
Aspects and Modular Reasoning in Nonmonotonic Logic

Klaus Ostermann
Darmstadt University of Technology, Germany
ostermann@informatik.tu-darmstadt.de

ABSTRACT
Nonmonotonic logic is a branch of logic that has been de-
veloped to model situations with incomplete information.
We argue that there is a connection between AOP and non-
monotonic logic which deserves further study. As a con-
crete technical contribution and “appetizer”, we outline an
AO semantics defined in default logic (a form of nonmono-
tonic logic), propose a definition of modular reasoning, and
show that the default logic version of the language semantics
admits modular reasoning whereas a conventional language
semantics based on weaving does not.

1. INTRODUCTION
There has been a lot of debate in the aspect-oriented com-

munity on how aspects influence program understanding or
reasoning about programs, in particular how aspects influ-
ence “modular reasoning” (e.g., [12, 8]) (although modular
reasoning has never really been defined). Previous works
have concentrated on restricting AO languages in order to
ease modular reasoning (e.g., [9, 2]). In this paper, we in-
vestigate a different approach: Rather than restricting the
language, we propose to use a different reasoning model,
namely nonmonotonic reasoning (see [3] for an overview).

In classical (monotonic) logic, adding a piece of informa-
tion to a knowledge base never reduces the set of its conse-
quences. Intuitively, monotonicity indicates that learning a
new piece of knowledge cannot reduce what was previously
known. Nonmonotonic logics (the formal incarnations of
nonmonotonic reasoning) have been developed to deal with
incomplete and changing information. Nonmonotonic logic
allows to revise conclusions if new knowledge arrives, and
provides rigorous mechanisms for taking back conclusions
that no longer fit to newly learned knowledge, and deriving
new, alternative conclusions instead.

In this paper, we argue that there is a fruitful connec-
tion between nonmonotonic logic and aspects. Using non-
monotonic logic, it is possible to specify the semantics of
an AO language with pointcuts and advice in a very direct

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

and compositional way: no kind of weaving or other global
operation needs to be build into the semantic definitions.
The absense of any operations requiring global knowledge
means that reasoning with local knowledge is also easier.
To validate this claim, we propose a definition of modular
reasoning and show that nonmonotonic logic restores the
ability for modular reasoning, albeit at the cost of giving up
monotonicity.

The rest of the paper is structured as follows. In the next
section, we give a very short introduction to default logic.
In Sec. 3, we give a semantics of an AO language with point-
cut and advice based on default logic and compare it with a
conventional AO language semantics based on weaving. In
Sec. 4 we consider the problem of modular reasoning and dis-
cuss how nonmonotonic logic influences modular reasoning.
Sec. 5 discusses variants of default logic that employ prior-
ities, and how these variants can be used to model advice
precedence rules. Sec. 6 discusses what has been achieved.

2. DEFAULT LOGIC
A typical example in nonmonotonic logic is that we know

birds usually fly, and that Tweety is a bird, and hence con-
clude that Tweety flies - until we learn that Tweety is ac-
tually a penguin. Using default logic [22] - one particular
variant of nonmonotonic logic - we can formalize this situa-
tion as follows:

bird(X) : flies(X)

flies(X)
This rule is a so-called default, and can be read as “If X is

a bird, and if it is consistent to assume that X flies (that is,
it cannot be concluded that X does not fly), then conclude
that X flies”. In general, a default δ has the form ϕ : ψ1,...,ψn

χ
,

where ϕ,ψ1, ..., ψn, χ are predicate logic formulae, and n >
0. The formula ϕ is called prerequisite, the part to the right
of the colon, ψ1, ..., ψn justifications, and the part below
the bar, χ, is the consequent. A default is applicable to a
deductively closed set of formulae E, if ϕ ∈ E and ¬ψ1 /∈
E, ...,¬ψn /∈ E.

In general, the set of conclusions that we can draw from
a knowledge base with defaults is not unique. For example,
if we know that members of the green party typically do
not like cars, and members of an automobile club usually
like cars, and John is members of both green party and
automobile club, then we can conclude both that John likes
cars and that he does not like cars.

