
Towards a Composition Taxonomy

Klaus Ostermann

Siemens AG CT SE 2

osterman@cs.uni-bonn.de

Abstract

Different similarities and differences between AspectJ, the first general-
purpose AOP-language, and Hyper/J, a recent implementation of multi-
dimensional programming, have been identified. This paper explores how
both proposals give different answers to the same question: How can we
modify existing classes, that are used by existing clients?

In this chapter, different criteria are developed by which all reviewed pro-
posals can be compared and classified on an abstract level. Our general model
in this chapter is that we have composition units which have to be composed in
order to build a composite unit. A composition unit can be almost anything, e.
g. objects, classes, mixins, aspects, connectors.

In order to compare the new composition models to the existing ones, in-
heritance and object composition are included in our investigations. Other
well-known language features such as structural subtyping or generic classes are
mentioned in case they help to explain a term.

1 Coupling

Coupling describes the nature and extent of the connections between elements of
a system. We define coupling as a criteria that describes the kind of dependence
of one composition unit on another composition unit1.

We define four different kinds of coupling which are explained below. The
coupling structure of the composition models is summarized in figures 2 and 3.

No Coupling

The composition unit is not dependent on any other composition unit with which
it may be composed. For example, an object usually does not know anything
about aggregators of the object.

1This definition is not symmetric: The coupling of the other composition unit to the first
one may be completely different.

1

Constraint Coupling

The composition unit can be composed with different other composition units,
but the other composite unit has to obey specified constraints. These constraints
can be defined by means of the subtype relationship, but many other constraint
definitions are possible. Darwin, object composition, personalities and mixins
use the classical subtype polymorphism. In Hyper/J, a hyperslice has to be
declaratively complete, which means that it must declare everything to which
it refers; locally undefined (abstract) declarations have to be mapped to some
implementation in a hypermodule. Abstract classes can only be subclassed by
classes providing implementations for the abstract methods2 (as long as these
classes are not abstract themselves). We can divide constraint coupling in two
forms of compliance definitions

• Explicit constraints: Units that obey the constraints explicitly refer to
the constraint definitions.

• Implicit constraints: Compliance to the constraints is inferred by the
system.

and further divide them by the location of the constraints. Internal constraints
are again divided into declared and hidden constraints.

• External constraints: The constraints are declared outside the unit.

• Internal constraints: The constraints are specified inside the unit.

– Declared Constraints: The constraints are declared.

– Hidden Constraints: The constraints are hidden in the implemen-
tation (see figure 1 for an example in AspectJ).

The usual subtype polymorphism is an example for external explicit constraints.
The need to declare conformance to the constraints usually leads to sharing
of constraints, e. g. a Comparable interface might be used by many classes.
However, this may lead to overconstraining, e. g. an instance variable is typed
to LinkedList, although the implementation of the list is not important, but a
more general list type has not been reified. Thus, overconstraining limits reuse.
If, on the other hand, every possibility for reuse is factored out, this may lead to
an explosion of types. For example, Johnson and Rees proposed a fine-grained
inheritance structure for a list class, which led to a list class that is made up of
about 25 different classes organized in a complex multiple inheritance hierarchy
[JR92].

These drawbacks are avoided by the use of implicit constraints. They allow
fine-grained reuse while at the same time avoiding the type explosion. Besides
the models found in this thesis, external implicit constraints can be found in
languages featuring structural subtyping (or implicit subtyping) [Car88], e. g.

2Kiczales and Lamping named the interface between a class and its subclasses the special-
ization interface [KL92].

2

class A {
void foo() { bar(); }

}
class B {

introduction A {
void bar() {...}

}
}

Figure 1: Coupling of a class to its aspects in AspectJ may be implicit, internal
and hidden

Emerald [RTL91]. If, however, constraint conformance is checked by the sys-
tem, this may lead to wrong results. For example, Cowboy is not a subtype of
Drawable, although it has a draw() method [Mag91].

Explicit internal constraints (e. g. abstract methods) limit the reusability of
client composition units, because these clients are hard-coupled to the unit with
the aforementioned constraints (clients have to explicitly refer to the constraints,
but these are only defined inside the composition unit).

