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Abstract. Traditional programming languages assume that real-world
systems have “intuitive”, mind-independent, preexisting concept hier-
archies. However, our perception of the world depends heavily on the
context from which it is viewed: Every software system can be viewed
from multiple different perspectives, and each of these perspectives may
imply a different decomposition of the concerns. The hierarchy which
we choose to decompose our software system into modules is to a large
degree arbitrary, although it has a big influence on the software engi-
neering properties of the software. We identify this arbitrariness of the
decomposition hierarchy as the main cause of ‘code tangling’ and present
a new model called Caesar1, within which it is possible to have multiple
different decompositions simultaneously and to add new decompositions
on-demand.

1 Introduction

The criteria which we choose to decompose software systems into modules has
significant impact on the software engineering properties of the software. In
[14] Parnas observed that a data-centric decomposition eases changes in the
representation of data structures and algorithms operating on them. Following
on Parnas work, Garlan et al. [2] argue that function-centric decomposition on
the other side better supports adding new features to the system, a change which
they show to be difficult with the data-centric decomposition.

Software decomposition techniques so far, including object-oriented decom-
position, are weak at supporting multi-view decomposition, i.e., the ability to si-
multaneously breakdown the system into inter-related units, whereby each break-
down is guided by independent criteria. What current decomposition technology
does well is to allow us to view the system at different abstraction levels, result-
ing in several hierarchical models of it, with each model be a refined version of
its predecessor in the abstraction levels.

By multi-view decomposition, we mean support for simultaneous crosscut-
ting rather than hierarchical models. The key point is that our perception of
the world depends heavily on the perspective from which we look at it: Each
perspective may imply a different decomposition of the concerns. In general,
these view-specific decompositions are equally reasonable, none of them being a

1 Project homepage at www.st.informatik.tu-darmstadt.de/pages/projects/caesar



Fig. 1. Abstract concern space Fig. 2. Divide by size

Fig. 3. Divide by shape Fig. 4. Divide by color

sub-ordinate of the others, and the overall definition of the system results from
a superimposition of them.

One of the key observations of the aspect-oriented software development is
that a programming technique that does not support simultaneous decomposi-
tion of systems along different criteria suffers from what we call arbitrariness of
the decomposition hierarchy problem, which manifests itself as tangling and scat-
tering of code in the resulting software, with known impacts on maintainability
and extendibility. In Fig. 1 to 5 we schematically give an idea of the problem at
a non-technical level. Assuming the domain symbolically represented in Fig. 1
is to modeled, we can decompose according to three criteria, size, shape, and
color, represented in Fig. 2, Fig. 3, and Fig. 4 respectively, whereby each of
these decompositions is equally reasonable.

With a ‘single-minded’ decomposition technique that supports only hier-
archical models, we have to choose one fixed classification sequence, as e.g.,
color → shape → size illustrated in Fig. 5. However, the problem is that with a
fixed classification sequence, only the first element of the list is localized whereas
all other concerns are tangled in the resulting hierarchical structure. Fig. 5 illus-
trates this by the example of the concern ‘circle’, whose definition is scattered
around several places in the hierarchical model. Only the color concern is cleanly
separated into white, grey and black, but even this decomposition is not satis-



factory because the color concern is still tangled with other concerns: ”white” is
e.g., defined in terms of white circles, white rectangles and white triangles.

Fig. 5. Arbitrariness of the decomposition hierarchy

The problem is that models resulting from simultaneous decomposition of
the system according to different criteria are in general ”crosscutting” with re-
spect to the execution of the system resulting from their composition. With the
conceptual framework introduced so far, crosscutting can be defined as a relation
between two models with respect to the abstract concern space. This relation if
defined via projections of models (hierarchies). A projection of a model M is a
partition of the concern space into subsets o1, . . . , on such that each subset oi

corresponds to a leaf in the model. For illustration Fig. 6 shows a projection of
the color model from Fig. 4 onto the abstract concern space of Fig. 1.

Now, two models, M and M ′, are said to be crosscutting, if there exist at
least two sets o and o′ from their respective projections, such that, o ∩ o′, and
neither o ⊆ o′, nor o′ ⊆ o1. Fig. 7 illustrates how the black concern of the color
model (Fig. 4) crosscuts the big concern of the size model (Fig. 2). These two
concerns have in common the big, black shapes, but neither is a subset of the
other: the black module contains also small black shapes, while the size model
contains also non-black big shapes.

On the contrary, a model M is a hierarchical refinement of a model M ′

if their projections o1, . . . , on and o′
1, . . . , o

′
m are in a subset relation to each

other as follows: there is a mapping p : {1, . . . , n} → {1, . . . ,m} such that ∀i ∈



Fig. 6. Projection of the ‘color’ decomposition

Fig. 7. Crosscutting Hierarchies

{1, . . . , n} : oi ⊆ o′
p(i). Crosscutting models are themselves not the problem, since

they are inherent in the domains we model. The problem is that our languages
and decomposition techniques do not (properly) support crosscutting modularity
(see the discussion on decomposition arbitrariness above).