This seeming chaos is ordered by so-called extensions -
possible world views based on the given defaults. Techni-
cally, an extension is a superset of the knowledge base that

~a = ApplicableAdvice(o,m)

...o.m(~v) ↪→ ...o.m[~a](~v)
(Weave)

AdviceLookup(a) = (~x, e)

...o.m[a,~a](~v) ↪→ ...e
[
o/this,

~v /~x,
o.m[~a](~v) /proceed

] (AdvExec)

MethodLookup(o,m) = (~x, e)

...o.m[∅](~v) ↪→ ...e
[
o/this,

~v /~x
] (MethExec)

Figure 1: AO language semantics in the style of Jagadeesan et al

is consistent and closed under deduction and application of
defaults [22]. In the example, we would have two distinct
extensions, in which John likes and does not like, respec-
tively, cars. A large part of the theory of default logic is
concerned with the existence and construction of extensions
and the relations between different extensions.

Reiter’s original definition of extensions is a non-constructive
fixed point equation based on the above properties, but we
give an equivalent operational definition based on [18, 3, 4].
For this purpose, we define a default theory to be a pair
T = (W,D) consisting of a set W of predicate logic formu-
lae (sometimes called background theory) and a countable
set of defaults D. The extensions of T are the deductive
closures of all sets E that can be generated by the following
non-deterministic algorithm1:
E := W ;A := ∅;
while there is a default δ /∈ A that is applicable to E {
E := E ∪ {consequent(δ)};A := A ∪ {δ};

}
if ∀δ ∈ A.E is consistent with all justifications of δ

then return E else failure
The algorithm first uses applicable defaults in an arbitrary

order to build a candidate for an extension. The consistency
check in the last two lines then checks whether E is really
an extension. In general, extensions are neither unique (due
to the non-deterministic choice of the next default) nor need
to exist at all (due to the consistency check).

It may look strange that every default is applied at most
once in the algorithm. This is sufficient, because the rule
about birds above is technically not a default but a default
schema since it contains a free variable (namely X). De-
fault schemata are implicitly interpreted to mean the set of
defaults ϕσ : ψ1σ,...,ψnσ

χσ
for all ground substitutions σ that

assign values to all free variables in the schema. For exam-
ple, if we have two birds Tweety and Trixy, then our default

schema creates two separate defaults bird(Tweety) : flies(Tweety)
flies(Tweety)

and bird(Trixy) : flies(Trixy)
flies(Trixy)

.

3. ASPECTS AND DEFAULT LOGIC
Usually, pointcuts are implemented by static or dynamic

weaving (that is, code transformation) or by interception
and dynamic lookup. This view is also reflected in most
formal accounts of AOP languages. Let us consider an
object-oriented language with “around” advice that can ad-
vise method calls. In Jagadesaan et al’s calculus of aspect-
oriented programs [11], the (small-step) operational seman-
tics rules for method lookup look roughly as sketched in

1Recall the definition of applicable on the previous page

Fig. 1. We leave out many details that are irrelevant for
the purpose of this paper. The “...” part in the transition
rules stands for dynamic entities of the operational seman-
tics, such as call stacks or heaps. We also refrain from show-
ing all the other rules of a complete operational semantics,
since the rules for method and advice execution are sufficient
to illustrate our idea.

A method call o.m(~v) is executed by first looking up all
advice that applies to a method call and sorting the advice
in some order (inside the ApplicableAdvice function, whose
definition is not shown here), and weaving the sorted list
of advice ~a into the method call (Weave). This weaved
method call is then executed by taking the first advice from
the list, looking up the formal arguments and body of the
first advice, substituting this and the formal parameters ~x
by the receiver object and the actual parameter values, re-
spectively, and substituting proceed by a method call that
removes the first advice from the list of pending advice
(AdvExec). If no advice is left, the original method body is
executed (MethExec). In both cases, the lookup functions
return a list with the names of the formal parameters and
the advice/method body.

Let us now study how we could encode a similar AO lan-
guage semantics using default logic. We propose rules as
presented in Fig. 2. The meaning of a method call is now
a bit different: Whereas in Fig. 1 an expression o.m[~a](~v)
denotes a method call where the execution of all advice in ~a
is pending, we now interpret it to mean a method call where
all advice in ~a have already been executed. Hence we do not
need a separate syntactic form o.m(~v) for method calls be-
fore weaving; rather, normal method calls are denoted as
o.m[∅](~v).

