscuts.

We distinguish two classes of dynamic crosscuts. First,
there is the class of statically bound dynamic crosscuts for
which we can statically determine a set of potentially af-
fected code locations (join point shadows in the terminology
of [12]). An example of this family is the crosscut defined
by cflow(aPCD) && otherPCD1, where otherPCD is assumed
to be a code-level crosscut. In this case, we can statically
determine the set of shadows for the otherPCD part and then
make sure at run-time that only those statically determined
shadows that occur in the control flow of aPCD actually yield
a join point.

The second class of dynamic crosscuts are those whose
correspondence to code locations cannot be restricted in a
reasonable way before run-time, for which reason we call
them unbound dynamic crosscuts. Consider, e. g., an aspect
that counts the invocations of certain methods during the
execution of a program. The set of methods whose invoca-
tions are counted has, however, to be dynamically editable
by the user, so it can only be known at run-time. In this
case, the static shadows will include all method invocation
locations in code. Also unbound are crosscuts resulting from
dynamic aspects, i. e., aspects that are woven at run-time,
as supported by some AOP approaches [25, 8, 16].

Let us now consider how well these different levels of dy-
namic crosscuts can be supported with static machine code
(non-fluid code). Statically bound dynamic join points can
be implemented by instrumenting the set of potentially af-
fected code locations with dynamic checks, which can either
be generated by a compiler, bytecode weaver or class loader
or programmed manually, e. g., by conditional logic in the
advice code. Manual checks are tedious and fragile because
a small change in the program or requirements may invali-
date them. There are different languages that offer built-in
constructs for expressing certain dynamic crosscuts, e. g.,
via cflow in AspectJ. Mapping such PCDs to locations in
code by integrating the needed check dynamics is done by
the compiler (weaver, class loader), which makes the main-
tenance problem of manual checks less severe. The problem
remains with dynamic crosscuts that lack direct support,
such as the unbound dynamic one discussed above. In As-

1PCD is an abbreviation for pointcut designator.



pectJ, one could solve the described problem by implement-
ing an aspect that is parameterised by a HashSet containing
the names of the methods to count and implements an ad-
vice that checks at every method invocation whether the
counting functionality applies to the current method. The
same check could also be implemented by an if PCD, but
would still be done manually.

This brings us to unbound dynamic crosscuts. A tech-
nique often used to enable such a dynamic binding of point-
cuts is to have the compiler insert dynamic checks at all
join points, that is (depending on the granularity of the join
point model) basically at every instruction. This is, in prin-
ciple, the approach taken by several implementations [25,
8, 16] that support some form of dynamic aspect binding
(cf. Sec. 4 for a more detailed discussion). During execution,
the inserted hooks check whether aspects are registered for
a reached join point, and, if so, call the respective advice.
With this workaround, flexibility is gained at the cost of a
very significant performance slowdown.

1.2 Programmatic Aspect Deployment
Most of the approaches discussed so far have in common

that the scope of an aspect’s effect is declaratively defined
as part of the aspect definition. A different approach rele-
vant to this work is programmatic aspect deployment, a fea-
ture available in Caesar [21]. In Caesar, an aspect has
to be deployed for its pointcuts and advice to take effect.
An aspect can be statically deployed by adding the modi-
fier deploy to its declaration: compiling such an aspect is
equivalent to compiling a corresponding AspectJ aspect.

In addition Caesar aspects can also be deployed using the
deploy(anAspectInstance) { aBlock } statement. Point-
cuts and advice of anAspectInstance are effective only in-
side the control flow of the code within the deploy block.
Deployment is always local to the thread in which it is en-
countered. Actually, deploy can be thought of as an op-
eration understood by aspect instances, the semantics of
the latter being basically that of containers of PCDs and
advice associated with them. Such an operation can be
part of arbitrary computations, i. e., the result of arbitrary
computations may determine where/when an aspect is de-
ployed, hence the attribute “programmatic” to the deploy-
ment mechanism of Caesar.

To illustrate how programmatic deployment enables dy-
namic crosscuts, consider the simple application in Fig. 1
that determines nth Fibonacci number. The AspectJ as-
pect in Fig. 2 is used to determine the number of fib() calls
during fibstart() execution when the latter occurs within
the control flow of a call to m2(). The aspect sets a counter
to 0 at the beginning of fibstart()’s execution, increments
it by one at the beginning of each execution of fib(), and
prints its value after the execution of fibstart().

The Caesar version of this aspect is given in Fig. 3. The
aspect class DeploymentAspect is statically deployed; it dec-
orates any call to TestApp.m2() with an around() advice,
within the body of which an instance of FibonacciAspect

is created and deployed in the context of a block containing
the proceed() call. This way, FibonacciAspect affects exe-
cutions mentioned in its PCDs only when they occur within
the deploy block, i. e., in the control flow of TestApp.m2().
Note that FibonacciAspect does not contain a cflow PCD.

We highlight programmatic deployment in connection with
the issue of efficiently supporting dynamic crosscuts for two

class TestApp {
public void m1(int n) { fibstart(n); }
public void m2(int n) { fibstart(n); }
public void fibstart(int n) { fib(n); }
public int fib(int k) {

return (k > 1) ? fib(k-1)+fib(k-2) : k;
}

}

Figure 1: Determining the nth Fibonacci number.

public aspect FibonacciAspect {
private int ctr = -1;
pointcut m2cf(): cflow(call(void TestApp.m2(int)));
before(): execution(void TestApp.fibstart(int))

&& m2cf() { ctr = 0; }
after(): execution(void TestApp.fibstart(int))

&& m2cf() { System.out.println(ctr); }
before(): execution(int TestApp.fib(int))

&& m2cf() { ctr++; }
}

Figure 2: Counting fib() invocations in AspectJ.

reasons. First, we feel that from the perspective of the pro-
gramming model, programmatic deployment is a more natu-
ral way to specify dynamic conditions under which an aspect
applies (the dynamic scope of the aspect) than supporting
more declarative dynamic pointcut specifications in the lan-
guage. Especially, programmatic deployment enables the
programmer to express dependencies between join points
that can be taken into consideration to postpone creating
shadows for some join points only after other join points
that the former depend on are reached. For example, the
pointcuts of FibonacciAspect in Fig. 3 need to be consid-
ered only if call(void TestApp.m2()) has matched.

