
On the relation of aspects and monads

Christian Hofer and Klaus Ostermann
Computer Science Department

Darmstadt University of Technology, Germany

ABSTRACT
The relation between aspects and monads is a recurring
topic in discussions in the programming language commu-
nity, although it has never been elaborated whether their
resemblences are only superficial, and if not, where they are
rooted. The aim of this paper is to contrast both mech-
anisms w.r.t. their capabilities and their effects on modu-
larity, first by looking at monads as a way to express tan-
gling concerns in functional programming and by discussing
whether they can be regarded as a form of AOP, then by
taking the view that monads express concerns of computa-
tions and by analyzing the extent to which aspects are able
to handle those concerns.

Our results are mostly negative: monads are not capa-
ble of quantifying over points in the program execution in
a declarative way, whereas aspects are not very useful in
abstracting over computational capabilities.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Languages; D.3.3 [Programming Languages]: Language
Constructs and Features; F.3.3 [Logic and Meanings of
Programs]: Studies of Program Constructs

General Terms
Design, Languages

Keywords
aspect-oriented programming, aspects, monads, monad trans-
formers

1. INTRODUCTION
Since De Meuter [9] has first discovered resemblences be-

tween aspects and monads on the descriptive level – layering
of code, system wide repercussions, easy integration – those
are a recurring topic in discussions in the programming lan-
guage community, although it has never been elaborated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

whether they are only superficial, and if not, where they are
rooted. This paper tries to shed some light on this topic by
contrasting the two mechanisms w.r.t. to their capabilities
and their effects on modularity.

We first specify what we regard as the essence of each
of the concepts. Then, in the next section, we will look at
monads as a way to express tangling concerns in functional
programming, and discuss the extent to which monadic pro-
gramming can be regarded as a form of AOP. We therefore
analyze a monads-based implementation of the display up-
date example as used by Kiczales and Mezini [5] (and many
others).

Finally, we take the view that monads express concerns
of computations and we analyze the extent to which aspects
are able to handle those concerns. This discussion is mainly
theoretical, however a monadic interpreter (see Liang et al.
[6]) for a small functional language with dynamic variable
binding will be simulated in AspectJ to demonstrate the use
of dynamic quantification.

Although this work started as a project to identify the
commonalities of aspects and monads, it turned out that
the differences prevail. Based on ones point of view, this
may or may not be very surprising, but since the topic is
repeatedly brought up in blogs or discussions, we believe
there is some value in substantiating the debate.

In the following, we assume basic familiarity with monads
and monad transformers as available in Haskell [11], and
familiarity with AspectJ [3].

1.1 Aspect-oriented programming
The aim of AOP is generally uncontested: the separation

of cross-cutting concerns, i.e. a better source code organi-
zation that prevents that concerns are scattered around the
source code, and complementarily, that several concerns are
tangled at single places.

It is less clear, how to characterize the actual mecha-
nisms for achieving this aim. Filman/Friedman [1] have
given the famous characterization of AOP as “quantifica-
tion and obliviousness”, meaning that it allows the trig-
gering of actions whenever a specified condition arises in
a program (quantification), without the knowledge of the
programmer (obliviousness). But as obliviousness is in con-
flict with the principle of explicit interfaces, and there is a
case for non-oblivious quantification as well, this definition
has been seen as too restrictive. On the other hand, the def-
inition of Masuhara/Kiczales, requiring “a common frame
of reference that two (or more) programs can use to connect
with each other and each provide their semantic contribu-

tion” [8] seems too general to delimit AOP from other kinds
of module systems.

Another characteristic of current AOP mechanisms, the
“introduction of declarative policy languages” [12], is left
implicit in both definitions, but will turn out to be helpful
in drawing a line to “classical” module systems.

For the further analysis, we will pragmatically define a
mechanism as aspect-oriented, if it aims at the separation
of concerns in the organization of source code, by making
use of declarative quantification and by finding a balance
between the contradictory principles of obliviousness and of
explicit interfaces.

