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Abstract
Virtual classes allow nested classes to be refined in sub-
classes. In this way nested classes can be seen as dependent
abstractions of the objects of the enclosing classes. Express-
ing dependency via nesting, however, has two limitations:
Abstractions that depend on more than one object cannot be
modeled and a class must know all classes that depend on
its objects. This paper presents dependent classes, a gener-
alization of virtual classes that expresses similar semantics
by parameterization rather than by nesting. This increases
expressivity of class variations as well as the flexibility of
their modularization. Besides, dependent classes comple-
ment multimethods in scenarios where multi-dispatched ab-
stractions rather than multi-dispatched methods are needed.
They can also be used to express more precise signatures
of multimethods and even extend their dispatch semantics.
We present a formal semantics of dependent classes and
a machine-checked type soundness proof in Isabelle/HOL
[29], the first of this kind for a language with virtual classes
and path-dependent types.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects, polymorphism, inheritance; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Langu-
ages—Operational semantics

General Terms Languages, Theory

Keywords dependent classes, virtual classes, dynamic dis-
patch, multiple dispatch, multimethods, variability

1. Introduction
A virtual class is an attribute of an object. Analogous to vir-
tual methods in traditional object-oriented languages, virtual
classes are defined within their enclosing object’s class, can
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be overridden and extended in subclasses, and are accessed
relative to the enclosing object, using late binding. As a re-
sult, the actual definition of a virtual class referred to by a
term obj.VC is not fully known at compile time. VC is some
class accessible as the attribute with same name of the object
obj; some of VC’s features may be statically known through
the static type of obj, others may vary dynamically depending
on the dynamic type of obj.

Virtual classes and related mechanisms have proved use-
ful in various situations: To define families of collaborating
objects [10, 24], to develop large-scale extensible compo-
nents [30, 1, 33, 31], to address the “expression problem” -
the possibility to extend both the set of data structures and
the set of operations [12, 11], and to modularize features that
involve multiple classes [26, 1].

The downside is, however, that virtual classes must be
nested within other classes. Nesting requires to cluster to-
gether all classes that depend on instances of a particular
class, which may unnecessarily introduce coupling between
them. It also limits extensibility: When new classes need
to be modeled as depending on the instances of an existing
class, one must modify that class and its subclasses. Further,
nesting limits expression of variability since the interface
and the implementation of a virtual class can only depend
on its single enclosing object.

There are, however, various application scenarios, where
classes that depend on arbitrarily many objects are needed;
in this paper, we consider one such scenario in more detail:
Modeling aggregate objects, the type and implementation
of which depend on the types of their constituent parts.
Our running example is that of shapes (e.g., lines, boxes,
circles, etc.), as well as various aggregations thereof (e.g.,
intersection or union) that are shapes again. The shapes live
in different kinds of spaces (e.g., 2D, 3D, etc.) and have
different properties (e.g., solid, bounded, convex, etc.).

The operations available on a shape and their implemen-
tations depend on its properties and the space it lives in. The
interface and implementation of aggregated shapes may also
depend on their constituent parts, e.g., the union of a solid
shape with any shape is a solid shape, while the union of
two bounded shapes is a bounded shape. Hence, aggregated
shapes must be modeled as objects that depend on more than
one object, a feature that virtual classes do not support. Fur-



thermore, nesting all kinds of shapes within space classes
would introduce unnecessary dependencies and restrict the
extensibility of the system.

To address these problems, we propose a generalization
of virtual classes, which we call dependent classes. A de-
pendent class is a class whose structure depends on arbi-
trarily many objects; this dependency is expressed explic-
itly over class parameters, rather than by nesting. In a sense,
dependent classes can be seen as an combination of virtual
classes with multi-dispatch [9, 3, 34, 6]. The notion of path-
dependent types, as employed by most proposals for static
type systems for virtual classes to keep track of the depen-
dencies between a type and the “family” or “enclosing” ob-
ject, is generalized as well, such that types can depend on an
arbitrary number of objects described by paths.

The contributions of this paper are:

• Dependent classes are motivated and the design of a
language with dependent classes is discussed.

• The vcn calculus – a formal definition of the static and
dynamic semantics of such a language is defined to-
gether with a machine-checked soundness proof in Is-
abelle/HOL [29]. Since soundness proofs for languages
with path-dependent types are usually either quite sketchy
or quite complex1, it is hard to make sure that the proof
is free of bugs. Indeed, we have discovered various bugs
and unnecessary well-formedness conditions that we
probably would not have discovered with a hand-written
proof. We hope that our Isabelle formalization and proof
can be reused and adapted by others working on variants
of virtual classes. As further validation, we have also im-
plemented an interpreter for vcn. The formalization, the
proof, and the interpreter can be downloaded at [15].

• New results in the meta-theory of path-dependent types
are presented. A completeness theorem is formulated and
proved which shows that the type system is optimal in a
certain sense. Also, surprisingly weak conditions under
which the type system is decidable are identified.

• Apart from supporting dependency on multiple objects,
the advantage of the proposed calculus over previous for-
malizations of virtual classes is a better balance between
simplicity and decidability on one side and expressive
power on the other side.

• Dependent classes and the type system for them also
contribute to languages with multimethods. First, due
to their enhanced subtype relation, they provide a more
expressive dispatch semantics. Second, they can be used
to describe more precise signatures of multimethods.

The remainder of this paper is organized as follows.
Sec. 2 presents and motivates dependent classes and ex-

1 For example, the soundness proof of vc [12] is 12 double-column pages
long; the print-out of the vcn proof is about 70 pages.

plains their relation to virtual classes and to multimethods.
A calculus that formalizes the static and dynamic semantics
of dependent classes is presented in Sec. 3. Properties of the
calculus - soundness, decidability and completeness - are
discussed in Sec. 4. Sec. 5 discusses possible variations on
the dispatch semantics. Related work is discussed in Sec. 6
and Sec. 7 concludes the paper.

2. Dependent Classes in a Nutshell
This section presents a Java-like language with dependent
classes by the example of modeling families of shapes. In
Sec. 2.1, basic constructs for defining and refining depen-
dent classes as well as type declarations using dependent
classes are featured by considering only simple geometri-
cal objects, e.g., points and vectors, that only need depen-
dent classes with a single parameter. In Sec. 2.2, aggregated
shapes, e.g., unions and intersections of shapes, are consid-
ered, featuring the need for depending on multiple param-
eters and on the corresponding semantics. Sec. 2.3 and 2.4
discuss the relation of dependent classes to virtual classes
and multimethods, respectively.

2.1 Defining and Refining Dependent Classes
When we talk about points and lines, we usually have some
specific space in mind — a plane or a three-dimensional
space, Euclidean or non-Euclidean. The properties and the
implementation of points and vectors depend on the kind of
space to which they belong. For instance, points in a two-
dimensional space have only two coordinates while points
in a 3D space also have a third coordinate.

Further, when working with points and lines, we would
like to make sure that some restrictions are obeyed with
respect to the enclosing space. For example, one can add a
vector to a point and the result of this operation is again a
point. For such an operation we would like to ensure that (a)
the vector we add is from the same space as the point being
added to, and (b) the result is also a point in the same space.

To see how the requirements just outlined are modeled
with dependent classes, consider the implementation of the
example in a Java-like language with dependent classes in
Fig. 1. The variation of spaces is modeled by a simple inher-
itance hierarchy (lines 1 - 7). Dependent abstractions such
as points and vectors are modeled by dependent classes Point
(lines 9, 15, 19) and Vector (line 12) that take an instance of
Space as a parameter.

This parameterization has two implications. First, s is
a field of Point, which can be used to retrieve the space
the point belongs to; this field is immutable and its value
is passed as a constructor parameter. A more interesting
implication is that Point is declared as a “relative” class, the
definition of which depends on its parameter s. There are
several declarations of Point (lines 9, 15, and 19) - one for
each kind of space.



1 abstract class Space { ...
2 abstract Point (s : this ) getOrigin ();
3 }
4 class 2DSpace extends Space { ...
5 Point (s : this ) getOrigin () { return new 2DPoint(this , 0, 0); }
6 }
7 class 3DSpace extends Space { ... }
8

9 abstract class Point (Space s) { ...
10 abstract Point (s : s) add(Vector(s : s) v );
11 }
12 abstract class Vector(Space s) { ...
13 abstract Vector(s : s) scale (double d);
14 }
15 abstract class Point(2DSpace s) {
16 abstract double getX ();
17 abstract double getY ();
18 }
19 abstract class Point(3DSpace s) {
20 abstract double getX ();
21 abstract double getY ();
22 abstract double getZ ();
23 }
24

25 class 2DPoint(2DSpace s, double x, double y) extends Point {
26 ...
27 double getX() { return x; }
28 double getY() { return y; }
29 Point (s : s) add(Vector(s : s) v) {
30 return new 2DPoint(s, x + v.getX (), y + v.getY ());
31 }
32 }

Figure 1. Points and vectors as dependent classes of a space

More specific declarations implicitly inherit from the
more general declarations, which means that the declarations
of Point for 2DSpace (line 15) and 3DSpace (line 19) implic-
itly inherit from the declaration of Point for Space (line 9).
Some operations on points and vectors are available for any
kind of space. For example, lines 10 and 13 declare generic
methods to add a vector to a point and to multiply a vector
by a scalar value. In addition, points in a plane or in a 3D
space also have coordinates and respective operations for
accessing them.