In addition to expressing dependencies among join points,
Caesar’s deployment mechanism also enables aspectual poly-
morphism. Since the type of an aspect instance passed to a
deploy block is statically known only by upper bound, the
same code may be executed decorated with aspectual be-
haviour or not, depending on whether the code is included
within a deploy block or not. Furthermore, the set of af-
fected join points as well as the advice code to be executed at
these points are dynamically bound. For illustration, recall
the example of counting the invocations of a set of methods

public class FibonacciAspect {
private int ctr = -1;
before():

execution(void TestApp.fibstart(int)) { ctr = 0; }
after(): execution(void TestApp.fibstart(int)) {

System.out.println(ctr);
}
before(): execution(int TestApp.fib(int)) { ctr++; }

}

deploy public class DeploymentAspect {
around(): call(void TestApp.m2(int)) {

deploy (new FibonacciAspect()) { proceed(); }
}

}

Figure 3: Caesar version of the fib() counter aspect.



which is only bound at run-time. In Caesar, one would
write a static deployment aspect that calls the application
whose methods we want to count within a deploy block pa-
rameterised by an aspect of some type CountingAspect. At
run-time, we can pass different instances of the invocation
counter type, each intercepting the invocations of different
sets of methods.

In [21], we discuss Caesar’s programmatic deployment
and aspectual polymorphism from the perspective of lan-
guage design and typing issues. In this paper, we consider
implementation issues and will show that when supported
at the VM level, dynamic crosscuts as enabled by Caesar’s
programmatic deployment become feasible from the perfor-
mance point of view. Our initial experimental results in-
dicate that programmatic deployment backed by VM sup-
port enables both statically bound and unbound dynamic
crosscuts more efficiently than approaches based on weav-
ing residual checks at all code locations that might yield
dynamic join points.

1.3 Structure-Preserving Compilation
At the implementation level all approaches mentioned so

far, including a first implementation of Caesar as an ex-
tension of AspectJ [10], lose information during weaving be-
cause they employ pre-run-time invasive weaving. Weaving
is invasive in that it flattens the module structure: aspects
are (partly) woven into the code of other modules and hence
are not identifiable as units with aspect semantics at run-
time. The extent to which modular structure is flattened
may be different in different cases. Some approaches might
in-place weave advice code in the identified code locations,
thus completely losing aspects as identifiable units at run-
time. Other approaches, e. g., AspectJ, turn aspects into
“normal” Java classes and weave calls to methods in these
classes, which are generated out of advice code. In this case,
the modular specification of the crosscut is flattened. Ad-
vice exist as identifiable units at run-time, but such units
are turned into “standard” Java methods and have nothing
special to identify them as aspectual units. There is no no-
tion of a pointcut available at run-time—this information is
“woven away”.

We identify the loss of modular structure as the impedance
mismatch between current aspect-oriented languages and
their execution model, which is basically that of object-
oriented languages. Our vision is to develop an execution
model within which the module structure of aspect-oriented
source-code is still available at run-time. Invasive weav-
ing should be replaced by structure-preserving compilation
(SPC), meaning that the program’s original structure should
still be available or at least easily recoverable at run-time.

Intercepting join points should not be enabled by “patch-
ing in” interception logic at points in code: every piece of
code should implicitly be ready to be extended with join
points. An analogy is the implicit support for late binding in
object-oriented code: we do not need to post-process or re-
compile source code or otherwise manipulate existing classes
when new subclasses are added; nevertheless, methods exist-
ing in the original program might get rebound when called
in the context of executing objects of added subclasses.

We envisage that SPC for aspect-oriented languages will
bring about a number of important advantages. In this pa-
per, we focus on advantages in terms of efficiently support-
ing dynamic crosscuts. There are other benefits, though,

which remain to be elaborated on in future work. For ex-
ample, SPC enables reasoning about aspects at run-time;
similar to meta-object protocols, meta-aspect protocols be-
come conceivable. Furthermore, debugging and profiling are
much easier when there is a direct correspondence between
run-time and source code entities; true separate compilation
is another positive side-effect of replacing weaving by SPC.

1.4 Steamloom in a Nutshell
In this paper, we present initial results of supporting un-

bound dynamic join points, programmatic deployment, and
structure preserving compilation of aspects in IBM’s Jikes
Research Virtual Machine [17]. We make use of the openness
of its design that allows us to add initial support for AOP,
while still being able to execute standard Java bytecode with
low overhead. Our extension is called Steamloom.

No pre- or post-processing of the base code is needed in
Steamloom to integrate an aspect: advice integration and
execution are rather taken care of by the VM. An aspect
has a first-class representation in Steamloom as a container
of code-level pointcuts and advice associated with them.
Pointcuts are themselves represented as first-class entities,
which is crucial for supporting unbound dynamic join points.