1.2 Monads
Monads, besides being a notion of category theory and a

means of defining a categorical semantics of computations
[10], are a mechanism in functional programming that (1)
allows the introduction of imperative statements, like state-
ful computations or exceptions, into purely functional lan-
guages, and (2) provides a way to abstract over different
kinds of computations. We want to recapitulate briefly, how
this abstraction works.

A computation can be regarded as a kind of function that
will typically produce a value. Each kind of computation
is characterized by a specific structure of parameters and
return values. It can be defined by a type constructor that –
together with the value typically produced by a computation
– defines the type of this computation.

For example, the type constructor Maybe defines computa-
tions that typically produce values, but may fail. The types
of this kind of computation can be defined polymorphically
as:

data Maybe a = Just a | Nothing

There are two important operations that go with every kind
of computation: (1) several computations of the same kind
can be put together into a sequence; (2) a value can be
injected into a computation with the effect that this value
will be returned by the computation when it is run. Haskell
provides a specific monadic (do) notation that is useful for
putting together computations. Let us consider a simple
example of a comparison of two values associated with two
keys in a database:

eqVal key1 key2 db =

do val1 <- lookup key1 db

val2 <- lookup key2 db

return (val1 == val2)

This is a sequence of three computation steps, the first will
lookup key1 and will typically produce a value val1, but
may fail. The second step works analagously. The third
computation compares both values: the boolean value that
results from the comparison is injected into the kind of com-
putation. For the Maybe monad, the return operator is the
Just constructor, so if the computation arrives at the third
computation step, the result is either Just True or Just

False. The sequencing of computations is left implicit in
the do notation. A bind operator binds the value returned
by the first computation to a variable that can be accessed
by the latter computations. If a computation step fails in
the Maybe monad, the complete sequence is aborted, and
Nothing is returned.

The monad abstracts over the possible failure of the com-
putation. The programmer is oblivious to what happens
behind the scenes in two regards: (1) she does not have to
worry about the specific structure of parameters and return
values, but can simply inject values into the computation
where needed; (2) she does not have to worry about how
the effects of one step are passed to the next computation
steps (in this case, this concerns only the abortion of the
complete computation; but e.g. in the State monad, the
passing of the state through all computations is hidden be-
hind the scenes.)

Different monads can be combined via monad transform-
ers in order to express more complex kinds of computations.
The different concerns of these computations are separated
into the individual monads.

Modularity effects.
The addition of computational capabilities to some oper-

ations is the cause of a severe modularity problem in func-
tional programming: often the parameter structure of a
whole set of functions within a program has to be adapted
to reflect this additional capability. Using monads, the pa-
rameter structure can be encapsulated together with the op-
erations that make use of it (in the case of the Maybe monad,
the only such operation is the fail operation that is associ-
ated with the Nothing constructor). In that way, monadic
programming allows the careful inclusion of specific compu-
tational powers into a program, while keeping the different
kinds of computations modularized.

The price to pay for this is referential transparency, if one
takes the do notation of Haskell literally. For example, the
result of the get operation in the state monad is dependent
on the context, although it appears not to take any input
parameters. Of course, if one takes the hidden bind operator
into accout, it is still valid to reason with value substitution.

2. TANGLING CONCERNS IN FP
The tangling of concerns is not restricted to imperative

programming, but prevalent in functional programming as
well. Its simplest form is the side effect. But tangling con-
cerns can go together in different ways. A transaction con-
cern e.g. could rewind a computation. Monads are a natural
starting point, if one implements those tangled concerns in
a purely functional programming language. They allow for
the production of side effects as well as for some control of
execution, hiding all those computational details from the
base functionality.

