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Abstract
The influential pure embedding methodology of embedding domain-
specific languages (DSLs) as libraries into a general-purpose host
language forces the DSL designer to commit to a single semantics.
This precludes the subsequent addition of compilation, optimiza-
tion or domain-specific analyses. We propose polymorphic embed-
ding of DSLs, where many different interpretations of a DSL can
be provided as reusable components, and show how polymorphic
embedding can be realized in the programming language Scala.
With polymorphic embedding, the static type-safety, modularity,
composability and rapid prototyping of pure embedding are recon-
ciled with the flexibility attainable by external toolchains.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Extensible languages, Spe-
cialized application languages; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs

General Terms Design, Languages

Keywords Algebraic semantics, compositionality, domain-specific
languages, extensibility, pure embedding, scala

1. Introduction
Over a decade ago, Paul Hudak has shown how a domain-specific
language (DSL) can be implemented as a library, instead of using
a full-blown, stand-alone toolchain [12, 13]. Indeed, by embedding
the DSL in a rich host language, the implementation effort is re-
duced dramatically. More concretely, the embedded DSL (EDSL)
can reuse the syntax of the host language, its module system, exist-
ing libraries, its tool chain, and so on.

Clearly, the success of this symbiosis hinges on the power and
the malleability of the host language. Hudak has shown that func-
tional abstraction is a good mechanism to express the meaning
of the embedded language. However, his methodology leads to
tight coupling of the host language and the embedded one. More
specifically, it restricts the EDSL to a single opaque interpreta-
tion, which is not amenable to analysis or optimizations, which
are crucial for improving the performance of DSL programs. In
general, the restriction to a single interpretation prevents flexible
reuse and composition of both DSL programs and interpretations.
To improve the performance of embedded DSLs, partial evalua-
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tion and multi-staged computation have been proposed [13, 27],
but domain-specific optimizations or other kinds of analyses are
still not possible. More importantly, these approaches do not ad-
dress the problem of keeping the interpretation of the DSL open.

In this paper, we generalize Hudak’s approach to support mul-
tiple interpretations by complementing the functional abstraction
mechanism with an object-oriented one: virtual types. Thus, our
architecture, which we call polymorphic embedding, introduces
the main advantage of an external DSL, while maintaining the
strengths of the embedded approach: compositionality and integra-
tion with the existing language. In this framework, optimizations
and analyses are just special interpretations of the DSL program.

Given the need for functional as well as object-oriented abstrac-
tion mechanisms, we chose Scala [21] as our implementation lan-
guage, although the same ideas can be realized in other languages
with a similar set of features. Most importantly, we rely on Scala’s
support for virtual types (abstract type members) and family poly-
morphism [22, 7, 6], higher-order genericity [18], and mixin com-
position [23], in addition to minor features, such as flexible and
succinct syntax.

In summary, the main contributions of this paper are:

• We present a new approach to embedding DSLs that supports
multiple interpretations.

• We show that domain-specific analyses and optimizations can
be expressed in this framework as yet another interpretation of
the DSL program.

• We demonstrate that polymorphic embedding enables the com-
ponentization of both DSL programs and their interpretations:
Interpretations can be composed from simple, reusable interpre-
tation components, and DSL programs in different DSLs can be
composed quite flexibly.

• We leverage subtype (family) polymorphism and higher-kinded
abstract type members [18] in embedding the DSL’s type sys-
tem, which suggests that these inherently object-oriented mech-
anisms may have a role similar to features that are primarily
known from functional languages, such as generalized abstract
datatypes [31] and various forms of parametric polymorphism.

• Our design is a showcase for the practical utility of many mod-
ern object-oriented language features that are not yet adopted in
main-stream languages.

The remainder of this paper is structured as follows: The next
section reviews existing approaches for embedding DSLs and iden-
tifies a number of desirable properties of such approaches. Sec-
tion 3 presents polymorphic embedding as a solution to the prob-
lems of pure embedding and demonstrates its feasibility in Scala.
Section 4 evaluates our implementation of polymorphic embedding
and discusses its limitiations. Section 5 discusses related and future
work. The final section concludes.
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Figure 1. High-level overview of the architecture

The full code for all examples in the paper can be downloaded
at: http://www.daimi.au.dk/˜rendel/dsl/

2. Problem Statement
This section briefly reviews three different approaches to embed-
ding a DSL into a general-purpose host language, and identifies a
number of properties that are crucial to the applicability of such
an approach to a large class of DSL embedding scenarios. This
article concentrates on embedding approaches, which implement a
DSL in terms of the language elements of a host language, either by
transforming mixed host language and DSL programs into host lan-
guage programs, or by implementing DSL features directly in the
host language. A broader discussion of DSL implementation tech-
niques can be found in the comparative study of Mernik et al. [16],
which introduces “Implementation patterns for Executable DSLs”
in Table IX.

2.1 Code Generators
Traditionally, DSLs have been integrated into general-purpose host
languages by preprocessors, which parse the mixed source files and
convert the embedded DSL programs into program fragments of
the host language, typically calls of library functions. The result
of the preprocessing is a host-language-only source file, which can
be processed by an ordinary host language compiler. This code-
generator approach is quite flexible, because the preprocessor can
process the DSL program in arbitrary complex ways, including
domain-specific analysis and optimization. By using a different
preprocessor, programmers can chose an alternative semantics for
their DSL programs.

A well-known example of this approach is the yacc parser
generator, which allows to mix domain-specific parsing constructs
and ordinary C code. The mixed source files are translated by yacc
into normal C files to be compiled by a stand-alone C compiler.

However, to adopt this approach, a DSL designer has to build a
sophisticated infrastructure similar to a full-fledged compiler (scan-
ning, parsing, etc.). The high costs of implementing a programming
language prevent the adoption of small specialized DSLs in many
cases [13]. An additional problem with the code generation ap-
proach is that preprocessors are not easily composable, since they
cannot parse each other’s DSL syntax.

2.2 Embedded Interpreter
A DSL designer can significantly lower the costs of implementing
an embedded DSL by reusing the host language parser and com-
piler. The idea is to write embedded DSL programs as host lan-
guage expressions that create an abstract syntax tree (AST) repre-
sentation of the embedded program. This AST is then processed by
an interpreter implemented in the host language. This approach is
described by Gamma et al. [8] as the Interpreter pattern. If the host
language offers some syntactic flexibility, such as user-defined in-
fix operators, nested calls of data constructors which construct the
AST can be made to closely resemble a program in a regular DSL.

