
Independent Extensibility – an open challenge for

AspectJ and Hyper/J

Klaus Ostermann, Günter Kniesel

Universität Bonn
Institut für Informatik III

Römerstr. 164, D-53117 Bonn, Germany
{osterman,gk}@cs.uni-bonn.de

March 30, 2000

Abstract

AspectJ and Hyper/J provide different ways to modify classes that
are used by existing clients. We think that a significant share of their
differences can be attributed to the use of complementary ways to im-
plement changes and to propagate them to clients: AspectJ uses in-place
modification whereas Hyper/J uses client migration. Whereas these tech-
niques are largely complementary in many respects, they share the fact
that the combination of independent extensions of one base class poses
major problems.

Object-oriented programmers frequently face one of the following problems:

• All subclasses of an existing class should exhibit some extended behavior.

• Objects created by existing code should exhibit some extended behavior.

As a rather simple example, consider a billing system with a central class
Invoice. Invoices can be delivered by calling the deliver()-method in the
Invoice class. Instances of Invoice are created in multiple locations of the
system and multiple subclasses of Invoice exist. We will assume two users of
Invoice, a subclass SpecialInvoice and a client InvoiceClient:

package billingsystem;

class Invoice {
void deliver() { ... }
...

}
class SpecialInvoice extends Invoice {

1



...
}
class InvoiceClient {
Invoice invoice = new Invoice();
void foo() {
invoice.deliver();

}
}

Now assume that, within the scope of a shift to e-business, invoices should
also be delivered by e-mail prior to normal delivery.

Neither subclassing nor wrapper-based solutions can be applied to this prob-
lem, because existing clients refer to the existing class instead of the subclass
or the wrapper [Höl93]. So mainstream object-oriented systems only leave us
with the choice to modify either the Invoice class or to modify its clients. Nei-
ther alternative is particularly appealing – it is generally agreed that changes
should be incremental, rather than invasive, because invasive changes require
source-code access and entail a major maintenance problem [OH92], [Höl93].
The maxime that “adding new code is good, modifying existing code is bad”
dates back at least to [SLU89].

Meanwhile, AspectJ [Asp00] and Hyper/J [TO99] recommend themselves as
two novel and promising approaches to cope with this problem.

1 AspectJ

We can tackle the problem with AspectJ by defining an aspect which has a
sendMail()-Method and augments the deliver()-method of Invoice by a
call to this method:

package billingsystem;

class MailExtensionAspect {
introduction Invoice {
void sendMail() {
...
}

}

static advice(Invoice invoice): void print() & invoice {
before {

invoice.sendMail();
}

}
}

2



The result of a compilation of these classes is an Invoice class that is equivalent
to writing the appropriate modifications directly into the class. We call this kind
of modification an in-place modification.

2 Hyper/J

The same problem can be handled with Hyper/J by providing an independend
class extension.Invoice for the mail-functionality. The ”old” Invoice class
together with its clients is then merged with the extension into a new hypermod-
ule (for brevity reasons, the concerns and hyperslice specifications are left out,
the definitions of our hyperslices below are just enumerations of the incorporated
classes):

package extension;

public class Invoice {
public void sendMail() {
...

}
public void deliver() {
sendMail();

}
}

hypermodule extendedbillingsystem
hyperslices:

Feature.billingsystem, // consists of billingsystem.*;
Feature.extension; // consists of extension.*

relationships:
mergeByName;

end hypermodule;

After performing the composition, the package extendedbillingsystem
contains the classes Invoice, SpecialInvoice and InvoiceClient.

The interesting point in this case is that in the scope of the
new package, SpecialInvoice and InvoiceClient forward [OKK+96]
to extendedbillingsystem.Invoice. This means, that they use
extendedbillingsystem.Invoice wherever billingsystem.Invoice was
used previously. Instead of changing the original Invoice class, new clients
are created that refer to a new Invoice class.

We call this kind of program transformation client migration.

3 Discussion

Both, in-place modification and client migration, can be used to solve our sample
programming task. However, these solutions are not equivalent.

3



In-place modification is destructive in the sense that the original class is no
longer available after composition. So in-place modification is appropriate if all
known (and unknown) clients of this class should participate in the modification.
If only selected clients should use the modified class, in-place modification fails.

Client migration is better suited for selective modification, because existing
classes are not changed. On the other hand, this strategy imposes a maintenance
problem, if the modified class should be used by all (existing and future) clients,
because all clients have to be listed explicitly in the composition specification.

Additionally, client migration poses the question of how to handle clients of
the migrated clients. Either these clients-of-clients are migrated, too, or they
have to be invasively modified, or they continue to use the old version of the
modified class. The first case can be iterated until the main entry into the
system, e.g. the starting class, is migrated – in this case, the deployment has to
be changed invasively (with of course less weighty consequences).