Besides implicit inheritance relations, explicit subclasses
of dependent classes can also be declared. For example,
Point is an abstract class which can be implemented in dif-
ferent ways. 2DPoint is a sample implementation of a point
in a plane using Cartesian coordinates. Thus, we declare
2DPoint as a subclass of Point, and constrain its s parameter
to 2DSpace, which means that 2DPoint is available only in
planes, but not in other spaces. 2DPoint has additional param-
eters, x and y, which are fields that are initialized via con-
structor parameters. It is required that a subclass has all the
constructor parameters of its superclasses, whereby the pa-
rameters are matched by name. Fields x and y are not used for
dispatch in our example, we use them just as normal fields
for storing state, but in principle they could also be used for
dispatch.

1 Vector(s : v1.s) normal(Vector(s : 3DSpace) v1,
2 Vector(s : v1.s) v2) { ... }

Figure 2. Signature of normal method

Similar to virtual classes, dependent classes can be used
to describe types that depend on objects. Dependent types
are never compatible if they depend on different objects [12].
That is, every instance of a Space class has its own universe
of types and objects, and the type system can make sure that
different universes will never be mixed, even if both Space
instances are instances of the same variant of Space.

To type generic methods such as add and scale correctly,
we should be able to express that they operate on objects
from the same space – in terms of family polymorphism
[10], we would like to express that these operations oper-
ate on objects of the same family. Similar to languages with
virtual classes, such typing is expressed in our approach
by means of path-dependent types. The type Vector(s: s) in
line 10, which is a short form for Vector(s: this.s), is an exam-
ple of a path-dependent type. It expresses that the object is a
Vector whose field s is of type this.s.

The type this.s is an example of a path type; these are types
that have a single instance, namely the object pointed to by
the path expression. Hence, the declaration that some object
o is of type this.s means that o is equal to the object referred to
by the expression this.s. Since this refers to the receiver point
object in the context of a call to the method Point.add(...), the
type declaration Vector(s: this.s) expresses that the parameter
must be a vector that belongs to the same space as the
receiver point.

For further examples of types in the language consider the
method normal in Fig. 2; it takes two vectors in a 3D space
as parameters and returns a vector that is perpendicular to
both of them. The type declaration for the first parameter,
Vector(s: 3DSpace), states that the first parameter can be a
vector of any 3DSpace. The type of the second parameter and
the return type is Vector(s:v1.s); it is more precise and states
that these vectors must be from the same space as the first
vector.

2.2 Dependency on Multiple Parameters
In general, dependent classes can be defined with an arbi-
trary number of parameters, thereby enabling to model ab-
stractions that depend on several other abstractions. To illus-
trate dependent classes with multiple parameters and their
benefits, consider an extension of our example. Imagine that
we develop a library of shapes, a fragment of which is shown
in Fig. 3.

There is a general Shape abstraction and a set of concrete
shapes, some of them (e.g., Box) available for any space,
others (e.g., Circle) specific to some concrete space. The set
of operations available on shapes and their implementations
may depend on the type of the space to which shapes belong;



1 abstract class Shape(Space s) {
2 abstract bool pointInside ( Point (s : s) pt );
3 }
4

5 abstract class Bounded(Space s) extends Shape {
6 abstract Box(s: s) getBoundBox();
7 }
8

9 abstract class Solid (Space s) extends Shape {
10 abstract bool pointOnEdge(Point(s : s) pt );
11 abstract double getContent ();
12 }
13

14 class Box(Space s, Point (s : s) pt1 , Point (s : s) pt2)
15 extends Bounded, Solid { ...
16 bool pointInside ( Point (s : s) pt ) {
17 return pt1 . lessEqual (pt ) && pt.lessEqual(pt2 );
18 }
19 Box(s:s) getBoundBox() { return this ; }
20 }
21

22 class Box(2DSpace s, Point (s : s) pt1 , Point (s : s) pt2) { ...
23 double getContent () {
24 return (pt2 .getX() − pt1.getX()) ∗
25 (pt2 .getY() − pt1.getY ());
26 }
27 }
28

29 class Box(3DSpace s, Point (s : s) pt1 , Point (s : s) pt2) { ...
30 double getContent () {
31 return ... ∗ (pt2 .getZ() − pt1.getZ ());
32 }
33 }
34

35 class Circle (2DSpace s, Point (s : s) c , double r )
36 extends Bounded { ... }

Figure 3. Shapes and their properties

their signatures and implementations will involve points and
vectors of the space, so it is beneficial to define the shapes
as dependent classes of Space and its subclasses.

Shapes can have different properties: One can differen-
tiate between bounded and infinite shapes, solid and mani-
fold shapes, closed and open shapes, etc. The properties of
a shape may determine the operations available on it: for
example, we can compute the bounding box of a bounded
shape, we can compute the content2 of a solid shape, or we
can test whether a point is on its boundary. We can model
these variations by abstract subclasses of Shape, such as
Bounded and Solid in Fig. 3. Concrete shapes then inherit from
a subset of such abstract classes, depending on the properties
that they have, and implement their operations. For example,
a Box is both Solid and Bounded.

More sophisticated shapes can be built from primi-
tive shapes using various composition operations, such as
union, intersection, difference and inversion. Such compos-
ite shapes can be described as objects that aggregate other
shapes. For an example, consider the class Union at line 1 of

2 Content is a generalized concept for volume or area depending on space
dimensions.

1 class Union(Space s, Shape(s: s) s1 , Shape(s:s) s2)
2 extends Shape { ...
3 bool pointInside ( Point (s : s) pt ) {
4 return s1 . pointInside (pt ) || s2 . pointInside (pt );
5 }
6 }
7

8 class Union(Space s, Bounded(s:s) s1 , Bounded(s:s) s2)
9 extends Bounded { ...

10 Box(s:s) boundBox() {
11 return joinBounds(s1 .getBoundBox(), s2 .getBoundBox());
12 }
13 }
14

15 class Union(Space s, Solid (s : s) s1 , Shape(s:s) s2)
16 extends Solid { ...
17 double getContent () { return s1 . getContent (); }
18 }
19

20 class Union(Space s, Shape(s:s) s1 , Solid (s : s) s2)
21 extends Solid { ...
22 double getContent () { return s2 . getContent (); }
23 }
24

25 class Union(Space s, Solid (s : s) s1 , Solid (s : s) s2) { ...
26 double getContent () { /* some approximation */ }
27 }
28

29 class Union(2DSpace s, Box(s:s) s1 , Box(s:s) s2) {
30 double getContent () { ... }
31 }
32

33 class Union(Space s, Solid (s : s) s1 , s1 s2) {
34 double getContent () { return s1 . getContent (); }
35 }
36

37 class Intersection (Space s , Shape(s: s) s1 , Shape(s: s) s2)
38 extends Shape { ... }
39

40 class Difference (Space s , Shape(s:s) s1 , Shape(s:s) s2)
41 extends Shape { ... }

Figure 4. Composite shapes

Fig. 4, which describes the union of two shapes.3 A union
of two shapes is again a shape, so we declare Union as a
subclass of Shape. Union is a dependent type of Space, and
using path-dependent types we declare that only the union
of shapes from the same space is possible.

The interface and subtype relations of a composite shape
may vary depending on the type of the shapes it composes.
For example, the union of two bounded shapes is again a
bounded shape, while the union of a solid shape with any
shape is again a solid shape. In order to model such subtype
relations, the definition of Union has to vary with respect to
two parameters. The declaration at line 8 of Fig. 4 refines
Union for the case when its parameters are both Bounded
and states that this refinement of Union has a more specific
superclass than the general definition, namely Bounded. To
specify that the union of two shapes, of which at least one is

3 A union of two shapes is a shape consisting of the points of the both
shapes.



1 void test (Box(s: 2DSpace) b, Circle (s : b.s) c) {
2 Union(s: b.s , s1: b, s2: c) u = new Union(b.s, b, c );
3 Box(s:b.s) b2 = u.boundBox();
4 bool inside = u. pointInside (new 2DPoint(b.s ));
5 double cont = u. getContent ();
6 }

Figure 5. Test case for the union shape

solid, is again solid, two declarations are given: One, where
s1 is Solid and s2 is Shape (line 15), and another, where s1
is Shape and s2 is Solid (line 20). In this way, the inheritance
relations of Union depend on the types of the two parameters.

Not only the interface, but also the implementation of
a class may vary depending on multiple parameters of it.
Different operations of Union can be implemented at different
levels of abstraction. For the pointInside method, an operation
inherited from Shape, a generic implementation independent
of the parameter types is given in Line 3: Testing whether a
point is inside a union is reduced to testing whether the point
is inside one of its components (line 3). Other operations can
be implemented differently for different parameter types of
the class. For example, the content of a union of two shapes,
only one of which is solid, is equal to the content of the solid
component (lines 17 and 22). If both shapes are solid, we can
only provide an inefficient approximate algorithm (lines 26),
while a relatively efficient algorithm can be given to compute
the content of the union of two boxes (line 30) in a 2DSpace.

Path types can also be used for refining dependent classes.
For example, line 33 gives a refinement of Union for the case
when a solid shape is combined with itself. This is expressed
by specifying s1 as the type of s2, which means that s2
must point to the same object as s1. For this special case,
we can provide very a efficient implementation of getContent
method: It simply forwards the method call to s1.