Motivated by these observations, we are working on a language model, called
Caesar, with explicit module support for crosscutting models. This paper puts
special emphasis on the conceptual rationale and motivation behind Caesar.
It leaves out many technical details and features that are not of interest for the
first-time reader. For more technical details we refer to two recent conference
papers [11, 12]. For instance, in [11] we describe how CIs, CI bindings, and CI
implementations can be specified incrementally by an appropriate generalization
of inheritance. In [12] we enrich Caesar with means for describing join points
(points in the execution of a base program to intercept) and advices (how to



react at these points) and describe a new idea called aspectual polymorphism,
with which components/aspects can be deployed polymorphically.

The remainder of this paper is structured as follows: In Sec. 2 we will discuss
a concrete example that illustrates shortcomings of current language technology
with respect to crosscutting hierarchies. In Sec. 3 we will shortly present our
solution to cope with the identified problems. Sec. 4 is a wrap-up of what we have
gained with the new technology. Sec. 5 discusses related work. Sec. 6 summarizes
the paper.

2 Problem Statement

In this section, we identify shortcomings of current language technology with
respect to supporting crosscutting models. We will use the Java programming
language to illustrate shortcomings of current language technology, but the re-
sults are applicable to other module-based and object-oriented languages as well.

We introduce a simple example, involving two view-specific models of the
same system: the GUI perspective versus the data types perspective. Fig. 8
shows a simplified version of the TreeModel interface in Swing2, Java’s GUI
framework [4]. This interface provides a generic description of data abstractions
that can be viewed and, hence, displayed as trees. Fig. 8 also presents a interface
for tree GUI controls in TreeGUIControl, as well as an implementation of this
interface in SimpleTreeDisplay (the latter roughly corresponds to JTree).

In our terminology the code in Fig. 8 defines a GUI-specific model of any sys-
tem that supports the display of arbitrary data structures that are organized as
trees. When this model is used in a concrete context, e.g., in the context of a sys-
tem that manipulates arithmetic expression object structures, as schematically
represented in Fig. 9, it provides to this context the display() functionality.
In turn, it expects a concrete implementation of getChildren(...) and get-
StringValue(...).

Please note how the GUI-specific model crosscuts a model resulting from a
data-centric decomposition of the system that manipulates expressions, and/or
other aggregate, tree-structured data types. This is exemplified in Fig. 9, which
shows sample code for a data-centric decomposition of arithmetic expressions.
In a running system, resulting from a composition of the GUI-specific and data-
specific models, the tree module from the GUI-specific model and the expression
module from the data type model intersect, since there will be display-enabled
expression objects. However, none of them is a subset of the other: There might
be non-displayable expression objects, as well as displayable tree-structured data
type objects that are not expressions.

2.1 Lack of Appropriate Module Constructs

The need for crosscutting modularity calls for module constructs that capture
individual crosscutting models of the system by encapsulating the definition
2 Swing separates our interface into two interfaces, TreeModel and TreeCellRenderer.

However, this is irrelevant for the reasoning in this model.



interface TreeModel {

Object getRoot();

Object[] getChildren(Object node);

String getStringValue(Object node, boolean selected,

boolean expanded, boolean leaf, int row, boolean focus);

}

}

interface TreeGUIControl {

display();

}

class SimpleTreeDisplay implements TreeGUIControl {

TreeModel tm;

display() {

Object root = tm.getRoot();

... tm.getChildren(root) ...

...

// prepare parameters for getStringValue

... tm.getStringtValue(...);

...

}

}

Fig. 8. Simplified version of the Java Swing TreeModel interface

of multiple inter-dependent abstractions. In addition, mechanisms are needed
to allow such modules to be self-contained (closed), while at the same time be
opened to be composed with other crosscutting modules, while remaining decou-
pled from them. We argue that common module constructs in object-oriented
languages and especially the common concept of interfaces as we know it, e.g.,
from Java, lack these two features.

Lack of support for declaring a set of mutually recursive types.