In the following section, we want to present an imple-
mentation of the display update example in Haskell using
monadic programming. We want to discuss the capabilities
of monads regarding the modularization of the cross-cutting
concerns inherent in this example. The core of the display
update example – as it is discussed e.g. in [4] – is a module
that defines two simple shapes, points and lines, on a two-
dimensional cartesian coordinate system. All shapes are up-
dateable structures. In particular, they all have a move op-
erator, that moves the shape along both coordinates. This
module is complemented by an aspect that is responsible
for performing a display refresh, whenever a shape on the
display is updated.

The whole example rests on an imperative programming
foundation, regarding the shapes as stateful objects. It shall
not be discussed here, whether this implementation is the

most natural for a functional programming language. As
the programming style is monadic, anyway, the imperative-
ness of the task is no hindrance to the implementation and
can still show the intricacies involved in handling tangling
concerns.

Display module.
We do not want to discuss the display module in detail,

but we cannot omit it completely: in contrast to the Java
solution we have to be much more specific on which com-
putational powers it shall have. The display functions are
implemented via an IOable monad (i.e. a monad that imple-
ments a liftIO function – belonging to the MonadIO type
class – that lifts an IO operation to the monad). Using the
style of [2], we define the interface of the display functions
via a type class, while giving an implementation using a
state monad transformer.1

class MonadIO m => MonadDisplay m where

setDisplay :: DisplayObject -> m ()

refreshDisplay :: m ()

type DisplayT = StateT DisplayObject

instance MonadIO m => MonadDisplay (DisplayT m)

...

The setDisplay function can be used for specifying an ob-
ject to be displayed, the refreshDisplay function has to be
called, whenever some information on the display changed
so that the information has to be refreshed.

An object that shall be displayed must be made an in-
stance of the Displayable class and implement the display

function.

class Displayable a where

display :: MonadIO m => a -> m ()

data DisplayObject =

forall a. Displayable a => DisplayObject a

The use of the forall quantifier in the data type DisplayOb-
ject can be regarded as a trick to ensure polymorphism over
all Displayable objects in the setDisplay function.

Shapes module.
The basic shapes functionality is implemented impera-

tively, in the example. IORefs are used as references to mem-
ory cells: a point is a reference to a pair of integers, a line
is a reference to a pair of points. Due to the use of IORefs,
all computations have to take place in an IOable monad.
The constructor newPoint and the accessor getPointX are
examples of functions that do not perform a state change
and solely depend on the MonadIO class.

newtype Point = P (IORef (Int, Int))

newPoint :: MonadIO m => Int -> Int -> m Point

newPoint x y =

do p <- liftIO $ newIORef (x, y)

return (P p)

1The full code is available at http://www.st.informatik.
tu-darmstadt.de:8080/∼ostermann/foal07/

getPointX :: MonadIO m => Point -> m Int

getPointX (P p) =

do (x,_) <- liftIO $ readIORef p

return x

In contrast, the movePointBy function has to trigger a dis-
play refresh. The straightforward way to integrate the shapes
functionality with the display functionality is to import the
Display module and add a call to refreshDisplay at the
end of all operations that perform a state change. The
movePointBy function then looks like this:

movePointBy (P p) dx dy =

do liftIO $ modifyIORef p

(\(x, y) -> (x+dx, y+dy))

refreshDisplay

The type signature for this function is inferred as:

movePointBy :: (MonadDisplay m) =>

Point -> Int -> Int -> m ()

Analogously, all the other state modifying functions have to
run in a monad encompassing the display state. For mak-
ing points and lines displayable, they have to be declared
instances of the class Displayable.

2.1 Obliviousness
This solution is very similar to a typical object-oriented

implementation (see e.g. the “GOFP” solution in [5]). The
base functionality is tangled with calls to the display mod-
ule. The monadic style allows us to abstract from the cur-
rent display state that would otherwise have to be passed
around through the base code. But it does not allow us to
separate out the call triggering the display refresh.