A concrete instance of a dependent class inherits all dec-
larations that match the given parameter types. A class dec-
laration matches when the dynamic types of the given pa-
rameters are subtypes of the types expected by the declara-
tion. For example, in Fig. 5, line 2, we construct a union of
a two-dimensional box (solid rectangle) b and a circle c. The
path-dependent type declarations make sure that the box and
the circle share the same space. A box is solid and bounded,
while a circle is bounded, but not solid. For this particular
combination of the dynamic types of the parameters to the
constructor of Union only the declarations of Union at lines 1,
8, and 15 in Fig. 4 match. The types of fields pt1 and pt2 in
the Box types are not specified, which means that the most
general types of these fields from the declarations of Box is
assumed.

In the example, the static type of u is Union(s: b.s, s1: b, s2: c),
which is in fact the most precise type available for the object
that we assign to u. This type says that the object is a Union
of shapes b and c, and its space is same as the space of b.
Given this type declaration, the type checker can infer that u

is an instance of all matching declarations of Union as well
as their direct and indirect superclasses: Bounded, Solid and
Shape. Any operation declared within any matching class
declaration is available for u. Hence, the type checker will
consider all calls on u in the method test as safe.

If less information is available statically, the opera-
tional behavior will still remain the same - we support
true subtype polymorphism with late binding. For exam-
ple, if the static type of the parameters b and c above would
be Shape(s: Space) and Shape(s: b.s), respectively, the opera-
tional behavior of the methods would remain the same as the
one in Fig. 5 (e.g., the same implementation of pointInside is
executed), except that the calls to boundBox and getContent
would be rejected by the type checker.

2.3 Dependent Classes and Virtual Classes
Virtual classes can be encoded with dependend classes, just
as single-dispatched methods can be encoded in a multi-
dispatch language: Dependent classes with exactly one pa-
rameter correspond to traditional virtual classes. A depen-
dent class with only one parameter can hence be encoded as
virtual class by nesting it inside the declaration of the class
it depends on.4 For our example, this means that definitions
of Point, Vector, Shape, and so on, must be nested within defi-
nitions of Space, 2DSpace and 3DSpace.

However, such an encoding has a severe drawback, be-
cause nesting has a negative impact on software properties
such as coupling and extensibility. Nesting requires to clus-
ter all classes that depend on a particular class, thus introduc-
ing redundant dependencies. For example, Point and Vector
must be implemented within the same class together with
much more specific classes, e.g., Shape and its concrete sub-
classes. Furthermore, nesting limits extensibility: With each
new type of shape or some other class that depends on Space,
the latter and its subclasses must be modified. Dependent
classes do not have these problems, because they are defined
outside the declarations of classes they depend on.

Because of the nested structure, virtual classes are con-
ceptually seen as an inherent part of the enclosing class.
Such a view limits the applicability of virtual classes, be-
cause there are situations, where a class definition may de-
pend on another class without being an integral part of it.
For example, if we consider the Adapter design pattern [14],
the implementation of an adapter may depend on the type of
its adaptee object. To express this dependency with virtual
classes, we would have to define adapters as nested virtual
classes of adaptees. This obviously does not make sense:
Adaptees would know about their adapters, which contra-
dicts the main design goal of the Adapter pattern. Hence,
virtual classes cannot be used for expressing dependencies
of adapters on adaptees, if necessary.

4 There are variations in the semantics of different formalisms and lan-
guages supporting virtual classes, thus the encoding possibilities are also
different. More on this in Sec. 6.



Since dependent classes can be defined outside the classes
they depend on, they do not need to be considered as their
logical part. This shift of view opens up new application
areas for dependent classes in addition to situations where
virtual classes are useful [10, 24, 30, 31, 1, 33, 11, 26]. An
adapter e.g., can be easily defined as a dependent class of
its adaptee, enabling polymorphic selection and dependent
typing of the adapter.

The adapter-adaptee relation is also addressed by ex-
panders [35], where an adapter is defined as an expander
of its adaptee. In some sense, expanders could be seen as
dependent classes of the objects that they expand. How-
ever, expanders share the identity of the objects they ex-
pand, while dependent classes construct new objects, which
can have a many-to-one relationship with their parameter ob-
jects. That is, by using dependent classes one can create mul-
tiple adapter instances of the same type for the same adaptee.
For illustration, consider the situation where there are multi-
ple views on some data model and adapters are used to adapt
model classes to the abstractions of the view. If such adapters
are stateful, an adapter object is needed for each pair of a
view and a data model object.

Nesting also limits the possibilities to express variation.
Every class can only be nested inside one class; hence, varia-
tions can be expressed along one dimension only. Dependent
classes can vary along several dimensions simultaneously.
For instance, we have demonstrated that the interface and
the implementation of Union depends on the dynamic type of
two shapes.5 This cannot be easily encoded in a model of
virtual classes with strict hierarchical nesting.

For an example of an application, where dependency
from types in different inheritance hierarchies is needed,
consider again the example of using adapters to adapt model
classes to view abstractions. As long as there is a single view
definition, single dependency of an adapter on its adaptee is
sufficient. However, one can envisage an inheritance hierar-
chy of views, expressing variations on how model elements
are displayed. In this case, the functionality of the adapters
may also depend on the type of the view in addition to the
type of the model element being adapted.

Our experience with using CaesarJ to model such scenar-
ios [1] shows that it is indeed cumbersome to express de-
pendencies along two variation axes with virtual classes –
one has to resort to some sort of conditional logic for com-
pensating limited dispatch power.6 In contrast, adapters that
depend both on target and adaptee are naturally expressed by
dependent classes with two parameters: one for the view and
another for the adaptee (the data model object, in our case).

5 Union could also be refined for different kinds of space.
6 In [1], we used a mechanism called dynamic wrapper selection to address
this problem.

2.4 Dependent Classes and Multimethods
Since dependent classes and multimethods share similar se-
mantics for dispatching functionality, the question arises as
how they interact in terms of language design. We believe
that dependent classes generalize multimethods in two ways.

Application scenarios that typically use multimethods
can benefit from dependent classes in situations when op-
erations dispatched by multiple parameters need to be rei-
fied. Our running example could be seen as an application
of dependent classes to reify union and intersection of Shapes,
which would typically be implemented as multi-methods.

There can be different reasons for reifying operations:
To postpone computation (Command design pattern[14]), to
cache computation results, or to provide mutable attributes
that influence the computation. Our reification of union was
mostly driven by a design decision: In our scenario, a union
of two shapes is not so much a computation, but rather an
abstraction with its own interface (e.g., we can compute its
content, bounding box, etc.).

One could envisage reifications of other operations. For
example, consider a draw operation defined on Shape, which
takes the output medium as a parameter (e.g. a screen, a PDF
or some drawing format); we could reify it by constructing
a ShapeDrawer class that depends on two parameters – the
shape and the output medium. Such a class could have addi-
tional display attributes as well, e.g., the color or line style
that depend on some external input. The reification of the
draw operation would allow to enrich the drawing function-
ality with additional behavior, e.g., the capability to cache in-
termediate computation results that are necessary for shape
display (e.g., a triangulation of a 3D object), and/or to ob-
serve changes in its shape to update the display.

There is a second way in which dependent classes gener-
alize multi-methods. Standard multi-methods [6] use “plain”
types, as illustrated in Fig. 6. Multi-methods using depen-
dent rather than plain classes for type declarations are more
powerful with respect to both static and dynamic semantics.

1 abstract Shape union(Shape s1, Shape s2 );
2 Shape union(Box s1, Box s2) { ... }
3 Shape union(Box s1, Circle s2) { ... }

Figure 6. Shape union as a “standard” multi-method

First, dependent classes extend the type system and would
allow for more precise signatures of multi-methods. For
example, in the signature of the union multi-method, they
could be used to require that only a union of shapes from the
same space can be computed. The same constraint cannot
be statically stated and enforced in a language with multi-
methods and plain types. Furthermore, in such a language,
one cannot express dependencies of the result type of a
multi-method on the types of its parameters. Such an explicit
dependency declaration would allow the type checker to
know e.g., that a union of a Box and a Circle is a solid and
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Figure 7. Types by which getContent is dispatched

bounded shape, and thus it is safe to call on it methods that
are available for both Solid and Bounded types (cf. Fig. 5).

Second, dependent classes also increase the expressive
power of dispatch. The dispatch of a multi-method selects
the implementation of the method that is the most-specific
among those that match. Since selection and matching is
done by comparing parameter types by the subtype relation,
an extension of the subtype relation also extends the expres-
sive power of dispatch.

For illustration, consider the definitions of getContent in
Fig. 3 and Fig. 4. They are available for a variety of types
that are depicted in Fig. 7 together with their subtype rela-
tions. The subtype relation of dependent classes takes into
account not only explicit inheritance relations (e.g., Box ex-
tends Solid); it also recursively compares the types of the
fields and takes into account path types. In this respect, dis-
patch based on dependent classes can be seen as a variant
of predicate dispatch [13] with predicates that express field
types and identities between objects denoted by paths.

