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Abstract
There has been a lot of debate about the modularity of aspect-
oriented programs, and in particular the ability to reason about such
programs in a modular way, although it has never been defined pre-
cisely what modular reasoning means. This work analyzes what it
means to reason about a program, and separates “modular reason-
ing” into several well-defined properties of a reasoning model.

A comparison of an OO language semantics with an AO lan-
guage semantics with respect to these properties reveals that ex-
planations of AOP that are based on weaving are a major obsta-
cle to reasoning about AO programs in a modular way. We argue
that a more modular semantics that is easier to reason about can
be given to AO programs if we renounce the monotonicity of the
corresponding reasoning system - a sacrifice that is well-known in
artificial intelligence to model “common sense” reasoning. More
generally, we claim that AOP should be understood as a form of
nonmonotonic knowledge representation.

1. Introduction
Many software engineers have noted that programs should be a
direct image of our thought process about the problem domain,
with as little representational overhead as possible. For example,
Wegner talks about a direct correspondence between logical and
physical hierarchies [35], Winkler demands a close relationship be-
tween the ‘concept-oriented’ and the ‘program-oriented’ view [36],
Meyer postulates the ‘direct mapping principle’ [25], and Larman
argues in favor of a ‘low representational gap’ [19]. This idea hence
connects modularity and knowledge representation: The organiza-
tion of a program should be similar to how humans structure their
knowledge about the domain.

On the other hand, software developers want to reason about
a program part without knowledge of the complete system. They
want to “study the system, one module at a time” [29]. It usually
goes without saying that the reasoning model is monotonic, which
means that conclusions are never invalidated when we learn more
about the system.

However, these two goals do not necessarily go hand in hand.
The most “natural” decomposition and organization of a software
system (from the perspective of a human) may not be one where
many interesting properties can be derived in a modular way using,
say, classical first-order logic. One of the fundamental insights in
the AI community is that humans organize knowledge and reason
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in a nonmonotonic way, meaning that humans adapt their thought
process when they learn something new; in particular, new knowl-
edge may invalidate previous conclusions. A typical example is that
we know birds usually fly, and that Tweety is a bird, and hence
conclude that Tweety flies - until we learn that Tweety is actu-
ally a penguin. In classical (monotonic) logic, adding a piece of
information to a knowledge base never reduces the set of its con-
sequences. Intuitively, monotonicity indicates that learning a new
piece of knowledge cannot contradict what was previously known,
hence the “default” rule about birds cannot be expressed adequately
in classical logic. Nonmonotonic logics (the formal incarnations of
nonmonotonic reasoning) have been developed to deal with incom-
plete and changing information. Nonmonotonic logic allows to re-
vise conclusions if new knowledge arrives, and provides rigorous
mechanisms for taking back conclusions that no longer fit to newly
learned knowledge, and deriving new, alternative conclusions in-
stead [3, 20, 17].

We make three claims that permeate the whole paper: First, the
logic with which we reason about a program must reflect and fit to
the way we think about the program when designing its modular
structure. Second, there is a deep conflict between direct mapping
and monotonicity, and both the power and the problems of AOP
can be explained as a new trade-off between these two goals that
favors direct mapping at the expense of monotonicity. Third, non-
monotonicity is unavoidable and invariably also present in classi-
cal modularity mechanisms, hence we should strive for modularity
mechanisms that embrace (rather than ignore) nonmonotonicity.

More specifically, this work makes the following contributions:

• We dissect what it means to reason about a program in a mod-
ular way, and propose a set of precise criteria to characterize
modular reasoning.
• We analyse an object-oriented and an aspect-oriented language

and compare and characterize the classes of properties that can
be established in a modular way using classical reasoning in
terms of their axiomatic semantics. In particular, we show that
“weaving” basically makes all non-trivial equations depend on
the global program, and conclude that weaving is an inappro-
priate model to explain aspects.
• We argue that the structure of a knowledge base in nonmono-

tonic logic is similar to the modularity allowed by (point-
cut+advice) aspect-oriented programming, and claim that such
logics are more appropriate to reason about AOP programs than
classical predicate logics. We propose a new explanation of as-
pects based on a variant of nonmonotonic logic called default
logic. We show that this semantics restores the ability to do lo-
cal (but nonmonotonic) reasoning, and furthermore allows new
classes of properties to be established modularly that could only
be established using global, nonmonotonic reasoning in the
object-oriented semantics. However, this reasoning approach
should not be understood as the “solution” to the modular rea-



soning question in AOP, but rather as a new point of view on
the problem.
• We expand on the relation between aspects and nonmonotonic

logic and show that the fundamental problem of aspect inter-
action and, more specifically, of aspect precedence is quite re-
lated to priority mechanisms in nonmonotonic logics. To vali-
date this claim, we study how precedence mechanisms for inter-
acting pointcuts can be modeled and improved by using priority
mechanisms from the field of nonmonotonic reasoning.
• We sketch how a form of rely-guarantee reasoning [37] can

easily be added to the reasoning approach based on default
logic.

The rest of the paper is structured as follows. In the next sec-
tion, we analyze what modular reasoning means and compare an
object-oriented and a weaving-based aspect-oriented axiomatic se-
mantics with respect to these definitions. In Sec. 3 we give a short
introduction to default logic. Sec. 4 describes how AOP languages
can be explained in terms of default logic, and analyzes the ramifi-
cations for modular reasoning. Sec. 5 illustrates how aspect prece-
dence can be modeled using prioritized default logic. Sec. 6 revisits
the question of modular reasoning in the light of the new explana-
tion of aspects based on default logic. Sec. 7 discusses what has
been achieved and elaborates on related work. Sec. 8 concludes.

2. Reasoning about programs
This section investigates the question of what it means to reason
about a program in a modular way from the perspective of formal
logic. We assume that we have a program in a programming lan-
guage with modules. To make things simple, we assume a flat name
and module space. To make the role of modules and their depen-
dencies explicit, we model a program as a finite mapping from a set
of (module) names to modules: P = N → M . The restriction of
a program to a subset of its modules N ′ ⊆ dom(P ) is denoted by
P |N′ , and the union of two programs is denoted by P ∪ P ′; both
are defined in the obvious manner (the union is only defined if the
defined names do not overlap). We also use the notation P ⊆ P ′ to
signify that P ′ contains P , i.e., P (l) = m⇒ P ′(l) = m.

From the perspective of logic, reasoning is the activity of ap-
plying rules of inference to a knowledge base, such as applying
the modus ponens inference rule P⇒Q P

Q
to the knowledge base

{sunny, sunny ⇒ happy} to conclude happy. We do not make
any assumptions on the kind of logic; for our purposes it is suffi-
cient to assume a logic L that is given by a set of formulae (also
denoted by L) and an inference relation `L⊆ P(L) × L. In the
following, we call the set of formulae to the left of the turnstile the
knowledge base.