There are only two computation rules, (Meth) and (Adv).
Due to the different meaning of the advice list in method
calls, (Adv) adds rather than removes the name of the ex-
ecuted advice to the method call that replaces proceed.
There is no weaving rule anymore. Rather, the behavior of
(Meth) and (Adv) is controlled by the auxiliary predicates
NextAdvice and unadvised, which are defined using defaults.
If there is no information to the contrary, we assume that
a method call is unadvised (Unadv). If however, there is
some applicable advice a that has not yet been executed,
and if it is consistent to assume that it is the next advice
to execute, then we conclude that a will be the next advice
(NextAdv). Furthermore, a call with applicable advice is
not unadvised (SomeAdv).

To avoid that two different advice are both simultaneously
the next one, we implicitly assume the existence of the usual

inference rules of equality, in particular x6=x′

¬(x=x′) .

MethodLookup(o,m) = (~x, e)
unadvised(o,m,~a)

...o.m[~a](~v) ↪→ ...e
[
o/this,

~v /~x
] (Meth)

NextAdvice(o,m,~a) = a
AdviceLookup(a) = (~x, e)

...o.m[~a](~v) ↪→ ...e
[
o/this,

~v /~x,
o.m[a,~a](~v) /proceed

] (Adv)

true : unadvised(o,m,~a)

unadvised(o,m,~a)
(Unadv)

a ∈ ApplicableAdvice(o,m) ∧ a /∈ ~a : NextAdvice(o,m,~a) = a

NextAdvice(o,m,~a) = a
(NextAdv)

a ∈ ApplicableAdvice(o,m) ∧ a /∈ ~a
¬unadvised(o,m,~a)

(SomeAdv)

Figure 2: AO language semantics using default logic

To appreciate the difference between default and classi-
cal logic, assume for a moment that the colons in Fig. 2
would be replaced by conjunction operators (i.e., we would
use classical rules). In this case, we could never prove a goal
of the form unadvised(o,m,~a) or NextAdvice(o,m,~a) = a
because the same goal that we want to prove also appears
in the premise of its rule. Hence the semantics would be
useless. Similarly, if we would just remove the justifica-
tions, the semantics would be useless because we could prove
unadvised(o,m,~a) for arbitrary o, m, and ~a.

Now, the question arises whether the default theory in
Fig. 2 has any extensions, and if any, what they look like.
Luckily, all default rules in Fig. 2 are so-called normal de-
faults, meaning that the justification is the same as the
consequent. Normal default theories are particularly well-
behaved. Besides other important properties, normal de-
fault theories always possess extensions [22], which answers
the first question.

Is there only a unique extension? No - in case more than
one advice is applicable at some point, there is more than
one extension, namely one for every possible advice execu-
tion order. This reflects the fact that there is no a-priori
order among different overlapping advice. The difference to
previous approaches is that we can now deal with this situ-
ation within our reasoning framework, and study the ambi-
guity in terms of extensions.

Let us now analyze informally to which degree the two
language semantics agree with each other. If at most one
pointcut applies at any joinpoint, the two semantics agree
because in this case, there is only one unique extension in the
default theory, which is the same theory that is generated by
the conventional operational semantics. The semantics differ
in how they treat shared joinpoints (more than one pointcut
applies). In Fig. 1, the ApplicableAdvice lookup function
orders all applicable advice in a specific order, whereas in
Fig. 2 every potential execution order is represented by a
different extension. We will later discuss how variants of
default logic such as prioritized default logic [6] can be used
to model global orders or ordering hints (such as declare
precedence in AspectJ) on advice.

4. MODULAR REASONING
We will now attempt to give a semi-formal definition of

modular reasoning. Reasoning can be performed with re-
spect to a knowledge base, whereby we define a knowledge
base as a set of logic formulae (or axioms) F in the case of
classical reasoning, and as a default theory T = (W,D) in
the case of default reasoning. What can be concluded from
the knowledge base is the deductive closure of F in the clas-
sical case, and the set of extensions of T in the default logic
case.