Recent research has shown that even complex type systems can
be embedded into the type system of a host language with a suf-
ficiently advanced type system [31]. The designer of an embed-
ded DSL can reuse the syntax, semantics, standard library, and
toolchain of the host language. However, this approach does not
really overcome the composability problems of the code-generator
approach.

If several DSLs are mixed within a single host-language expres-
sion, it is not obvious how the different semantics can be composed.

2.3 Pure Embedding
Hudak’s pure embedding [13] is similar to the Interpreter pattern,
except that it does not construct an explicit representation of the
DSL program. Instead, the domain types are directly implemented
as host language types, and domain operations are modeled as host
language functions on these types.

While this approach resembles the development of a traditional
library, which also exports types and functions to its clients, it
stresses the domain-specific concepts and operations during the
design and implementation of the library.

A purely embedded DSL program can use a combination of sev-
eral DSLs as long as they happen to agree on the implementation of
the domain specific types, similarly to how different libraries can
be integrated if they agree on a common set of types. Because the
domain operations are defined in terms of the domain semantics,
not the syntax of the DSL, this approach automatically yields com-
positional semantics with its well-known advantages, such as easier
and modular reasoning about programs and improved composabil-
ity. Nevertheless, purely embedded DSLs have to be designed for
composability by using a common framework, since it is not possi-
ble to later change the representation of the domain-specific types.



Hudak argues that it is easy to prove that a DSL implementation
in the pure embedded approach is consistent with the algebraic
laws of the respective domain. However, while the semantics is in
accordance with the algebraic laws of the domain, it cannot utilize
them for optimization purposes.

It is generally recognized that languages that have been imple-
mented by pure embedding can incur a severe performance penalty.
Therefore, domain specific embedded compilers have been devised
[15, 5]. For example, Elliot et al. [5] have implemented an embed-
ded compiler that translates all the operations of their language Pan
(a language for image synthesis and manipulation, and a superset of
the region language that we use in this paper) to a simple first-order
target language. This required the adaption of the representation of
the types as well as the operations, e.g., the representation of a point
was adapted from a pair of floating-point values to a pair of abstract
syntax trees representing floating-point values.

Others have worked on automating this manual approach: Hu-
dak [13] experiments with partial evaluation, while Sheard [27]
introduced explicit staging annotations into the interpretation. We
conclude that optimization is a significant open problem of the pure
embedding methodology.

Finally, support for multiple interpretations has many practical
applications beyond optimization. Firstly, it is often useful to per-
form other (non-optimizing) analyses on a DSL program, such as
more advanced correctness checks. Mernik et al. recommend not
to use the embedding approach if “domain specific analysis, verifi-
cation, optimization, parallelization or transformation is required”
[16, p. 331]. Secondly, evolving an existing DSL also requires
changing its interpretation, and having multiple interpretations al-
lows the evolution to take place in a modular way. For example, the
DSL can easily be adapted to be composable with another DSL by
providing a corresponding interpretation into a common represen-
tation.

2.4 Desirable Properties
An optimal architecture for embedding DSLs should combine the
advantages of these three different approaches to make it applicable
to a large class of DSL embedding scenarios. We have identified the
following properties:

• Reuse of infrastructure: DSL implementations can reuse syn-
tax, semantics, implementation and tools of the host language.

• Pluggable semantics: DSL programs can be interpreted in mul-
tiple ways rather than having the semantics of the DSL.

• Static safety: The wellformedness of DSL programs is stati-
cally checked against both syntactical (accordance to a context-
free grammar) and contextual (scoping rules, type system) re-
strictions.

• Compositionality: The semantics of a DSL is specified by
defining the meaning of each DSL expression exclusively in
terms of the meaning of its direct subexpressions, without ac-
cessing the syntactic structure of the subexpression or informa-
tion about the rest of the program.

• Composability: Different DSLs or slightly different semantics
of the same DSL can be integrated with each other and the
host language to be used interleaved, even if the DSLs were
not originally designed for cooperation.

• Modular semantics: The semantics of a powerful DSL can
be composed from more primitive semantics using a modular
construction system.

• Performance: Implementations with reasonable performance
in large-scale use are possible.

3. Architecture
Our architecture – like the pure embedding approach – enforces
compositionality by restricting the DSL implementation to work
directly on already interpreted semantical objects. Unlike the pure
embedding approach, which tightly couples a DSL to a specific
interpretation, we achieve loose coupling by abstracting over the
implementation of both the domain-specific operations, and the
representation of the domain-specific types. This variation point
allows the user of the DSL to plug different semantics, including
analyses, as components into an embedded DSL program. Since
each of the semantics and analyses is still defined compositionally,
the advantages of the pure embedding approach are retained.

3.1 Participants
Fig. 1 illustrates the main elements of our architecture. The lan-
guage interface is the central concept in our design. It contains ab-
stract declarations of the domain-specific types and operations pro-
vided by the language. These declarations constitute the DSL’s syn-
tax and type system. Not every DSL needs to be typed, but one goal
of our design is to enable typed DSLs whose type system is em-
bedded in the host language’s type system, i.e., DSL programs are
automatically type-checked by the host language’s type checker.

The language interface is implemented by concrete semantics.
These map each DSL program into semantic domains, which en-
compass a set of types and the meaning of the operations on those
types. Semantic domains in polymorphic embedding are similiar to
the domains used in denotational semantics, but instead of mapping
programs to purely mathematical objects, DSL programs are trans-
formed into objects of the host language representing the intended
meaning of the program. Each semantics is defined by giving a con-
crete representation to the domain-specific types and operations.
On the one hand, the same program may be mapped to different
semantic domains to achieve different results. For example, a DSL
implementer can define a domain-specific analysis by providing a
semantics that maps into a semantic domain that represents the re-
sults of the analysis.

On the other hand, different language interfaces can be made
interoperable by providing semantics which map into the same
semantic domain. Since semantics can be added by users of a
language interface, this is even possible if the language interfaces
were not originally designed to be interoperable.