The connection between a program and a logic is through a rep-
resentation function. A representation of a programming language
P in a logic L is a function repL : P → P(L) that maps pro-
grams in the language to sets of formulae in the logic. Of course,
the representation should be sound in some sense with respect to
the actual meaning of the program (or it can be the definition of the
language semantics), but this question is irrelevant for the discus-
sion. A program logic for a programming language P is a logic L
together with a representation of P in L.

Another option would be to make the logic depend on the pro-
gram, i.e., make the inference relation depend on the program. For
example, a Hoare logic [12] or a structural operational seman-
tics [30] are usually defined via a program-dependent inference
relation. However, it is always possible to “lift” such a program-
dependent logic into a program-independent logic such as predicate
logic by basically replacing the inference bar with an implication

sign and universally quantifying over all meta-variables of the in-
ference rule. We will later see examples for that.

Now we are ready to define criteria that are relevant to modular
reasoning. We believe it would be arbitrary to select some subset of
these criteria as the definition of ‘modular reasoning’, and we leave
an assessment of their relative importance as future work.

One of the most basic requirements for modular reasoning is
the compositionality of the representation repL. A representation is
compositional, if repL(P ∪ P ′) = repL(P )∪ repL(P ′). Without
a compositional representation it does not make sense to reason
about a subpart of the program without knowing the full program,
because the representation of the full program could be completely
different from that of the subprogram.

A standard notion in logic is the monotonicity of the inference
relation, which basically says that enlarging the knowledge base
must not invalidate previous conclusions, that is, if A ` F and
A ⊆ A′, then A′ ` F . Most standard logics such as propositional
or predicate logic are monotonic. We will later discuss a nonmono-
tonic logic called default logic.

We say that a formula F in a program logic is monotonic, if
whenever repL(P ) `L F and P ⊆ P ′, then repL(P ′) `L F . It
is easy to see that all formulae in a program logic are monotonic,
if the logic is monotonic and if the representation is compositional.
Without compositionality, however, a formula could be nonmono-
tonic although the logic is monotonic. Monotonicity represents the
idea of establishing a property “once and for all”. A slightly weaker
notion is monotonicity w.r.t. certain kinds of program extensions
described by some subset R of all possible program extensions.
We say that a formula F in a program logic is monotonic w.r.t. R,
if whenever repL(P ) `L F and P ⊆ P ′ and P ′ \ P ⊆ R,
then repL(P ′) `L F . For example, a property could be monotonic
w.r.t. addition of new classes, but not monotonic w.r.t. addition of
new advice.

A formula F in a program logic is local in a program part
P ′ ⊆ P , if repL(P ) `L F if and only if repL(P ′) `L F . This
definition captures the idea that if one wants to prove some property
of a single module (or set of modules), then one only needs to look
at this module. Usually, all properties that can be deduced from the
interface of modules are local in this module. For example, in a
Java-like OO language it is sufficient to look at a method signature
to see whether a call to this method will return a boolean value.

A formula F in a program logic is traceable in P ′ ⊆ P , if
repL(P ) `L F if and only if repL(P |names∗(P ′)) `L F , where
names∗(P ′) is the set of transitively occuring module names in
P ′, that is, the names of the modules in P ′, all module names that
occur in modules referenced by P ′ and so forth. Properties that
can be established by an investigation of the implementation of
transitively referenced modules are traceable. For instance, a proof
that a procedure call will terminate in a procedural language usually
requires an investigation of the procedure body and transitively all
procedures called within the body.

Our last criterion is the program indepence of a formula. We say
a formula F in a program logic is program-independent, if F does
not contain any global information about the program. That is, if the
program is extended, the formula must not be changed: It is still a
formula about the full program. For example, if F would contain
a copy of the full program, or some abstraction thereof, such as a
global list of advice in an AOP language, it would not be program-
independent. This criterion is important because it would be trivial
to design a program logic that fulfills all criteria mentioned above
by encoding an interpreter of the language in the logic, where one
of the parameters of the interpreter is the program, and all questions
about the program can only be answered by “passing” the full
program in the formula. This criterion could be made more formal
by formalizing a “is a formula about” relation between formulae



and programs, but for the sake of brevity we leave it at that. In the
remainder of the paper, we will always implicitly assume that the
representation function generates program-independent formulae
(i.e., no cheating).

Significance of a compositional representation
From this list of criteria, we believe that the existence of a com-
positional representation of programs in a logic is in some sense
the most fundamental one. Without a compositional representation,
any kind of non-global reasoning is more or less futile, because
there is no manageable relation between the knowledge base of a
program part and the knowledge base of the full program.

A compositional representation can also be seen as a kind of
separate compilation, and as such it is an indication that the un-
derlying module system defines useful, self-contained abstractions,
and not just random parts of the program. This point of view is also
emphasized by Luca Cardelli in his landmark paper on modular-
ization [7]. He asks: “When does a module system really support
modularization (meant as separate compilation)?” and later con-
cludes: “We consider modularization as inseparable from separate
compilation: Not merely as a program structuring mechanism.”

A compositional representation is a morphism that preserves the
structure of the program, and hence we believe that a definition
of a language in terms of a compositional representation reveals
deep symmetries between the language and the logic framework.
We come back to this point in Sec. 7.

2.1 An OO program logic
In this section we show how a program logic for a simple OO lan-
guage, based on its axiomatic semantics, looks like in terms of our
formal framework. We will consider a fragment of Featherweight
Java (FJ) [13]. FJ is defined via a standard small-step reduction
semantics. To emphasize its role as an equational reasoning frame-
work, we define the language in axiomatic style as a theory of equa-
tions (using the ≈ sign) between expressions, rather than directed
reductions, but the equations can always also be read as reduction
rules by replacing ≈ with a reduction operator ↪→.

We will only consider the rule for method calls; all other rules
do not add any new aspects to the discussion. We implicitly assume
the existence of the standard congruence, transitivity, reflexivity
etc. rules for ≈. The inference rule for method calls is:

MethodLookup(P,C,m) = (~x, e)

P ` new C(~v′).m(~v) ≈ e
[
new C(~v′)/this,

~v /~x
]

The notation ~v stands for a list of values v1, ..., vn. Every
value in FJ is of the form new C(~v′), hence the receiver object is
assumed to be in that form. The semantics is in small-step style,
hence congruence rules such as e≈e′

e.m(~e)≈e′.m(~e)
take care of nested

expressions. This inference rule uses an auxiliary lookup function
MethodLookup that is defined as a simple function on the program.
The inference rule above can easily be lifted into predicate logic:

∀P,C,m, ~x, e, ~v′, ~v.MethodLookup(P,C,m) = (~x, e)⇒
P ` new C(~v′).m(~v) ≈ e

[
new C(~v′)/this,

~v /~x
]

However, this rule would violate the program independence
constraint defined above, since the complete program is a parameter
of the formula. We can get the full program out of the rules by
specializing the lookup function with the program. That is, the (now
program-independent) rule in the logic is:

∀C,m, ~x, e, ~v′, ~v.MethodLookup(C,m) = (~x, e)⇒
new C(~v′).m(~v) ≈ e

[
new C(~v′)/this,

~v /~x
] (1)

and every class definition is represented by an extension of the ax-
iomatization of the lookup function. For example, the class defini-
tion:

class Foo {
void bar(a) { a.m(this) }

}

is represented by the formula:

MethodLookup(Foo, bar) = (a, a.m(this))

So, the repL function for this program logic represents every
program by a set of program-independent general formulae such
as (1) above, and an axiomatization of the lookup functions as
illustrated in the example. With regard to the definitions above,
it is obvious that this representation is compositional, and that
formulae in this logic are program-independent. Since our logic
(in this case: first-order predicate logic) is monotonic, and since the
representation is compositional, all formulae in the program logic
are monotonous, too.