We view the “partial evaluation” of the operational se-
mantics rules with the current program as the knowledge
base which we use to reason about the operational behav-
ior of a program. By this we mean the set of rule in-
stances where all meta-variables that refer to parts of the
program are replaced by ground substitutions from the pro-
gram. Recall that the operational semantics inference rules
are actually rule schemata that stand for a set of rule in-
stances, hence we can talk about the set of rule instances
ruleinstances(P) for a given program P 2. For example, if
our program contains an object anObj and a method aMeth
of this object whose body returns this, then

Unadvised(anObj , aMeth, ∅)
...anObj .aMeth[∅]() ↪→ ...anObj

is a rule instance of (Meth).
Please note in this context that the lookup functions Ad-

viceLookup etc. are very different from the Unadvised and
NextAdvice predicates, in that the lookup functions have a
fixed interpretation and can hence simply be unfolded in any
rule instances, whereas the meaning of Unadvised and Nex-
tAdvice is defined in (Unadv) and (NextAdv), similarly to
how ↪→ is defined in (Meth) and (Adv).

2We are cheating a bit because the program is usually (at
least implicitly) a part of the derivation rules, e.g., deriva-
tion rules of the format P ` e1 ↪→ e2. We have deliberately
removed the program from the rules such that we can talk
about preservation of rule instances with respect to program
expansion.

Assuming some module structure in the underlying lan-
guage, we say that a program P ′ is an expansion of P , if P ′

contains P but may contain additional modules. The defini-
tion of modular reasoning is as follows: A language admits
modular reasoning with respect to a set of rules, if, for all
programs P and P ′ such that P ′ is an expansion of P , we
have ruleinstances(P) ⊆ ruleinstances(P ′).

The rationale behind this definition is that the set of rule
instances of a program can be considered as the knowledge
base which we use to reason about the program. If we in-
vestigate a subpart of a program, then the knowledge base
(i.e., the set of rule instances) should only grow when we
investigate bigger parts of the program, but the knowledge
base should never be invalidated by considering a larger part
of the program.

Let us now consider how the language definitions in Fig. 1
and 2 perform with respect to this definition. The deci-
sive rule in Fig. 1, which prevents modular reasoning, is
(Weave). For example, we may have

...anObj.aMeth() ↪→ ...anObj.aMeth[∅]()

for some method aMeth with zero parameters and object
anObj in a program P , but

...anObj.aMeth() ↪→ ...anObj.aMeth[anAdv]()

in an expansion P ′ of P that adds an advice anAdv for calls
to anObj.aMeth(). Hence, modular reasoning (according to
our definition), is not supported via this language definition.

The situation is different in Fig. 2, because there is no
rule like (Weave) that needs global knowledge. To be con-
crete, assume a method call anObj .aMeth[∅](), where the
body of aMeth just returns this. Then we have a rule
instance of the rule schema (Meth) which has the form

Unadvised(anObj ,aMeth,∅)
...anObj .aMeth[∅]()↪→...anObj

. This rule instance is stable w.r.t. pro-

gram expansion. If we consider again P ′ which adds advice
anAdv, then this rule instance is still valid, but we get an
additional rule instance of (SomeAdv), namely

true ∧ true
¬unadvised(anObj , aMeth, ∅)

Hence, modular reasoning (according to our definition) is
possible in the default logic version of the language seman-
tics.

We believe that our approach also enables a form of modu-
lar verification in the sense of [14]: To determine whether an
expansion of a program violates some property of the origi-
nal program that holds in some extension, it is sufficient to
check whether the set of assumptions A in our algorithm for
computing extensions is consistent with the program expan-
sion; it is not necessary to re-examine the whole program.

5. PRIORITIES
If two advice apply at some joinpoint, the question arises

in which order the advice are to be executed. Languages
like AspectJ leave the order unspecified (or use an arbitrary
order such as lexicographic order of aspect names) by de-
fault, but enable the programmer to insert precedence rules
into the program. Such mechanisms are very naturally sup-
ported in default logic, and we believe that the various re-
sults in this domain (see [6, 10, 23] for an overview) could be
projected back to AO languages and lead to better priority
specification mechanisms.

At this point, we will only consider two simple variants of
default logic with priorities: PDL and PRDL [6] [3, Chap. 8].
In PDL, the priority information is given in the form of a
strict partial order < on the set of defaults. The set of ex-
tensions of a default theory in PDL is restricted to those
extensions that respect <, i.e., the order of default applica-
tion in the algorithm in Sec. 2 is compatible with <.