3. Semantics
In this section, we present a formal calculus that precisely
describes the dynamic and static semantics of dependent
classes. This calculus is called vcn to indicate that it gen-
eralizes previous formalizations of virtual classes [12]. The
style and notation is similar to the one of Featherweight Java
[17]. A bar above a metavariable denotes a list: f stands for
f1, . . . , fk for some natural number k ≥ 0. If k = 0 then the
list is empty, denoted by ε. Following common convention,
t f represents a list of pairs t1 f1 · · · tk fk. List notation is
also used to denote repeated application to all members of
a list; for example, Γ ` e : t denotes the conjunction of
all Γ ` ei : ti for each list index i. To keep the notation
lightweight we assume a globally available program P .

3.1 Syntax
The syntax of vcn is defined on the left-hand side of Fig. 8.
We have made a few design decisions to keep the calculus
simple in order to focus just on the core semantics of de-
pendent classes, and to ease the soundness proofs. For the
informal explanation of the concepts and the examples in
Sec. 2 we used an informal language that is close to the
syntax of Java to make the examples more accessible to a
broader public. Besides we used various language features
that are not interesting from a semantics perspective, but are
useful for practical programming. For example, various pre-
defined types, such as int, double, String, and operations on
them are not available in the formal calculus. In the follow-
ing, we explain the formal syntax and its differences from
the informal language.

A program P in vcn consists of multiple class declara-
tions. A class declaration, D, starts with a class name (note
that the class keyword is skipped), followed by a list of
field declarations and the return type of the class construc-
tor. The list of declared fields also specifies the list of con-
structor parameters. A class can have an arbitrary number of
super-classes specified in its extends clause. The body of a
class declaration contains its constructor expression, which
is called when the class is instantiated.

There is no special syntactical category to encode meth-
ods. As usual in formal accounts of virtual classes [32,
12], we use the syntax of class declarations to encode both
classes and methods. A method declaration is encoded in
vcn by a class declaration: Method parameters are encoded
as constructor parameters, the return type as the constructor
return type and the implementation as the constructor ex-
pression. For ”normal” classes, i.e., those that do not encode
methods, we assume the expression this to be the default con-
structor body, i.e., the constructor simply returns the con-
structed object. The default return type is the empty path ε
– the path pointing to this. Method calls are encoded as con-
structor calls. Multimethods can hence be encoded by using
class declarations as methods.

In the calculus all declarations are at the top level, which
means that it is not possible to nest methods within class dec-
larations. However, the nested style can be easily translated
to the parametric style. The implicit this parameter of nested
methods is replaced by an additional explicitly declared pa-
rameter. An example of such translation will be given at the
end of the subsection.

A path, referred to by p or q, is a sequence of fields; it
refers to the object that is reached by navigating over the
fields in the sequence starting from this. As a special case,
the empty path ε refers to this.

A type, referred to by t or u, can be a class type C(f : t),
a path p, or a value v. The class type C(f : t) represents all
objects of C and its subclasses, whose fields fi have values
compatible with the respective types ti. The only instance of



Syntax:

P ::= D

D ::= C(f : t) : t extends C {e}
p, q ::= f

t, u ::= p | C(f : t) | v
e ::= this | e.f | new C(f = e) | v
v ::= C(f = v)

C − class names
f − field names

Context:

Γ ::= C(f : t) | ∅

Computation:

C(. . . fi = vi . . .).fi ↪→ vi
(RED-FIELD)

. . . {e} ∈ Select(C(f = v))

new C(f = v) ↪→
[
C(f = v)/this

]
e

(RED-NEW)
Congruence:

e ↪→ e′

e.f ↪→ e′.f
(REDC-FIELD)

e ↪→ e′

new C(...f = e...) ↪→ new C(...f = e′...)
(REDC-NEW)

Select Declaration:

∅ ` D ∈ Match(C(f : v))

D ∈ Select(C(f = v))
(SELECT)

Figure 8. Syntax and operational semantics

a path type is the object referenced by the path. A value type,
v, has the value v as its only member.

Types that contain paths are called relative types, as they
are defined only relative to some object (referred to by this).
On the contrary, absolute types are combinations of class
and value types. For instance, Vector(s: v1.s) is a relative type,
whereas Vector(s: 3DSpace) is an absolute type.

Most type relations of the calculus are defined relative
to a typing context Γ, which is either empty (∅) or defines
the type of this. Relative types make sense only in a non-
empty context, while an empty context can be used with
absolute types. During static type checking (program well-
formedness), the context will always be non-empty, whereas
during runtime checking (typing intermediate expressions
during evaluation) the expression this does not occur (it is
replaced by a value) and the context will always be empty.

The calculus requires that in a class type the types of all
fields that are available in this class are specified (this re-
quirement is enforced in the well-formedness rules). In the
informal language we allow to omit some of the field type
annotations. In this case, the field types from the declaration
of the class are assumed. In case of multiple class declara-
tions, we assume the types of the most general declaration of
the class as the default type of that field. An alternative so-
lution would be to mark one of the class declarations which
contains the default field types explicitly with some default
keyword.

Like Featherweight Java [17], vcn supports only func-
tional style object-oriented programming. Classes have only
immutable fields that are at the same time their constructor
parameters. The body of a constructor is hence an expres-
sion, rather than a list of statements.

An expression e can be this, a field access, a class con-
structor call, or a value v. We use the new keyword to mark
constructor calls and distinguish them from values. In the
formal syntax, constructor calls take parameters by name,

1 Shape(s: Space) extends ε : ε { this }
2

3 pointInside (sh: Shape(s:Space), pt : Point (s :sh . s ))
4 : Bool { False }
5

6 Union(s: Space, s1: Shape(s:s ), s2: Shape(s:s )) extends Shape
7 : ε { this }
8

9 pointInside (
10 sh: Union(s:Space,s1:Shape(s:sh . s ), s2:Shape(s:sh . s )),
11 pt : Point (s :sh . s )) : Bool {
12 new or(a = new pointInside (sh=sh.s1 , pt=pt ),
13 b = new pointInside (sh=sh.s2 , pt=pt ))
14 }

Figure 9. Example in the formal syntax

rather than by position. This makes it easier (in fact: trivial)
to define the mapping from constructor parameters to field
names, which would otherwise be cumbersome in the pres-
ence of multiple inheritance.

A value v is a class name together with values for its
fields. Values can be used both as expressions and as types,
but they are not part of the written syntax: They occur as
expressions only in intermediate programs during rewriting
and as types of intermediate programs containing values (we
use a small-step operational semantics).

In the informal language we specified certain classes and
methods as abstract. The informal meaning for a class being
abstract is that it cannot be instantiated, while an abstract
method has no implementation, but it can be called. How-
ever, formalization of abstract dependent classes is post-
poned for future work. Nevertheless, we decided to use
abstract annotations in the informal language, because they
significantly increase the understandability of the exam-
ples. When converting the examples to the calculus, abstract
methods must be encoded as concrete methods with a default
implementation.



For illustrating the encoding of the informal language in
the calculus, consider the example in Fig. 9. It shows how
the Shape declaration from Fig. 3 and the first declaration
of Union from Fig. 4 could be encoded in the formal syn-
tax. The implementations of the pointInside method are taken
out from the class declarations and declared on the top level.
Their implicit this parameter is encoded by an explicit sh pa-
rameter with an appropriate type. The declarations of Union
and Shape are extended with the default constructor and the
default return type. The declaration of Shape also receives
an extends clause with an empty list of parents. The abstract
pointInside method of Shape is replaced by a method with a
default implementation. The method calls in the implemen-
tation of pointInside for Union are replaced by corresponding
constructor calls.

3.2 Operational Semantics
The operational semantics in small-step style is given on the
right-hand side of Fig. 8. There are only two computation
rules: field access (RED-FIELD) and constructor call (RED-
NEW). The other two reduction rules are just congruence
rules.

Field access applied to a value, C(. . . fi = vi . . .), is
resolved by looking up the value of the field. The reduction
of a constructor call uses the Select relation to select a
declaration of class C for the given parameter values v.

The Select relation is responsible for selecting one of the
declarations that match the given parameter values. The set
of matching declarations is defined by the Match relation,
which will be discussed in Sec. 3.5. Intuitively, a declaration
matches a given set of parameter values to a constructor call,
if the types of these parameter values are more specific than
the corresponding field types of the declaration.

Once a matching declaration is selected, the evaluation
proceeds with the expression of the selected class declara-
tion e, whereby this in e is replaced by the value of the con-
structed object.

The definition of Select determines the dispatch strategy.
The non-deterministic strategy [5] in Fig. 8 (any matching
declaration can be selected) is the most general definition
that is sufficient to prove soundness of the calculus. We have
proved that any definition for Select, that fulfills the follow-
ing condition is sound: Whenever a well-formed type has
any matching declarations, then the selection for this type
succeeds and selects one of the matching declarations. Dif-
ferent choices in the design space of the dispatch mechanism
will be discussed in Sec. 5.

3.3 Path Normalization and Type Equivalence
To determine whether two dependent types are equivalent, it
is necessary to define an equivalence relation on those kinds
of expressions that types may depend on. Type systems that
allow types to depend on arbitrary, possibly non-terminating,
expressions are often undecidable. Types in vcn may only

depend on path expressions, and for the latter a decidable
equivalence relation can be defined, as shown in Fig. 10.

Two paths are equivalent (rule '-PATH) if they have
the same normal form; the definitions for type equivalence
(rules '-VALUE, '-CLASS, and '-PATH) just propagate
path equivalence to the type level.