To derive equations about the program, the general formulae can
always be “instantiated” with the current program, such that each
module is represented by the set of “instances” of the general rules
for that program part. For example, the instantiation of the general
rules for the class above could is:

∀~v′, v.new Foo(~v′).bar(v) ≈ a.m(this)
[
new Foo(~v′)/this,

v /a
]

or, equivalently:

∀~v′, v.new Foo(~v′).bar(v) ≈ v.m(new Foo(~v′))
It is obvious that these instantiations of the general rules can

also always be derived in a compositional manner - there is a set of
rule instances for each program part.

Modular reasoning assessment
The described representation of OO programs is compositional. All
formulae are hence monotonic, as long as we use only the standard
monotonic inference rules of the underlying logic (and not rules
such as negation as failure).

The “sex appeal” of the OO rules is that as soon as we fix
C and m in (1), the equation is both monotonic and local. For
example, if we take C = Foo and m = bar, then we can derive
new Foo(~v′).bar(v) ≈ v.m(new Foo(~v′)) in the program above
using only local and monotonic reasoning.

If, besides C andm, also the classes of all other variables of the
method call (~v′ and ~v) that are subsequently used as receivers of
method calls are known, then the complete equational theory of the
method call is monotonic and traceable, because then the equations
for all method calls in the body of the method (and in bodies of
transitively called methods) can also be deduced.

However, not all formulae have these nice properties - in partic-
ular those, where C or m in (1) are not instantiated. For example,
we might be interested in whether any method call to any method
named foo starts with a print("Hello") statement. Formally,
this could be expressed as:

∀C∀~x∀e∀~v′∀~v∃e′. MethodLookup(C, foo) = (~x, e)⇒
new C(~v′).foo(~v) ≈ print(”Hello”); e′

Even if this property holds in the program, it could not be
derived using standard inference rules of predicate logic. Only if
we use negation-as-failure reasoning [8] (we assume the property
holds if we cannot find a counterexample), we can derive the
property by inspecting the whole program. Hence this property is
neither local/traceable, nor monotonic (due to the use of negation-
as-failure). The nonmonotonicity of this property can also be seen



ApplicableAdvice(P,C,m) = ~a

P ` new C(~v′).m(~v) ≈ new C(~v′).m[~a](~v)
(WEAVE)

AdviceLookup(P, a) = (~x, e)

P ` new C(~v′).m[a,~a](~v) ≈ e
[
new C(~v′)/this,

~v /~x,
new C(~v′).m[~a](~v) /proceed

] (ADVEXEC)

MethodLookup(P,C,m) = (~x, e)

P ` new C(~v′).m[∅](~v) ≈ e
[
new C(~v′)/this,

~v /~x
] (METHEXEC)

Figure 1. Weaving-based AO language semantics

by considering an extension of the program with an additional
implementation of a foo method that does not have the desired
property.

This is not just an esoteric example but an inherent problem
of describing programs in a monotonic logic. The representation
of a program in a monotonic logic is always incomplete, mean-
ing that there are always properties F for which neither F nor
its negation can be proved. It cannot be complete, because there
are fundamental theoretical limitations (Gödel’s first incomplete-
ness theorem), and because a complete theory would not be ex-
tensible. The problem is that the program is described by a set of
constraints in the logic (which has many solutions or “models”),
whereas the actual running program is mathematically only a single
distinguished model - usually some kind of “minimal” model. To
reason about this minimal model, we hence have to apply a closed-
world assumption, negation-as-failure, or other similar techniques
that make reasoning nonmonotonic. These properties that can only
be deduced by nonmonotonic reasoning are not only numerous but
also quite relevant and include properties such as conformance to
temporal protocols or concurrency properties. Traditional modular-
ity and reasoning mechanisms focus on the monotonic properties
only, but this author sees no reason to consider the monotonic prop-
erties more important than the nonmonotonic ones.

2.2 Weaving-based AO program logic
We will now study why a weaving-based semantics for AO pro-
grams is inappropriate for representing and reasoning about AO
programs. As an illustration, let us consider an extension of our
little object-oriented language with “around” advice [15] that can
advise method calls. We will only consider very simple pointcuts
that can advise method calls, but it would be straightforward to add
more sophisticated pointcuts. Fig. 1 shows an excerpt of how a typ-
ical weaving-based semantics for such a language looks like; we
have choosen a presentation in the style of Jagadesaan et al’s cal-
culus of aspect-oriented programs [14]. Again, we show only the
rules for method calls and advice application; all other rules don’t
add anything interesting to the discussion.

A method call new C(...).m(~v) is executed (read rules from left
to right) by first looking up all advice that applies to a method call
and sorting the advice in some order (inside the ApplicableAdvice
lookup function, whose definition is not shown here), and weaving
the sorted list of advice ~a into the method call (WEAVE). This
weaved method call is then executed by taking the first advice
from the list, looking up the formal arguments and body of the
first advice, substituting this and the formal parameters ~x by the
receiver object and the actual parameter values, respectively, and
substituting proceed by a method call that removes the first advice
from the list of pending advice (ADVEXEC). If no advice is left, the
original method body is executed (METHEXEC). In both cases, the
lookup functions AdviceLookup and MethodLookup return a list

with the names of the formal parameters and the advice/method
body.

Modular reasoning assessment
The point which prevents a usage of this semantics as a compo-
sitional representation function is the ApplicableAdvice function:
Since we need a sorted list of all advice that apply, the result of this
function cannot be computed before the whole program is known,
because every program part may contain an advice declaration or
advice precedence hint that influences the result of the function.
Hence it is not possible to axiomatize this lookup function in a com-
positional way, as above with the MethodLookup function. Rather,
the representation (in particular of the advice lookup function) can
only be determined once the full program is known.

Another way to look at the situation is that no equation that says
something about the right-hand side of the equation (which is ba-
sically every non-trivial equation) can be derived without knowing
the full program. No non-trivial equation involving method calls is
monotonic - adding an advice could invalidate the derived equa-
tion. All the typical equations that programmers implicitly use to
reason about programs (such as the substitution of a name by its
definition, the commutativity of certain operations, algebraic laws
of data structures etc.) cannot be derived in a modular way.