Defining generic models involves in general several related abstractions. We claim
that current technology falls short in providing appropriate means to express the
different abstractions and their respective features and requirements that are
involved in a particular collaboration. Let us analyze the model in Fig. 8 from
this point of view. The first “bad smell” is the frequent occurrence of the type
Object. We know that a tree abstraction is defined in terms of smaller tree node
abstractions. However, this collaboration of the tree and tree node abstractions
is not made explicit in the interface. Since the interface does not state anything
about the definition of tree nodes, it has to use the type Object for nodes.



class Expression {

Expression[] subExpressions;

String description() { ... }

Expression[] getSubExpressions() { ... }

}

class Plus extends Expression { ... }

Fig. 9. Expression Trees

The disadvantages of using the most general type, Object, are twofold.
First, it is conceptually questionable. If every abstraction that is involved in
the GUI model definition is only known as Object, no messages, beside those
defined in Object, can be directly called on those abstractions. Instead, a re-
spective top-level interface method has to be defined, whose first parameter is
the receiver in question. For example, the methods getChildren(...) and get-
StringValue(...) conceptually belong to the interface of a tree node, rather
than of a tree. Since the tree definition above does not include the declaration of
a tree node, they are defined as top-level methods of the tree abstraction whose
first argument is node: Object.

Second, we loose type safety, as illustrated in Fig. 10, where we ‘compose’
the expression and GUI views of the system by adapting expressions to fit in the
conceptual world of a TreeModel. Since we use Object all the time, we cannot
rely on the type checker to prove our code statically safe because type-casts are
ubiquitous.

class ExpressionDisplay implements TreeModel {

ExpressionDisplay(Expression r) { root = r; }

Expression root;

Object getRoot() { return root; }

Object[] getChildren(Object node) {

return ((Expression) node).getSubExpressions();

}

String getStringValue(Object node, boolean selected,

boolean expanded, boolean leaf, int row, boolean focus){

String s = ((Expression) node).description();

if (focus) s ="<"+s+">";

return s;

}

}

Fig. 10. Using TreeModel to display expressions



The question naturally raises here: Why didn’t the Swing designers define
an explicit interface for tree nodes as in Fig. 11? The problem is that than it
becomes more difficult to decouple the two contracts, i.e., the data structures to
be displayed from the display algorithm. The idea is that the wrapper classes
around e.g., Expression would look like in Fig. 12. The problem with such kind
of wrappers, as also indicated in [3], is that we create new wrappers every time
we need a wrapper for an expression. This leads to the identity hell : we loose
the state and identity of previously created wrappers for the same node. The
questionable alternative would be to use hash tables which is not only laborious
but does also involve the definition and use of additional classes for maintaining
these hashtables, thereby rendering the code more complex and less readable3.

interface TreeDisplay {

TreeNode getRoot();

}

interface TreeNode {

TreeNode[] getChildren();

String getStringValue(boolean selected,

boolean expanded, boolean leaf, int row, boolean focus);

}

Fig. 11. TreeDisplay interface with explicitly reified TreeNode interface

class ExprAsTreeNode

implements TreeNode {

Expression expr;

void getStringValue(...) { /*as before*/ }

TreeNode[] getChildren() {

Expressions[] subExpr = expr.getSubExpressions();

TreeNode[] children =

new TreeNode[subExpr.length];

for (i = 0; i<subExpr.length; i++) {

children[i] = new ExprAsTreeNode(subExpr[i]));

}

return children;

}

}

Fig. 12. Mapping TreeNode to Expression

3 Actually, Swing offers a TreeNode interface similar to the one in Fig. 11. However,
classes that define data structures to be displayed as tree nodes should anticipate
this and explicitly implement the interface.



A final important point to make before leaving this branch of the discus-
sion is that it is difficult and awkward to associate state with abstractions like
our tree nodes. We might want to associate state with tree nodes in both the
ExpressionDisplay class in Fig. 10 and also inside the tree GUI control. For ex-
ample, we might want to cache the computed string value or children in Fig. 10,
because the re-computation might be expensive. In the GUI control itself, we
might want to associate state like whether a tree node is selected or not or its
position on the screen with the respective tree node. The only means to associate
state with tree nodes is to make extensive use of hash tables, which is laborious
and awkward.

Lack of support for bidirectional communication.

Interfaces provide clients with a contract as what to expect from a server object
that implements the interface. We say, they express the provided contract. In
order to define generic partial, view-specific models which are decoupled from
their potential contexts of use, expressing expectations that a server might have
on potential contexts of use is as important. We use the term expected contract
to denote these expectations. What is needed is support for a loose coupling
of client and server, that is (a) decoupling them to facilitate reuse, while (b)
enabling them to tightly communicate with each other as part of a whole.

In our example, TreeGUIControl corresponds roughly to what we called
the provided contract, while TreeModel corresponds roughly to what we called
the expected contract. The class SimpleTreeDisplay represents a sample im-
plementation of the provided contract. It expects from the context a concrete
implementation of getChildren(...) and getStringValue(...). In our ter-
minology, ExpressionDisplay in Fig. 10 represents an implementation of the
expected contract.

The design in Fig. 8 does actually a good job in decoupling the expected and
provided contracts. Different implementation of GUI controls can be written to
the TreeModel interface and can therefore be reused with a variety of concrete
implementations of it, i.e., with a variety of data structures. The other way
around, any data structure to be displayed is decoupled from a specific tree GUI
control (e.g., JTree), such that the data structure can be displayed with different
GUI tree controls.