For the purpose of modelling constructs like declare prece-

dence in AspectJ, PRDL is even more appropriate, because
PRDL allows to model the priority information within the
logic, rather than as an external partial order as in PDL. In
PRDL, every default δi has a name di. It also introduces
a special symbol ≺ acting on default names. d1 ≺ d2 can
be read as “give the default with name d1 priority over the
default with name d2”. A term d1 ≺ d2 in PRDL is an
ordinary formula that can be used both in the background
theory W and in defaults D of a default theory T = (W,D).
So, an AspectJ precedence declaration declare predence

a1, a2 can be represented by adding d ≺ d′ to W for ev-
ery d, d′ that is the name of a rule instance of (NextAdv)
for a1 and a2, respectively. Of course, in PRDL the notion
of extension is refined to priority extensions, which respect
the order hints in T . Note that PRDL is already a much
more general model than AspectJ’s declare precedence,
because ordering hints can be given inside arbitrary logic
formulaes. Since they may also be given inside defaults, it is
even possible to model that different extensions use different
priorities! With regard to aspect priority this would mean
that the priority between two advice might depend on the
choosen priority order between other advice.

One step further would be to consider dynamic priorities,
which are well-known in nonmonotonic logic [7, 5]. We be-
lieve that these mechanisms could be directly used to design
new advanced priority mechanisms for AO languages.

6. DISCUSSION
Using default logic, it is possible to define the semantics

of an AO language in a compositional way, without using
weaving or other kinds of global operations. This is not only
interesting from the perspective of defining the language,
but also from the perspective of reasoning about programs
in the language, since a language semantics also influences
how we reason about programs.

Our definition of modular reasoning seems to be a bit
strange in that the whole concept of interfaces, which is
usually a central notion of modularty, does not show up
in any way. Hence, it is not clear whether our definition
really fits to what people usually associate with the term
“modular reasoning”. If it does not, the author is happy
to take any suggestion for a better name for this property.
Another potential weakness of our definition is that it is
possible to build up global (or at least non-local) informa-
tion during execution, e.g., a list of dynamically deployed
aspects that is propagated in the ... part of our reduction
rules (such as in Lämmel’s approach [15]). According to our
definition, such an approach would still allow modular rea-
soning. This brings up the question of the difference (with
respect to modular reasoning) between having to have global
knowledge about the program, or knowledge about dynamic
parameters that influence the execution and are propagated
through the execution steps (such as aspect registries, heaps,
or monads).

One may also argue that our definition of modular rea-

soning has been carefully worded to fit to our approach, and
that what one really wants is monotonicity in the set of con-
clusions from a knowledge base and not so much monotonic-
ity in the knowledge base itself. Indeed, our default logic ver-
sion is nonmonotonic in this regard: A previously existing
extension based on the assumption unadvised(anObj , aMeth, ∅)
can be invalidated by program expansion. This is what non-
monotonic logic is about, after all.

However, we still believe there is value in our approach
because now we can deal with this nonmonotonicity in a
reasoning framework that has been specifically developed
for that very purpose. In Sec. 5 we have already hinted at
how variants of nonmonotonic logic with priorities might fer-
tilize AO language design. We believe that this is also true
for other results from nonmonotonic logic. For example, the
theory of default logic gives conditions under which exten-
sions are unique or under which conclusions are contained in
all extensions of a default theory [17, 13]. There is a system-
atic process to deal with changing belief sets [1]. There are
mechanisms to keep track of the beliefs upon which we base
our conclusions [16]. With our approach, we can now project
these results from default logic back into the AO language
domain. Connections between logic and programming have
turned out to be quite fruitful in the past (Curry-Howard
isomorphism!), and we hope that this connection between
AOP and nonmonotonic logic is no exception.

In this work, we have concentrated on default logic. It
would probably also be possible to define our language se-
mantics in autoepistemic logic [21]. Autoepistemic logic in-
troduces an operator L, where Lφ is interpreted as ’I believe
in φ’. Using this operator, our (Unadv) rule, for example,
could be encoded as

¬L¬unadvised(o,m,~a) → unadvised(o,m,~a)

Since autoepistemic logic is intuitively based on introspec-
tion (rather than default rules), autoepistemic logic might
provide another interesting reasoning framework to interpret
AOP.