The openness of the concrete representation is indicated by the
abstract type Rep in Fig. 1. In the general case, these abstract types
may be parameterized, as illustrated by Rep in Fig. 5.

A client operates on a DSL program. We can distinguish two
classes of clients: Oblivious clients know only about the syntax
and type system of the DSL, and can hence only use the language
interface of the DSL to extend the DSL program. Technically, there
is no difference between an oblivious client and an extension of an
existing DSL program.

On the other hand, a conscious client is restricted to specific
semantics of the DSL program. In particular, it knows something
about the representation of the domain types. This knowledge en-
ables the client to compose a DSL program with programs written
in other DSLs or with host language programs. The semantic do-
main serves as a common interface for this composition.

3.2 Modular Design
Our architecture opens new possibilities for modular language de-
sign and implementation, since a system of language interfaces and
semantics can be considered as a component-based architecture. A
component is a reusable and composable piece of software with a
well-defined interface. The elements of the levels of our architec-
ture – languages, semantics and semantical domains – are all com-
ponents. This new view on embedded DSLs enables programmers



to apply their knowledge about design patterns and component-
based design to the implementation of domain-specific languages.

We describe two important examples of component-enabled
DSL implementation techniques that have proven useful in exper-
iments with our architecture. The following sections elaborate on
these techniques. However, we do not claim to have explored the
whole design space yet.

On the level of languages, the language interface of a DSL
may be defined using other lower-level DSLs without fixing their
particular semantics. This hierarchical definition of DSLs enables
code reuse by importing a previously implemented lower-level
DSL, as well as introducing a variation point in the new DSL. It
is possible to configure the low-level behavior of programs written
in the higher-level DSL by choosing an appropriate semantics for
the lower-level DSL.

On the level of semantics, many analyses and optimizations
known from compiler design can be implemented as a semantic
transformer that decorates an arbitrary semantics with additional
processing. The additional processing could, for example, short-
circuit the evaluation of subexpressions based on algebraic laws
of the domain. Since semantic transformers are oblivious with re-
spect to the decorated semantics, they can be chained by conscious
clients to form the precise semantics needed.

3.3 The Regions Language
The remainder of this section demonstrates our architecture by
means of simple DSLs embedded in Scala.

Inspired by [13] and [4], we want to represent a language from
the domain of image processing in our framework. For presentation
purposes, our DSL is kept too simple to be very useful, but it would
be straightforward to extend it with more types and operations,
without changing anything in the basic architecture.

The interface of the Regions language consists of one domain
specific type Region, some primitive constants to describe elemen-
tary regions, and some combinators to build more complex regions
out of elementary ones.

A language interface is represented by a trait in Scala, as il-
lustrated in Fig. 2. A trait is an abstract class that allows mixin
composition. Abstract classes can contain (abstract) type and value
members. A value member is either a method (def), an immutable
field (val), or a mutable one (var). The Regions trait defines two
type members (type). The first is a type synonym which declares
a Vector to be identical to a pair of doubles. Pairs are directly
supported by Scala with the notation (first, second). The sec-
ond type member declares the abstract domain type Region (the
Rep type for this particular DSL). The value members declare a
collection of operations to construct both elementary and complex
regions. Abstract members (types and values) must be made con-
crete before the class that defines them can be instantiated.

The language interface shown here is restricted to five opera-
tions. The elementary regions are: empty, the region that does not
contain any points, univ for the universal region containing every
point, and circle for a unit circle around the origin of the coordi-
nate space. The function scale(v, x) scales the whole region x
by the vector v, and union(r, s) combines two regions r and s.

3.4 Programs and Oblivious Clients
Both DSL programs and oblivious clients depend only on the lan-
guage interface, not on a particular semantics. They are imple-
mented in Scala by accepting the actual semantics as a parameter,
either by encoding the DSL program as a method or by provid-
ing the parameter in some enclosing scope. Since the result type
of a program depends on the actual semantics used, the signature
of such a method requires advanced type system features. In Scala,

// Language interface
trait Regions {
// Ordinary type synonyms
type Vector = (double, double)

// Abstract domain types
type Region

// Abstract domain operations
def univ : Region
def empty : Region
def circle : Region
def scale(v : Vector, x : Region) : Region
def union(x : Region, y : Region) : Region

}

// A simple program
def program(semantics : Regions)

: semantics.Region = {
import semantics._
val ellipse24 = scale((2, 4), circle)
union(univ, ellipse24) // The returned expression

}

Figure 2. Regions Language interface in Scala

there are two options: either using path-dependent types, or using
generics.

In the example program in Fig. 2, the semantics to be used is
passed as a parameter to the program. The return type is a depen-
dent type, which depends on the value semantics. Support for de-
pendent method types is not yet part of standard Scala and must be
activated explicitly with a compiler option (-Xexperimental).
The second option is to use generics, namely by writing the
program method as a generic class as follows:

class program[R](val
semantics: Regions{type Region = R}) {

def apply: R = { import semantics._
val ellipse24: R = scale((2, 4), circle)
union(univ, ellipse24)

}
}

However, this workaround is more verbose and has significant
disadvantages (see also Sec. 4.2 and 5.1), hence in the remainder of
this paper we use dependent method types.

Instead of writing semantics.union(semantics.univ,
ellipse24), i. e., qualifying each name in the Regions program
with the semantics scope qualifier, we use the import statement
of Scala with its flexible scope control to make all members of
semantics directly available in the class. The same can be done
on the level of methods and even individual expressions.

3.5 Semantics
We can now implement different semantics for the Regions lan-
guage. The first semantics is a direct embedding into the host lan-
guage. It can be used to check whether a point is inside or outside
the region described by a Regions program. The second semantics
is a pretty printer which is useful for debugging and other activities.