Steamloom also has dedicated support for Caesar’s de-
ployment approach: the execution of a deploy statement
with an aspect as a parameter triggers aspect weaving, i. e.,
the hooks needed to execute advice can be added and deleted
at run-time. Hence, the set of code-level crosscuts to be
intercepted can be determined at run-time. This mecha-
nism works even in the presence of sophisticated optimisa-
tion techniques like inlining.

Two different classes of dynamic scoping mechanisms are
supported: thread-local and instance-local deployment. The
former means that an aspect is activated only in the scope of
a particular thread, whereas the latter means that the aspect
applies only to selected instances of a class. The rationale
behind supporting these two kinds of scoping mechanism is
that we hold these two mechanisms to be particularly use-
ful and hard to implement efficiently without VM support.
Thread-local deployment is a way to reconcile dynamic as-
pect deployment and multi-threading because we think that
dynamic aspect deployment is a big challenge with respect
to maintaining the consistency of the system. Instance-local
deployment is useful for aspects that fulfil a similar purpose
as roles in role models, where the behaviour of individual
objects may change at run-time.

The set of code-level pointcuts currently supported by
Steamloom is fairly primitive, supporting only the method
execution primitive pointcut. However, a rich code-level
pointcut model is not in the focus of this paper; we be-
lieve that other pointcuts can be added easily. Our focus
is on showing that dynamic crosscuts can be enabled effi-
ciently when directly supported by the VM. The results we
have achieved so far in this respect are indeed encouraging.
Our experiments show that VM-supported dynamic deploy-
ment results in better performance than statically weaving
conditional logic to achieve equivalent context dependent
activation of aspectual functionality.

1.5 Organisation of the Paper
The remainder of the paper is organised as follows. Sec. 2

presents the Steamloom architecture, while the results of
our performance evaluation are presented in Sec. 3, along



with future work directions. Sec. 4 discusses related work
and briefly evaluates it. Sec. 5 summarises the paper.

2. STEAMLOOM
Steamloom supports dynamic integration of aspects with

global, thread-local, or instance-local scope, as outlined in
the introduction. Steamloom is implemented on top of IBM’s
Jikes Research Virtual Machine (RVM) [17]. The extensions
to the RVM are basically threefold: (a) an API, (b) a byte-
code manipulation toolkit (BAT, “Bytecode Augmentation
Toolkit” [4]), and (c) support for weaving. The API and
bytecode toolkit are isolated in packages, while weaving sup-
port consists of extensions to several of the RVM’s classes
concerning VM-internal class and object representation and
native code generation. We will now shortly describe the
programming model supported by the Steamloom API, fol-
lowed by a discussion of support for weaving. The bytecode
toolkit will be mentioned when relevant, but a discussion of
it is out of the scope of this paper.

2.1 Steamloom’s Programming Model
The Steamloom API provides access to aspect building

and deploying functionality. Pointcuts, advice and aspects
are modelled as first-class entities. A pointcut can eas-
ily be created by instantiating one of the pointcut classes,
and an advice is represented by an instance containing the
signature of an arbitrary Java method along with infor-
mation about parameter passing. To build aspects, the
associate(Pointcut, Advice) method can be called on an
instance of the Aspect class. After that, the aspect itself
knows which methods it affects and what advice have to
be called at which join points. To Steamloom, an aspect is
a container that maps pointcuts to advice. Global aspect
deployment takes place by invoking deploy() on the ap-
propriate aspect instance; aspects are undeployed by calling
undeploy(). The deploy() method can be passed a Thread

instance if the aspect is to be deployed thread-locally, and/or
some object if it is to be deployed on that instance only.

At the moment, before() and after() advice for method
execution join points can be declared. They can be arbitrary
methods that can retrieve information from the join point’s
context, e. g., the caller, callee or method parameters. Such
methods are encapsulated in instances of the Advice class,
along with parameter passing information that is set by call-
ing special methods at advice construction time.

2.2 Weaving Support in Steamloom
We will now first give a short overview of the concepts in

the RVM we have exploited to support dynamic weaving.
Next, we will present our extensions to these concepts.

2.2.1 An Overview of the RVM
The overall openness of the RVM’s architecture makes it

very valuable for experimental extensions. The RVM is a
virtual machine for Java implemented in Java. There is
no interpreter; the RVM is completely based on just-in-
time compilation, offering the choice among three different
compiler systems: a “baseline” compiler that performs no
optimisation whatsoever, an optimising compiler [20], and
an adaptive optimisation system (AOS) built on top of the
other compilers that performs online profiling [1, 2]. The
compiler architecture is chosen at RVM building time. Un-
like other approaches that use the baseline compiler for their
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Figure 4: The RVM’s normal treatment of methods.

extensions to the RVM (cf. Sec. 4), we have chosen to in-
corporate support for dynamic join points with the AOS,
allowing for treating advice code like normal method code,
including performance advantages gained by optimised com-
pilation.

For every class loaded in the RVM, there exists an in-
stance of VM Class holding a list of the class’s members. An
instance is represented in memory by an object that is a
concatenation of slots for header, attributes and other in-
formation. Central for our approach is the slot containing a
pointer to the TIB (Type Information Block) of the respec-
tive object’s class. The TIB contains pointers to all virtual
methods of the class. Every such method is represented by
an instance of VM Method. Static methods are held in the
global JTOC (Jikes Table of Contents) that moreover con-
tains the TIBs of all loaded classes.

Prior to the first invocation of a method, any TIB and
JTOC method entry points to the singleton lazy compilation
stub, which is itself a Java method, as illustrated by Fig. 4
(index 1). The first time a method is invoked, the stub is
executed. It inspects the call stack to retrieve the callee
object, its class, and the called method. Using this infor-
mation, the corresponding VM Method holding the method’s
bytecode can be retrieved. The stub compiles the method,
sets the TIB (or JTOC, in case of a static method) entry to
point to the compiled code and executes the method (Fig. 4,
index 2). Next time the method is called, the compiled code
is executed. This technique is called lazy compilation.