Now, consider the getStringValue(...) method in Fig. 8 and Fig. 10. This
method has noticeable many parameters that might be of interest when comput-
ing a string representation of the node. Might be. The sample implementation in
Fig. 10 uses only the selected parameter and ignores the others. That means,
the tree GUI control, which calls this method on the TreeModel interface, has to
perform expensive computations to obtain the parameter values for this method
(see implementation of SimpleTreeDisplay::display(...) in Fig. 8), although
they might be rarely all used.

This is a typical case where we would like to establish a bidirectional com-
munication between the two contracts of the tree displaying component. Here



we would like ExpressionDisplay.getStringValue to explicitly ask the tree
GUI control to compute only relevant values for it, like selected or hasFocus,
implying the GUI control interface provides respective operations. Recall that
the GUI control interface corresponds to the provided interface of our generic
component for displaying arbitrary data structures that can be viewed as trees
in a GUI. As for now, the interfaces are completely separated (into TreeModel
and TreeGUIControl), and there is nothing in the design that would suggest
their tight relation as two faces of the same abstraction. As such, there is no
build-in support for bidirectional communication between their respective im-
plementations. Build-in means by the virtue of implementing two faces of the
same abstraction, which serves as the implicit communication channel.

One can certainly achieve the desired communication by additional infras-
tructure (e.g., via cross-references) which has to be communicated to the re-
spective programmers. However, we think that bidirectional communication is
such a natural and frequent concept that the overhead that is necessary to en-
able bidirectional communication with conventional interfaces is too high. Please
note that the additional TreeNode interface would also be of no help concerning
the bidirectional communication problem exemplified by the getStringValue()
method.

3 Caesar in a Nutshell

In this section, we will give an overview of the concepts that comprise our model
by means of the TreeDisplay example from the previous section.

3.1 Collaboration Interfaces, their Implementations and Bindings

In order to cope with the problems discussed in Sec. 2 we propose the notion of
collaboration interfaces (CI for short), which differ from standard interfaces in
two ways. First, CIs introduce the provided and required modifiers to annotate
operations belonging to the provided and the expected contracts, respectively,
hence supporting bidirectional interaction between clients and servers. Second,
CIs exploit interface nesting in order to express the interplay between multiple
abstractions participating in the definition of a generic component.

For illustration, the CI TreeDisplay that bundles the definition of the generic
tree displaying functionality from Sec. 2 is shown in Fig. 13. As an example
for the “reification” of provided and expected contract, consider the methods
TreeDisplay.display() and TreeDisplay.getRoot() in Fig. 13. Any tree dis-
play object is able to display itself on the request of a client - hence the provided
modifier for TreeDisplay.display. However, in order to do so, it expects a
client specific way of how to access the root tree node. What the root of a dis-
playable tree will be depends on (a) which modules in a concrete deployment
context of TreeDisplay will be seen as tree nodes and, (b) which one of them
will play the role of the root node. Hence, the declaration of getRoot with the
expected modifier. TreeDisplay comes with its own definition of a tree node:



The CI TreeNode is nested into the declaration of TreeDisplay. Please note that
nesting of bidirectional interfaces in our approach has a much deeper semantics
than usual nested classes and interfaces in Java: the nested interfaces are namely
virtual types as in [1]. We will elaborate on that in Sec. 3.4.

interface TreeDisplay {

provided void display();

expected TreeNode getRoot();

interface TreeNode {

expected TreeNode[] getChildren();

expected String getStringValue();

provided display();

provided boolean isSelected(),

provided boolean isExpanded();

provided boolean isLeaf();

provided int row();

provided boolean hasFocus();

}

}

Fig. 13. Collaboration interface for TreeDisplay

The categorization of the operations into expected and provided comes with a
new model of what it means to implement an interface. We explicitly distinguish
between implementing an interface’s provided contract and binding the same
interface’s expected contract. Two different keywords are used for this purpose:
implements, respectively binds. In the following, we refer to classes that are
declared with the implements keyword as implementation classes. Similarly, we
refer to classes that are declared with the binds keyword as binding classes

An implementation class of a CI must (a) implement all provided methods
of the CI and (b) provide an implementation class for each of the CI’s nested
interfaces. In doing so, it is free to use respective expected methods. In addition,
an implementation class may or may not add additional methods and state to
the CI’s abstractions it implements. Fig. 14 shows a sample tree GUI control
that implements TreeDisplay. The class SimpleTreeDisplay implements the
only provided operation of TreeDisplay, display(), by forwarding to the result
of calling the expected operation getRoot(). In addition to implementing dis-
play(), SimpleTreeDisplay must also provide a nested class that implements
TreeNode - the only nested interface of TreeDisplay. The correspondence be-
tween a nested implementation class and its corresponding nested interface is
based on name identity – SimpleTreeDisplay e.g., defines a class named Tree-
Node which is the implementation of the nested interface with the same name in
TreeDisplay. This nested class has to implement all provided methods of the
TreeNode interface, e.g., display(). The declaration of the instance variable



boolean selected and the corresponding query operation isSelected in Sim-
pleDisplay.TreeNode are examples of new declarations added by an implemen-
tation class. Please note that just as nested interfaces, all nested implementation
classes are virtual types (see Sec. 3.4).