A concrete semantics for the Regions language is given by ex-
tending the language interface trait and implementing the abstract
type and all abstract operations. This works similarly to the over-
riding of abstract methods in other OO languages. Figure 3 shows
the direct embedding semantics of the Regions language. In this
semantics, regions are seen as sets of points, and represented as
the characteristic function of those sets. The characteristic function
maps points in the region to true and points outside the region to
false.



trait Evaluation extends Regions {
type Region = Vector ⇒ boolean

def univ : Region = p ⇒ true
def empty : Region = p ⇒ false
def circle : Region =
p ⇒ p._1 * p._1 + p._2 * p._2 < 1

def scale(v : Vector, x : Region) : Region =
p ⇒ x(p._1 / v._1, p._2 / v._2)

def union(x : Region, y : Region) : Region =
p ⇒ x(p) || y(p)

}

object Eval extends Evaluation

trait Printing extends Regions {
type Region = String

def univ : Region = "univ"
def empty : Region = "empty"
def circle : Region = "circle"
def scale(v : Vector, x : Region) : Region
= "scale(" + v + ", " + x + ")"

def union(x : Region, y : Region) : Region
= "union(" + x + ", " + y + ")"

}

object Print extends Printing

// prints "union(univ, scale((2.0,4.0), circle)"
println(program(Print))

// prints "true"
println(program(Eval)((1, 2)))

Figure 3. Concrete semantics

The trait Evaluation implements the Regions language inter-
face by specifying that the abstract type Region should be the type
of functions from Vector to boolean. This is expressed in Scala
with the help of the ⇒ keyword, which is also used in the defini-
tions of the domain operations to construct anonymous functions.
For example, the universal region contains all points, so univ maps
all arguments p to true. The definition for circle reads as: a point
p is part of the unit circle if the squared sum of its components is
less or equal than one. In the definition of the union operation, we
can use the characteristic functions of the two regions we want to
combine to map all points to true which are mapped to true by
any of the composed regions. It is the essence of the compositional
approach that the definition of an operator like union works on al-
ready interpreted regions, instead of getting term representations as
parameters and manually converting these to regions by recursively
calling an interpreter.

The pretty printing semantics is implemented as another trait
extending the Regions language interface. This time, the domain
type is mapped to String, and each of the domain operations are
implemented by composing strings to produce a text representation
of the Regions program. We define both semantics as traits in order
to make them reusable. As traits cannot be instantiated, we have
to create classes Eval and Print from them before we can use
them. We use the object keyword to declare singleton classes,
i. e., classes with exactly one instance.

3.6 Modular Semantics
In this section, we discuss how to define a simple optimization of
the Regions language as a reusable component that can be com-
posed with every other Regions semantics. For example, it can be
used together with the evaluation semantics from the previous sec-

trait Optimization extends Regions {
val semantics : Regions

type Region = (semantics.Region, boolean)

def univ : Region = (semantics.univ, true)
def empty : Region = (semantics.empty, false)
def circle : Region = (semantics.circle, false)

def scale(v : Vector, x : Region) : Region =
if (x._2) (semantics.univ, true)
else (semantics.scale(v, x._1), false)

def union(x : Region, y : Region) : Region =
if (x._2 || y._2) (semantics.univ, true)
else (semantics.union(x._1, y._1), false)

}

// prints "union(univ, scale((2.0,4.0), circle)"
println(program(Print))

object OptimizePrint extends Optimization {
val semantics = Print

}

// prints "(univ, true)"
println(program(OptimizePrint))

Figure 4. Optimization

tion to form an optimizing interpreter, or with the pretty printer to
form a pretty printer that outputs the result of the optimization pro-
cess. Since optimizations are expressed as semantics, they are not
performed at host language compile time, but during the construc-
tion of the denotation of a DSL program. Nevertheless, we regard
such optimizations as static, since an embedded DSL program can
be executed multiple times after its optimized denotation has been
constructed.

Odersky and Zenger [23] give an in-depth account on how to
build component-based systems using Scala. We adopt the hierar-
chical style of component composition described there by defining
the Optimization component as a trait with an abstract value as
shown in Fig. 4. Similar to abstract types and abstract methods, ab-
stract values have to be defined elsewhere before instances can be
created.

The optimization shown here tries to statically determine whether
a region is the universal region and to simplify computations based
on this knowledge. For example, the union of a region with univ
is always the univ region. The key to make this possible is to keep
track of additional information associated with every region: Opti-
mized regions are represented as a pair of an unoptimized region
and the additional information whether the unoptimized region is
statically known to be universal. The components of a pair can be
accessed with pair._1 and pair._2.

The implementation of the domain operations can utilize the se-
mantics to be optimized via the Regions language interface of the
latter. The operations univ, empty and circle are implemented
by adding the appropriate additional information to whatever the
underlying semantics does. The actual optimization is done in the
implementations of scale and union, where the additional infor-
mation is inspected to shortcut some evaluation paths.

Since the Optimization component works on arbitrary Re-
gions semantics, it can be combined with both the Printing and
Evaluation semantics.



trait Functions {
// Abstract domain types
type Rep[X]

// Abstract domain operations
def fun[S, T](f : Rep[S] ⇒ Rep[T]) : Rep[S⇒T]
def app[S, T](f : Rep[S⇒T], v : Rep[S]) : Rep[T]

}

Figure 5. The Functions language

3.7 The Functions Language
The Regions language we have discussed so far is very simple. In
particular, it only contains a single type of domain objects: regions.
In this section, we will demonstrate that more powerful languages
with non-trivial type systems can be used in our architecture as
well. We have chosen to define an embedding for the simply-
typed lambda calculus. The language interface in Fig. 5 defines
an abstract type operator (Rep) and the two operations for lambda
abstraction (fun) and application (app).

Since the Functions language has a more elaborate type system
compared with the Regions language discussed before, its language
interface uses an abstract type operator and generic method decla-
rations to handle higher-order functions. We use the idea of higher-
order abstract syntax (HOAS) [25] to reuse Scala’s binding mecha-
nisms and scoping rules. Each semantics of the Functions language
has to specify, by implementing fun, how functions are represented
internally. The method fun takes an ordinary Scala function as pa-
rameter and returns the internal representation. If we ignore the Rep
type operator for the moment, we can, for example, represent a host
language function that adds 3 to a number, as a DSL function by
writing fun((x : double) ⇒ x + 3).

However, each interpretation of the Functions language can
require a specific representation of the types it operates on. For
example, a pretty printer will represent all types as strings, while
an evaluator can operate on arbitrary types as is. The choice of
representation is defined by the type operator Rep. A type operator
maps types to types. The Scala syntax for type operators requires to
specify the type parameters within square brackets. In the example,
the Rep type operator takes one type parameter X. As we will see
below, the pretty printer implementation will map each type X to
String, while the evaluator will map each type to itself.