The AOS has several subsystems [1]. The run-time mea-
surements subsystem gathers profiling data and stores it in
the AOS database. The controller receives events from the
measurements subsystem and, based on them and stored
data, decides on method recompilation. Finally, the recom-
pilation subsystem which is notified by the controller when-
ever a method has to be recompiled, takes care for doing so,
invoking the optimising compiler at the appropriate optimi-
sation level.

In the presence of the AOS, every method is initially
baseline-compiled. As soon as the controller decides that an
optimised version of that method will yield a performance
improvement, it is recompiled accordingly and reinstalled
while the application is running (Fig. 4, index 3).

2.2.2 Adding Weaving Support
In adding support for dynamic aspect weaving to the RVM

we had to take into account that methods to be decorated
with advice code may already have been compiled by the
baseline or optimising compiler. Moreover, they may have
been inlined during the compilation of other methods. Be-
low we will show how we addressed these issues for class-
wide, instance- and thread-local aspect deployment.



REC = {m0} ;
M = REC;
do

M ′ = ∅;
foreach m ∈ M do

M ′ ∪ = inline locations(m);
M = M ′ \ M ;
REC ∪ = M ;

until M = ∅;

Figure 5: Algorithm to determine the set of recom-
pilation candidates.

Aspect weaving in Steamloom is done by first modifying
affected methods’ bytecodes using BAT and then recompil-
ing them (or scheduling them for lazy recompilation). To ex-
pose its methods’ bytecodes to BAT’s API, each class that
is loaded into the VM must be represented in BAT’s own
format, which we have achieved by modifying the RVM’s
class loader.

Recompilation of an optimised method always retains the
method’s optimisation level. Thus, performance improve-
ments gained by optimising it are not lost. Special treat-
ment is needed if a method that is to be decorated with
advice code was inlined somewhere by the optimising com-
piler. In this case, it is not sufficient to simply recompile
the method since its native code may be inlined in various
places all over the loaded classes. Instead, all inline loca-
tions of the method have to be recompiled as well, and all
locations where those methods were inlined and so forth,
resulting in a cascading recompilation.

We have added a set of VM Methods to each method, ev-
ery element of which corresponds to an inline location of
the method owning the set. Whenever recompilation of an
optimised method is due, an algorithm (cf. Fig. 5) retrieves
the set of methods that also need to be recompiled due to
inlining, and all such methods are immediately recompiled.

Starting from the method m0 that is decorated with ad-
vice code the algorithm finds all methods that need to be
recompiled and stores them in the set REC. The function
inline locations returns, for a given method m, all meth-
ods where m is directly inlined. The algorithm follows a
generational approach, where m0 forms generation 0, and
all methods that directly inline a method from generation k
belong to generation k +1. If a method m is inlined both in
methods of generations a and b where a < b, we define m to
have generation b to avoid multiple inline location retrieval
operations. Methods of generation k are stored in the set
M . The inline locations of all methods in M are stored in
M ′. Next, all methods of generation k+1 are added to REC
(these are the methods that are found in M ′ but do not be-
long to generation k). As soon as an empty generation k+1
is retrieved, the algorithm terminates.

2.2.2.1 Class-Wide Aspects.
An aspect’s deploy() and undeploy() methods trigger all

actions needed to activate or deactivate the aspect by iter-
ating over all affected methods and appropriately changing
their bytecodes: if an aspect comprises, e. g., a before()

advice, code for invoking it is prepended to the affected
methods’ bytecodes. The affected classes’ constant pools
are updated automatically if needed. In any case, affected
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Figure 6: Deployment of a class-wide aspect.

methods have to be recompiled for advice to take effect.
This is straightforward for baseline-compiled methods: to

trigger recompilation the lazy compilation stub is reinstalled
by having the corresponding JTOC and TIB entries point
to it. Thus, baseline-compiled methods are invalidated and
marked for recompilation to take place automatically the
next time they are invoked, as with normal baseline com-
pilation. This is illustrated in Fig. 6. At first (Fig. 6, index
1), the method pointer from the TIB points to the compiled
code. Once the aspect is deployed, the method is invalidated
and its code pointer now references the lazy compilation stub
(index 2a). As soon as the method is invoked after that, the
lazy weaving stub is executed (index 3).

If a method has been compiled by the optimising compiler
due to an AOS controller decision, aspect deployment logic
does not reinstall the lazy compilation stub but immedi-
ately recompiles the method at the optimisation level it was
previously compiled at (Fig. 6, index 2b). To deal with a
cascading recompilation due to inlining, the aforementioned
algorithm is used.

2.2.2.2 Instance-Local Aspects.
Usually only one TIB exists per class and is pointed to by

all instances of that class. Furthermore, only one instance of
VM Method exists for every implemented method. When an
aspect is deployed that affects only a particular instance of
a class, modifying this single method is not feasible since it
would affect the whole class. Instead, Steamloom clones the
affected object’s TIB and changes the object’s TIB pointer
to reference the clone. The VM Method object in question is
also cloned and the advice is registered for that clone. If
the method was baseline-compiled, the respective method
pointer in the cloned TIB is set to point to the lazy compi-
lation stub.