Intuitively, a path is in a normal form, if neither the path
itself, nor any part of it, are declared as aliases of other
paths. Accordingly, path normalization (rules ;-FIELD1,
;-FIELD2) can be seen as the process of eliminating alias
paths. To normalize a path, declarations of field types from
the context are used: For each path that is valid in the con-
text, we can determine a type which is declared as its bound
in the context (see path bound rules in Fig. 10). The bound of
a normalized path is always a class type, because only class
types are allowed in typing contexts.

For illustration, consider the context Union(s: Space, s1:
Shape(s:s), s2: Shape(s:s)). The class type Shape(s:s) is de-
clared in it as the bound of the path s1; by navigating further
in the context, we determine that the bound of s1.s is the path
s (see rule ≺-FIELD), which means that s1.s is declared as
an alias of s and can hence be normalized to s. An excerpt of
the derivation of this path normalization is shown below:

. . .

Γ ` s1 ; s1
. . .

Γ ` s1 ≺ Shape(s:s)
Γ ` s1.s ≺ s

(≺-F)

. . .

Γ ` s ≺ Space Γ ` ε ; ε

Γ ` s ; s
(;-F1)

Γ = Union(s: Space, s1: Shape(s:s), s2: Shape(s:s)) ` s1.s ; s
(;-F2)

We have proved the following theorem which character-
izes the meaning of path equivalence: Two paths are equiv-
alent if and only if they are indistinguishable by the opera-
tional semantics in all extensions of the program. The “only
if” direction is required for type soundness; the “if” direc-
tion is a completeness property which states that the path
normalization is optimal, i.e., any bigger path equivalence
relation would be unsound. We give a formal statement of
the completeness property in Sec. 4.2.

3.4 Type Translation
Fig. 11 defines the translation of a type t relative to another
type u. Intuitively, the translation of a type t relative to u can
be thought of as reinterpreting t by assuming u as the type
of this; technically, it is achieved by replacing the occur-
rences of ε (the path pointing to this) by u. Type translation
is needed to adapt types from a non-local context to the local
context. For instance, the declared types of constructor pa-
rameters need to be translated to the context of a constructor
call.

Two kinds of translations are defined in Fig. 11: strong
translation denoted by [t]u, and weak translation denoted
by dteu. Whereas strong translation only allows to replace
ε with a path ([·]-PATH) or a value ([·]-VALUE), weak trans-
lation additionally allows to replace ε with a class type (d·e-



Path Bound:

C(f : t) ` ε ≺ C(f : t) (≺-THIS)

Γ ` p ; p′

Γ ` p′ ≺ C(f : t)
Γ ` p.fi ≺ ti

(≺-FIELD)

Path Normalization:

Γ ` ε ; ε (;-THIS)

Γ ` p.f ≺ C(f : t)
Γ ` p ; p′

Γ ` p.f ; p′.f
(;-FIELD1)

Γ ` p.f ≺ p′
Γ ` p′ ; p′′

Γ ` p.f ; p′′
(;-FIELD2)

Type Equivalence:

Γ ` p ; p′′

Γ ` p′ ; p′′

Γ ` p ' p′
('-PATH)

∀i. ti ' t′i
Γ ` C(f : t) ' C(f : t′)

('-CLASS)

Γ ` v ' v ('-VALUE)

Figure 10. Path- and Type Equivalence

Strong Type Translation:

[p′]p = p.p′ ([·]-PATH)

∀i. [ti]t = t′i[
C(f : t)

]
t

= C(f : t′)
([·]-CLASS)

[v]t = v ([·]-VALUE)

[ε]v = v ([·]-VALUETHIS)

[p]ti = t′

[fi.p]C(f :t) = t′
([·]-CLASSFIELD)

[p]vi
= t′

[fi.p]C(f=v) = t′
([·]-VALUEFIELD)

Weak Type Translation:

[t′]t = t′′

dt′et = t′′
(d·e-WEAKEN)

∀i. dtiet = t′i⌈
C(f : t)

⌉
t

= C(f : t′)
(d·e-CLASS)

dpeti = t′

dfi.peC(f :t) = t′
(d·e-CLASSFIELD)

dεeC(f :t) = C(f : t) (d·e-CLASSTHIS)

Figure 11. Type translation

CLASSTHIS). If both [t]u and dteu are defined for some
types u and t then [t]u = dteu holds.

Strong translation is used in situations where replacing
the assumed type of this by a subtype must not change the
result, such as the expected type of a constructor parameter
– the constructor call must still be valid when the type to be
instantiated is a subtype of what is statically known. Weak
translation is used where this strong guarantee is not needed,
such as for a field access.

3.5 Subtyping
Subtyping rules are shown in Fig. 12. Subtyping has deliber-
ately been defined in an algorithmic style in order to demon-
strate decidability. In particular, there is no subsumption or
transitivity rule; rather, transitivity follows as a lemma.

Two equivalent types are subtypes of each other (<:-
EQUIV). This is the only rule that accepts a path or a value
as a supertype: The value itself is the only subtype of a value
type and a subtype of a path must be an equivalent path.

The comparison of a value type with a class type (<:-
VALUECLASS) is defined in terms of comparing two class
types by replacing the value with the most specific class type
that is compatible with it.

The comparison of a path p with a class type (<:-
PATHCLASS) is the most sophisticated subtyping definition.
The comparison is reduced to a class type comparison. For
this purpose, the most specific class type that is a supertype
of p must be constructed. A class type for p could be com-
puted as the bound of the normalized p. However, this type
is too weak to type-check many interesting programs. For
illustrating the issue, consider the following example:

1 parallel (v1: Vector(s : Space), v2: Vector(s : v1.s )) : Bool {...}
2

3 test (v: Vector(s : Space)) : Bool { parallel (v, v ); }

The function parallel tests if two vectors are parallel. It
expects two vectors from the same space as parameters. The
function test calls parallel to check if a vector is parallel to
itself. If we use the path bound as discussed above, this



Subtyping:

Γ ` t ' t′

Γ ` t <: t′
(<:-EQUIV)

∀i. ∃j. f ′j = fi ∧ Γ ` t′j <: ti
C ∈ Parents(Γ, C ′, f ′ : t′,∅)

Γ ` C ′(f ′ : t′) OK

Γ ` C ′(f ′ : t′) <: C(f : t)
(<:-CLASS)

Γ ` p ; p′ Γ ` p′ ≺ C ′(f ′ : t′)
Γ ` C ′(f ′ : t′) OK

Γ ` C ′(f ′ : p′.f ′) <: C(f : t)

Γ ` p <: C(f : t)
(<:-PATHCLASS)

Γ ` C ′(f ′ : v′) <: C(f : t)

Γ ` C ′(f ′ = v′) <: C(f : t)
(<:-VALUECLASS)

Match Declarations:

D ∈ P C(f : t′) = Sig(D)
∀i. ∃t′′. [t′i]C(f :t) = t′′ ∧ Γ ` t′′ OK ∧ Γ ` ti <: t′′

Γ ` D ∈ Match(C(f : t))
(MATCH)

Auxiliary Definitions:

Sig(C(f : t) : u extends C{e}) = C(f : t) (SIG)

C(f : t) . . . ∈ P
∀i, j. i 6= j ⇒ fi 6= fj

Fields(C) = f
(FIELDS)

f ′ = Fields(C) f ′ ⊆ f
∀i, j. (fi = f ′j)⇒ (ti = t′j)

MakeType(C, f : t) = C(f ′ : t′)
(MAKETYPE)

Parents:

Parents(Γ, C, f : t, S) = {C} ∪ (
⋃
C′∈S′\S Parents(Γ, C ′, f : t, S ∪ {C}))

where S′ = {C ′′i | Γ ` . . . extends C ′′ . . . ∈ Match(MakeType(C, f : t))}
(PARENTS-DEF)

Figure 12. Subtyping

call would not pass the type checker: The actual type of the
second argument passed to parallel is v, while its formal type,
translated to the current context, is Vector(s: v.s). The bound of
v in the context of the call is Vector(s: Space) (as specified in
the declaration of test), which is not a subtype of the formal
type Vector(s: v.s).

For this reason, the type of fields of C ′(f ′ : t′) are further
specialized. We know that each field f ′ actually has the type
p′.f ′. Hence, by substituting each t′i for p′.f ′i , a more specific
class type is constructed, which is still a supertype of p.
The resulting type is finally compared with C(f : t). In
the example, Vector(s:Space) (the bound of v) is specialized
to Vector(s: v.s).

Let us now focus on the rule for comparing class types
(<:-CLASS) in Fig. 12. For a class type C ′(f ′ : t′) to be a
subtype of class type C(f : t) , it must be well-formed in
Γ (to be defined later), the types of the corresponding fields
must be more specific, andC must be a parent ofC ′(f ′ : t′).

The function Parents(Γ, C, f : t, S) determines all par-
ents of class C relative to field types f : t in the context Γ.
The function MakeType constructs a valid type from a class
C and field types f : t by selecting only those fields that are
declared for class C. The idea of the algorithm implemented
by the function Parents(Γ, C, f : t, S) is to collect super-
classes from all the declarations of C that match the given
field types, and then recursively collect the parents of these
superclasses. Further, a class C is also considered a parent
of itself. For example, the parents of Union for field types

[s: 2DSpace, s1: Shape(s:s), s2: Solid(s:s)] are Solid, Shape, and
Union.