In AspectJ we can externally define a pointcut that trig-
gers the display refresh and that the programmer of the base
functionality is oblivious of. We cannot achieve oblivious-
ness with monads. The module boundaries are clearly re-
spected, and there is no way to reflect over the names of the
computations. The situation would be different, if monads
were used to implement an interpreter for an AO language,
because inside an interpreter reflective access is possible. In-
deed, Wand et al. [13] have defined a monadic semantics of a
pointcut mechanism: each procedure call takes place within
a join-point environment that is extended by the name of
the currently called procedure. This access to the procedure
name is not available in a direct implementation. Adding
reflection to a language with monads, on the other hand,
runs the risk of breaking not only modularity, but as well
the monad laws.

2.2 Non-oblivious AOP?
As it has been argued that obliviousness is not essential for

AOP, we can try to achieve some form of non-oblivious sep-
aration of concerns. We first have to specify, which concerns
are involved in the example. We will follow Kiczales/Mezini
who have analyzed three further concerns besides the refresh
implementation and the base functionality:

“Context-to-Refresh – What context from the actual dis-
play state change points should be available to the re-
fresh implementation?

“When-to-Refresh – When should the display be refre-
shed?

“What-Constitutes-Change – What operations change
the state that affects how shapes look on the display,
i.e. their position?” [5]

The separation of the “context to refresh” concern makes
use of obliviousness in the implementations discussed in [5].
A static pointcut like this, target or args has to be used
within the aspect module in order to query the relevant in-
formation from a single place. The alternative would be to
pass along the information with the refreshDisplay call.
That would leave the concern scattered within the base func-
tionality. While a reader monad could avoid the explicit pa-
rameter passing, the environment to be supplied to the dis-
play module has still to be defined somewhere in the state
change operations of the base code. Thus, the scattering
cannot be avoided in that way.

The distinction between the concerns “when to refresh”
and “what constitutes change” can be made in the monadic
program, and the former concern can thereby be modular-
ized. For this purpose, the call of refreshDisplay is omit-
ted and the state changing code is embedded into the call
of a function withStateChangeSignal, instead.

movePointBy (P p) dx dy = withStateChangeSignal $

liftIO $ modifyIORef p (\(x, y) -> (x+dx, y+dy))

The withStateChangeSignal takes a computation as pa-
rameter, and embeds the computation into the sending of
a signal.2 This allows the receiver of the signal to attach
other computations before, after or around (including: in-
stead of) the original computation. This is in contrast to
firing an event, which would be the classical OO solution.3

The signal is declared via a type class MonadStateChange,
which in effect globalizes the declaration and permits to de-
fine an implementation in some module that is not imported
by the shapes module.

class MonadIO m => MonadStateChange m where

withStateChangeSignal :: m a -> m a

The type of the movePointBy function is inferred as:

movePointBy :: (MonadStateChange m) =>

Point -> Int -> Int -> m ()

We leave the concern of “what constitutes change” tangled
with the base functionality. We could separate the latter
by factoring out the former into a module working as a
proxy, that simply passes on the operations while accom-
panying those operations that perform a state change with
the corresponding signal. The viability of this approach de-
pends on the power to redirect to the proxy the calls to the
shapes module by its clients, that – if it is to be done in a
non-oblivious way – requires a powerful module system. To
which extent the Haskell type class system is apt for this
task, cannot be discussed here.

But even then, the tangling of concerns would only be
shifted to the proxy. Tangling is inevitable, because in
monadic programming there is no mechanism for what Fil-
man/Friedman [1] call “static quantification”: we cannot
make quantified statements over the program text, in the
sense of making statements that have an effect on more than
one place in the elaborated program (see [1]).

2The with prefix is adapted from a Lisp macro convention.
3However a similar effect could be achieved in Java by encap-
sulating the state modifying code into an anonymous class.