class SimpleTreeDisplay implements TreeDisplay {

void onSelectionChange(TreeNode n, boolean selected) {

n.setSelected(true);

}

void display() { getRoot().display(); }

class TreeNode {

boolean selected;

...

boolean isSelected() { return selected; }

// other provided methods similar to selected

void setSelected(boolean s) { selected =s;}

void display() {

... TreeNode c = getChildren()[i];

... paint(position, c.getStringValue());

...

}

}

}

Fig. 14. A sample implementation of TreeDisplay

A binding class of a CI must (a) implement all expected methods of the CI,
and (b) provide zero or more binding classes for each of the CI’s nested interfaces
(we may have multiple bindings of the same interface, see subsequent discussion).
Just as implementation classes can use their respective expected facets, the im-
plementation of the expected methods of a CI and its nested interfaces can also
call methods declared in the respective provided facets. The process of binding
a CI instantiates its nested types for a concrete usage scenario of the generic
functionality defined by the CI. Hence, it is natural that in addition to their
provided facets, binding classes also use the interface of abstractions from that
concrete usage scenario. We say that bindings wrap abstractions from the world
of the concrete usage scenario and map them to abstractions from the generic
component world.

For illustration, the class ExpressionDisplay in Fig. 15 shows an exam-
ple of binding the generic TreeDisplay CI from Fig. 13 for the concrete usage
scenario, in which Expression structures are to be viewed as the trees to dis-
play. First, ExpressionDisplay binds the nested type TreeNode as shown in
the nested class ExprTreeNode. The latter implements all expected methods of
TreeNode by using (a) the provided facet of TreeNode, and (b) the interface



of the class Expression (via the instance variable e). Consider e.g., the imple-
mentation of the method ExprTreeNode.getStringValue(), which calls both
TreeNode.hasFocus() as well as Expression.getDescription().

In addition to binding TreeNode, ExpressionDisplay also implements the
method getRoot() - the only method declared in the expected facet of TreeD-
isplay. Here is where the reference root to the Expression object to be seen as
the root of the expression structure to display is transformed into a TreeNode by
being wrapped into an ExprTreeNode object. Please note that this wrapping does
not happen via an ordinary constructor call - new ExprTreeNode(root) in this
case -, but rather by means of the wrapper recycling call ExprTreeNode(root).
We will elaborate on the concept of wrapper recycling in a moment.

class ExpressionDisplay binds TreeDisplay {

Expression root;

public ExpressionDisplay(Expression rootExpr) {

root = rootExpr;

}

TreeNode getRoot() { return ExprTreeNode(root); }

class ExprTreeNode binds TreeNode {

Expression e;

ExprTreeNode(Expression e) { this.e=e;}

TreeNode[] getChildren() {

return ExprTreeNode[](e.getSubExpressions());

}

String getStringValue() {

String s = e.description();

if (hasFocus()) s ="<"+s+">";

return s;

}

}

}

Fig. 15. Binding of TreeDisplay for expressions

Except of binding the interface TreeNode, ExprTreeNode is basically a usual
class that, in this case, wraps an instance of Expression. Since wrapping of
objects in these classes is a very common task, we add some syntactic sugar for
the most common case, namely by a wraps clause.

The semantics of wraps is that

class ExprTreeNode binds TreeNode wraps Expression {...}

is equivalent to

class ExprTreeNode binds TreeNode {
Expression wrappee;



ExprTreeNode(Expression e) { wrappee = e;}
... }

Using wraps, the code in Fig. 15 can be rewritten as in Fig. 16. In the following
code we will make frequent use of wraps but it is important to understand that
it is just syntactic sugar and does not prevent us to create arbitrarily complex
initialization procedures by using ordinary constructors.

class ExpressionDisplay binds TreeDisplay {

...

class ExprTreeNode binds TreeNode wraps Expression{

TreeNode[] getChildren() {

return ExprTreeNode[](wrappee.getSubExpressions());

}

String getStringValue() {

String s = wrappee.description();

if (hasFocus()) s ="<"+s+">";

return s;

}

}

Fig. 16. Alternative encoding of ExprTreeNode using the wraps clause

Binding classes and their nested classes are “almost standard” classes – we
do not use more declarative mapping constructs because the full computational
power of a general-purpose programming language is needed to express arbitrar-
ily complex mappings, and this is very hard to achieve with declarative means.
“Almost standard”, however, stands for two differences. First, nested binding
classes are also virtual types (see Sec. 3.4). Second, they make use of the notion
of wrapper recycling, which we discuss next.