2.3 Summary
As this discussion shows, it does not make sense to ask whether
language X “allows modular reasoning”, since this depends on the
representation (is it compositional?), on the properties of the infer-
ence system (is it monotonic?), and in particular the kind of prop-
erty one is interested in (is it local/traceable/monotonic?). It also
depends on how much abstraction is involved in the representation
(for example, with the representations we saw it is not possible to
conclude anything about the energy consumption of the CPU dur-
ing a computation), but we will ignore this issue for now.

In OO languages (or procedural/functional languages), many in-
teresting properties are monotonic and local or traceable if we in-
stantiate all variables that refer to program elements, but properties
that involve quantification over program elements can only be an-
swered by nonmonotonic closed-world reasoning.

The weaving-based semantics of an AO language, however,
gives rise to a highly anti-modular equational theory of AOP pro-
grams, where every non-trivial equation depends on the full pro-
gram. In this light, the complaints about the modularity (or lack
thereof) of AOP are not surprising. In the opinion of this author,
the complaints will not stop until a better model than weaving is
found to explain aspects.

3. Nonmonotonic logic
Our attempt to give a better explanation of aspects is based on the
observation that the kind of modularity that AOP languages strive



E := Th(W );A := ∅;
while there is a default δ /∈ A that is applicable to E {
E := Th(E ∪ {consequent(δ)});A := A ∪ {δ};
}
if ∀δ ∈ A.E is consistent with all justifications of δ

then return E else failure

Figure 2. Non-deterministic algorithm to compute extensions

for is in many respect similar to the “modularity” of knowledge
bases and corresponding inference systems that have been devel-
oped in the AI community to model “common-sense” reasoning.

Nonmonotonic logics capture the kind of inference of everyday
life in which human reasoners draw conclusions tentatively, reserv-
ing the right to retract them in the light of further information. They
also allow to “modularize” knowledge in a way that more closely
resembles how humans organize knowledge. For example, they al-
low to formulate general rules and separately, in a different context,
exceptions to the general rule. This already sounds a bit like AOP,
but before we go into the details of this relationship, we will make
things concrete and study one particular variant of nonmonotonic
logic: Default logic.

Default logic [31] is the most widely used variant of nonmono-
tonic logic. With default logic, one can state general “rules of
thumb”, that may or may not be extended by exceptional cases. For
example, the knowledge that birds usually fly can be formalized as
follows:

bird(X) : flies(X)

flies(X)

This rule is a so-called default, and can be read as “If X is a bird,
and if it is consistent to assume that X flies (that is, it cannot be con-
cluded that X does not fly), then conclude that X flies”. In general,
a default δ has the form ϕ : ψ1,...,ψn

χ
, where ϕ,ψ1, ..., ψn, χ are

predicate logic formulae, and n > 0. The formula ϕ is called pre-
requisite, the part to the right of the colon, ψ1, ..., ψn justifications,
and the part below the bar, χ, is the consequent. A default is ap-
plicable to a deductively closed set of formulae E, if ϕ ∈ E and
¬ψ1 /∈ E, ...,¬ψn /∈ E.

In general, the set of conclusions that can be drawn from a
knowledge base with defaults is not unique. For example, if it is
known that members of the green party typically do not like cars,
and members of an automobile club usually like cars, and John is
member of both green party and automobile club, then it can be
concluded both that John likes cars and that he does not like cars.

This seeming chaos is ordered by so-called extensions - possible
world views based on the given defaults. Technically, an extension
is a superset of the knowledge base that is consistent and closed
under deduction and application of defaults [31]. In the example,
we would have two distinct extensions, in which John likes and
does not like, respectively, cars. A large part of the theory of default
logic is concerned with the existence and construction of extensions
and the relations between different extensions.

Reiter’s original definition of extensions is a non constructive
fixed-point equation based on the above properties, but we give
an equivalent operational definition based on [21, 3, 4]. For this
purpose, we define a default theory to be a pair T = (W,D)
consisting of a set W of predicate logic formulae (sometimes
called background theory) and a countable set of defaults D. The
extensions of T are all setsE that can be generated by the algorithm
in Fig. 2. The notation Th(E) denotes the set of all formulae that
follow from E using classical deduction (the deductive closure
of E). The algorithm first uses applicable (recall the definition of

applicable above) defaults in an arbitrary order to build a candidate
for an extension. The consistency check in the last two lines then
checks whether E is really an extension. In general, extensions
are neither unique (due to the non-deterministic choice of the next
default) nor need to exist at all (due to the consistency check).

It may look strange that every default is applied at most once in
the algorithm. This is sufficient, because the rule about birds above
is technically not a default but a default schema since it contains
a free variable (namely X). Default schemata are implicitly inter-
preted to stand for the set of defaults ϕσ : ψ1σ,...,ψnσ

χσ
for all ground

substitutions σ that assign ground terms (terms with no free vari-
ables) to all free variables in the schema. For example, if we have
two birds Tweety and Trixy, then our default schema implicitly
stands for two separate defaults bird(Tweety) : flies(Tweety)

flies(Tweety)
and

bird(Trixy) : flies(Trixy)
flies(Trixy)

.
An important class of defaults are normal defaults. A default is

normal if its consequent is its only justification, i.e., defaults have
the form φ : ψ

ψ
, such as the default rule about flying birds above.

A default theory T = (W,D) is normal if all defaults in D are
normal. Normal default theories are particularly well-behaved. In
particular, all normal default theories possess extensions; defaults
like true : x

¬x which can destroy all extensions are not allowed. In
fact, it is not hard to see that the consistency check (last two lines)
in the algorithm above will never fail in a normal default theory and
can hence be omitted [31, 3]. All defaults used in this paper will be
normal defaults.

4. Compositional representation for aspects
In this section, we study how AOP languages can be represented
compositionally in default logic. We propose rules as presented in
Fig. 3. The meaning of a method call new C(~v′).m〈~a〉(~v) is that
the advice ~a have already been executed. In contrast, in Fig. 1 an
expression new C(~v′).m[~a](~v) denotes a method call where the
execution of all advice in ~a is pending. The idea is that a “normal”
method call is started with new C(~v′).m〈∅〉(~v), and the brackets
are subsequently filled with all advice that have been executed until
all applicable advice are in the list, and then the method body gets
executed.

There are only two computation rules, (METH) and (ADV).
Due to the different meaning of the advice list in method calls,
(ADV) adds rather than removes the name of the executed advice
to the method call that replaces proceed. There is no weaving rule
anymore. Rather, the behavior of (METH) and (ADV) is controlled
by the auxiliary predicates NextAdvice and unadvised, which are
defined using defaults. If there is no information to the contrary, we
assume that a method call is unadvised (UNADV). If however, there
is some applicable advice a that has not yet been executed, and if it
is consistent to assume that it is the next advice to execute1, then we
conclude that a will be the next advice (NEXTADV). Furthermore,
a call with applicable advice is not unadvised (SOMEADV).