Examples for hidden constraints are Smalltalk-like polymorphism (an object
can be passed to a method if it is able to respond to all methods that are send
to the object in the method, otherwise a “message not understood” error is
produced at runtime) and usage of global variables. Hidden constraints may
also show up in AspectJ, see figure 1. We consider hidden constraints bad,
because the detection of effects of changes becomes extremely difficult.

No coupling can sometimes be seen as a degenerated form of constraint
coupling. For example, a non-abstract class is a degenerated form of an abstract
class. If the constraints can be empty, we speak of optional constraint coupling.

Selection Coupling

The unit is coupled to a set of other units. The elements of this set are all units,
that pass a certain selection criteria, e. g. all units, whose name starts with A
or all units, that contain a method returning an integer. The selection criteria
may refer to unit invariants (i. e. properties that do not change at runtime) or
to unit state. We call the former case compile-time selection, the latter case
runtime selection. Selection coupling requires a selection scope, i. e. the set of
all inspected units relative to the selection criteria. If the selection scope should
include all available units, this requires a closed world where this information is
requestable (see section 2).

Runtime selection poses many difficulties, see [Sch98] for a discussion on
constraint classes (a special case of runtime selection). One major reason is,
that the selection may change as a side-effect of an update.

3

Hard Coupling

The unit explicitly refers to another unit and cannot be reused in another com-
position. For example, a class is hard-coupled to its superclass.

2 World Assumptions

The composition/compilation of units may happen under two different so-called
world assumptions [PS94]:

• Closed-world assumption: All parts of the program are known at
compile-time. The compiler has a global view of the program, which en-
ables more advanced optimizations (dead code detection, flow analysis)
and the detection of relations which are not visible locally, e. g. a unit A
may influence the compilation of a unit B, although A is never referenced
in B. Compilation under the closed-world assumption does not scale well.

• Open-world assumption: Different independent parts of the program
can be compiled separately. The open-world assumption allows advanced
features like dynamic class loading [LY96] and scales well.

3 Composition Binding

The composition process of a composite unit may take place at different times.
We divide the proposals in three categories:

• Static binding: The composition is completely static (inheritance, mix-
ins, Hyper/J, JPerspectives, static personalities, static aspects in AspectJ,
aspectual components).

• Activation binding: The structure of the composition is static, but
different units of it can be activated and deactivated at runtime (dynamic
personalities).

• Dynamic binding: Units of the composite unit can be freely replaced
at runtime by other units fitting predefined constraints, e. g. subtypes of
a given type (object composition, Darwin).

4 Composition Scope

Sometimes a unit can be accessed in different ways and behaves differently
depending on the way of access. We call each possible access way a handle.

We divide the different models in two groups:

• Single handle: Each composite unit has a unique handle by which all
features of the unit can be accessed. For example, the features of all
superclasses of a class are accessible by a reference to an instance of that
class.

4

Composite
Mixin Class

Aspect Aspect

AspectJ

**

Aggre-
gator

Aggre-
gatee

Aggre-
gatee

<explicit>
<external>

<explicit>
<external>

Object composition

Subclass

Super-
class

Super-
class

<explicit>
<internal>
<declared>

<explicit>
<internal>
<declared>

Inheritance

*

Hard coupling

Selection coupling

Constraint coupling

Optional constraint coupling

<implicit>
<internal>
<hidden>

<implicit>
<internal>
<hidden>

(Sub)
Mixin

(Super)
Mixin

MixedJava

<explicit>
<external>

<explicit>
<internal>

<declared>

Dele-
gator

Dele-
gatee

Dele-
gatee

<explicit>
<external>

<explicit>
<external>

Darwin

Figure 2: Coupling, part 1

5

Hyper-
module

Adap-
ter

Super-
class

Adap-
tee

Pluggable composite Adapter

<explicit>
<external>

Class

Pers-
pective

Pers-
pective

Polymorphic Objects

Hyper-
slice

Hyper-
slice

Hyper/J

*

Hard coupling

Selection coupling

Constraint coupling

Optional constraint coupling

**

Class

Perso-
nality

Perso-
nality

<explicit>
<internal>
<declared>

<explicit>
<internal>
<declared>

Personalites

Class

Compo-
nent

Compo-
nent

Aspectual Components

Connec-
tor

Connec-
tor

<explicit>
<internal>
<declared>

<explicit>
<internal>

<declared>

<explicit>
<internal>

<declared>

<explicit>
<internal>
<declared>

<explicit>
<internal>
<declared>

Figure 3: Coupling, part 2

6

• Multiple handles: The composite unit has more than one handle. The
behavior, available features and internal interaction depend on the handle
that is currently used. For example, an object can be viewed through
different perspectives in JPerspectives. Every dynamic composition offers
multiple handles (the different OIDs).