3.8 Semantics of the Functions Language
We can now define a simple evaluator and a pretty printer of the
Functions language, as shown in Fig. 6.

The evaluator operates on all kinds of terms as is, therefore its
type operator Rep maps all types to themselves. It can use the type
parameters to specify this type. Lambda abstraction and application
are interpreted trivially as Scala’s own lambda abstraction. The im-
plementations of fun and app do not contain any special process-
ing, because HOAS allows us to reuse Scala’s abstraction mecha-
nism.

The pretty printer represents each type as a string. This is re-
flected in the definition of Rep, which maps all types to String,
and in the type of the fun operator, which takes a function from
String to String as parameter. The generic type arguments S
and T are not used in this simple semantics. A disadvantage of us-
ing the HOAS approach is that we cannot reify the variable name
the user has chosen. We therefore have to generate a new variable
name, which is done by variables.next This generated name is
used twice to compose the string representation of the lambda ex-
pression: Both as bound variable to the left of the “⇒” sign, and as
argument to the function parameter to the right. The function pa-

trait FunEval extends Functions {
type Rep[T] = T
def fun[S,T](f : S ⇒ T) = f
def app[S,T](f : S⇒T, v : S) : T = f(v)

}

trait FunPrinting extends Functions {
type Rep[X] = String

def fun[S,T](f : String ⇒ String) : String = {
val v = variables.next
"fun(" + v + " ⇒ " + f(v) + ")"

}

def app[S,T](f : String, v : String) : String =
"app(" + f + ", " + v + ")"

}

Figure 6. A Functions evaluator

rameter will produce a string representation of the function body,
with the generator variable name inserted where the programmer
used the lambda-bound variable originally. The rest of the defini-
tion is straight-forward.

3.9 Hierarchical Language Composition
In Sec. 3.6 we have demonstrated how to compose different inter-
pretations of one language. In this section, we will discuss how dif-
ferent languages can be composed. There are several ways in which
languages can inter-operate. In the simplest case, one language is
simply an extension of another language, adding new operations
that operate on the same types. This case can straightforwardly be
handled by using inheritance: the extended language interface in-
herits from the interface of the other language; accordingly, all ex-
tended language implementations inherit from the corresponding
implementations.

This solution can also be used when the extension adds new
types as well as new operations. To consider a simple case, let us
turn back to the Regions language. So far, we have regarded vec-
tors as being an integral part of it, having a fixed interpretation as
a pair of double values. Instead, we could consider an indepen-
dent language on vectors that is able to operate on polar as well as
on Cartesian coordinates. Using inheritance for extending the vec-
tor language to a Regions language, however, can pose problems
in relation to using modular semantics as in Sec. 3.6. In Fig. 4, we
implicitly make use of the fact that all Regions language implemen-
tations build on top of the same representation for vectors. If we
factor out an independent vector language, and make the Regions
trait inherit from it, we would have to manually define the vector
type and all vector operations in the Optimization trait to del-
egate to the corresponding definitions in the semantics subcom-
ponent. This would not be modular with respect to changes in the
vector language interface.

A better solution is to organize the two languages hierarchi-
cally (see also [23]), by making the vector language a field in the
Regions language as shown in Fig. 7. Scala’s import statement
ensures that the operations on vectors are available in the Regions
language when needed. The rest of the code remains the same. The
Optimization trait then simply defines that it uses exactly the
same vector language implementation as the semantics compo-
nent. On the type level, this is expressed by declaring vec to be of
the singleton type of the value semantics.vec.

A second interesting case of hierarchical composition is that
a different (lower-level) DSL is used in the implementation of a
specific semantics similiar to domain specific embedded compilers
[15, 5]. From a compiler perspective one could say that the lower-



trait Regions {
val vec : Vectors
import vec._
...

}

trait Optimization extends Regions {
val semantics : Regions
val vec : semantics.vec.type = semantics.vec
import vec._
...

}

Figure 7. A hierarchical composition

trait Base {
// Domain types
type BooleanR
type FloatR
...
def bool(b : Boolean) : BooleanR
def or(a : BooleanR, b : BooleanR) : BooleanR
...

}

trait Evaluation extends Regions {
val base: Base
import base._
type Region = ((FloatR, FloatR)) ⇒ BooleanR
...
def union(x : Region, y : Region) : Region =
p ⇒ or(x(p),y(p))

...
}

Figure 8. Translation to intermediate language

level DSL acts as a kind of intermediate language for the higher-
level DSL. Figure 8 sketches how the Evaluation semantics from
Fig. 3 can be turned into a translator to an intermediate language of
arithmetic and boolean expressions. The advantage of this design
is that it enables to plug in different semantics for the intermediate
language, and in particular optimizations for it – similar to how op-
timizations in a stand-alone compiler are organized along various
intermediate formats. Unlike traditional domain specific embedded
compilers, polymorphic embedding allows a code-generating se-
mantics in parallel with other interpretations.

3.10 Peer Language Composition
The arguably most challenging composition is the composition of
languages which are completely independent, like the Regions and
the Functions language. We can use the latter to create functions
that map regions to regions, or even higher-order functions that map
functions on regions to functions on regions. Note that there is no
client-provider relationship between the two languages: the Func-
tions language can embed terms of the Regions language and vice
versa. As we cannot recognize a clear hierarchy between the two
languages, we will integrate them as peers via mixin composition.
This, however, is a design decision which has to be made carefully
in practice, as using mixin composition has the same drawbacks
concerning modularity as the single inheritance approach dismissed
in Sec. 3.9.

