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Abstract
In logic metaprogramming, programs are not stored as plain
textfiles but rather derived from a deductive database. While
the benefits of this approach for metaprogramming are obvi-
ous, its incompatibility with separate checking limits its ap-
plicability to large-scale projects. We analyze the problems
inhibiting separate checking and propose a class of logics
that reconcile logic metaprogramming and separate check-
ing. We have formalized the resulting module system and
have proven the soundness of separate checking. We validate
its feasibility by presenting the design and implementation
of a specific logic that is able to express many metaprogram-
ming examples from the literature.

Categories and Subject Descriptors D.1.6 [Programming
Techniques]: Logic Programming; D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.4 [Pro-
gramming Languages]: Processors: Code generation

General Terms Design, Languages, Theory

Keywords Modularity, Separate Checking, Logic Metapro-
gramming

1. Introduction
The need to divide large-scale software into manageable
building blocks became apparent in the 1960s and 1970s.
It was soon recognized, however, that not every partition of
the source code into blocks constitutes a good modulariza-
tion; rather, a good module should be self-contained in that
it describes its requirements on the context and clearly spec-
ifies the service it provides to the external world in a form
that is separately checkable by a compiler while still hiding
implementation details [35]. Dedicated module constructs
that help to enforce such abstraction boundaries quickly fol-
lowed and have been realized in the module constructs of
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languages such as Ada, Pascal, C, Modula-2, or ML. Indeed,
Cardelli (and others) have argued that separate checking is
such a fundamental property of a module system that a mod-
ule system without separate checking is (arguably) not really
a modularization mechanism [8].

Separate checking is traditionally achieved by specify-
ing a set of names or signatures of functions, procedures,
or data-structures that the module requires (or imports)
and provides (or exports), respectively. A module can be
checked separately by checking that the module provides
well-formed definitions of all exported names under the as-
sumption that definitions for all imported names will be pro-
vided by other modules.

However, this simple notion of import/export interfaces
as lists of names or signatures breaks down once some form
of (static) metaprogramming is involved. Static metapro-
gramming means that (parts of) the program are computed at
compile-time. Typical examples of static metaprogramming
are templates in C++, various forms of macro programming,
or compile-time metaobject protocols such as OpenC++ [11]
or Javassist [12]. If such program computations are involved
in the compilation process, it is neither clear how these
program computations can be checked separately (meaning
that they will only compute well-formed programs for ev-
ery well-formed input), nor how the functionality of these
computations can be described as an interface that does not
reveal the implementation details, such that clients that use
the computed programs can be checked against this inter-
face. As a consequence, programs involving static metapro-
grams can usually only be understood, analyzed and veri-
fied as a whole, because the dependencies between parts of
such programs cannot be specified in terms of module in-
terfaces. This problem is well-known, and various solutions
have been proposed for specific restricted forms of metapro-
gramming, such as conditional declarations [26] or certain
computations over the structure of classes [19, 25, 27, 28].

This work has a more general focus: We investigate and
characterize the relation between separate checking and
metaprogramming, independent of specific metaprogram-
ming constructs or host languages. We identify minimal
conditions on the interface and implementation language
under which separate checking is sound.



We have chosen logic metaprogramming [14, 30, 39] as
the basis for our studies, because it is one of the most gen-
eral and declarative forms of metaprogramming, and be-
cause the strong semantic foundations of logic programming
make it particularly well-suited for a formal treatment. In
logic metaprogramming, programs are described as a deduc-
tive database in a logic language such as Prolog, and thus the
shape of the final program may depend on arbitrarily com-
plex deduction rules.

Although we use logic metaprogramming as the motiva-
tion of our approach, we believe that our results are also ap-
plicable to other forms of metaprogramming, or, more gen-
erally, to any form of programming that requires modules
whose interfaces require some form of computation or de-
duction.

The contributions of this work are as follows:

• We analyze the tension between logic metaprogramming
and separate checking and, more generally, between pro-
gram generators, information hiding, and separate check-
ing of well-formedness constraints.
• We propose a generic model of modules that describes

the implementation and interface of modules in terms of
formulas from a logic language, such that compatibility
and consistency checks can be expressed in terms of logic
validity and consistency. This model does not depend on
a fixed logic or object language; rather, it axiomatizes
the requirements on the logic and the object language
under which separate checking is sound. Module con-
structs ranging from traditional modules which import/-
export lists of names to sophisticated modules that can
give interfaces to program generators can be uniformly
described as instances of this model, via logics that sat-
isfy the axioms. The structure of our formalization has
been inspired by (and can be seen as a generalization of)
Cardelli’s seminal work on separate checking [8].
• We present a design and implementation of an actual

module description logic, FP+, that fits to the axioms
described in our formalization and is sufficiently power-
ful for many typical use cases from logic metaprogram-
ming. The logic is the pure part of Prolog (no negation-
as-failure, cuts etc.) plus a few simple, well-known ex-
tensions from λProlog [33]. We demonstrate by means
of examples how a small, Java-like object-oriented pro-
gramming language can be modeled in our system and be
equipped with metaprogramming constructs.
• We explore the design space of instantiations of our

model by presenting other possible logic languages and
discussing their respective expressiveness to model ob-
ject languages and metaprogramming constructs. We also
discuss applications of modular logic metaprogramming
for generating design pattern implementations, cross-
language type systems, and pluggable type systems.