2.3 Declarativeness
A separate module is responsible for the integration of the

shapes and the display modules. It defines the Displayable

instances for the shapes, and it implements the “when to re-
fresh?” concern by defining an instance of the MonadState-

Change class:

instance MonadDisplay m =>

MonadStateChange m where

withStateChangeSignal c =

do result <- c

refreshDisplay

return result

The implementation evaluates the computation that has been
provided and refreshs the display thereafter. However, in
contrast to an AspectJ implementation (that depends on a
displayStateChange() pointcut; adapted from [5]):

after() returning: displayStateChange() {

Display.refresh();

}

it is obvious that the definition of when the display shall be
refreshed is not done in a declarative manner.

2.4 Dynamic quantification
However, it is possible to implement what Filman/Friedman

call “dynamic quantification”, the tying of “aspect behavior
to something that happens at run-time” [1]. In the current
implementation, the moveLineBy code looks like this:

moveLineBy :: MonadStateChange m =>

Line -> Int -> Int -> m ()

moveLineBy (L l) dx dy = withStateChangeSignal $

do (p1, p2) <- liftIO $ readIORef l

movePointBy p1 dx dy

movePointBy p2 dx dy

As movePointBy signals a state change as well, the signal
is sent three times. We can, however, adapt our implemen-
tation of the withStateChangeSignal function, in order to
prevent a repeated display refresh:

type StateChangeT = ReaderT Bool

instance MonadDisplay m =>

MonadStateChange (StateChangeT m) where

withStateChangeSignal c =

do result <- local (_ -> True) c

p <- ask

unless p (lift refreshDisplay)

return result

The monad is adapted by transforming the display monad
through a reader monad over a boolean flag. The flag signals
whether a need to refresh the display has already been regis-
tered by a surrounding computation. The withStateChange
computation first executes the computation that has been
provided as its parameter and keeps the result. This exe-
cution is embedded into an environment where the flag set,
because the function itself takes responsibility for the dis-
play refresh. Afterwards, the computation will check its own
environment, whether the flag is set, and trigger a display
refresh otherwise. In any case, the kept result is returned.

The instance declaration ensures that the display monad
transformer and the reader monad transformer of the inte-
grating module are combined. The order of combination is
irrelevant when combining a state and a reader monad trans-
former, but the implementation could potentially break if we
were using another implementation of the display monad
that would not just encapsulate a state monad.

When looking at the examples that Filman/Friedman [1]
give for dynamic quantification, it is apparent, that some of
them correspond directly to monads: raising of exceptions
(error monad), calling a subprogram in temporal scope of
another operation (reader monad), the history of the pro-
gram execution (state monad). Furthermore, the authors
note that AOP variants of other programming languages
may include other ways of dynamic quantification, due to
their native language features, and name the capturing of
the current continuation in Scheme as an example (contin-
uation monad).

On the other hand, monadic programming only allows
non-oblivious dynamic quantification, i.e. quantification over
properties that are captured explicitly by a monadic opera-
tion (that works in that regard as a semantic marker), while
the typical use of e.g. the cflowbelow pointcut descriptor
is quantification over the control flow based on syntactic
names.

In addition, the monadic solution to the redundant display
refresh problem is not declarative. It uses a sequential style
for implementing the concern.

2.5 Advice confinement
Monads allow for a controlled extension of computational

capabilities. Therefore we expect the handling of tangling
concerns to be more controlled than in the AspectJ solution.
Indeed, the Haskell type system gives us some guarantees
on what part of the program the advice may affect. We
know e.g. that the display refresh code cannot trigger a state
change signal by some operation that it calls, because it does
not run in an instance of the MonadStateChange monad.
While this confinement of the powers of advice can simplify
reasoning about the program, it may on the other hand be
regarded as an unwanted restriction on the programmer’s
flexibility.

2.6 Conclusion
Monads are a common way to handle tangling concerns

in purely functional programming. They are a traditional
way to modularize computations in that they respect the
module interfaces. They can therefore not achieve oblivious
quantification. Furthermore, they differ from AOP by not
allowing for declarative quantification. However they are
similar to (a certain type of) AOP and more powerful than
traditional module systems in one regard: they provide the
abstractions that characterize dynamic quantification.