Independently of the kind of composition we choose, we can
only combine an implementation of the Regions language with an
implementation of the Functions language if we can find a transla-
tion between the way regions are represented in the two languages.
In the Regions language, they simply have the type Region, while

trait FunReg extends Regions with Functions {
implicit def fromRegion(r: Region): Rep[Region]
implicit def toRegion(r : Rep[Region]) : Region

}

def program(semantics : FunReg) :
semantics.Rep[semantics.Region] = {

import semantics._
app(fun((x : Rep[Region]) ⇒

scale((5,2),x)),empty)
}

Figure 9. Integrating functions and regions

object FunRegEval extends FunReg with Evaluation
with FunEval {

implicit def fromRegion(r:Region):Rep[Region] = r
implicit def toRegion(r:Rep[Region]):Region = r

}

object FunRegPrinting extends FunReg with Printing
with FunPrinting {

implicit def fromRegion(r:Region):Rep[Region] = r
implicit def toRegion(r:Rep[Region]):Region = r

}

// prints "app(fun(x1 ⇒ scale((5,2), x1)), empty)"
println(program(FunRegPrinting))

// prints "false"
println(program(FunRegEval)(2,3))

Figure 10. Integrating the semantics

the Functions language expects them to be represented by the type
Rep[Region]. We express the existence of this translation in the
interface of the integrated language, as shown in Fig. 9.

We use implicit definitions for these translations. Scala’s im-
plicits [18] make the compiler insert these method calls automat-
ically if they reconstitute type correctness. If we had used ordi-
nary method definitions, we would have to encapsulate every re-
gion term in the DSL program by a call to fromRegion to make it
a term of the Functions sub-language, and vice versa use toRegion
for the other direction. In this case, the use of the variable x within
the program method is automatically translated to type Region,
while the constructor empty is translated to type Rep[Region].
Since Scala has only local type inference, we have to specify the
type of the introduced variable x explicitly.

We can now compose the evaluation and the pretty printing
semantics of the two languages accordingly, as shown in Fig. 10.

In both cases, the translation between the representations is triv-
ial. In the first case, type Rep[T] = T is explicitly specified by
the FunEval trait, which also holds for regions. In the second case,
both interpretations map regions to strings. In general, however,
the translation is not trivial. For example, one of the pretty print-
ers could represent expressions using a structured Text type rather
than plain strings, and then a conversion would be necessary.

It would be natural to combine the Functions language with
one of the optimizers of the Regions language. However, if the
Evaluation trait in Fig. 10 is just replaced with an optimized ver-
sion, the optimization is delayed within function bodies until the
actual execution of the embedded DSL program. Instead, optimiza-
tions should be applied during the construction of the denotation of
a DSL program as explained in Sec. 3.6. To propagate the opti-
mization into the function bodies, it seems to be necessary to resort
to an AST representation of the function body, or to restrict the



combined language so that only functions over regions (but not ar-
bitrary functions) can be constructed. That would allow branching
based on the type of the function (e.g. Rep[Region⇒Region])
and enable optimizations to handle functions by pattern matching
on the type of the parameter and constructing adequate arguments.
Unfortunately, the type language of Scala seems to be too weak to
express this. Further analysis and possible solutions of this prob-
lem are part of our future work, and we position this problem as a
challenge to type system designers.

4. Evaluation
In this section, we want to assess how well the properties that we
have stated can be achieved with our architecture, in particular with
respect to its implementation in Scala.

4.1 Reuse of Infrastructure
As we are using a pure embedding approach, we are able to reuse
the infrastructure provided by the host language. We use Scala
method calls as the DSL syntax. We do not have to extend the
semantics of Scala; the meaning of the different DSL implemen-
tations is given by the semantics of the actual Scala code. We can
directly reuse built-in or library-provided Scala functionality, e. g.,
floating-point arithmetics for defining the evaluation of the circle
method in Fig. 3.

However, reuse of the infrastructure still has some limitations.
First, the Scala language tools are not aware of the DSL abstrac-
tions. For example, a DSL user who is running the debugger will
have to operate on the implementation level of the language. How-
ever, compared with a stand-alone DSL implementation, at least
some debugging support comes for free.

Second, Scala does not offer a possibility to get a grip on
Scala expressions that are not defined via a language interface. For
example, if we use Scala arithmetics, like multiplication, we cannot
later redefine what multiplication is. It is always possible, though,
to create a language interface for the respective parts of the Scala
language or its libraries, as sketched in Fig. 8, to circumvent this
problem in Scala’s support for polymorphic embedding.

The degree to which the desired syntax of the DSL can be
encoded in the host language’s syntax depends on the flexibility of
the host language’s syntax. Scala’s flexible import statements and
implicits help a lot in keeping the DSL programs succinct. There
are some limitations with respect to infix syntax, though. We have
used a simple prefix notation in the code examples in this paper,
but an infix notation would have been more suitable for some of the
domain-specific operators. For example, instead of union(univ,
circle), it would be more natural to write univ || circle and
overload the || operator to stand for union. While Scala allows to
define user-defined infix operators, this flexibility is tightly coupled
to the use of objects, because x + y is always interpreted as x.+(
y). Hence, to use infix notation, these operations would have to be
methods of the abstract types such as Region rather than of the
enclosing class. We have experimented with different styles of how
to enable infix notation via encodings of virtual classes [7] in Scala,
but since these styles require more infrastructural code we decided
to stay with prefix notation in this paper.

4.2 Pluggable Semantics
We have shown in Sec. 3.5 how different semantics can be plugged
into a language interface. These can be completely different inter-
pretations, or they may be analyses or optimizations that are related
to one semantics.

From a usage perspective, we can represent DSL programs as
first-class functions mapping each semantics to a domain value for
this semantics. When using the dependent method type compiler

extension, Scala’s type inference is powerful enough to handle the
type dependency of the domain value without requiring to pass
a type parameter around. Without dependent method types (i.e.,
using generics), the type parameter would have to be declared on
all methods which directly or indirectly refer to a DSL program
without deciding its semantics. Furthermore, the original call sites
would have to know the exact type of the argument, which excludes
the usage of subtyping and other forms of existential typing, as
required, e.g., for heterogenous collections [6, Sec. 3.2].

4.3 Static Safety
As we are using a pure embedding, the syntactic well-formedness
is guaranteed by the Scala syntax checker. Furthermore, we reuse
Scala’s type checker for ensuring type correctness of DSL use and
implementation. We have also shown that it is possible to embed
the type system of the simply-typed lambda calculus using higher-
kinded generics [18]. However, one can certainly fancy more com-
plex DSL type systems that cannot (in an obvious way) be em-
bedded in Scala’s type system. The question which kinds of type
systems are desirable for practical DSLs and what kind of host lan-
guage type system is ideal for their embedding is an area of future
work.