3.2 Wrapper Recycling

Wrapper recycling is our mechanism to escape the wrapper identity hell men-
tioned in Sec. 2. It is a concept on how to create and maintain wrapper instances,
and a way to navigate between abstractions of the component world and abstrac-
tions of the base world - the concrete usage scenario world -, ensuring that the
same (identical) wrapper instance will always be retrieved for a set of constructor
arguments. This way the state and the identity of the wrappers is preserved.

Syntactically, wrapper recycling refers to the fact that, instead of creating
an instance of a wrapper W with a standard new W(args) constructor call, a
wrapper is retrieved with the construct outerClassInstance.W(args). For il-
lustration consider once again the expression return ExprTreeNode(root) in
the method ExpressionDisplay.getRoot() in Fig. 15. We already mentioned



in the previous section that the expression in the return statement is not a stan-
dard constructor call, but rather a wrapper recycling operator. We use the usual
Java scoping rules, i.e., return ExprTreeNode(root) is just an abbreviation for
return this.ExprTreeNode(root).

The idea is that we want to avoid creating a new ExprTreeNode wrapper
each time the method getRoot() is called on an ExpressionDisplay. The call
to the wrapper recycling operation ExprTreeNode(root) is equivalent to the
corresponding constructor call, only if a wrapper for root does not already ex-
ist, ensuring that there is a unique ExprTreeNode wrapper for each expression
within the context of the enclosing ExpressionDisplay instance. That is, two
subsequent wrapper retrievals for an expression e yield the same wrapper in-
stance - the identity and state of the wrapper are preserved.

This is due to the semantics of a wrapper recycling call, which is as follows:
The outer class instance maintains a map mapW for each nested wrapper class
W. An expression outerClassInstance.W(wrapperargs) corresponds to the fol-
lowing sequence of actions:

1. Create a compound key for the constructor arguments, lookup this key in
mapW.

2. If the lookup for the key fails, create an instance of outerClassInstance.W
with the annotated constructor arguments, store it in the hash table mapW,
and return the new instance. Otherwise return the object already stored in
mapW for the key.

The wrapper recycling call ExprTreeNode[](...) in the method ExprTree-
Node.getChildren in Fig. 15 is an example for the syntactic sugar we use to
express wrapper recycling of arrays, namely an automatic retrieval of an array
of wrappers for an array of base objects.

3.3 Composing Bindings and Implementations

Both classes defined in Fig. 14 and 15 are not operational, i.e., cannot be instan-
tiated, even if they are not annotated as abstract. These classes are indeed not
abstract, since they are complete implementations of their respective contracts.
The point is that the respective contracts are parts of a whole and make sense
only within a whole. Operational classes that completely implement an inter-
face are created by composing an implementation and a binding class, syntacti-
cally denoted as aCollabIfc <aBinding,anImpl >. This is illustrated by the class
SimpleExpressionDisplay in Fig. 17, which declares itself as an extension of
the composed class TreeDisplay <SimpleTreeDisplay,ExpressionDisplay>.
Only such compound classes are allowed to be instantiated by the compiler. For
instance, Fig. 17 also shows sample code that instantiates and uses the compound
class SimpleExpressionDisplay.

Combining two classes as in Fig. 17 means that we create a new compound
class within which the respective implementations of the expected and provided
methods are combined. The same combination also takes place recursively for



class SimpleExpressionDisplay extends

TreeDisplay<SimpleTreeDisplay,ExpressionDisplay> {}

...

Expression test = new Plus(new Times(5, 3), 9);

TreeDisplay t = new SimpleExpressionDisplay(test);

t.display();

Fig. 17. Creating and using compound classes

SimpleTreeDisplay.TreeNode

isSelected() { ...}

ExprTreeNode
TreeNode[] getChilds() { ... }

getStringValue() { ... }

TreeNode
expected TreeNode[] getChilds();
expected String getStringValue();
provided boolean isSelected(),
provided boolean isExpanded(); <<binds>>

SimpleTreeDisplay
void display() {

... TreeNode n ... }

ExpressionDisplay
TreeNode getRoot() { ... }

Fig. 18. Type rebinding in compound classes

the nested classes: All nested classes with a binds declaration are combined with
the corresponding implementation from the component class. The separation of
the two contracts, their independent implementation, and the dedicated late
composition, allows us to freely reuse implementations of the two contracts in
arbitrary compositions. We could combine SimpleTreeDisplay with any other
binding of TreeDisplay. Similarly, ExpressionDisplay could be combined with
any other implementation of TreeDisplay.