They appear to be similar to annotation-based AOP in
that they are more powerful than a traditional modular so-
lution, while remaining non-oblivious. Two differences to
the annotation-based AspectJ solution are apparent, how-
ever: (1) the monadic solution does not allow for declarative
quantification; (2) the AspectJ solution still encompasses a
reflection mechanism via the target, this, and args point-
cuts that break into the module implementation and allow
for separation of the “context to refresh” concern.

3. ASPECTS OF COMPUTATIONS
While above monads were used to encapsulate specific

tangling concerns, it can be argued that every monad can
be regarded as expressing a concern: the kind of a com-
putation can be regarded as an aspect of the computation.
Based on this assumption, we want to analyze, to what ex-
tent aspects might be able to fulfill the role of monads in
abstracting over kinds of computations. But we also want
to shortly discuss, if the power of AOP to separate concerns
were useful in monadic programming.

3.1 Abstracting over kinds of computations
At the heart of monads lie the two fundamental operators:

the return operator that injects values into computations
and allows the programmer to abstract over the parameter
structure of the actual monad, and the bind operator that
organizes the sequencing of computations. There are no
equivalents for those operators in AOP. AOP is not about
redefining the way that the sequencing of operations is in-
terpreted. Instead it is about introducing additional action
at specific points in the course of execution. This imposes
severe limitations in the way that AOP mechanisms can ma-
nipulate the flow of control and enrich the parameter struc-
ture.

3.1.1 Manipulating the control flow
In AspectJ, after advice has been executed at some join-

point, the execution is resumed after the join-point. There is
no way to jump forward to some join-point matching another
pointcut, or up to some position in the call stack. The only
way to achieve the latter is by throwing an exception within
the advice code, and by adding exception catching advice at
the position where execution shall continue. But throwing
of exceptions is not a mechanism introduced by AspectJ,
but belongs to the mechanisms of the base language.

Generally, aspect languages seem not to provide mecha-
nisms that allow the programmer to explicitly manipulate
the control flow. Thus, we cannot hope to express compu-
tations that are able to fail, like those represented by the
Maybe, the Error, or the List monad, via AO mechanisms.
We will have to use exception mechanisms to jump out of the
current point in program execution. The exception mecha-
nism makes equal the very different kinds of computations
expressed via the different monads, and therefore can hardly
count as a good abstraction mechanism over them. W.r.t.
the Continuation monad, if one does not restrict oneself
to escape continuations, the situation is even worse, as the
exception mechanism will probably not be powerful enough.

3.1.2 Enriching the parameter structure
An important part of abstracting over kinds of compu-

tation is associated with the ability to abstract over the
parameter structure of a computation. As we do not have
the power to inject values into computations, or to pass
the hidden parameters along in AOP, we cannot expect to
have a general mechanism for this kind of abstraction. The
sequencing of computations can only be translated into a
sequence of programming statements in our base language.

On the other hand, some of the powers offered by monads
might already be included as part of our base language. For
example, in Java there is no need to separate out the passing
around of a state through the execution sequence, in the
way it is done by the State monad. It might be argued

that AOP mechanisms allow the programmer to pass along
state by introducing it within a separate module, e.g. by the
inter-type declarations of AspectJ. But this is a redundant
mechanism for abstracting over state, and is only useful for
separating out a concern that is related to the state.

However there is a way to implement some hidden form
of parameter passing in some AOP mechanisms, by using a
combination of dynamic quantification and reflection.

3.1.3 Using dynamic quantification
The most prominent mechanism for dynamic quantifica-

tion is the cflow pointcut in AspectJ. It allows for quantifi-
cation over the control context and may be able to simulate
powers of the Reader monad. We want to focus the discus-
sion on this mechanism.