The remainder of this paper is structured as follows. First,
we introduce logic metaprogramming and discuss its mod-
ularity problems (Sec. 2). Then we show informally what
steps need to be taken to make logic metaprogramming mod-
ular (Sec. 3). In Sec. 4, we present our formalization of mod-
ule description logics. We describe an implementation of a
module system based on the formalization and the imple-
mentation of the FP+ logic in Sec. 5. We discuss advan-
tages and limitations of our approach in Sec. 6. Section 7
compares to related work. Section 8 concludes. Appendix A
contains the proofs of all theorems presented in the paper.

2. Logic Metaprogramming
In (static) logic metaprogramming (LMP) [14, 39], a logic
language (the meta language) is used to specify programs
in another language (the object language). In the following
we give a brief introduction to LMP by encoding a typical
metaprogramming example using Prolog as meta-language
and a functional toy object language which we call FP. We
will discuss both the expressiveness and the problems of
LMP in terms of this example.

Although the main implementation of our framework is
for the Java programming language, we will use FP as an
example object language in this section. Since it is much
simpler, it allows us to show every aspect of modeling a
language in our framework for modular logic metaprogram-
ming (MLMP) in full detail. Although Java is a much more
powerful and complex language, it does not add many in-
teresting issues for our purposes that do not already arise in
FP. We will discuss our Java incarnation of our model in
Sec. 5.3.

2.1 Logic Metaprogramming Systems
An LMP system consists of three parts: A front-end, a de-
ductive database, and a back-end.

The front-end reads object language terms from data
streams, and converts these terms to a form understood
by the meta language. For example, the front-end could
translate a function fun f = arg+11 into the Prolog term
funimpl(f,add(arg,1)). For our further treatment we ig-
nore the front-end, since it is not interesting, and concentrate
on the part where the input is already transformed into logic
formulas.

The deductive database contains the representation of the
object language program generated by the front-end and a
set of program computation rules. The program computation
rules are either in some form encoded in the object language
programs, or the programmer may directly access the deduc-
tive database, or there could be just a fixed set of predefined
computation rules. The origin of the program computation
rules is irrelevant for the purpose of this paper. The database

1 FP is a first-order functional language with integers and addition as only
available primitive type and operation, respectively. Each function has ex-
actly one implicit parameter which is called arg.



funimpl(f1, add(5, arg)).

funimpl(f2, add(7, call(f1, arg))).

funimpl(compose(A, B),

add(call(A, arg), call(B, arg)))

← funimpl(A, _), funimpl(B, _).

funimpl(f3, add(arg, call(compose(f1,f2), 13))).

Figure 1. LMP Example

may also contain auxiliary (library) rules that help in writing
program computation rules, such as rules to look up things in
the program. Furthermore, the deductive database contains a
deduction mechanism, which can be used to derive all pos-
sible variable substitutions under which a query can be de-
duced from the database.

The back-end of the system uses the deductive database
to generate the program in object language syntax. To this
end, the back-end typically generates all solutions to queries
that represent object language entities of interest for the cur-
rent program, and generates code for these solutions. For
example, the query funimpl(Name, Body) generates all
function definitions that can be deduced from the current
database. For each successful substitution found for these
queries code is generated. If the database contains recur-
sively applicable program computation rules, the naı̈ve strat-
egy of iterating over all possible program entities will not
terminate. To solve the problem of such infinitely large code
bases, a strategy to select only those parts of the deductive
closure of the database that are relevant to the program at
hand is required. This could be just a list of function names,
or a computation of every program entity transitively refer-
enced from the “main” function. The choice of this strategy
is irrelevant for this work; we just assume that some termi-
nating program generation strategy is available.

2.2 Example: A Generic Function Composer
The example in Fig. 1 shows a typical use case for metapro-
gramming. The code defines two ordinary functions f1

and f2, and a function defined by a proper metaprogram:
compose composes two functions A and B by calling each
with the given argument and adding their results. 2 The last
function f3 uses the metaprogram by calling a composed
function compose(f1, f2). Using a straight-forward se-
mantics for FP, we expect f3 to be equivalent to the function
add(arg, 43) at runtime.