5 Composition Identification

If the structure of a composite unit is static (static binding and activation
binding), the particular composition must have an identification that can be
used to create an instance of the composite unit. Three identification schemes
can be found in the composition models of chapter ??:

• Dedicated Unit (DU): A specific unit is selected whose identification
represents the composite unit. After the composition, it is not possible to
refer solely to this unit, because it is identified with the composition. We
call this unit the dedicated unit, the rest of the units subordinate units. In
AspectJ, a class automatically consists of all aspects that are plugged into
it. Other composition schemes in this category are inheritance, aspectual
components and personalities. The disadvantage of this composition iden-
tification is that the dedicated unit cannot be reused separately without
its subordinate units.

• Identified Composition (IC): The composite unit is identified with the
composition itself, the subordinate units are left untouched. When using
mixin-based inheritance, a specific composition of two units (mixins) has
its own name. Hyper/J generates a completely new set of classes for each
hypermodule. Generic classes like C++ templates also belong to this
category. The obvious advantage is that all units can be reused in other
configurations.

• Aliasing: A composite unit may have different identifications and each
unit identification represents the whole composite unit. These different
aliases may not be completely equal (e. g. they may correspond to different
handles of the composite unit, although they refer to the same composite
unit. In this case, no unit can be reused on its own in another composite
unit. The only proposal in this category is polymorphic objects.

6 Composition Deployment

An important goal of component-oriented programming is that software should
be extensible without modification of existing code. However, this goal cannot
be satisfactorily achieved with current object-oriented technology (see discussion
in problem ??).

In this chapter, we present four different techniques to deal with this prob-
lem: In-place addition, in-place modification, client migration and in-place client

7

modification. Three of them can be found in the state-of-the-art models; we
think that the fourth one is an interesting middle road that complements the
other ones.

• An in-place addition is the enrichment of the interface of a component
after it has been constructed and delivered and without modification of
its (eventually not available) source code. Such changes typically consist
in adding data fields or methods that the original component did not
support. JPerspectives (??) allows the addition of perspectives to a class,
that encode additional state and behavior. Pluggable composite adapters
are also related to in-place addition because an adapter can be associated
with an object at runtime.

• An in-place modification is a modification of the behavior of a component
without changing the component itself. An example is the definition of
an action that should be executed instead of or in addition to a method
body whenever that method is called. For example, an aspect in AspectJ
(section ??) can augment method bodies of its base class with aspect-
specific code.

• A related strategy is client migration, but instead of changing the behavior
of the existing component, a new extended component is created. The new
behavior is incorporated into the application by duplicating clients3 of the
original component. In these duplicates, all references to the original
component are replaced by references to the extended component. The
Hyper/J example in section ?? shows that client migration may serve as
an alternative for in-place modification (AspectJ example in section ??).

• In-place client modification is a combination of the previous two tech-
niques. In this case, an extended component with the new behavior is
created. That new component is incorporated into the application by an
in-place modification of clients. The in-place modification replaces all ref-
erences to the original component with references to the new component.

In-place addition enables decentral addition of state and behavior to a com-
ponent. It does, however, not alter any previously available behavior. For
this reason, only clients that know about the augmentation can participate in
it. With conventional technology, the effect of in-place addition can be partly
achieved by one of the following techniques:

• If in-place addition is anticipated, a dictionary can be put into the classes.
New state and behavior is encoded in separate classes and instances of
these classes are stored in the dictionary. The problem in this case is
the insertion of the objects into the dictionary. Objects could register
itself in the dictionary in their constructor, but then the question is: Who

3In this context, clients are direct users of the component, e. g. subclasses or classes creating
instances of a class.

8

creates these objects? In a language like C++, a global object could do
that job, because these are initialized when the application is started. In a
programming language like Java, classes are initialized by the class loader.
However, the class loader will not load a class until it is used by some other
class. For this reason, the global object approach will not work in Java.
A possible solution would be to use class names as keys in the dictionary
and objects of these classes are created as needed by usage of the Java
reflection facilities.