Note that the overall definition of the nested type, e.g., TreeNode, depends on
the concrete composition of implementation and binding types within which the
type is used. This does not only affect the external clients, but also the internal
references. For instance, references to TreeNode within ExpressionDisplay and
SimpleDisplay are rebound to the composed definition of TreeNode in Simple-
ExpressionDisplay, as illustrated in Fig. 18. Their meaning would be differ-
ent in another compound class, e.g., resulting from composing SimpleDisplay
with another binding class, or ExpressionDisplay with another implementa-
tion class. This is a natural consequence of the fact that nested types introduced
by the collaboration interfaces are virtual types, on which we will elaborate in
the following.



3.4 Virtual Types

In Caesar approach, all types that are declared as nested interfaces of a CI and
all classes that implement or bind such interfaces (including classes that extend
the latter) are virtual types and virtual classes, respectively [6]. In the context
of this paper, we use the notion of virtual types of the family polymorphism
approach [1]. This means: (a) similar to fields and methods, types also become
properties of objects of the class in which they are defined, and consequently
(b) their denotation can only be determined in the context of an instance of the
enclosing class. Hence, the meaning of a virtual type is late bound depending on
the receiver object that executes when the virtual type at hand is referenced.

Consequently, all type declarations, constructor calls, and wrapper recycling
calls for virtual types/classes within a CI are actually always annotated with
an instance of the enclosing class. That is, type declarations and constructor
invocations are always of the form enclInst.MyVirtual x, respectively en-
clInst.MyConstructor(). Similarly, wrapper recycling calls are also always of
the form outerClassInstance.W(args) and not simply W(args). For the sake
of simplification, we apply the scoping rules common for Java nested classes also
to type declarations and constructor or wrapper recycling calls: A call Outer-
Class.this.W(args) can be shortened to W(args), and the type declaration
OuterClass.this.W can be shorted to W as long as there are no ambiguities.
This scoping rule applies to all type declarations and wrapper recycling calls
that have appeared so far in this chapter.

For instance, all references to ExprTreeNode in Fig. 15 should be read as
ExpressionDisplay.this.ExprTreeNode. The implication is that the meaning
of any reference to the type name ExprTreeNode within the code of Expression-
Display will be bound to the compound class that combines ExpressionDis-
play.ExprTreeNode with the implementation class of TreeNode that is appropri-
ate in the respective execution context. For example, in the context of a Simple-
ExpressionDisplay as in Fig. 17, ExprTreeNode will be bound to the respective
definition in the compound class TreeDisplay<ExpressionDisplay,TreeNode>.
The same references will be bound differently if they occur in the execution con-
text of an object of some subclass of ExpressionDisplay or in the context of a
different implementation class. The same also applies to nested implementation
and compound classes.

The rationale behind using virtual types lies in their power with respect to
supporting reuse and polymorphism, as argued in [1]. We will rather shortly
discuss how our specific use of virtual types (borrowed from [1]) does not suffer
from covariance problems usually associated with virtual types, as for example
the virtual type proposal in [18], which requires runtime type checks. If we
have a virtual type in a contravariant position, as for example the argument
type of setRoot in Fig. 19, type safety is still preserved, because subsumption
is disallowed if the enclosing instances are not identical. In order to make the
approach sound, all variables that are used as part of type declarations have to
be declared as final because otherwise the meaning of a type declaration might
change due to a field update. For illustration consider the declaration of the



variable ed in the sample code in Fig. 19. It is used as part of a type declaration
for the variable t and is therefore declared as final. For more details on typing
issues we refer to [1].

Expression e = ...;

final ExpressionDisplay ed =

new SimpleExpressionDisplay(e);

...

// let FileSystemDisplay be a binding of

// TreeDisplay to the file system structure

class SimpleFileSystemDisplay extends

TreeDisplay<SimpleTreeDisplay,FileSystemDisplay> {};

FileSystem fs = ... ;

final FileSystemDisplay fsd =

new SimpleFileSystemDisplay(fs);

...

ed.TreeNode t = ed.getRoot();

fsd.setRoot(t); // Type error detected by typechecker!

// sd.TreeNode is not subtype of ed.TreeNode

Fig. 19. Type safety due to family polymorphism

4 Evaluation

Before discussing the implications of our new model, let us at first compare the
new solution to the conventional solution discussed in Sec. 2.

– Other than the Swing interface in Fig. 8, we do not need to use Object;
every item is well-typed and we do not need type casts. The methods that
are conceptually part of the interface of tree nodes, are expressed as methods
of a dedicated nested interface.

– Due to bidirectional interfaces, we do not have the problem related to the
getStringValue() parameters: The implementation of this method, as in
Fig. 15, causes the computation of only those values about the state of
displaying that are really needed by means of calling appropriate methods
in the provided interface.