4.4 Compositionality
The way the language interface for a DSL is defined in our archi-
tecture enforces the compositionality property, as the interpretation
of each expression cannot pass hidden information to the interpre-
tation of its sub-expressions and vice versa. Mathematically, this
can be recognized as an algebraic approach, where each implemen-
tation is ensured to be a structure-preserving map (homomorphism)
from the initial algebra to the interpretation.

Naturally, we cannot strictly enforce compositionality in a host
language which allows for side-effects. This can also be regarded
as an advantage, as it is easier to provide debugging information
in this way, knowing that compositionality is not an issue in that
regard. While it is the responsibility of the DSL implementer to use
the host language appropriately, the approach certainly focuses on
compositionality as the right default.

4.5 Composability
In the traditional pure embedding approach, two languages are
composable if they share a common representation for the types
that are relevant in the composition. Polymorphic embedding gen-
eralizes this property, in that it is sufficient to give an interpretation
for both languages that results in a common representation of those
types. Composability is a direct consequence of compositionality.
We can be sure that an interpreter does not use implicit non-local
knowledge that cannot be guaranteed to be available, when lan-
guages are combined.

We have demonstrated several dimensions of composability.
Conscious clients can compose DSL programs in different lan-
guages (or DSL programs with host language programs) via com-
mon domains. A language interface can be defined on top of one or
more lower-level DSLs, as illustrated in Fig. 7. A high-level DSL
semantics can be “compiled” into an intermediate language DSL
for optimization (Fig. 8). Independent DSLs can be composed, as
illustrated in Fig. 9. One can also imagine cases where languages
with similar semantics have to be merged. For example, if we have a
language of colored shapes and a language of regions, we can intu-
itively regard regions as black-and-white shapes. We can therefore
find a common representation for shapes and regions, e. g., as func-
tions from points to colors, and define appropriate interpretations
for both languages. There is also potential for sharing optimiza-
tions. The “known-to-be-universal” analysis can be generalized to
a “known-to-be-single-colored” analysis.



However, composition of independent languages has its own
challenges, as we have discussed in Sec. 3.10. It is not necessar-
ily straightforward to unify different representations. Furthermore,
the composition of two language implementations does not neces-
sarily bring forth the intended result. In the example discussed, the
combination of the Functions evaluator with the Regions optimiza-
tion would delay the optimization until the function is applied. One
might expect, instead, to have the optimization also operating on
the function bodies.

Finally, there is still a design choice to make with respect to
deciding for hierarchical versus peer composition. Only the former
operates well with the modular semantics property, while the way
in which two languages should be ordered in the hierarchy is not
always obvious.

4.6 Modular Semantics
In Sec. 3.6 we have shown how different semantics of a language
can be regarded as reusable components that can be put together
to construct new interpretations. We defined an optimization com-
ponent that could be combined with another interpretation compo-
nent to construct an optimized version of the latter component. We
have furthermore indicated in Sec. 3.9, that this style of component
integration coordinates well with the hierarchical composition of
languages. We believe that it is even possible to create libraries of
useful semantics combinators to compose interpretations in combi-
nator style, but this is part of our future work (see Sec. 5.6).

4.7 Performance
We have indicated how optimizations can be performed within
the architecture in Sec. 3.6 on the level of using algebraic laws.
The optimizations that we have shown here are very simple, but
it is also possible to define quite sophisticated analyses in this
style. In an imperative sample DSL (code available on the paper’s
website) we have implemented a full-fledged data-flow analysis
in the style shown in this paper. We have also shown that it is
possible to “compile” DSLs to intermediate DSLs, which can then
have their own optimizations and analyses. In the case of typed
DSLs (such as our Functions language), the embedding of the
type system in the host language further improves the performance
of the interpretation, since no dynamic type checks have to be
performed.

There is one significant catch, though: all optimizations and
analyses have to be defined compositionally. This is not the way
many analyses are usually described. For example, a data-flow
analysis is usually described as a non-compositional fixed-point
iteration over the control flow graph. In our example, we made
the analysis compositional by choosing first-class functions (the
transfer function of the respective statement) as the domain of
the interpretation. However, this style of defining the analysis is
unusual and it is not trivial to convert an analysis into it. Hence, it
is currently not clear how well this approach to optimization will
work in practice for sophisticated optimizations.

5. Related and Future Work
5.1 Domain-specific Embedded Languages
Traditional approaches to the embedding of EDSLs have already
been discussed in detail in Sec. 2. To get more practical experience
with our architecture, we are currently working on implementing a
non-trivial, practical parser DSL in the style of [14] in our architec-
ture.

The approach by Carette et al. [1] was an important influence
and is closely related to this work. Carette et al. implement a fam-
ily of interpretations in ML and Haskell – encompassing an in-
terpreter, a compiler and a partial evaluator – that operate on the

same term representation of a simply-typed lambda-calculus DSL.
This means, that the same purely embedded DSL program can be
interpreted in different ways within the execution of the host lan-
guage program. Their work can hence be seen as a realization of
polymorphic embedding in Haskell and ML. However, the goal
of their work is quite different: It concentrates on finding ways
to implement tagless staged interpretations for typed higher-order
functional languages, and as such does not elaborate on the ramifi-
cations of polymorphic embedding for general DSL development,
which is the main focus of this work. There are also significant
technical differences. First, their Haskell and ML solutions depend
on forms of parametric polymorphism, which – in contrast to the
family polymorphism used in our Scala solution – hinders subtyp-
ing and other forms of existential typing, see also Sec. 4.2. Second,
the optimizations described in the paper are – while being more
sophisticated than the ones presented here – coupled to specific in-
terpretations and not composable with other interpretations as in
our architecture.

5.2 Programming Language Semantics
Our approach to give semantics to DSLs is similar to both deno-
tational semantics (DS) [19] and initial algebra semantics (IAS)
[10]. Our language interfaces such as the Regions trait in Fig. 2
can be viewed as abstract syntax definitions from the perspective
of DS and as an algebraic signature or inital algebra for that signa-
ture from the perspective of IAS. A concrete semantics as in Fig. 3
can be seen as a compositional semantic function (DS) or as homo-
morphisms from the initial to the target algebra (IAS). The main
difference to these approaches is that the denotations in our archi-
tecture are not mathematical objects but Scala objects.