In Fig. 7, the instance-local deployment of an aspect is
illustrated. Initially, the TIB pointers of both objects o1

and o2 reference the same TIB since they are instances of
the same class (index 1). If the affected method is baseline-
compiled, the TIB is cloned upon deployment of the aspect
on the object o2 and its respective entry is changed to point
to the lazy compilation stub (indices 2, 2a). Upon the first
invocation of the affected method on o2, the stub is exe-
cuted, compiles the method for this instance and lets the
TIB entry point to the decorated code (index 3).

If the affected method was compiled with optimisations,
clones of the method and of the TIB are created just like
for baseline-compiled methods, and, as in the case of class-
wide aspects, the method is immediately recompiled at the
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Figure 7: Deployment of an instance-local aspect.

appropriate optimisation level (indices 2, 2b).
One problem remains if the decorated method was inlined.

In case of instance-local aspects, this is harmful because vir-
tual method dispatch is performed via the object’s TIB. An
inlined method is not looked up via the TIB: its native code
is directly executed in place. Thus, if a method is affected
by an instance-locally deployed aspect, it must not be in-
lined. In Steamloom, every method stores a flag that is set
to true if an instance-specific version of that method exists.
Upon recompilation, inlining is forbidden for such methods.
This only includes methods affected by an instance-locally
deployed aspect. For class-wide aspects, no restrictions are
imposed on inlining.

Concerning cascading recompilation, the following proce-
dure is followed in case of instance-local deployment. The
decorated method, m0 (which belongs to generation 0 in
the terminology of the algorithm in Fig. 5), is not inlined
because it is specific not only for its class, but also for a
given instance. All methods inlining m0 (i. e., methods from
generation 1 and above) may themselves be subject to in-
lining in other places. For them, inlining is not forbidden
because their implementations do not have to be dispatched
by instance.

2.2.2.3 Thread-Local Aspects.
To support thread safety, a brief snippet of code is inserted

before every call to advice functionality. This code checks
the thread identity and skips the advice invocation if the
respective aspect is not meant to be active in the current
thread. This checking code is inserted only at join points
that belong to a thread-locally deployed aspect.

3. EVALUATION AND FUTURE WORK
In this section, we will report on some performance mea-

surements we have made and will discuss some observations
with the current implementation, as well as some thoughts
about steps to be taken in the future.

3.1 Performance Impacts
We have evaluated Steamloom along the following criteria:

• the cost of the implementation measured in terms of
lines of code needed for extending the RVM to imple-
ment Steamloom,

• the performance penalty caused by the extension im-

Benchmark Relative Performance Overhead
RVM/Sun SL/RVM SL/Sun

compress 129.9% 94.5 % 122.9 %
jess 216.5% 106.7 % 231.1 %
db 96.1 % 102.5 % 98.9 %
javac 233.9% 111.6 % 261.3 %
mpegaudio 225.9% 99.2 % 235.6 %
mtrt 276.8% 106.6 % 295.1 %
jack 240.1% 104.3 % 250.7 %

average 202.7% 103.6% 213.7%

Table 1: Performance measurement results.

plementing Steamloom on top of the RVM,

• performance of Steamloom-supported dynamic cross-
cuts,

• the impact on the size of generated native code.

Extending the RVM with dynamic weaving functional-
ity resulted in adding about 500 new lines of code to the
VM itself. Steamloom API and data structures add another
1400 lines. Lines solely containing comments, curly braces
or whitespaces were not counted.

To measure performance, we have run the SPECjvm98
benchmarks on three VMs. We have compared Steamloom
to an unmodified build of the RVM version 2.2.1, which is
also the version used to implement Steamloom. Moreover,
we have compared both Steamloom and the RVM to Sun’s
HotSpot Server VM version 1.4.2 01. The benchmark prob-
lem sizes were 100 (maximal) in all cases, and all bench-
marks were run 20 times. All performance tests were run on
a 2,6 GHz Pentium IV Linux machine with 1 GB memory.
Both the RVM and Steamloom were compiled to use the
baseline compiler for creating the boot image, the AOS as
run-time compiler infrastructure and the semi-space garbage
collector. Assertion checking was disabled. Due to BAT’s
memory requirements (cf. Sec. 2) we have doubled the heap-
size to 512 MB. The results were obtained by computing
averages and are summarised in Table 1.

The RVM performs about 103% slower than HotSpot.
The overhead incurred by Steamloom is about 4%, as com-
pared to the unmodified RVM. This overhead results from
additional operations Steamloom performs at class-loading
time (BAT data structures have to be created) and from
recording inlining information during optimised compilation.

We will now evaluate the performance of applications run-
ning on Steamloom as compared to the same applications
implemented with AspectJ. We have run the AspectJ im-
plementation on HotSpot also to relate Steamloom’s perfor-
mance to that of a production VM.

For comparison we have used the Fibonacci application
introduced in Sec. 1 (cf. Fig. 1). We have chosen this appli-
cation because it gives the VMs good opportunities to inline,
which in turn urges Steamloom to recompile inlined meth-
ods. Moreover, the application spends much time calling
the short fib() method which allows for measuring the cost
of cflow and programmatic deployment rather than that
of some long-running method. The counting aspect from
Fig. 2 is used in a static and a dynamic form using cflow to
decorate the application.

The results of running different versions (with respect to
decoration with aspects) of the test application are collected



in Table 2. The times displayed in the “Fibonacci applica-
tion” section are average execution times of m1() and m2()

(they were run 10 times in each case). The table shows the
numbers from three comparisons. First, the application was
run with no aspect deployed, and next with the counting
aspect statically deployed; i. e., all calls to fib() lead to a
counter increment and the counter is reset and output at
the beginning and end of each execution of fibstart(). In
the third run, the aspect was deployed in a way that dec-
orates only m2()’s control flow with counting functionality
(cf. Sec. 1, Fig. 3). The table shows that an undecorated ver-
sion of the test application runs at almost exactly the same
speed on both the RVM and Steamloom, which was to be
expected given the numbers in Table 1.