This small metaprogram is a typical example of the use
of metaprogramming to solve a programming problem that
requires abstraction over elements of the language that are
not ’first class’: In our example language FP it is not possible

2 We adopt the Prolog convention to use upper-case letters for variables and
for anonymous variables.

to write abstractions involving functions, but we can provide
such abstractions using metaprogramming.

Although metaprogramming would not be necessary to
implement this example in a higher-order functional lan-
guage, every programming language has some structures
that are not ’first class’, so metaprograms are needed to
implement abstractions over these structures. For example,
classes in object-oriented programming languages like Java
or C# or data type definitions in Haskell are not ’first class’.
The lack of abstractions over classes, in particular, is a com-
monly encountered problem and metaprogramming tech-
niques like code generation and language extensions are
often used to deal with it. For example, the definition of
generic proxy classes or pair classes is a typical metapro-
gramming example in OO languages [25].

Our example can be seen as a small-scale version of these
more sophisticated applications of metaprogramming. We
have implemented examples for the aforementioned more re-
alistic usages of metaprogramming, but they are more com-
plicated and do not add anything to the discussion that can-
not also be illustrated in terms the simplistic function gener-
ator example.

Since metaprograms cannot be understood by the com-
piler or interpreter for the object language, the system needs
to generate code for the instance of compose that is used in
f3. How the resulting names for composite functions such
as compose(f1, f2) are represented in object code is a re-
sponsibility of the back-end. For example, it could generate
a new function name such as compose f1 f2.

2.3 Representation Choices
There are several design choices in the representation of
object programs. For our purposes, the granularity and the
openness of the representation are significant. Regarding
granularity, function bodies could also be treated and pro-
cessed as opaque constants rather than being decomposed
into term representations of their abstract syntax trees as
in our example. Only in the latter case can the deductive
database also be used to perform interesting computations
on the expression level, but if such kinds of computations
are not required, then an opaque constant representation is
sufficient.

Representations also differ in their openness, which boils
down to the decision whether a constructor in the object
language is represented as a term constructor (closed) or
predicate constructor (open) in its encoding. We have repre-
sented function definitions via a predicate, which means that
new functions can be added to the database without chang-
ing any existing code. Function bodies, on the other hand,
are represented as terms, which makes it impossible to add
something to a function body without actually modifying the
term. This difference becomes interesting when one consid-
ers, for example, whether the methods of an object-oriented
class should be represented in an open or a closed way.
These choices have implications for extensibility as well as



separate checking and will be discussed later on in detail
(Sec. 6.3.2).

2.4 Lack of Modularity
Logic metaprogramming – like most other metaprogram-
ming constructs – does not provide any modular checks
making sure that computed programs or their clients are
well-formed. If we look at the metaprogram and at f3 in
Fig. 1, then it is obvious that neither of them can be checked
in a modular way, using only the interfaces of other refer-
enced entities.

The code for a composed function in Fig. 1 is only avail-
able after instantiation with two concrete functions, and it
is not obvious how to make sure that the program gen-
erator will only generate well-formed functions. On the
other hand, the function generator does not have an inter-
face that could hide its implementation details, hence the
call to compose(f1,f2) in f3 can only be type-checked
by considering the full implementation (and computing the
specific instance) of the function generator.

Consequently, errors are only detected after the generated
programs are rejected by the object language compiler or in-
terpreter. At this point, however, it becomes very difficult
to understand the origin of the error, since the error occurs
in generated code whose form depends on possibly com-
plex computations. It is obviously desirable to check meta-
programs and their clients once and for all in a modular way
instead.

3. Modular LMP
The main reason why separate checking is not possible in
LMP is that there is no interface mechanism which can de-
scribe the behavior of program generators in a way that en-
ables information hiding, yet contains sufficient information
to check each module separately. In the following, we will
hence revisit our example and discuss what kind of informa-
tion must be available in the interface and what properties
the checking algorithm must have such that separate check-
ing is possible. After this informal discussion, we will gener-
alize our findings in the form of a formal definition in Sec. 4,
which can also be read in parallel with this section. We will
also identify various requirements on the logic solver that do
not hold for standard Prolog-like solvers, but we will defer
the discussion of how we addressed these requirements until
Sec. 5.

A variant of Fig. 1 as a set of modules is shown in Fig. 2.
Each module starts with the keyword MODULE and consists
of up to four sections: REQUIRES, IMPLEMENTATION, PRO-
VIDES, and IMPLEMENTATIONPROVIDES. The REQUIRES
part describes the constraints on the context under which the
module can be used. The IMPLEMENTATION part gives the
implementation, and the PROVIDES part states what is ex-
ported to the external world. The IMPLEMENTATIONPRO-

Module % We call this module m1 in the text
Implementation

funimpl(f1, add(5, arg)).