The last parameter of the Parents function is an accu-
mulator that remembers the classes already visited by the
algorithm. By checking that no class is visited twice, ter-
mination is ensured even in the presence of cyclic inheri-
tance relations. Since parents of a class are relative to the
types of its fields, it can happen that for some type t holds
Γ ` C(f : t) <: C ′(f : t), for another type t′ we have
Γ ` C ′(f : t′) <: C(f : t′) and for yet another type t′′ both
relations may hold simultaneously.

The relation Match defines the set of class declarations
that match a class type C(f : t). It is used to determine
which declarations contribute to a given class type. Intu-
itively, a declaration D matches a class type, if the type is of
the same class as the declaration and the type is compatible
with the type of this assumed by the declaration. A declara-
tion assumes that the type of this is at least as specific as the
signature of the declaration (see Fig. 12 for the definition of
Sig). For a type C(f : t) to be compatible with the signature
C(f : t′), the types tmust be more specific than the types t′.

However, the types t are defined relative to Γ, while
the declared types t′ are valid only in the context of the
declaration. Thus, to compare these types, the declared types
need to be translated to types relative to Γ. For a declaration
D to match C(f : t), which is relative to Γ, the latter
should be suitable as the type of this in the context of the
declaration. Hence, we can use C(f : t) to translate t′ to



types relative to Γ; the translated types, t′′, should be super-
types of the corresponding types from t.

Strong translation guarantees that the translated types t′′

are equivalent to t′. To illustrate why strong translation is
needed for matching, consider matching type u, which de-
scribes a Union of two arbitrary shapes, against D - the most
general declaration of Union, which expects two shapes from
the same space:

u =Union(s:Space, s1: Shape(s:Space), s2: Shape(s:Space))
D=Union(s:Space, s1: Shape(s:s), s2: Shape(s:s))

The declaration D should not match u, because its sig-
nature is more specific than u; it requires that this.s1.s =
this.s2.s = this.s, which cannot be ensured by assuming this
to be u. D is not included into the set of matching decla-
rations of u, because strong translation [Shape(s:s)]u fails.
If weak translation were used instead, D would incorrectly
match, because dShape(s:s)eu = Shape(s:Space).

We conclude this sub-section by a short consideration of
the dependency of the operational semantics on the type sys-
tem. Since Match is also used in the operational seman-
tics (Select rule in Fig. 8), the question raises how much
the operational semantics depends on the type system. The
answer is that only a small subset of the typing rules is ac-
tually needed in the operational semantics. This is because
the type to match in Fig. 8 is always a value type (a value
used as type). Translation of any type relative to a value al-
ways produces an absolute type that does not contain paths.
This means that for the operational semantics we just need
to compare values with absolute types and never have to deal
with paths.

3.6 Expression Typing and Well-Formedness
Fig. 13 specifies type assignment for expressions. The type
of this is the empty path ε (TYPE-THIS). As usual for a
small-step semantics, we also need a typing rule for values.
The type of a value is the corresponding value type (TYPE-
VALUE). Since values occur only during execution, this rule
is only used for runtime type checking, i.e., for the preserva-
tion theorem (Sec. 4.1).

Typing of a field access expression (TYPE-FIELD) is per-
formed by first computing the type t of the prefix e and then
translating the type f relative to t. Weak translation produces
the most specific type that captures all possible objects when
navigating from any object of type t over field f .

For a constructor call expression (TYPE-NEW), the types
of the actual parameters are computed. If there is any class
declaration that matches these types, the return type t′′,
which is identical for all declarations of a class (as stated
by the WF-PROG rule), is translated to the appropriate con-
text (assuming the type of the constructed object as the type
of this) and returned as the type of the expression. Again,
weak translation is used, because it is safe to assign a more

general type to an expression, if the precise type cannot be
described.

The rules for well-formed types check (a) whether all
paths exist in the given context (WF-PATH) by using path
normalization and bounding, and (b) whether all classes
exist (WF-CLASS) with matching field names.7

A class declaration is well-formed (WF-DECL), if all
type declarations are well-formed in the context of the dec-
laration. The constructor expression must be well-typed and
its type must be a subtype of the declared return type. The
set of fields in the class declarations must include all fields
of direct superclasses. Further, it is required that values are
not used in the types of fields. This ensures the property that
the bound of a normalized path is always a class type.

Finally, two conditions are imposed on a program P
in order for it to be well-formed (rule WF-PROG): (a) all
declarations must be well-formed, and (b) all declarations of
the same class must have the same sets of fields and identical
return types.

4. Properties of vcn

In this section, meta-theoretical properties of vcn will be dis-
cussed: The soundness, the decidability, and expressiveness
of the type system.

4.1 Soundness
We have used the standard method to prove the soundness of
the calculus by a progress and a preservation theorem [36].
The progress theorem states that every well-typed expression
in a well-typed program is either a value or can be further
reduced. The preservation theorem ensures that if well-typed
expression e is reduced to e′, then the type of e′ is a subtype
of the type of e.

THEOREM 1 (Progress). If P OK and ∅ ` e : t then
∃v. e = v or ∃e′. e ↪→ e′

THEOREM 2 (Preservation). If P OK and ∅ ` e : t and
e ↪→ e′

then ∃t′. ∅ ` e′ : t′ ∧ ∅ ` t′ <: t

The proofs of both theorems have been verified by the
Isabelle/HOL proof assistant and are available for download
at [15].

To understand why these theorems hold, we present a few
key lemmas from the proof. Lemma 1 justifies the soundness
of substituting this by the newly constructed object in (RED-
NEW) (Fig. 8). It states that the type t′ of the expression after
the substitution is a subtype of the type of the expression
before the substitution. The substitution of this in e changes
the assumed type of this in e, thus the old type of e has to
be translated relative to the v - the new type of this. The
assumption ∅ ` v <: [u]v should be read as: v is appropriate
as value of this in the context where the type of this is u.

7 The auxiliary function Fields is defined in Fig. 12.



Expression Typing:

Γ ` ε OK
Γ ` this : ε

(TYPE-THIS)

Γ ` e : t
dfet = t′ Γ ` t′ OK

Γ ` e.f : t′
(TYPE-FIELD)

Γ ` e : t Γ ` C(f : t) OK
Γ ` C(f : t′) : t′′ . . . ∈ Match(C(f : t))
dt′′eC(f :t) = t′′′ Γ ` t′′′ OK

Γ ` new C(f = e) : t′′′
(TYPE-NEW)

Γ ` v OK
Γ ` v : v

(TYPE-VALUE)

Well-Formed Types:

Γ ` p ; p′

Γ ` p′ ≺ t Γ ` t OK
Γ ` p OK

(WF-PATH)

Fields(C) = f ∀i. Γ ` ti OK

Γ ` C(f : t) OK
(WF-CLASS)

Γ ` C(f : v) OK

Γ ` C(f = v) OK
(WF-VALUE)

Well-Formed Declaration:

Γ = C(f : t)
Γ ` C(f : t) OK Γ ` t OK

t does not contain values
Γ ` e : t′ Γ ` t′ <: t

∀i, f ′. Fields(Ci) = f ′ ⇒ f ′ ⊆ f
C(f, t) : t extends C {e} OK

(WF-DECL)

Well-Formed Program:

∀D ∈ P. D OK ∀D,D′ ∈ P :
D = C(f : t) : t . . . ∧ D′ = C(f ′ : t′) : t′ . . .
⇒ f = f ′ ∧ t = t′


P OK

(WF-PROG)

Figure 13. Typing

LEMMA 1 (Substitution). If u ` e : t and ∅ ` v <: [u]v
and ∅ ` v OK
then ∃t′. ∅ ` e[v/this] : t′ ∧ ∅ ` t′ <: [t]v

Lemmas 2 and 3 state that matching declarations and sub-
typing relations are preserved at runtime. Lemma 2 states
that if a declaration D matches a type t, then the match will
be preserved at runtime for any possible value v of this (t
is translated to a corresponding runtime type by translat-
ing it relative to the value of this). Analogously, lemma 3
states that subtype relations are preserved at runtime. Fur-
ther, lemma 4 states that subtypes produce more matching
declarations.

LEMMA 2 (Preservation of Matching). If u ` D ∈ Match(t)
and ∅ ` v <: [u]v and ∅ ` v OK , then ∅ ` D ∈
Match([t]v)

LEMMA 3 (Preservation of Subtyping). If ∅ ` v <: [u]v
and ∅ ` v OK and u ` t′ <: t, then ∅ ` [t′]v <: [t]v

LEMMA 4 (Monotonicity of Matching). If Γ ` D ∈ Match(t)
and Γ ` t′ <: t, then Γ ` D ∈ Match(t′)

Preservation of matching and preservation of subtyping
hold due to the properties of strong translation. The defi-

nition of matching (rule MATCH in Fig. 12) computes the
strong translation [t′i]C(f :t) for each field type with respect
to the assumed type of this, C(f : t). Replacing the as-
sumed type of this by a subtype must not invalidate match-
ing relations. This is the case due to an invariance property
of strong translation: Only equivalent types will be produced
when the context type is strengthened; hence, the subtype
check in (MATCH) cannot fail.

LEMMA 5 (Invariance of Strong Translation). If [t]u = t′

and Γ ` t′ OK and Γ ` u′ <: u, then ∃t′′. [t]u′ =
t′′ ∧ Γ ` t′′ ' t′

Weak translation has only a weaker property as stated in
lemma 6. This property is, however, sufficient for soundness
because weak translation is only used for field access and
return types of constructors, where a loss in precision does
not influence soundness.