Static aspect deployment is achieved in Steamloom by de-
ploying the aspect before the application does anything else.
The corresponding column from Table 2 shows that the stat-
ically decorated application runs at roughly the same speed
on both the RVM with AspectJ and Steamloom. There
is a small deployment overhead in Steamloom, and the ac-
tual execution times of m1() and m2() are slightly length-
ened due to a different implementation of advice instance
retrieval. However, the bytecode generated by Steamloom
does not differ much from the code output by the AspectJ
compiler: both insert into the original code first a call to
a static method that returns the instance on which advice
functionality is to be invoked, and next a virtual method
call to that functionality. Steamloom’s deployment opera-
tion does, in this case, not comprise any recompilation; it
only modifies the affected methods’ bytecodes. Recompila-
tion does not occur because weaving takes place before any
of the decorated methods have been called and therefore
have not yet been baseline-compiled.

Now, let us compare explicit programmatic deployment
with Steamloom to the performance of dynamic crosscut-
ting with AspectJ’s cflow. For the AspectJ version of the
measurement application, we have used the counting aspect
from Fig. 2 in its original form using cflow. In the Steam-
loom version, we have implemented the Caesar example
from Fig. 3 as follows: an aspect that decorates m2() with a
before() and an after() advice is deployed statically. This
aspect’s before() advice thread-locally deploys the actual
fib() invocation counting aspect, while its after() advice
undeploys it. That way, the counting functionality is active
only in the control flow of m2(), and only in the thread that
has invoked this method.

The numbers in column 4 of Table 2 show significant dif-
ferences between AspectJ on both HotSpot and the RVM
(which is seemingly not very well suited for managing cflow)
and Steamloom. Steamloom again has a small deployment
overhead which results from statically decorating m2(). On
the other hand, AspectJ strongly suffers from a permanent
overhead due to the maintenance of an execution stack.
Steamloom does not need an execution stack to achieve
control flow specific activation of aspects; it works by dy-
namically recompiling methods that are affected by aspect
deployment. Naturally, the AspectJ application performs
much better on HotSpot than on the RVM, but it has to
be noted that Steamloom performs even faster, unlike the
“no aspect” and “static deployment” cases, where it had
an overhead of 2.5 and 2.8 times, respectively. Obviously,
cflow management is expensive.

We have also measured the performance of crosscuts not

supported by dedicated pointcut designators. To do this, we
have added an application-wide aspect that counts method
invocations in the “db” benchmark from the SPECjvm98
suite. The set of methods whose invocations are counted
is, however, not determined statically but at run-time. In
the AspectJ case, we have used an aspect with an advice
that checks, using a HashSet containing method names, at
every method invocation whether the counting functionality
applies to the current method. For the two extremes of
counting all and no method invocations, we have executed
the benchmark 20 times at problem size 100 and computed
the average execution time. The “SPEC db benchmark”
section of Table 2 shows the results. Regardless of being run
on the RVM or HotSpot, the AspectJ implementation suffers
from the high overhead of explicitly looking up methods in
a data structure, while Steamloom’s performance advantage
is due to the fact that only those methods whose invocations
are to be counted are actually decorated with advice code.

The cost of cloning TIBs and VM Methods in the case of
instance-local aspect deployment was not measured. It can,
however, be expected to be very low as both TIBs and
method representations are very small when, e. g., compared
to a class constant pool. In the standard case, a TIB exists
exactly once per class, just like a VM Method instance exists
once per method. Cloning such objects does not create a
considerable memory overhead.

To weave advice into the base code Steamloom modifies
the bytecodes of only those methods that include join points
selected by the corresponding pointcut. This happens just
before the bytecode is passed to the JIT compiler. If no
advice are active for a method the unmodified bytecode is
passed to the compiler. As the compiler is not modified in
Steamloom the size of generated native code for an applica-
tion run on the RVM and on Steamloom is the same.

We have not compared the bytecode modifications to As-
pectJ’s output in detail. From a short evaluation, however,
we expect that the bytecode produced by Steamloom’s weav-
ing mechanism is very similar to that produced by AspectJ.

3.2 Discussion and Future Work
Steamloom currently can decorate method executions with

before() and after() advice that can be registered for a
whole class or for single instances, local to certain threads
or spanning all threads of the application. Steamloom’s per-
formance impact on running applications is low, whether as-
pects are deployed or not. The performance measurements
we have presented underpin our claim that a tight integra-
tion of support for dynamic join points with the underly-
ing virtual machine allows for efficiently supporting dynamic
join points.

Performance measurements have also shown that an even
tighter integration of such support is strongly desirable. We
have increased the heap size because of the additional mem-
ory required by the bytecode toolkit BAT that Steamloom
uses to modify method bytecodes. Because BAT is not as
tightly integrated with the RVM as would be desirable, a
copy of each class’s constant pool must be built when the
class is loaded to create a BAT constant pool representa-
tion from it (BAT works on its own representation of class
files). If the bytecode manipulation framework was instead
tightly integrated with the VM, the partly-redundant stor-
age of class representations would become unnecessary. We
are convinced that integrating dynamic join point logic more



Fibonacci application SPEC db benchmark
no aspect static cflow/dynamic count all count none

AspectJ m1: 1,271ms m1: 1,293ms m1: 7,086ms 16.42 s 16.112 s
(on Sun VM) m2: 1,259ms m2: 1,283ms m2: 15,091ms
AspectJ m1: 3,128ms m1: 3,362 ms m1: 51,822ms 19.935 s 19.456 s
(on RVM) m2: 3,129ms m2: 3,275ms m2: 51,824ms
Steamloom m1: 3,153ms (deploy: 165 ms) (stat. deploy: 134ms) 12.629 s 12.733 s

m2: 3,116ms m1: 3,636ms m1: 3,145ms
m2: 3,579 ms m2: 3,693ms

(dyn. deploy: 74ms)
(dyn. undeploy: 22ms)

Table 2: Results of the comparison of weaving with Steamloom and AspectJ.

closely with the actual VM execution logic—e. g., just-in-
time compilers—will eliminate the need for bytecode ma-
nipulation. This will be the main focus of our future work.