– It is easy to associate additional state with tree nodes. For example, the
TreeNode implementation in Fig. 14 adds a selected field, and the TreeNode
binding in Fig. 15 could as well have added extra state to ExprTreeNode.

Abstracting from the concrete example, what have we gained with the new
language means proposed in this paper? The important point is the idea of
encoding modules in terms of their own world-view, encoded in a collaboration



interface, together with means to translate this world view into the world view
of a particular application by means of CI bindings. Due to the independence
of a binding from a particular CI implementation, CI bindings are universal,
reusable “world-view translators”.

5 Related Work

Pluggable Composite Adapters (PCAs) [13] and their predecessor, Adaptive Plug
and Play Components (APPCs) [10], have been important starting points for our
work. Both approaches offer different means for on-demand remodularization.
The APPC model had a vague definition of required and provided interfaces.
However, this feature was rather ad-hoc and not well integrated with the type
system. Recognizing that the specification of the required and expected interfaces
of components was rather ad-hoc in APPCs, PCAs even dropped this notion and
reduced the declaration of the expected interface to a set of standard abstract
methods. With the notion of collaboration interfaces, the approach presented
here represents a qualitative improvement over PCA and APPC.

The Hyperspace model and its instantiation in Hyper/J [17] also target mul-
tiple co-existing hierarchies. However, despite the common goal, there are some
important differences between these two approaches. In a nutshell, the func-
tionality offered by Hyper/J can be summarized as extracting concerns and
composing concerns.

Extracting concerns means that one can take a piece of existing software
and tag parts of the software, e.g., method a() in class A and method b() in
class B, by means of a so-called concern mapping. Later, this mapping can be
used to extract a particular concern from this software and reuse it in a different
context. This is similar to the old idea of retroactive generalization in inheritance
hierarchies [15]. An important concept for extracting concerns is the notion of
declarative completeness. Basically, this means that all methods that are used
inside the tagged methods but are not tagged themselves are declared as abstract
in the context of the extracted concern. Our model does not have any dedicated
means for feature extraction.

However, we think that with respect to composing concerns our approach is
in some important ways superior to Hyper/J. Composition in Hyper/J happens
by means of a so-called hypermodule specification, which describes in a declar-
ative sublanguage, how different concerns should be composed. In terms of our
model, a hypermodule performs both the functionality of our binding classes
and the actual composition with the + operator. Due to this mixing and due to
the absense of an interface concept similar to our collaboration interface, Hy-
per/J has no polymorphism and reuse as in our approach, e.g., one cannot switch
between different implementations and bindings, and one cannot use them poly-
morphically. Since the mapping sublanguage is declarative, it relies on similar
signatures that can be mapped to each other, and transformations other than
name transformations (e.g., type transformations), are very difficult. In addition,



Hyper/J’s sublanguage for mapping specifications from different hyperslices is
fairly complex and not well integrated into the common OO framework.

The last important difference is that Hyper/J’s approach is class-based: it
is not possible to add the functionality defined in a hyperslice to individual
objects, instead the objects have to be created as objects of the compound
hypermodule from the very beginning. Therefore, multiple independent bindings
that are added to individual objects at runtime are not possible.

Hölzle [3] analyses some problems that occur when combining independent
components. Our proposal can be seen as an answer to the problems and chal-
lenges discussed in [3].

Our work is also related to architecture description languages (ADL) [16],
for example Rapide [5], Darwin [7], C2 [9], and Jiazzi [8]. The building blocks
of an architectural description are components, connectors, and architectural
configurations. A component is a unit of computation or data store, a connector
is an architectural building block used to model interactions among components
and rules that govern those interactions, and an architectural configuration is
a connected graph of components and connectors that describe architectural
structure. In comparison with our approach, ADLs are less integrated into the
common OO framework, and do not have a dedicated notion of on-demand
remodularization in order to provide a new virtual interface to a system.

We think that collaboration interfaces might also prove very useful in the
context of ADL. In ADL, components also describe their functionality and de-
pendencies in the form of required and provided methods (so-called ports). The
goal of these ports is to render the components reusable and independent from
other components. However, although the components are syntactically indepen-
dent, there is a very subtle semantic coupling between the components, because
a component A that is to be connected with a component B has to provide the
exact counterpart interface of B. The situation becomes even worse if we consider
multiple components that refer to the same protocol. The problem is that there
is no central specification of the communication protocol to which all compo-
nents that use this protocol can refer to – in other words: we have no notion of
a collaboration interface.

6 Summary

Traditional programming languages assume that real-world systems have “intu-
itive”, mind-independent, preexisting concept hierarchies. We argued that this
is in contrast to our perception of the world, which depends heavily on the con-
text from which it is viewed. We identified the arbitrariness of the decomposition
hierarchy as the main cause of ‘code tangling’ and presented a new model called
Caesar, within which it is possible to have multiple different decompositions
simultaneously and to add new decompositions on-demand.
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