• If in-place addition is not anticipated, essentially the same technique can
be applied with a global dictionary that stores the dictionaries for the
augmented objects (a dictionary is retrieved from the global dictionary
with the object as the key). However, this technique is even less elegant
than the first one.

In-place modification is destructive in the sense that the original behav-
ior of the component is no longer available after composition. Thus, in-place
modification is appropriate if all (known and unknown) clients of this class are
intended to participate in the modification. If only selected clients should use
the modified class, in-place modification fails.

Client migration is better suited for selective modification, because existing
classes are not changed. On the other hand, this strategy imposes a maintenance
problem, if the modified class should be used by all (existing and future) clients,
because all clients have to be listed explicitly in the composition specification.

Additionally, client migration poses the question of how to handle clients of
the migrated clients (clients-of-clients problem). Either these clients-of-clients
are migrated, too, or they have to be invasively modified, or they continue to
use the old version of the modified class. The first case can be iterated until
the main entry into the system, e. g. the starting class, is migrated – in this
case, the deployment has to be changed invasively (with of course less weighty
consequences).

In-place client modification seems to be a promising middle road between
the two other approaches. It enables selective modifications but it does not
suffer from the clients-of-clients problem.

Independent Extensibility

A useful property of an extensible component is independent extensibility: A
system is independently extensible if it is extensible and if independently devel-
oped extensions can be combined [Szy96].

The difficulty in achieving independent extensibility when using in-place
modifications is that different extensions might conflict and no central instance
(like the inheriting class in a multiple inheritance hierarchy) is available to
resolve this conflict.

9

For example, AspectJ suffers from this problem in case of conflicting intro-
ductions, which result in compiler errors. One could be tempted to limit the
visibility of introductions by using public, protected and private modifiers.
However, this will only reduce the number of conflicts but will not help to deal
with the remaining ones, e. g. two conflicting public introductions.

Advice conflicts can be influenced by defining a partial order on the as-
pects, which introduces a low coupling among them. However, ordering aspects
will often be too coarse grained, because an ordering that is appropriate for
conflicting advices related to one particular method might be fully inappro-
priate for advices referring to another method. For instance, one might have
an original class with methods start() and end() and two aspects: The one
advices that a new method openTheDoor() should be invoked before start()
and closeTheDoor() before end(); the other one advices that a new method
goInside() should be invoked before start() and goOutside() before end().
Clearly, the only sensible sequence of events is: openTheDoor(), goInside()
and goOutside(), closeTheDoor(), which corresponds to different orderings of
the advices from different aspects.

A more subtle problem is related to updates: If an aspect updates state
of its object, state hold or introduced by other aspects will in general become
inconsistent. It is impossible to detect automatically, let alone to reconcile,
different (implicit) invariants assumed by different aspects. Therefore, the only
possible solution seems to be to let each aspect enforce its own invariants. This
would be possible if aspects were informed about state changes in the shared
object (e. g. as listeners of corresponding events). However, this is no general
solution because the actions taken by one aspect to enforce its invariants might
lead to further changes of shared state that might lead to other actions by other
aspects, and so on ad infinitum.

Client migration, on the other hand, suffers from difficulties when it comes
to the combination of extensions. Either a new component that combines the
different extensions is created, which poses the clients-of-clients problem, or an
existing component is modified in order to include the extensions. For exam-
ple, in Hyper/J we can either create a new hypermodule containing all clients
(clients-of-clients problem) or we can change an existing hypermodule specifi-
cation.

7 Unit Interaction

Units may interact in a number of ways. We distinguish explicit interaction from
implicit interaction. An interaction between A and B is explicit, if A explicitly
uses or calls a feature of B, e. g. an object calls a method of another object.
The interaction is implicit, if A does not “know” that it interacts with B, e. g.
B overrides a method of A.

In a sense, we could have exchanged explicit with anticipated and implicit

10

Inher. Obj. comp. Mixins AspectJ Darwin
Composition identification

dedicated unit X X
identified composi-
tion

X

aliasing
client migration
in-place modifica-
tion

X

in-place addition
Composition binding

static X X X
activation
dynamic X X X

World assumption
open X X X X
closed X

Table 1: Properties of the composition models, part 1

Hyper/J PO PCA Person. AC
Composition identification

dedicated unit X X
identified composi-
tion

X

aliasing X
client migration X
in-place modifica-
tion

X

in-place addition X X
Composition binding

static X X X X
activation X
dynamic X

World assumption
open X X X
closed X X

Table 2: Properties of the composition models, part 2

11

with unanticipated, because explicit interaction is built in, while implicit inter-
action is patched in externally.