4 Independed extensibility

A useful property of an extensible component is independend extensibility: A
system is independently extensible if it is extensible and if independently devel-
oped extensions can be combined [Szy96].

The difficulty in achieving independend extensibility when using in-place
modifications is that different extensions might conflict and no central instance
(like the inheriting class in a multiple inheritance hierarchy) is available to
resolve this conflict.

AspectJ suffers from this problem in case of conflicting introductions, which
result in compiler errors. One could be tempted to limit the visibility of in-
troductions by using public, protected, private modifiers. However, this
will only reduce the number of conflicts but it will not help to deal with the
remaining ones, e.g. two conflicting public introductions.

Advice conflicts can be influenced by defining a partial order on the as-
pects, which introduces a low coupling among them. However, ordering aspects
will often be too coarse grained, because an ordering that is appropriate for
conflicting advices related to one particular method might be fully inappro-
priate for advices referring to another method. For instance, one might have
an original class with methods start() and end() and two aspects: the one
advices that a new method openTheDoor() should be invoked before start()
and closeTheDoor() before end(); the other one advices that a new method
goInside() should be invoked before start() and goOutside() before end().
Clearly, the only sensible sequence of events is: openTheDoor(), goInside()
and goOutside(), closeTheDoor(), which corresponds to different orderings
of the advices from different aspects.

A more subtle problem is related to updates: If an aspect updates state of its
object, state hold or introduced by other aspects will in general become incon-
sistent.It is impossible to detect automatically, let alone to reconcile, different
(implicit) invariants assumed by different aspects. Therefore, the only possible

4



solution seems to be to let each aspect enforce its own invariants. This would
be possible if aspects were informed about state changes in the shared object
(e.g. as listeners of corresponding events). However, this is no general solution
either because the actions taken by one aspect to enforce its invariants might
lead to further changes of shared state that might lead to other actions by other
aspects, and so on ad infinitum.

Similarly, Hyper/J suffers from difficulties when it comes to combination of
extensions. This requires either the modification of a hypermodule specification
(which is an invasive change) in order to insert another extension into the hy-
permodule, or the creation of a new hypermodule containing all clients, which
introduces the client-of-client problem.

5 Conclusions

Although we have talked mainly about AspectJ and Hyper/J the essence of the
discussion is the comparison of in-place-modification with client migration.

It turns out that AspectJ and Hyper/J can be viewed as powerful front-ends
that automate the traditional solutions for changing existing classes. AspectJ
performs in-place-modification, which invasively changes the original classes.
Hyper/J performs client migration, which performs the changes in duplicates of
the original class and of its clients.

Due to their invasive nature, independently developed aspects of one origi-
nal class will possibly conflict with respect to introductions, advices, and state
changes. We have shown that conflict resolution of advices by orderings of
aspects is not general enough. There is no general solution for conflicting in-
troductions either. Finally, the issue of conflicting state changes is notoriously
difficult, too.

Hyper/J, on the other hand, does a good job in case only a fixed set of
selected clients should be migrated. Composition of independent extensions
would be possible in Hyper/J, if a solution to the client-of-client problem were
available. Indeed, we think that there is an obvious solution: An optional
migration / duplication of all classes in the transitive closure of the client-of
relation, ie an automatic migration of all clients, clients of clients etc.

However, this would result in an exponential growth of class versions and
program size. In addition, this feature requires a global view of the compiler:
All application classes have to be known at the time of compilation (closed-world
assumption, eg [PS94]), a problem that AspectJ suffers from, too.

References

[Asp00] AspectJ homepage, 2000. http://aspectj.org.

[Höl93] Urs Hölzle. Integrating independently-developed components in
object-oriented languages. In Proceedings ECOOP ’93, LNCS, 1993.

5



[OH92] Harold Ossher and William Harrison. Combination of inheritance
hierarchies. In Proceedings OOPSLA ’92, 1992.

[OKK+96] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harri-
son, and Vincent Kruskal. Specifying subject-oriented composition.
Theory and Practice of Object Systems, 2(3):179–292, 1996.

[PS94] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type
Systems. Wiley, 1994.

[SLU89] Lynn Andrea Stein, Henry Lieberman, and David Ungar. A shared
view of sharing: The treaty of orlando. In Won Kim and Freder-
ick H. Lochovsky, editors, Object-Oriented Concepts, Databases and
Applications, pages 31–48. ACM Press and Addison-Wesley, 1989.

[Szy96] Clemens Szyperski. Independently extensible systems – software en-
gineering potential and challenges. In Proceedings 19th Australian
Computer Science Conference, number 18(1), pages 203–212. Aus-
tralian Computer Science Communications, 1996.

[TO99] Peri Tarr and Harold Ossher. Hyper/J user and installation manual,
1999. http://www.research.ibm.com/hyperspace.

6