Since it is the standard notation, Fig. 3 shows the rules in in-
ference rule format, but (METH), (ADV), and (SOMEADV) should
again be interpreted as first-order formulae (i.e., replace bar by im-
plication, universally quantify over all meta-variables), such that
they fit into the background theory of a default theory. The pro-
gram P has already been removed from the formulae, so they are
program-independent.

Rather than having a global lookup function that returns a sorted
list of all applicable advice as in Fig. 1, we model the association

1 To avoid that two different advice are both simultaneously the next one, we
implicitly assume the existence of the usual inference rules of equality, e.g.,
NextAdvice(C, m,~a) = a ∧ NextAdvice(C, m,~a) = a′ implies a = a′.



MethodLookup(C,m) = (~x, e)
unadvised(C,m,~a)

new C(~v′).m〈~a〉(~v) ≈ e
[
new C(~v′)/this,

~v /~x
] (METH)

NextAdvice(C,m,~a) = a
AdviceLookup(a) = (~x, e)

new C(~v′).m〈~a〉(~v) ≈ e
[
new C(~v′)/this,

~v /~x,
new C(~v′).m〈a,~a〉(~v) /proceed

] (ADV)

true : unadvised(C,m,~a)

unadvised(C,m,~a)
(UNADV)

ApplicableAdvice(C,m, a) ∧ a /∈ ~a : NextAdvice(C,m,~a) = a

NextAdvice(C,m,~a) = a
(NEXTADV)

ApplicableAdvice(C,m, a) ∧ a /∈ ~a
¬unadvised(C,m,~a)

(SOMEADV)

Figure 3. AO language semantics using default logic

between joinpoint and advice as a predicate ApplicableAdvice -
the full list of all advice is never needed. This is the decisive
difference to Fig. 1 that allows a compositional representation.
Each advice can be represented independently by a corresponding
list of formulae about the advice lookup function/relation.

For example, this is how a simple sample advice is represented:

repDL

 advice a1(x) around calls(A.m(int))
||calls(B.n(int))

{bodya1}

 =

{ ApplicableAdvice(A, m, a1),
ApplicableAdvice(B, n, a1),
AdviceLookup(a1) = (x, bodya1)}

Normal classes and methods are represented as described in
Sec. 2.1. So the full representation of a program consists of the
first-order default logic embedding of the rules in Fig. 3, and
a set of axioms about ApplicableAdvice ,AdviceLookup, and
MethodLookup that can be computed for each module in a com-
positional way.

To appreciate the difference between default and classical logic,
assume for a moment that the colons in Fig. 3 would be replaced
by conjunction operators (i.e., we would use normal inference
rules). In this case, we could never prove a goal of the form
unadvised(C,m,~a) or NextAdvice(C,m,~a) = a because the
same goal that we want to prove also appears in the premise of its
rule. Hence the semantics would be useless. Similarly, if we would
just remove the justifications, the semantics would be useless be-
cause we could prove unadvised(C,m,~a) for arbitrary C, m, and
~a.

Now, the question arises whether the default theory in Fig. 3 has
any extensions, and if any, what their relation to the semantics in
Fig. 1 is. Luckily, all default rules in Fig. 3 are normal defaults (see
Sec. 3). Normal default theories always possess extensions [31],
which answers the first question.

Is there only a unique extension? No - in case more than one
advice is applicable at some point, there is more than one extension,
namely one for every possible advice execution order. This reflects
the fact that there is no a-priori order among different overlapping
advice. The difference to previous approaches is that we can now
deal with this situation within our logical framework, and study the

ambiguity in terms of extensions – we come back to this point in
the next section.

For now, let us now analyze to which degree the two language
semantics in Fig. 1 and 3 agree with each other. If at most one
pointcut applies at any joinpoint, the two semantics agree because
there is only one unique extension in the default theory, which is
the same theory (in this case: set of equations) that is generated by
the conventional semantics. The semantics differ in how they treat
shared joinpoints, i.e., situations in which more than one advice
applies. In Fig. 1, the ApplicableAdvice lookup function orders
all applicable advice in some specific order (determined by the
definition of ApplicableAdvice), whereas in Fig. 3 every potential
execution order is represented by a different extension. In the next
section, we discuss how prioritized default logic [5] can be used
to model AspectJ-like global orders and ordering hints (such as
declare precedence in AspectJ) on advice.

The main point to remember from this section is that the seman-
tics does not require any global operations or lookups. In particular,
a global list of all advice that apply at some point is never needed.
In contrast to the semantics based on weaving, this semantics gives
rise to a compositional representation: Every program part trans-
lates into a set of formulae for that program part, and adding a new
module does not invalidate existing formulae. Every aspect has a
logical meaning of its own: it is represented by a set of axioms
about ApplicableAdvice and AdviceLookup, and these axioms are
independent of other parts of the program. Hence, adding classes or
aspects to an existing program does not invalidate the representa-
tion of the old program. In contrast, in Fig. 1 there is no logical
representation of aspects as independent entities; they are only im-
plicitly represented and tangled with the representation of methods
to which they apply.

We will discuss the implications of this compositional represen-
tation for the other properties of modular reasoning in Sec. 6, but
at first we will study how aspect precedence mechanisms can be
modeled in this framework.

5. Priorities
This section can be skipped on first reading. In the previous section
we have already hinted at the issue of advice ordering. If two
advice apply at some joinpoint, the question arises in which order



E := Th(W );A := ∅; Prio := ∅
while there is a default δ /∈ A that is applicable to E {
C := {nameof (δ′) | δ′ ∈ D, δ′ 6= δ, δ′ is applicable to E}
Prio := Prio ∪ {nameof (δ) ≺ d | d ∈ C}
E := Th(E ∪ {consequent(δ)});A := A ∪ {δ};
}
if E is consistent with Prio

then return E else failure

Figure 4. Refined algorithm to compute priority extensions

the advice are to be executed. Languages like AspectJ use an
arbitrary order such as lexicographic order of aspect names by
default, but enable the programmer to insert precedence hints into
the program. We will now show that such mechanisms are very
naturally supported in default logic. In the context of default logic,
basically the same problem arises if multiple defaults are applicable
at some point, and a multitude of different approaches has been
developed to control the situation [5, 10, 38].

In this work, we will consider two simple but powerful variants
of default logic with priorities: PDL and PRDL [5] [3, Chap. 8].
In PDL, the priority information is given in the form of a strict
partial order < on the set of defaults. The set of extensions of a
default theory in PDL is restricted to those extensions that respect
<, i.e., the order of default application in the algorithm in Sec. 2
is compatible with <. With such a global order, we could model
the default order of aspects as in AspectJ, but not ordering hints
(declare precedence specifications in AspectJ).

For this reason, we will consider the more powerful variant
PRDL, because it allows to model the priority information within
the logic, rather than as an external partial order as in PDL. In
PRDL, every default δi has a name di. In our case, we will use
the names given to the right of the corresponding default rule (such
as NEXTADV), indexed by all free variables in the rule (recall that
each default rule stands for a set of rule instances); for example,
NEXTADVC,m,~a,a is the name of a rule instance for some C, m, ~a,
and a.