LEMMA 6 (Covariance of Weak Translation). If dteu = t′

and Γ ` t′ OK and Γ ` u′ <: u, then ∃t′′. dteu′ =
t′′ ∧ Γ ` t′′ <: t′



4.2 Completeness
In order for the type system to be sound, path normaliza-
tion must have the property that equivalent paths are indis-
tinguishable in the operational semantics. This can be ex-
pressed formally as follows:

LEMMA 7 (Soundness of Path Normalization). If P OK
and t ` t OK and t ` p ' p′, then for all v with
∅ ` v OK and ∅ ` v <: [t]v (think: v is a value of
this that is allowed by t) and v.p ↪→∗ v1 and v.p′ ↪→∗ v2,
we have v1 = v2.

However, even a very trivial path equivalence relation
such as Γ ` p ' p′ :⇔ p = p′ would have this property. In
order to demonstrate the expressiveness of path normaliza-
tion, we have proven a completeness property,8 which says
that the implication also holds in the reverse direction if we
also consider possible extensions of the program - a fixed
program may be too limited to distinguish two paths. For
this reason, we added the program that we are talking about
in the formulas in the following lemma:

LEMMA 8 (Completeness of Path Normalization). If P OK
and P, t ` t OK , then P, t ` p ' p′ if and only if for all
extensions P ′ = P, P ′′ of P such that P ′ OK and all v with
P ′,∅ ` v OK and P ′,∅ ` v <: [t]v and P ′ ` v.p ↪→∗ v1

and P ′ ` v.p′ ↪→∗ v2, we have v1 = v2.

In other words, if two paths are operationally indistin-
guishable, then they will be equivalent in the type system.
Since type equivalence is just path equivalence propagated
to the type level (see '-CLASS), the result applies to types
as well.

4.3 Decidability
The definitions of most relations are syntax directed, i.e., at
least one of the relation arguments in premises is a struc-
tural part of the relation arguments in the conclusion, while
the other arguments remain unchanged. This applies to type
equivalence, to strong and weak translation, and to expres-
sion typing. Decidability is less obvious for path normaliza-
tion, for path bounding, and for subtyping. Hence, we will
illustrate how these relations can be turned into terminating
algorithms.

Figure 14 describes an algorithm for path normalization
and bounding, which is equivalent to the rules in Fig. 10,
i.e., if Γ ` p ; p′, then normalize(Γ,∅, p) = p′; if
normalization is not possible, the algorithm generates an
error (either raised explicitly or due to pattern matching
failure).

It is easy to see that derivations of path normalization are
unique. Therefore, if during normalization of pwe encounter
p again, then normalization of p is not possible and an error
is raised. We use the second parameter ∆ to keep track of

8 The proof is available at [15].

the paths, the normalization of which can cause such cycles,
and throw an error if we are about to normalize a path, which
is already in ∆. The only place that can cause a cycle is the
path normalization in the premises of rule ;-FIELD2; all
other premises normalize structurally smaller paths.

The algorithm always terminates, because ∆ must grow
with each recursive call on a path that is not structurally
smaller. On the other hand, ∆ cannot grow indefinitely,
because it includes only paths computed by path bounding.
It is easy to see that every possible path bound is a declared
type in the context. Hence, the set of all path bounds in
a fixed context is finite and the algorithm is guaranteed to
terminate.

The subtyping definitions can directly be implemented by
a recursive algorithm. Its termination can be proved by a
measurement function that assigns a natural number to each
pair of types, such that the measure of types, compared by
a subtype relation in premises, is always smaller than the
measure of the types, compared in the conclusion. Such a
measure function is described in Fig. 15. It basically states
that the depth of the type on the right-hand side of the
subtype relation must decrease in at most two inference
steps, if we do not count the intermediate inference rules for
Match.

5. Dispatch
In this section, possible dispatch strategies are discussed,
each answering the question as which of the class declara-
tions matching a constructor should be selected for execu-
tion in a different way. All discussed strategies are special-
izations of the most general strategy defined by the function
Select in Fig. 8. This means that our selection of a specific
dispatch strategy does not compromise the soundness of the
calculus, as long as it can guarantee that something will be
selected from every valid matching set of declarations:

PROPERTY 1. If P OK and ∅ ` t OK and ∅ ` D ∈
Match(t) for some declaration D, then there exists a dec-
laration D’ such that D′ ∈ Select(t) and ∅ ` D′ ∈
Match(t).

A reasonable assumption to expect from any dispatch
strategy is that it implements overriding: More specific dec-
larations should hide more general ones. Declaration D′ is
more specific than declaration D, if any value that matches
D′ also matches D:

DEFINITION 1. Declaration D′ is more specific than D, if
for all v = C(f = v) with ∅ ` v OK and ∅ ` D′ ∈
match(C(f : v)) it follows that ∅ ` D ∈ match(C(f :
v)).

Definition 1 describes the desired property of overriding,
but it is not constructive, because it quantifies over all pos-
sible values. A constructive way to compare two declara-
tions could be achieved by comparing their signatures by the



normalize(Γ,∆, ε) =ε

normalize(Γ,∆, p.f)=


error if p.f ∈ ∆,
normalize(Γ,∆ ∪ {p′}, p′) if t = p′,

normalize(Γ,∆, p).f if t = C(f : t),
where t = bound(Γ,∆, p.f)

bound(C(f : t),∆, ε) = C(f : t)
bound(Γ,∆, p.f) = t, where
C(. . . f : t . . .) = bound(Γ,∆,normalize(Γ, p))

Figure 14. Path Normalization Algorithm

depth(p) =0 depth(v) = 0
depth(C(f, t))=max(depth(t)) + 1

measure(t′, t)=
{

2× depth(t) + 1 if t′ is not a class type
2× depth(t) if t′ is a class type

Figure 15. Measure function showing decidability of subtyping

subtype relation. The problem, however, is that the signa-
tures may involve paths and, thus, cannot be compared in
the global (empty) context. The solution is to use the sig-
nature of the declarations to compare as contexts, as in the
constructive definition of the overrides relation below:

DEFINITION 2. Declaration D′ overrides D (D′ � D),
if Sig(D′) ` Sig(D′) <: Sig(D) and not Sig(D) `
Sig(D) <: Sig(D′).

The overrides relation has the property that D′ overrides
D implies D′ is more specific than D. By using it, the def-
inition of Select can be refined so that it guarantees that
the overridden declarations are hidden (SELECT-OVER in
Fig. 16). Given a non-empty set of declarations, a declara-
tion can be found that is not overridden by any other decla-
ration from the set. This is because the overriding relation
is transitive and asymmetric. Thus, for such a definition of
Select, constructor calls in a well-formed program will al-
ways succeed.

The rule SELECT-OVER is, however, not deterministic
because there can be several declarations that do not override
each other. There are different methods for eliminating this
non-determinism. Following the tradition of multi-dispatch,
these methods can be classified into symmetric and asym-
metric ones.

Symmetric dispatch requires that only the most specific
declaration can be selected. A possible definition of sym-
metric dispatch is given by rule (SELECT-SYMM) in Fig. 16.
It requires that from the set of the matching declarations we
can select one declaration that overrides all the others.

The type checking rules of Fig. 13 are not sufficient
to guarantee that symmetric dispatch will always succeed.
For example, the declarations Union(s:Space, s1:Solid(s:s),
s2:s1) and Union(s:2DSpace, s1:Box(s:s), s2:Box(s:s)) in Fig. 4
do not override each other and both could match the type
Union(s:2DSpace, s1:Box(s:s), s2:s1).

The simplest constructive way to guarantee that symmet-
ric dispatch always succeeds, is to require that the overrid-
ing relation defines a total order on all declarations of the
same class. The problem is that such a requirement is very
strict, i.e., it rejects programs that fulfill property 1. We could
try to borrow less restrictive solutions that are available for

symmetric dispatch for methods [2, 4, 28]. It is, however,
not straightforward, because the relations that are easy to
compute in a simple type system, where types correspond
to plain classes, may be difficult to compute or even unde-
cidable in a type system with dependent types. For example,
it is difficult to determine if two types are overlapping, i.e.
if they have a common (valid) value in the program. It is
also difficult to check if a type is an upper bound of an in-
tersection of two other types (i.e. it is a supertype of all their
common subtypes). Definition of tolerant constructive well-
formedness rules that guarantee the property 1 for symmetric
dispatch is a topic for future research.

The general principle of asymmetric dispatch is to define
an additional ordering relation that supplements the order of
the overriding relation. The ordering relation D <t D

′ says
that D precedes D′ when they are incomparable by overrid-
ing relation. In the general case, the ordering relation may
be not absolute, but relative to t - the type being matched.
Rule SELECT-ASSYM in Fig. 16 defines the general prin-
ciple of asymmetric dispatch: the matching declarations are
first filtered by the overriding relation, then from the decla-
rations that are not overridden, we select the one that is the
smallest by the additional ordering relation.

The supplementary ordering relation can be defined in
different ways. The simplest way is to define it explicitly by
assigning order numbers to declarations in the program or
by having precedence declarations similar to the precedence
declarations of aspects in AspectJ [21]. The order can also
be determined implicitly, by considering the order of class
declarations, the order of field declarations and the order of
parent classes in the extends clause. For example, one could
consider extending the mixin linearization algorithm of the
vc [12] calculus for multiple fields.