The reader monad is typically associated with a function
to transform the environment of a control context (local)
and a function to read the environment within a control con-
text (ask). In order to simulate this in AspectJ, we have to
define a pointcut that matches the point where the environ-
ment is transformed, and a pointcut that matches the point
where the environment is demanded. Calling them local()

and ask(), the pointcut for reading the environment can be
defined as:

pointcut readEnvironment(Environment env):

ask() && cflow(local(env));

The remaining problem is how to define the local() point-
cut such that it contains the environment as a variable. First
of all, it must be noted that due to the workings of the cflow
pointcut, we can only access the innermost join-point that
matches the local() pointcut in the context. Therefore, the
complete environment must be made available there. We are
able to collect the environment information by using one of
the state-based pointcuts this(), target(), and args().

A typical application of the reader monad is its use for
keeping a variable environment in a programming language
interpreter. Although it can be used for statically scoped
variables, it is more naturally used for implementing (the
less wide-spread) dynamic variable binding.

Let us look at a simple interpreter implementing dynamic
binding for illustration purposes. A monadic interpreter
written in Haskell could look like this:

data Term = Const Int

| Var String

| Lambda String Term

| App Term Term

data Value = Num Int

| Fun (Value -> Reader Environment Value)

interpret :: Term -> Reader Environment Value

interpret (Const c) = return (Num c)

interpret (Var varId) =

do env <- ask

return (lookupVar varId env)

interpret (Lambda varId body) = return $

Fun $ \val -> local (\env -> (varId, val) : env)

(interpret body)

interpret (App e1 e2) =

do Fun f <- interpret e1

v <- interpret e2

f v

In a non-monadic program, the environment would have to
be passed through as a second parameter to the interpret

function. The reader monad allows for increasing the mod-
ularity of interpreters by hiding this parameter (see: Liang
et al. [6]).

In AspectJ, we can define a default implementation for a
static method Environment.read() that returns an empty
environment. This implementation is shadowed by an ad-
vice that is triggered, if the method is called within the con-
text of an environment extension. The advice then returns
the extended environment. The default implementation to-
gether with the advice plays the role of the ask function in
the reader monad.

The interpreter for a Var term is implemented as follows
(Environment.lookup() is a method that returns the value
of a variable this is stored in the environment):4

public Value interpret() {

return Environment.read().lookup(id);

}

The interpretation of a Lambda term is trivial: it creates a
value of class Function, simply passing along its parameter
name and its body:

public Value interpret() {

return new Function(variable, body);

}

The Function class implements an apply(Value) method
that will be called during the interpretation of an App term:

public Value apply(Value val) {

return new InEnv(body,

Environment.read()

.extend(variable, val))

.interpret();

}

The call of local in the Haskell code is replaced by the
creation of a new term of a class InEnv, that is only meant
to be used internally. The environment to be used for the
function application is created by extending the surrounding
environment via an extend() method on the Environment

class. In order to get the environment that is to be extended,
an Environment.read() message is sent here as well.

The InEnv class stores the function body as well as the
environment in which the body shall be executed. Its inter-
pret() method just calls the interpret() method of its
body. Its sole aim is to store the environment such that
it can be accessed by a pointcut. Whenever Environment.

read() is called, the aspect code can access the environment
in the following advice:

Environment around(InEnv inEnv):

execution(* Environment.read())

&& cflow(execution(* InEnv.interpret())

&& target(inEnv)) {

return inEnv.getEnvironment();

}

In this way, the cflow and target pointcuts can achieve
the same effect as the Reader monad. The local func-
tion cannot be perfectly imitated for two reasons: firstly,
4The full code is available at http://www.st.informatik.
tu-darmstadt.de:8080/∼ostermann/foal07/

its first argument is an environment transformer, while due
to the nature of the cflow pointcut, the complete environ-
ment must be available in the innermost join-point matching
the cflow pointcut. And secondly, its second argument can
be any function, while the cflow pointcut has to define the
join-point, at which the environment is extended, by name.
In the solution given above, these issues could be solved by
making use of a new class InEnv that stores the environ-
ment, and by its method InEnv.interpret() that serves as
a marker for the cflow pointcut.