These rule names can be used with a special symbol ≺. The
formula d1 ≺ d2 can be read as “give the default with name d1

priority over the default with name d2”. A term d1 ≺ d2 in PRDL
is an ordinary formula that can be used both in the background
theory W and in defaults D of a default theory T = (W,D).
In order to take these priorities into account, the algorithm to
compute extensions has to be modified appropriately. Fig. 4 shows
the adapted algorithm. Whenever a default δ is choosen, priority
assumptions of the form nameof (δ) ≺ d for all other applicable
defaults d are added to the set Prio. For a set E to be an extension,
E must be consistent with Prio, whereby consistent means that ≺
is a strict partial order in E ∪ Prio. Since we are considering only
normal defaults at this point, we omit the final consistency check
from Fig. 2.

Fig. 5 shows how this mechanism can be used to specify
AspectJ-like priorities. Rule (DEFAULT) says that, by default, we
assume that two advice are ordered by their default order (such as
lexicographic order of their names or compilation order). We as-
sume that this default order is given in the form of an order relation
<default . The next rule (DECLDEFLT) injects the default order into
the ≺ relation, provided that we have opted for the default order
between the two aspects. If no explicit precedence declaration are
given in the program, there will only be one unique extension that
generates the same program equality relation as the the semantics
in Fig. 1, provided that the ApplicableAdvice function sorts advice
in the order given by <default .

The last two rules deal with explicit precedence declarations.
A declaration declare precedence a1, a2 is represented by the

formula declareprecedence(a1, a2) - a trivially compositional rep-
resentation. Rule (DECLPRECDEF) says that if the program con-
tains a precedence declaration between a1 and a2, then these two
advice are not in their default order. Finally, rule (DECLPREC) in-
jects the precedence declarations into the≺ relation. The only non-
obvious part in this rule is that this rule is formulated as a default
rule with NEXTADVC,m,~a,a1 ≺ NEXTADVC,m,~a,a2 as justifica-
tion. An alternative would have been to make this a normal infer-
ence rule and omit the justification. The difference is relevant if the
program contains contradicting precedence declarations, such as
declare precedence a1, a2 and declare precedence a2, a1.
If we would formulate (DECLPREC) as normal inference rule, we
would inject this inconsistency into ≺ and would thereby destroy
all extensions. With the additional justification, however, we get a
separate extension for each possible resolution of the conflict. In
the example, we would get one extension where a1 has precedence
over a2 and a different extension where a2 has precedence over
a1. The main advantage, however, is that we can now resolve the
conflict using higher-order priority specifications – a mechanism
which we will study next.

The important point of this section is the ease and composition-
ality with which the AspectJ priority mechanisms can be specified
in default logic. There is again no need for any global operation in
the specification. Rather, every declare precedence declaration
just adds another axiom about declareprecedence to the knowledge
base, without invalidating any existing rule instances.

Dynamic and higher-order priorities
The priority mechanisms in nonmonotonic logic go beyond what
has been explored so far in the aspect-oriented community, and
we believe that these mechanisms could be used to design new
advanced priority mechanisms for AO languages. A typical exam-
ple for higher-order and dynamic priorities in the AI community
is the following example from legal reasoning [5, 6]: According
to Uniform Commercial Code (UCC), a security interest in goods
is perfected by taking possession of the collateral. According to
Ship Mortgage Act (SMA), security interest in a ship may only be
perfected by filing a financing statement. UCC is state law, SMA
federal law. UCC is more recent than SMA The principle Lex Pos-
terior gives precedence to newer laws. The principle Lex Superior
gives federal law precedence to state law. Miller has possession of
a certain ship but did not file a financing statement This situation is
formalized in Fig. 6.

The first point to notice here is that (LEXPOSTERIOR) and
(LEXSUPERIOR) are dynamic rules, as they depend on predicates
like moreRecent , whose denotation may be determined during the
computation of an extension. One could easily imagine to design
an aspect-oriented priority mechanism along these lines, i.e., one
that can take dynamic information into account. The second point
to notice here is that we have a case where the two priority rules
give contradicting answers. For illustration, assume a default theory
T = (W,D) with D as in Fig. 6 and
W = { possession, ship,¬financialstatement ,

moreRecent(UCC ,SMA),
higherAuthority(SMA,UCC )}

This theory has two separation extensions, and in only one of them
is the security interest perfected.

However, the ambigous choice between (LEXPOSTERIOR) and
(LEXSUPERIOR) can be removed by a higher-order priority rule
which removes the ambiguity and leaves only one unique exten-
sion, such as:

LEXSUPERIORX,Y ≺ LEXPOSTERIORU,V



true : defaultOrder({a1, a2})
defaultOrder({a1, a2})

(DEFAULT)

defaultOrder({a1, a2}) ∧ (a1 <default a2)

NEXTADVC,m,~a,a1 ≺ NEXTADVC,m,~a,a2
(DECLDEFLT)

declareprecedence(a1, a2)

¬defaultOrder({a1, a2})
(DECLPRECDEF)

declareprecedence(a1, a2) : (NEXTADVC,m,~a,a1 ≺ NEXTADVCo,m,~a,a2)

NEXTADVC,m,~a,a1 ≺ NEXTADVC,m,~a,a2
(DECLPREC)

Figure 5. Modeling AspectJ-like priorities in PRDL

possession : perfected

perfected
(UCC)

ship ∧ ¬financialstatement : ¬perfected

¬perfected
(SMA)

moreRecent(X ,Y ) : X ≺ Y
X ≺ Y (LEXPOSTERIOR)

higherAuthority(X ,Y ) : X ≺ Y
X ≺ Y (LEXSUPERIOR)

Figure 6. Example from [5, 6] illustrating dynamic and higher-
order priorities

We believe that such higher-order priority rules are useful in
AOP as well. For example, conflicting aspect precedence rules
between aspects a1 and a2 could be resolved by rules of the form:

∀C∀m∀~a.DECLPRECC,m,~a,a1,a2 ≺ DECLPRECC,m,~a,a2,a1

Of course, the priority specifications could be easily made even
more sophisticated by including dynamic information from the
execution, or by making the priority specifications conditional, or
by having third-order (or higher) priority specifications. In each
case, the compositionality of the representation is not at risk.

6. Reasoning abouts aspects in default logic
We will now revisit the question of modular reasoning about as-
pects in the light of the semantics based on defaults. In the second
part of this section, we will elaborate on issue of nonmonotonicity.

6.1 Modularity assessment
By having a compositional representation for an AO program in a
program logic, the most basic prerequisite for any useful kind of
non-global reasoning is fulfilled, although a price had to be paid:
The sacrifice of monotonicity. This means that conclusions that are
made about a part of the program may have to be withdrawn when
learning about a larger part of the program.