In the next subsection, we try to develop terminology to describe implicit
interaction. A difficulty in analysing the interaction between the units was that
the interaction patterns may depend on the handle that is used (cf section 4).
For this reason, we analysed the interaction separately for each available handle
in a composition model.

The application of these investigations to the composition models is shown
in figures 4 and 5. The composition models in figure 5 exhibit handle-dependent
interaction and the interactions for each possible handle are shown.

Implicit Interaction Disassembled

The existence of reference points (or join points [KLM+97]) for the composition
process is essential to the coordination of implicit unit interaction. Although
other reference points are possible (see [OT98] and [KLM+97]), we restrict ref-
erence points to be methods or attributes. Correspondence4 refers to the speci-
fication of reference points that are related, e. g. two methods in different units
might correspond if they have the same signature. Unification, on the other
hand, refers to the process by which corresponding constructs are combined.
For example, two corresponding methods might be unified by selecting one of
them to override the other.

Many correspondence and unification schemes are possible which can be
combined in different ways. Only few of them will prove useful, however. We
have identified three correspondence schemes in the composition models.

• Correspondence by name: This simple form of correspondence uses
feature names to specify correspondence. Many proposals do not only
use the name of a feature, but its full signature. Nevertheless, we do
not want to focus on technical details like signatures, overloading or co-
/contravariant parameter redefinition, so we refer to all these correspon-
dence variants as name correspondence.

• Correspondence by declaration: Correspondence of different features
is explicitly declared in a correspondence expression.

• Correspondence by selection: The correspondence expression specifies
a rule by which features are selected to correspond, e. g. all features that
return an integer or whose name starts with ”get” correspond.

Inheritance, object composition, mixins, Darwin, JPerspectives and personali-
ties are based on correspondence by name. Correspondence in aspectual com-
ponents and AspectJ is specified by declaration or by selection. Hyper/J offers
a combination of all three strategies: A general strategy, e. g. correspondence
by name, is selected and exceptions to, or specializations of this strategy are
defined for cases where the general strategy does not apply. Note that name

4Some terminology in this subsection has been adopted from [OKK+96] and [SD99].

12

correspondence is the only strategy where no correspondence expression is nec-
essary.

The most important unification strategies are:

• Merge unification: Two corresponding attributes are actually the same
attribute in a composite unit and corresponding methods are executed
sequentially in some order when any one of them is requested. Special at-
tention has to be paid to the generation of unique return results. Hyper/J
is the only model with special support for this strategy.

• Event unification: This is a restricted variant of merge unification for
methods without return values. One of the methods is selected to be
the trigger method. When this method is called, all other methods are
executed sequentially in some order. When any other method is called,
only this method is executed. Change propagation in JPerspectives (p.
??) uses event unification.

• Override unification: One of the corresponding methods is selected
to override all other methods, which means that the selected method is
executed whenever any of the corresponding methods is requested. The se-
lected method may or may not call the other methods. In the first case, the
other methods are called either directly (e. g. C++ or Eiffel inheritance,
Darwin, PO) or the methods are put in a linear order and the methods
can refer to the next method by a special identifier (call-next-method in
CLOS, inner in Beta, super in Java, MixedJava and JPerspectives). In
some cases, the call to the next method is mandatory, either by manda-
tory explicit calls (expected in Aspectual Components) or by implicit calls
(before/after advices in AspectJ). In other cases, the method writer is
not even aware of the correspondence of that method with other method,
e. g. in Hyper/J.

All strategies require some kind of order among the units. Merge and event
unification require a linear order, override unification require at least a “maxi-
mal” unit. An order on the units can be created by the following order creation
strategies:

• Structural order: The structure of the composite units induces a lin-
ear (mixins) or a partial (inheritance, Darwin) order. In the latter case,
the partial order is converted to a linear order, ambiguities (units not or-
dered by the partial order) usually have to be resolved by sophisticated
language features (e. g. feature renaming mandatory overriding in Eiffel
inheritance), or their order is undetermined.