In vcn, one could also consider new variations on dis-
patch that would not make sense for multimethods. For ex-
ample, classes that only contribute structure (such as new
supertypes or fields) but not behavior (only default construc-
tor) could be excluded from the dispatch algorithm. In vcn,
all declarations of a class must have the same set of fields,
but if we would add self-initializing fields or mutable fields
that do not need to be initialized via constructor parameters,



Select for overriding:

∅ ` D ∈ Match(C(f : v))
∀D′ ∈ Match(C(f : v)). ¬D′ � D

D ∈ Select(C(f = v))
(SELECT-OVER)

Select for symmetric dispatch:

∅ ` D ∈ Match(C(f : v))
∀D′ ∈ Match(C(f : v)). D′ 6= D ⇒ D � D′

D ∈ Select(C(f = v))
(SELECT-SYMM)

Select for asymmetric dispatch:

X = {D. ∅ ` D ∈ Match(C(f : v)) ∧ (∀D′ ∈ Match(C(f : v)). ¬D′ � D)}
D ∈ X ∀D′ ∈ X. D′ 6= D ⇒ D <C (f :v) D

′

D ∈ Select(C(f = v))
(SELECT-ASYMM)

Figure 16. Variations of Dispatch

then a class declaration could extend the object layout with-
out interfering with the dispatch mechanism.

6. Related Work
The idea of virtual classes stems from BETA [23] and be-
came more popular since Ernst’s paper on family polymor-
phism [10]. Since then, much related work on virtual classes
has been published [19, 25, 1, 18, 30, 31, 12, 32, 8, 5]. The
key difference between dependent classes and vcn on the one
side and related work on virtual classes on the other side
[19, 25, 1, 18, 30, 31, 12, 32, 8, 5] consists in the gener-
alization of the dependency on multiple parameters and the
resulting implications for expressiveness and the type sys-
tem (such as types that depend on multiple objects rather
than a single object). We are not aware of any other previous
work in this direction. Hence, in the following, we concen-
trate on those properties of vcn that can be directly compared
to other approaches via encoding of virtual classes by depen-
dent classes. In other words, for this comparison we consider
only dependent classes with a single parameter. Figure 17
gives a brief summary of the comparison.

Virtual classes as envisioned in Beta are properties of
enclosing objects (object families in Fig. 17). Some ap-
proaches, Concord, .FJ and J&, propose a static version of
virtual classes where nested classes are properties of enclos-
ing classes. The implications of this difference are discussed
in detail in [12].

The classes-in-objects approaches, CaesarJ, vc, νObj,
FSalg , Tribe and vcn, differ from each other in their support
for what we call path wildcards, referring to the ability to
replace a path or part of a path in a type by a class name. For
example, by using the type Space.Point instead of s.Point we
refer to points whose class belongs to any instance of Space.
Both Tribe and vcn allow free mixing of paths and class
names. These approaches are also the only ones supporting
free access to enclosing objects in types, such as a type
p1.s.Vector that refers to the enclosing object of a Point object
p1. A detailed discussion why this is useful can be found in
[5].

Cross-family inheritance (Fig. 17) refers to the ability to
inherit from a class that is not part of the same family. This is

relatively easy in static approaches, but becomes more com-
plicated with true virtual classes because a virtual class can
then have multiple enclosing objects. Tribe has special con-
structs (adoption and over-the-top types) to allow inheritance
from top-level classes - this avoids the aforementioned com-
plications because top-level classes do not have an enclos-
ing object. In vcn, a class can inherit from any other class,
including classes that belong to arbitrary foreign families.
It is even possible to encode inheritance from a dependent
type by a superclass clause of the form extends path.C. This is
illustrated in the following example, which encodes a hypo-
thetical version of traditional virtual classes with inheritance
from dependent types (top) in vcn (bottom). In the encod-
ing, E has an additional constructor parameter, but since it
has a singleton type (a path), there is only one possible value
which can be passed. In fact, it would be easy to devise an
extension of vcn, where constructor arguments with single-
ton type can be initialized automatically.

1 class C {
2 class D { }
3 }
4 class E extends path .D { ... }

1 C
2 D(out: C)
3 E (..., out : path) extends D

Decidability is not obvious when dealing with dependent
type systems, and in fact some dependent type systems are
undecidable. It is not trivial to deal with heaps and muta-
ble state in path-dependent type systems, hence many formal
languages have been formulated as pure functional systems.
Final bindings increase the expressiveness of the type sys-
tem with respect to encoding generics, but it is not easy to
reconcile final bindings with polymorphic constructors and
parents (superclasses), hence none of the languages supports
both. Finally, the languages differ in whether arbitrary ex-
pressions can be used as receiver or argument of a construc-
tor call (e.g., for nesting constructor calls). Some languages
allow only paths in these positions and rely on encodings of
arbitrary expressions through local variables. It is not always
obvious, however, whether these encodings have the desired
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Object Families no yes no no yes yes yes yes yes
Path wildcards n/a yes n/a n/a no no no yes yes

Free access to enclosing object n/a no n/a n/a no no no yes yes4

Cross-Family Inheritance no no no yes no no no yes1 yes
Inheritance from dependent type no no no no no no no no yes

Decidability yes yes yes yes yes no yes yes3 yes
Mutable State no yes no yes2 yes no no no no

Final Bindings no no no no no yes yes no no
Polymorphic Parents and Constructors yes yes yes yes yes no no yes yes

Free Constructor Nesting yes yes yes no no no no no yes

Figure 17. Comparison with the single-dispatch fragment of vcn

Parts of this table have been copied from [5]. 1) but only from top-level classes; 2) the formal language in [30] uses a heap but has no mutation; 3) decidability
is not discussed in [5], but the authors have subsequently developed a variant of Tribe with a decidability proof (personal communication); 4) since enclosing
objects (which are not lexically enclosing in vcn) are stored in ordinary fields; 5) there is no formal definition of Caesar/J, though

typing properties, hence we feel it is desirable to support free
expression composition directly.

DEEP [16] is another language which can encode a vari-
ant of virtual classes, but it is very different from the other
languages discussed above and hard to compare, since it
allows general dependent types (not just dependencies on
paths), uses a prototype-based approach rather than classes,
supports virtual classes only through relatively elaborate en-
codings, and uses many unconventional techniques such as
unifying terms and types.

As already discussed in Sec. 2, dependent classes are
complementary to multimethods [9, 3, 34, 6] and cannot be
replaced by them. Even encoding of the operational seman-
tics of dependent classes by means of multi-dispatched fac-
tory methods is hard, because a factory method would need
to be defined for each possible combination of the decla-
rations of a dependent class. Even more problematic is the
modeling of the subclasses of dependent classes, because a
subclass implicitly inherits all variations of its superclass.
Also, we believe that it is not possible to model the type
system of vcn using any of the type systems that have been
proposed for multi-dispatch.

Predicate dispatch [13, 27] is a generalization of multi-
dispatch. With predicate dispatch, a method can have mul-
tiple declarations with different predicate expressions. A
method declaration is applicable to the argument values of
a method call when the predicate expression evaluates to
true. The dispatch selects the most specific declaration of
the method that is applicable for the given arguments. The
predicate expression of the most specific declaration must
logically imply the predicate expressions of other declara-
tions. Predicate dispatch is more powerful than the dispatch
that we presented for dependent classes. It would be rather

straightforward to generalize the operational semantics of
vcn to use predicate dispatch but it is not obvious what the
implications for the type system would be.

7. Conclusions and Future Work
In the paper, we presented the concept of dependent classes,
a generalization of virtual classes. The definition of a depen-
dent class is parameterized by and dispatched over multiple
parameters.

In addition to supporting multi-dispatch, the paramet-
ric style also breaks the strict nesting structure of virtual
class declarations. This implies a new view, in which vir-
tual classes are not seen as an inherent part of the enclos-
ing object, but rather as classes that simply depend on the
types of other objects. As a result, unnecessary coupling be-
tween classes and extensibility problems caused by nesting
are avoided.

By their very idea dependent classes are related to multi-
methods in the sense that class definitions can depend on
multiple parameters in a similar way as method definitions
do. The vcn calculus for dependent classes presented in this
paper not only encodes the multi-methods, but also extends
their semantics by supporting dispatch over a more powerful
subtype relation.

This paper is the first one to present a mechanically ver-
ified soundness proof of a language with path-dependent
types and virtual classes. We hope that the existence of this
proof increases the trust and interest in virtual classes and
makes it easy for other researchers to investigate new vari-
ants of virtual classes by adapting our proof.

There are several areas of future work. We will for-
malize abstract dependent classes and will investigate the
issue of modular checking of dispatch completeness and



uniqueness. In addition, we plan to investigate the relation
to dependently-typed lambda calculi, such as the calculus
of constructions [7]. First experiments suggest that it might
indeed be possible to encode some typical theorem proving
examples in vcn. Also, we plan to investigate the relation be-
tween dependent classes and Haskell’s multi-parameter type
classes [20], in particular those variants with support for
so-called overlapping instances, building upon the results
presented in [22]. Another interesting issue is interaction
between dependent classes and generics.

Another area will be to further study the usefulness of de-
pendent classes in various application scenarios. For exam-
ple, dependent classes are interesting in the context of sup-
porting variability in software product lines, because they
can be used to model classes that depend on multiple varia-
tion points.
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