With regard to the other modularity reasoning criteria, however,
the semantics based on defaults performs much better than the one
based on weaving. If we consider our little example from Sec. 2.1
again, then the equation

new Foo(~v′).bar〈∅〉(v) ≈ v.m(new Foo(~v′))
can be derived using only local reasoning (provided that no aspect
advising the call is in our knowledge base).

Also, similarly to the situation in Sec. 2.1, the full equational
theory of a method call can be derived using traceable reasoning,
if the types of all arguments that influence the method dispatch in
subsequent calls are known.

Most importantly, a new class of properties can now be estab-
lished using local reasoning, namely properties derived from the
representations of aspects in the system. In Sec. 2.1, we discussed
that a property such as

∀C∀~x∀e∀~v′∀~v∃e′. MethodLookup(C, foo) = (~x, e)⇒
new C(~v′).foo(~v) ≈ print(”Hello”); e′

can only be derived using global, nonmonotonic reasoning in the
OO language. Let us assume that our AO program contains an
advice

advice a2() around calls(*.foo(..)) {
print("Hello"); proceed

}

and corresponding representation

∀C.ApplicableAdvice(C, foo, a2)
AdviceLookup(a2) = ({print(”Hello”); proceed}

then this property could indeed be derived by local reasoning using
only the rules in Fig. 3 and the representation of the aspect! In a
sense, it is of course trivial that we can conclude what the advice
says, but we believe it is an important observation that, while AO
languages make modular reasoning harder in those cases that work
particularly well for non-AO languages, they also allow new classes
of properties to be established locally - properties that could only
be established by global, nonmonotonic reasoning in a non-AO
language.

6.2 Dealing with nonmonotonicity
Nonmonotonicity means that some work has to be done in order
to check whether a property that was established by looking at a
small part of the program still holds in the full program (or still
holds after extending the program). However, if possible, it should
not be necessary to redo the whole proof of the property. Of course,
sometimes it is unavoidable to revisit the program. As an extreme
example consider the property that the text of a program has a
certain MD4 checksum - the whole program must be revisited after
every change to check whether the property still holds.

Our goal in this section is to minimize the number of cases
where the program needs to be revisited due to changes in the
applicability of defaults – that is, in the case when we learn about
new aspects in the system. To this end, we will first examine what
a proof of a property in default logic looks like [2]. A default



bool f(int n) {
if n<=0 then return g(n)

else return isPrime(n);
}
bool g(int n) { return isPrime(-n); }

bool isPrime(int n) {
if n<=1 then return false;
for (int i=2; i<n; i++) {
if n modulo i = 0 then return false;

}
return true;

}

Figure 7. Example program for verification

proof of a formula φn in a default theory T = (W,D) is a
sequence s = φ1, ..., φn such that φ1, ..., φn is a classical proof
in W ∪ {consequent(δ)|δ ∈ D}, and there is a proof justification
set J(s) satisfying the following conditions:

• Either φi derives from W ∪ {φ1, ..., φi−1} or there is some
default δ such that s = φ1, ..., φj , ..., φi, ..., φn with φj =
prerequisite(δ), φi = consequent(δ), and justification(δ) ⊆
J(s).
• If φ ∈ J(s), then for some δ ∈ D, φ ∈ justification(δ) ⊆
J(s) and s = φ1, ..., φj , ..., φi, ..., φn such that φj = prerequisite(δ)
and φi = consequent(δ).

These two conditions require J(s) to contain exactly the justifi-
cations of those defaults that are used in the proof. There are some
additional conditions on proofs to make sure that they are indeed
valid proofs in default logic [2], but for our purposes it is enough
to see that a default proof consists of a number of steps (proven
subgoals of the proof), where each step depends on other previous
steps, and some of these steps are applications of defaults. The set
J(s) represents the justifications of those defaults that were applied
during the proof. In our case, it would contain justifications such as
“the method call new C().m〈∅〉() is unadvised”, or “the next advice
for new C().m〈∅〉() is a1”.

Now, if a property φ of program P has been established using
proof s, and P is extended with aspects (or the developer learns
about new aspects) P ′, we can distinguish three cases:

1. As a first quick check, the representation repL(P ′) can be
checked whether it is consistent with the justification set J(s).
This check could be performed by a machine. If J(s) is con-
sistent with repL(P ′), then the property is not affected. The set
J(s) could even be regarded as a kind of interface [18] towards
extensions of the program, i.e., only those extensions are ad-
mitted that are consistent with J(s) and the proof of any other
property of interest in the program. In this sense, J(s) is like
the rely part in rely-guarantee reasoning [37].

2. If the justification set is not consistent with the extension, then
the property potentially no longer holds. However, in many
cases it is possible to “repair” the proof by re-establishing the
violated subgoal or a “cut” through the set of invalided subgoals
(explained in detail below).

3. In the last case, it is necessary to revisit the program. For
example, if a new aspect intercepts calls to method f and calls
g instead, where g is already part of the old program, and if
the implementation of f was important for the proof, then it is
unavoidable to revisit g to re-establish the property.

To illustrate the issue, consider the small program in Fig. 7 (for
simplicity, we concentrate on the procedural part of the language
in this example and omit classes and objects) and a proof of the
property

∀n.f(n) ≈ true ⇔ (n > 0 ∧ prime(n)) ∨ (n ≤ 0 ∧
prime(−n))

The structure of a proof of this property is depicted in Fig. 8.
The picture shows subgoals of the proof, and the dependencies
among subgoals. It also shows the justifications of applied defaults
(the J(s) set). Those parts of the proof that are irrelevant for our
purposes (such as the proof that the body of isPrime is correct,
which is performed by normal classical reasoning) have been omit-
ted.

Now consider an extension of the program with additional ad-
vice. The question is whether the proof (and hence property) is still
valid. The quick check is to compare whether the justification set
J(s) is consistent with the expansion. In our example this means
that if neither f, nor g or isPrime have been advised, then we al-
ready know that the property still holds.

If one of the assumptions in J(s) has been violated by the ex-
tension, however, the property may no longer hold. For example,
consider an expansion of the program with the following “optimiza-
tion” advice:

advice a(n)
around call(isPrime(n)) {

if n modulo 2 = 0 then false
else proceed;

}

This advice violates the justification about isPrime not being
advised. In terms of the proof structure, it invalidates all subgoals
that depend on the corresponding default application. The set of
invalidated goals together with their dependencies form an acyclic
directed graph with the invalidated assumption at the top and the
property the proof is about at the bottom. Now, the basic idea is
that it is sufficient to re-establish all goals in some cut through this
graph of invalidated subgoals, i.e., a minimal set of nodes whose
deletion would break the graph of invalidated subgoals apart. In the
example, there are three sets of nodes that establish a cut, all of
which happen to consist of only a single node (see right-hand side
of Fig. 8). Since the purpose of the advice above is to optimize the
isPrime function while preserving its semantics, we choose the
top-most cut and can repair the proof as indicated in Fig. 9.