Another well-known approach in nonmonotonic logic is
circumscription [19, 20]. We believe that circumscription
could be useful to devise a model-theoretic interpretation
of AOP. From the perspective of logic, most semantic ac-
counts of AOP are proof-theoretic (including this one). Cir-
cumscription gives a model-theoretic interpretation of non-
monotonic logic by selecting minimal models from the space
of models of a theory. We believe it would be possible to
define a variant of our semantics where the unadvised and
NextAdvice predicates are circumscribed (i.e., their mean-
ing is minimized), rather than defining them via defaults.
However, this is clearly a topic for future work.

7. REFERENCES
[1] C. E. Alchourrón, P. Gärdenfors, and D. Makinson.

On the logic of theory change: Partial meet
contraction and revision functions. J. Symb. Log.,
50(2):510–530, 1985.

[2] J. Aldrich. Open modules: Modular reasoning about
advice. In ECOOP’05, Lecture Notes in Computer
Science, pages 144–168. Springer, 2005.

[3] G. Antoniou. Non-monotonic reasoning. MIT Press,
1996.

[4] G. Antoniou. A tutorial on default logics. ACM
Comput. Surv., 31(4):337–359, 1999.

[5] G. Antoniou. Defeasible logic with dynamic priorities.
In Proceedings of the 15th Eureopean Conference on
Artificial Intelligence, ECAI’2002, pages 521–525. IOS
Press, 2002.

[6] G. Brewka. Reasoning about priorities in default logic.
In Proceedings of the 12th national conference on
Artificial intelligence (AAAI), pages 940–945.
American Association for Artificial Intelligence, 1994.

[7] G. Brewka. Well-founded semantics for extended logic
programs with dynamic preferences. J. Artif. Intell.
Res. (JAIR), 4:19–36, 1996.

[8] C. Clifton and G. T. Leavens. Obliviousness, modular
reasoning, and the behavioral subtyping analogy. In
Workshop on Software engineering Properties of
Languages for Aspect Technologies (SPLAT!) at
AOSD 2003., 2003.

[9] D. S. Dantas and D. Walker. Harmless advice. In
Proceedings of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’06), pages 383–396. ACM, 2006.

[10] P. M. Dung and T. C. Son. An argument-based
approach to reasoning with specificity. Artif. Intell.,
133(1-2):35–85, 2001.

[11] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In ECOOP 2003 -
Object-Oriented Programming, 17th European
Conference, pages 54–73, 2003.

[12] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 49–58, New York, NY,
USA, 2005. ACM Press.

[13] S. Kraus, D. J. Lehmann, and M. Magidor.
Nonmonotonic reasoning, preferential models and
cumulative logics. Artif. Intell., 44(1-2):167–207, 1990.

[14] S. Krishnamurthi, K. Fisler, and M. Greenberg.
Verifying aspect advice modularly. In SIGSOFT
FSE’04, pages 137–146. ACM, 2004.

[15] R. Lämmel. A semantical approach to method-call
interception. In AOSD ’02: Proceedings of the 1st
international conference on Aspect-oriented software
development, pages 41–55, New York, NY, USA, 2002.
ACM Press.

[16] W. Lukaszewicz. Considerations on default logic: an
alternative approach. Computational Intelligence,
4:1–16, 1988.

[17] D. Makinson. General patterns in nonmonotonic
reasoning. In Handbook of logic in artificial intelligence
and logic programming (vol. 3): nonmonotonic
reasoning and uncertain reasoning, pages 35–110, New
York, NY, USA, 1994. Oxford University Press, Inc.

[18] W. Marek and M. Trusczynski. Nonmonotonic Logic.
Springer, 1993.

[19] J. McCarthy. Circumscription—a form of
non-monotonic reasoning. Artificial Intelligence,
13:27–39, 1980.

[20] J. McCarthy. Applications of circumscription to
formalizing common sense knowledge. Artificial
Intelligence, 28:89–116, 1986.

[21] R. C. Moore. Semantical considerations on
nonmonotonic logic. Artif. Intell., 25(1):75–94, 1985.

[22] R. Reiter. A logic for default reasoning. Artif. Intell.,
13(1-2):81–132, 1980.

[23] X. Zhao. Complexity of argument-based default
reasoning with specificity. AI Commun.,
16(2):107–119, 2003.