• Explicit partial order: The default order is undetermined, but spe-
cial order hints can be specified (AC, AspectJ, Hyper/J). The generated
linear order takes the partial order determined by the order hints into
consideration.

13

Compo-
nent

Compo-
nent

Aspectual Components

Class

Connec
tor

Connec
tor

explicit explicit

decl./sel. co.
override un.
partial ord.Class

Aspect Aspect

AspectJ

explicit explicit

decl./sel. co.
override un.
partial ord.

Hyper-
slice

Hyper-
slice

Hyper/J

name/decl./selection co.
merge/override un.

partial order

Subclas
s

Super-
class

Inheritance

explicit
name co.

override un.
struct. ord.

(Sub)
Mixin

(Super)
Mixin

MixedJava

name co.
override un.
struct. ord.

explicit

Personalites

Class

Perso-
nality

explicit
name co.

override u.
struct. ord.

Figure 4: Interaction structure part 1

• Undetermined order: The order is completely undetermined, e. g. the
order in which perspectives are notified about state changes in JPerspec-
tives.

In the second and in the third case, we have the problem of undeterministic
behavior. This is undesirable because the actual behavior may depend on the
compiler, the platform or other circumstances. We can only advise the pro-
grammer not to write code that depends on the actual order, but this may be
hard to achieve and is not verifiable by the compiler.

References

[Car88] L. Cardelli. Structural subtyping and the notion of power type. In
Proceedings of the ACM conference on Principles of programming
languages, pages 70–79, 1988.

[JR92] Paul Johnson and Ceri Rees. Reusability through fine-grain inher-
itance. Software – Practice and Experience, 22(12):1049–1068, De-
cember 1992.

14

JPerspectives

Adap-
ter

Adap-
ter

Super-
class

Adap-
tee

explicit explicit

Adap-
ter

Super-
class Adap-

tee

Adap-
tee

Pluggable composite
Adapter

name co.
override un.
struct. ord.

active Handle

Object composition

Aggre-
gator

Aggre-
gator

Aggre-
gatee

Aggre-
gator

Aggre-
gatee

Aggre-
gatee

explicit

Dele-
gator

Dele-
gator

Dele-
gatee

Dele-
gator

Dele-
gatee

Dele-
gatee

Darwin

explicit
name co.

override un.
struct. ord.

Class
Class

Pers-
pective

Pers-
pective

name co.
event un.

undet. ord.

Class

Pers-
pective

Pers-
pective

Pers-
pective

explicit

name co.
event un.

undet. ord.

name co.
override un.
struct. ord.

Figure 5: Interaction structure part 2

[KL92] G. Kiczales and J. Lamping. Issues in the design and specification
of class libraries. In Proceedings OOPSLA ’92, volume 27 of ACM
SIGPLAN Notices, pages 435–451, 1992.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Aksit and Satoshi Matsuoka,
editors, Proceedings ECOOP’97, LNCS 1241, pages 220–242, Jy-
vaskyla, Finland, 1997. Springer-Verlag.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci-
fication. Addison-Wesley, 1996.

[Mag91] Boris Magnusson. Position statement during the ecoop ’91 workshop
on types. Geneva, Switzerland, July 1991.

[OKK+96] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harri-
son, and Vincent Kruskal. Specifying subject-oriented composition.
Theory and Practice of Object Systems, 2(3):179–292, 1996.

[OT98] Harold Ossher and Peri Tarr. Operation-level composition: A case
in (join) point. In ECOOP ’98 Workshop on Aspect-Oriented Pro-
gramming, 1998.

15

[PS94] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type
Systems. Wiley, 1994.

[RTL91] Rajendra K. Raj, Ewan Tempero, and Henry K. Levy. Emerald:
A general-purpose programming language. Software – Practice and
Experience, 21(1):91–118, 1991.

[Sch98] Jürgen Schlegelmilch. Class and type hierarchies: Extension, con-
straining, and roles. Rostocker Informatik-Berichte 21, Universität
Rostock Fachbereich Informatik, 1998.

[SD99] Mark Skipper and Sophia Drossopoulou. Formalising composition-
oriented programming. In Proceedings of the aspect-oriented pro-
gramming workshop at ECOOP 99, 1999.

[Szy96] Clemens Szyperski. Independently extensible systems – software en-
gineering potential and challenges. In Proceedings 19th Australian
Computer Science Conference. Australian Computer Science Com-
munications, 1996.

16