3.2 Separating kinds of computations
In the following, it shall shortly be discussed whether the

lack of separation of concerns when using monads has to be
regarded as a shortcoming in relation to AOP. The question
is, whether it is useful to separate the operations that access
and manipulate the extended parameter structure from the
normal execution of the sequence of operations.

In the example of the interpreter given above, the separa-
tion of the environment retrieval from the interpreter con-
cern would be artificial: it is relevant for the understanding
of how the interpretation of e.g. the Var term takes place to
know that the environment is accessed at that point.

In contrast, there are situations in which the separation of
concerns might seem appropriate: one could think of some
logging function that is enabled or disabled by setting a
dynamic boolean variable. It could be useful to put the
logging code into a separate module.5

Something similar holds for the error monad. While Lip-
pert/Lopez [7] give examples of the usefulness of separating
out exception detection and handling into separate mod-
ules, this is not generally so. The basic reason for throwing
an exception is that a computation cannot continue with a
reasonable result. This breakdown in the execution of the
current concern is normally a relevant part of this concern
and it therefore is not appropriate for singling it out into a
separate module. Looking at these two examples, it has to
be expected, that there is no general answer to this question.

3.3 Conclusion
There is no general way to introduce computational pow-

ers in a controlled fashion in AOP. State and exceptions are
part of the native mechansims of most languages. Their use
cannot be restricted. Nevertheless, a certain extension of
computational powers can be achieved by the mechanisms
of dynamic quantification.

The limitation of referential transparency that has been
discussed as a problem of the use of monads is omnipresent
in those languages, anyway. On the other hand, the absent
power of monads to separate out concerns, in the way that
AOP does it, can in some cases be regarded as a limitation
of their expressiveness.

4. CONCLUSION
To sum it up, monads and aspects have to be regarded as

quite different mechanisms, not able to express each other.
On the one hand, monads are not capable of oblivious quan-
tification. The only kind of quantification they allow is
dynamic quantification in a non-declarative way. It would
therefore stretch the meaning of AOP to still consider mon-

5Of course, logging in Haskell requires the combination with
some writer or similar monad.

ads as an aspect-oriented mechanism. On the other hand,
aspects are not very useful in abstracting over computational
capabilities.

5. REFERENCES
[1] R. E. Filman and D. P. Friedman. Aspect-oriented

programming is quantification and obliviousness.
Technical report, 2000.

[2] M. P. Jones. Functional programming with
overloading and higher-order polymorphism. In First
International Spring School on Advanced Functional
Programming Techniques, number Lecture Notes in
Computer Science 925, 1995.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In ECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming, pages
327–353, London, UK, 2001. Springer-Verlag.

[4] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 49–58, 2005.

[5] G. Kiczales and M. Mezini. Separation of concerns
with procedures, annotations, advice and pointcuts. In
ECOOP, pages 195–213, 2005.

[6] S. Liang, P. Hudak, and M. Jones. Monad
transformers and modular interpreters. In POPL ’95:
Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 333–343, New York, NY, USA, 1995. ACM
Press.

[7] M. Lippert and C. V. Lopes. A study on exception
detection and handling using aspect-oriented
programming. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering,
pages 418–427, New York, NY, USA, 2000. ACM
Press.

[8] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In ECOOP2003, July
2003.

[9] W. D. Meuter. Monads as a theoretical foundation for
aop. position paper in ecoop ’97 workshop on
aspect-oriented programming.

[10] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, 1991.

[11] S. Peyton Jones. Haskell 98 Language and Libraries:
the Revised Report. Cambridge University Press, 2003.

[12] M. Wand. Understanding aspects: extended abstract.
In ICFP ’03: Proceedings of the eighth ACM
SIGPLAN international conference on Functional
programming, pages 299–300, New York, NY, USA,
2003. ACM Press.

[13] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