Modularity in PL semantics is a well-known topic [17, 20] but
these approaches usually focus on adding and defining particular
language features such as side effects in a modular way, but not on
the composition and decomposition of different interpretations or
analyses. Depending on the kind of DSLs, these techniques (such
as monads) would also be useful in our approach to structure the
semantic functions.

5.3 Generic Programming
Our design can also be seen as a powerful form of generic pro-
gramming. In GP, a generic algorithm describes its syntactic and
semantic requirements on one or more (abstract data) types in the
form of a concept. Types that meet the requirements of a concept
are said to model the concept [9]. GP is related to DSLs through the
following set of equations:

Algorithm = program in DSL
Concept = syntax and type system of DSL
Model = DSL semantics

5.4 Attribute Grammars
Attribute grammars are a seasoned declarative formalism for spec-
ifying the semantics of programming languages. The methodology
of defining attributes for nodes in the syntax tree has turned out to
be particularly useful for generating compilers, but has also been
applied for other kinds of language processors [24]. Recently, two
systems based on the attribute grammar methodology have been
developed independently which allow for extending the Java lan-
guage with domain-specific extensions [3, 30]. Both supply a defi-
nition of the Java language based on attribute grammars, into which
language extensions can plug their own attribute definitions. As
the lexical environment can be modelled via attributes, the exten-
sions can even introduce their own binding constructs at the correct
scope.

Composing several language extensions can, on the one hand,
lead to lexical/syntactic ambiguities, on the other hand, they can



lead to circular attribute specifications. The former problem can
be avoided by restricting the class of grammars, while the latter
can only be checked at extension composition time [30]. Compo-
sitionality furthermore depends on the language extensions to be
restricted to local transformations.

Systems based on attribute grammar in essence provide lan-
guage developers with more flexibility, for the price of not guar-
anteeing compositionality. In addition, developers have to use an
external framework based on attribute grammars in order to spec-
ify their extensions. For example, in ableJ [30], where scanner and
parser generators are part of the Silver framework, defining the lan-
guage extensions still requires defining a grammar and a two-phase
process creating an abstract syntax tree from a concrete one. In
contrast, we build on top of a pure embedding, implying more re-
strictions on how a DSL can be defined, but in exchange admitting
the programmer to stay within the host language. And although
polymorphic embedding does not solve all of the issues resulting
from the composition of independent languages (see Sec. 4.5) ei-
ther, it is, because of its more restrictive approach, able to provide
guarantees on compositionality.

5.5 Metaprogramming
The problems of embedding DSLs have also been tackled by var-
ious approaches of metaprogramming (see the discussion in [2]).
These approaches can be regarded as code generator approaches,
as they convert an AST representation of the embedded DSL pro-
gram at compile time into host language code. However, they do not
use a separate preprocessor, but rely on the metaprogramming ca-
pabilities of the host language to express this transformation. The
multi-stage programming approach [29] can even interpret a pro-
gram in several different phases, similar to the optimization we dis-
cussed in Sec. 3.6, which operates at run time, but at a different
phase than the actual processing of a region.

An interesting case study of using metaprogramming for DSL
implementation is given by Seefried et al. [26]. The authors use
Template Haskell [28] to provide PanTHeon, an implementation
for the image synthesis and manipulation language Pan [4].

Using this methodology, language implementation can be re-
garded as a two-step process. On the one hand, the implementer
provides a specific implementation of the language, which in this
case is very similar to the evaluator semantics of the Regions
language. However, this implementation is not used as an actual
Haskell library, but is reified as a Haskell AST. On the other hand,
the implementer provides syntax transformations that operate on
the AST to optimize the resulting Haskell program, which is then
fed to the Haskell compiler. The user can program in PanTHeon
exactly as in the embedded language Pan, with the only difference
that the complete DSL program has to be enclosed in brackets,
and is therefore represented as a Haskell AST as well. In con-
trast to polymorphic embedding, this approach depends on specific
language-mechanisms for metaprogramming. Furthermore it does
not allow for defining different implementations of a language on
the DSL level, but only allows for applications of analyses and
optimizations on the produced Haskell code. However, it should
be possible to compose several DSLs which make use of the same
representation of shared types. It would be interesting to see how
the different analyses could be made interoperable.

5.6 Semantics Combinators
An important area of future work are semantics combinators,
whose purpose is to combine different semantics of a DSL. A sim-
ple example is building the product of two semantics, i. e., combin-
ing both interpretations of a language term as a pair. Unfortunately,
if we try to express this combinator within the architecture, we have
to redefine all language operations, as shown in Fig. 11. In princi-

trait RegionsProduct extends Regions {
val r1 : Regions
val r2 : Regions
type Region = (r1.Region, r2.Region)
def univ : Region = (r1.univ, r2.univ)
def union(x : Region, y : Region) : Region =
(r1.union(x._1, y._1), r2.union(x._2, y._2))

// ... similarly for all methods of Regions
}

Figure 11. Sample Semantics Combinator

ple this code could be generated via macros or advanced techniques
such as morphing [11].

We could also think of making the product combinator an in-
stance of a ZipWith combinator that takes two semantics and builds
a combined semantics operatorwise. We intend to use such com-
binators to decompose a semantics into very simple, fine-grained,
and reusable analyses and optimization steps that are composed in
a combinator-style fashion. We also intend to investigate how to
express these combinators in a category-theoretic framework.

6. Conclusions
We have shown that, given appropriate host language abstractions,
pure embedding can be made to support multiple interpretations,
yielding polymorphic embedding. We have also demonstrated that
polymorphic embedding addresses many of the problems of clas-
sical embedded DSLs, such as domain-specific analyses and opti-
mizations. Scala turned out to be an excellent language to realize
polymorphic embedding, but we also identified several shortcom-
ings with regard to its syntactic flexibility and type system, which
calls for more research in this area. Finally, we drew several inter-
esting connections to other fields: The “languages as components”
point of view yields a connection to generic programming. The
“semantic domains as components” perspective yields a connec-
tion to denotational semantics, applicative functors, monads and so
on. The “semantics as components” point of view yields interest-
ing future work on semantics combinators and their algebraic or
category-theoretic interpretations.
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