Steamloom currently does not support around() advice.
We will certainly strive to support the full power and flex-
ibility this kind of advice offers. However, the important
proceed() statement known from AspectJ, being no part of
the Java language, has no representation in bytecode. To
add native support for around() advice, we are thinking
about entirely replacing methods with dynamically linked
versions of them that contain the around() advice code.

To implement Steamloom, we have mostly exploited two
concepts: selective recompilation of methods and modifica-
tion of virtual method tables in the form of TIBs. To actu-
ally introduce support for dynamic join points in production-
grade VMs, we will approach an implementation of Steam-
loom’s features in the HotSpot VM which also allows for
dynamic recompilation of methods [5]. We expect the per-
formance of dynamic join point support to be very high.

4. RELATED WORK
In this section, we will discuss other approaches to dy-

namic crosscutting, especially those that enable unbound
dynamic crosscuts. The discussed approaches are classified
into three categories. Systems that modify application code
at compile-time or load-time fall into the first category. The
second category is made up of systems that monitor and in-
tercept execution at run-time, but do not modify any code,
while systems that actually interweave application and as-
pect code at run-time form the third category. We will
present examples for each category2 and briefly discuss each
approach. Finally, a short discussion of the recently intro-
duced notion of continuous weaving in relation to program-
matic deployment is given.

4.1 Pre-Run-Time Instrumentation
There is a class of dynamic AOP implementations for Java

like EAOP [7, 6], JAC [22, 15], JBoss AOP [16] and PROSE
2 [24] that modify the application’s classes either before com-
pilation using a preprocessor (EAOP), as they are loaded
into the VM (JAC, JBoss AOP) or as their bytecode is
about to be compiled by the just-in-time compiler (PROSE)
so that the classes meet the requirements of the underlying
AOP infrastructure. All four examples insert hooks and/or
wrappers at join points, thus making the AOP infrastructure
aware of them.

2We do not claim the list to be complete.

EAOP’s model is different from that of JAC and JBoss
AOP: it is based on regarding a running application as a se-
quence of events that are fired whenever execution reaches a
join point [7, 6, 9]. EAOP features event composition, allow-
ing for the definition of “composite” pointcuts that consist
of join points occurring at different points in execution time.

PROSE 2 [24] uses a modified version of the RVM’s base-
line compiler to insert code that checks for the presence
of advice at every possible join point. There is actually
not much of a conceptual difference between this approach
and EAOP’s eager event generation: hooks are inserted and
called at every point that may be a join point regardless of
whether there is advice code associated with it or not. Ea-
gerly inserting hook calls into native code introduces a con-
siderable performance overhead and is a conceptually un-
satisfying approach because it does not avoid unnecessary
checking operations. While having a low overhead as long
as no aspects are woven, PROSE 2 suffers from large perfor-
mance penalties when aspects are activated: e. g., decorated
virtual method calls are slowed down up to 8.8 times [24].
Also, it produces application code twice the size of code pro-
duced by an unmodified build of the RVM in any case [24],
which is due to the eager decoration of every possible join
point with calls to the weaving logic.

Instrumenting classes before their code is actually run and
leaving them in that state afterwards, as JAC and JBoss
AOP do, also leads to some disadvantages. There are basi-
cally two possible ways to perform this instrumentation: ei-
ther all possible join points are decorated with hook method
calls, or only a specified set of join points is. In the first
case, comparatively large performance overheads are the re-
sult. In the second case, it is impossible to extend or reduce
the set of “aware” join points at run-time—although single
given join points may be riddened of their decoration, no
new join points can be activated.

4.2 Run-Time Event Monitoring
Another class of dynamic AOP systems, represented by

PROSE 1 [23], is conceptually a close relative to the EAOP
system mentioned above. PROSE 1 also regards a running
application as a sequence of events. The main difference lies
in that PROSE 1 does not instrument any code but instead
intercepts execution and branches to advice code whenever
an “activated” join point is encountered. The system utilises
the JVM’s debugging facilities [18, 19] to generate events at
certain points during application execution and intercept
execution there.

This implementation—and probably any other implemen-



tation treating events as first-class entities of the run-time
environment—suffers from overheads owed to event gener-
ation and processing logic. The running application has to
be permanently monitored by the run-time environment.

4.3 Run-Time Weaving
The class of dynamic weaving systems that perform actual

weaving operations entirely at run-time is here represented
by Wool [26], a .NET-based approach by Schult and Polze
[27] and AspectS [13].

Wool [26] uses a hybrid approach. It monitors an applica-
tion’s execution using the JPDA like PROSE 1, but as soon
as an activated join point has been reached a sufficient num-
ber of times, calls to advice code are directly woven into the
affected application code for performance reasons. This is
done using the HotSpot VM’s HotSwap technique [5] which
allows for changing methods’ bytecodes while an applica-
tion is running in a debugger. Basically, Wool has a lot in
common with PROSE 1, yet it enhances the performance
of advice code invocation: for example, it slows down the
execution of virtual method invocations only four times [26]
in the presence of activated aspects.