Of course, it is also possible that a property still holds after an
extension, but the proof of the property cannot be maintained in
an incremental manner. This could be because the correctness of
the property depends on some internal implementation detail of the
program that was not relevant for the “old” proof. However, if one
wants to hide the internals of the program from the advice writer,
one could expose well-defined parts of the proof tree as an interface
of the program towards expansions, such that a programmer who
wants to extend the program with advice has to make sure that the
proof of the property can be repaired as explained above. That is,
if the property cannot be re-established incrementally, the advice is
rejected.

The main point which makes this whole idea of checking the
preservation of properties possible is the compositionality of the
program representation. If the program representation is not com-
positional, the knowledge base of the extended program may look
completely different than the knowledge base of the smaller pro-
gram, hence doing any kind of reasoning on program parts seems
to be nonsensical.



Figure 8. Proof before extension by optimization aspect

Figure 9. Repaired proof after extension by optimization aspect

7. Discussion and related work
In this section we revisit the discussion from Sec. 1 about the
connection between modularity and knowledge representation, and
elaborate on some related work.

7.1 Modularity and the Frame Problem
A compositional representation is a morphism between a program-
ming language and a logic that preserves the modularity structure.
We believe that the existence of such a morphism reveals deep
underlying symmetries. For “conventional” procedural, object-

oriented, or functional languages, it is quite easy to find compo-
sitional representations in conventional predicate logic, whereas
we have seen that it is not obvious whether a similar representation
in predicate logic exists for AO programs.

We believe that the underlying reason is that conventional pro-
cedural, OO, or functional languages and predicate logic have sim-
ilar notions of abstraction, name definition/binding, and substitu-
tion. Lambda abstraction or function/method abstraction is very
similar to universal quantification, and the associated notion of
“instantiating” an abstraction by substitution is the same. In both



worlds, we have clear definitions of and distinctions between name
binding and bound occurences of a name.

We believe that the modularity problems (scattering, tangling)
that have been observed in these languages are quite related to the
frame problem [24], which was one of the main driving forces be-
hind non-monotonic logics. There are many different formulations
of the frame problem; the one that makes the connection to modu-
larity most obvious is maybe a variant of the frame problem known
as qualification problem, which McCarthy defines as follows:

“It seemed that in order to fully represent the conditions
for the successful performance of an action, an impractical
and implausible number of qualifications would have to be
included in the sentences expressing them.” [22]

The logic used in this paper, default logic, provides a new kind
of abstraction, namely general rules whose applicability can be in-
fluenced by other rules, which can define exceptions to the general
rule. Hence it is in general not sound to just “instantiate” the gen-
eral rules with arbitrary substitutions - just as it is in general not
sound to replace a method call with the method body in an AO lan-
guage. The direct connection between priorities in default logic and
precedence mechanisms in AO languages is further evidence of the
close relationship. Hence we believe that there is a lot of potential
in studying the relationship between nonmonotonic logic and as-
pects and, more generally, between knowledge representation and
modularity mechanisms more closely.

7.2 Related Work
There are ample opportunities to do so. For example, it would prob-
ably also be possible to define our language semantics in autoepis-
temic logic [27]. Autoepistemic logic introduces an operator L,
where Lφ is interpreted as ’I believe in φ’. Using this operator,
our (UNADV) rule, for example, could be encoded as

¬L¬unadvised(o,m,~a)→ unadvised(o,m,~a)

Since autoepistemic logic is intuitively based on introspection
(rather than default rules), autoepistemic logic might provide an-
other interesting interpretation of AOP.

Another well-known approach in nonmonotonic logic is cir-
cumscription [22, 23]. We believe that circumscription could be
useful to devise a model-theoretic interpretation of AOP. We be-
lieve it would be possible to define a variant of our semantics where
the unadvised and NextAdvice predicates are circumscribed (i.e.,
their meaning is minimized), rather than defining them via defaults.
However, this is clearly a topic for future work.

Kiczales and Mezini have informally compared modular rea-
soning in OO and AO languages in terms of an example [16]. Their
distinction between modular and expanded modular reasoning is
similar to our distinction between local and traceable reasoning.
Their observation that certain properties of their example program
can be established more modularly in the the AO version is an
example of the general characterization of modular properties in
AO languages that was discussed in Sec. 6.1. Their idea of aspect-
aware interfaces would correspond to a kind of pre-processing step
that adds annotations about potentially applicable advice to method
signatures. However, even though this step could be performed by a
machine, the underlying representation function would still not be
compositional - if the program is extended, the attached annotations
may look completely different.

Many other authors have proposed restrictions of AOP to ease
modular reasoning [1, 33, 9]. In contrast, the goal of this work is
to consider AOP in its full generality, but find a more modular ex-
planation of AOP than weaving. The MAVEN tool [11] and the
approach by Krishnamurthi et al [18] aim at modular verification
of aspects, but these works focus on temporal properties expressed

in LTL that are checked via model checkers, and not general equa-
tional reasoning.

Our notion of a compositional representation is related to com-
positionality in denotational semantics [32]. The additional require-
ment of program-independent formulae makes our compositional-
ity criterion in a sense more strict than the compositionality require-
ment in denotational semantics, because a denotation can be param-
eterized with global information. For example, the denotation of a
program part in the denotational semantics for an AO language by
Wand et al [34] is parameterized by a global “aspect environment”,
hence a “refactoring” of their semantics into a representation func-
tion would be compositional but with program-dependent formu-
lae.

The idea of modularity in language semantics is not new, but
usually has a different goal than this work. For example, modular
SOS [28] and monadic denotational semantics [26] both aim at
improving the modularity of the semantics itself, i.e., it should be
easy to extend the programming language in a modular way. In
contrast, this work is concerned with the modularity of programs in
the programming language.

8. Conclusions
“Weaving” as a metaphor to explain the meaning of aspects is a
bad idea, because it is inherently non-compositional and is incom-
patible with any kind of modular reasoning. We claim that the logic
with which we explain and reason about a program must reflect and
fit to the way we think about the program when designing its mod-
ular structure. We have shown that the modularity problems that
AOP aims to solve are similar to the frame problem and qualifica-
tion problem in knowledge representation and logic. As a concrete
argument for this connection, we have proposed an AO semantics
based on default logic, and have shown that it restores the ability to
do modular reasoning, at the price of nonmonotonicity.

We have also shown that there is a deep conflict between direct
mapping and monotonicity, and both the power and the problems of
AOP can be explained as a new trade-off between these two goals
that favors direct mapping at the expense of monotonicity. Lastly,
we have argued that nonmonotonicity is unavoidable and invariably
also present in classical modularity mechanisms, where reasoning
techniques such as a closed-world assumption have to be used to
reason about many important properties. However, a closed-world
assumption is in some sense a sledge-hammer method, because
the whole program has to be investigated for every reasoning step
(which is the flip-side of a scattered implementation of a property),
hence reasoning becomes very fragile. Nonmonotonic logics can
make the unavoidable nonmonotonicity more disciplined and ro-
bust by introducing explicit devices such as default rules to repre-
sent knowledge in a nonmonotonic way.
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