Schult and Polze’s system [27] allows for defining aspects
to be interwoven with an object’s code at instantiation time.
This is done by dynamically creating a subclass of the class
the object originally belongs to, and letting the newly cre-
ated object be an instance thereof. The subclass represents
the original class with interwoven aspect functionality. Con-
ceptually, this approach is close to our implementation us-
ing TIB clones. Although instance decoration is supported,
there is one major drawback: decoration happens at instan-
tiation time and is not revertible. It is not possible to un-
deploy an aspect while the object is “alive” or to deploy an
aspect on an already “living” object.

AspectS [13, 3] is an extension of Squeak [14, 28] with
dynamic weaving capabilities. Due to the ease of accessing
the language’s meta level in Smalltalk, it is comparatively
simple to implement dynamic aspect-orientation support for
such a system. In AspectS, aspects are deployed and un-
deployed by sending install and uninstall messages to
instances of aspect classes. The technique that is used is
again that of wrapping decorated methods in dynamically
added methods that check for the presence of applicable ad-
vice code and execute the latter where necessary. AspectS
even supports instance decoration by using so-called advice
qualifiers that determine if a piece of advice code must be
applied to a given instance. This construct is just a wrapper
for an explicit object identity check. Although AspectS ob-
viously supports dynamics to a degree that goes beyond the
capabilities of the other presented systems, its features are
still implemented at language-level and are not an inherent
feature of the underlying VM.

4.4 Continuous Weaving
Approaches discussed so far exploit a complete weaving

model. Complete weaving, as it is e. g., implemented in
AspectJ, creates shadows for all potentially matching join
points at once before run-time. In [11], the notion of con-
tinuous weaving is introduced. With continuous weaving,
dependencies between join points are taken into considera-
tion to postpone creating shadows for some join points only
after other join points the former depend on are reached. For
example, shadows for the otherPCD part of cflow(aPCD) &&

aspect granularity thread dynamic
class instance locality crosscuts

AspectS X (X) yes
EAOP X quasi
JAC X quasi
JBoss AOP X quasi
PROSE 1 X yes
PROSE 2 X quasi
Schult/Polze (X) (X) see text
Wool X yes

Table 3: Overview of dynamic weaving systems.

otherPCD are created on the fly only after aPCD has matched.
A comparison of two versions of AspectS [13, 3], one ex-

ploiting the complete weaving model and the other exploit-
ing continuous weaving, indicates the performance advan-
tage of the latter [11]. However, in that implementation,
the continuous weaving logic is part of the application code,
which is why the performance gain is lost when compared
to AspectJ complete weaving. Here, we describe support
for continuous weaving as enabled by programmatic deploy-
ment of Caesar at the VM level and evaluates it by a direct
comparison to AspectJ—the most efficient approach today.

4.5 Concluding Remarks
Table 3 shows how the presented systems support dynamic

crosscuts. An X stands for “supported”, an “(X)” denotes a
reduced form of support for the respective feature. “Quasi”
in the column “dynamic crosscuts” refers to emulation of
dynamic crosscuts by intercepting the running program at
every possible join point.

None of the systems fully support both class and instance
decoration, although the latter can be simulated by explic-
itly checking object identity at join points; AspectS even
provides a wrapper for this approach. However, this is
unsatisfying as instance decoration should be possible by
means of the system itself, not as a workaround. The only
system that directly supports instance decoration, Schult
and Polze’s, has a major problem: aspect decoration is spec-
ified at object creation time and can not be reversed.

None of the systems directly support thread-local activa-
tion of aspects. In all of them, it is possible to emulate
this feature by explicitly checking for thread identity in ad-
vice code. That is, however, unsatisfying as it is neither
integrated with the execution model nor supported by the
run-time environment but must be done by the advice pro-
grammer. Steamloom shifts support for thread-local deploy-
ment into its API, just like AspectS does for instance-local
decoration. That way, the overhead of dealing with thread
locality is not imposed on the advice programmer but can
easily be dealt with at deployment time.

Systems that support unbound dynamic crosscuts by in-
serting checks at every possible join point (EAOP, PROSE
2, JAC, JBoss AOP) have the inherent disadvantage that a
big performance penalty has to be paid, mostly even if no as-
pect is in use at all. On the other hand, the systems that do
so while preserving modular structure beyond compilation
either use the JPDA API (PROSE 1, Wool) or the Smalltalk
meta-object protocol (AspectS), both of which cannot de-
liver industry-strength performance.



5. SUMMARY
We have presented Steamloom, an implementation of dy-

namic join point support as an extension to IBM’s Jikes
Research Virtual Machine. Steamloom supports the RVM’s
adaptive optimisation system, allowing for efficient execu-
tion of programs decorated with aspects, which is shown
by our performance measurements. Comparing Steamloom
to other implementations of dynamic crosscuts has shown
that a tight integration of dynamic AOP support with the
underlying VM itself boosts performance: Steamloom’s exe-
cution speed reveals no major performance overheads when
compared to equivalent static aspect-oriented software, it
executes considerably faster in case of dynamic join points,
especially those that are statically unbound.

Future work will focus on extending the set of supported
primitive join point types, which is fairly restricted by now.
Furthermore, we will work on an even tighter integration
of dynamic weaving with the VM. Another interesting path
will be to approach an implementation of Steamloom’s fea-
tures in the HotSpot VM which also allows for dynamic
recompilation of methods [5]. We expect the performance
of dynamic join point support to be very high.
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