Provides

fun(f1).

Module % We call this module m2
Requires

fun(f1).

Implementation

funimpl(f2, add(7, call(f1, arg))).

Provides

fun(f2).

Module % We call this module m3
Requires

fun(compose(f1,f2)).

Implementation

funimpl(f3, add(arg,

call(compose(f1, f2), 13))).

Provides

fun(f3).

Module % We call this module compose
Implementation

funimpl(compose(A, B),

add(call(A, arg), call(B, arg)))

← fun(A), fun(B).

Provides

fun(compose(A,B)) ← fun(A), fun(B).

Module % We call this the system module
ImplementationProvides

fun(F) ← funimpl(P, Body),bodyok(Body).

bodyok(arg).

bodyok(N) ← number(N). % number is a built−in
bodyok(add(E1, E2)) ← bodyok(E1), bodyok(E2).

bodyok(call(F, A)) ← fun(F), bodyok(A).

Figure 2. Modular version of Fig. 1

VIDES section is just a shorthand for copying definitions into
both the IMPLEMENTATION and the PROVIDES part.

In our module system, every imported feature of another
module must be described explicitly in the module’s RE-
QUIRES part. This enables completely separate checking;
no other module is “referenced” (our modules do not have
names anyway); rather, required and provided features are
matched during module composition.

While the enumeration of every feature expected of an-
other module may seem a bit cumbersome, it is the only
way in which a module can be checked completely indepen-
dent of its context. However, there could be different ways
to arrive at this specification. For example, the requirements
could be inferred from the implementation by an appropriate
algorithm, or a lightweight device (such as a preprocessor)
that allows one to import everything that is exported by an-



other module (such as header files in C or imports in Java)
could be implemented. Which (if any) of these mechanisms
is used is not relevant for this work. Our modules could be
viewed as a kind of intermediate layer, where conventional
import statements are transformed into the required form by
copying the referenced module’s PROVIDES to the module’s
REQUIRES part. However, for this work we just assume that
all requirements are explicitly specified.

The code in Fig. 2 contains one module that was not
present in Fig. 1: the system module. The system module
is special in that its PROVIDES part is implicitly part of the
REQUIRES part of each other module; apart from this special
role it is just another module. It is hence similar to, say, the
java.lang package in Java or the “Prelude” in Haskell. In
our system, however, we can use this module to define the
static semantics and well-formedness of our language. We
can see that the system module in Fig. 2 defines a simple
type checker for FP3.

3.1 Validity of Modules
Let us now discuss the meaning of the different parts of our
modules. In traditional module systems, the PROVIDES and
REQUIRES parts of a module consists of a list of names or
type signatures, and a module is valid if, under the assump-
tion that if all required identifiers are bound to implemen-
tations of the correct type, the implementation part of the
module gives correct definitions of all identifiers/types in the
PROVIDES part. Furthermore, two such modules are com-
patible, if they do not require an identifier to be bound to
contradicting types and they do not export the same name
[8].

In the case of our modules, a module is valid if each for-
mula in the PROVIDES part is a logical consequence of the
declarations in the REQUIRES part and the declarations from
the implementation. In the example, the modules provide
formulas of the form fun(F). It is easy to see that both mod-
ule m1 and module m2 are valid, and that validity coincides
with type safety as defined by the system module. Note that
both modules can be checked completely separately, using
only the PROVIDES part of the system module as external
input.

Module m3 can now also be checked separately, due to the
explicit requirement fun(compose(f1, f2)) in its RE-
QUIRES part. In particular, it can be checked independently
of the metaprogram for composing the functions. This solves
the first problem identified in the previous section: The lack
of separate checking of clients of the code generator.

The more interesting challenge is the well-formedness
check of the compose function generator, because it in-
volves proving formulas containing universal quantification
(variables are implicitly universally quantified) and impli-

3 For simplicity we have shown a type checker that cannot deal with recur-
sive functions. One way to support recursive functions is to exchange the
goal bodyok(Body) in the definition of fun(F) by bodyok(Body) ←
fun(F). This is not standard Prolog code but supported by our solver.

cation. To this end, let us analyze the derivation of the
fun(compose(A, B)) ← . . . property at the end of the
compose module. The property is universally quantified
over A and B. In proof theory (and in our solver), the deduc-
tion rule for universal quantification is Γ`P (c)

Γ`∀X.P (X) , where c
is a fresh constant, hence let a and b be fresh constants for
these variables. This leaves us with the task of proving

R ∪ I ` fun(compose(a,b))← fun(a), fun(b),

where R and I are the formulas from the requirement and
implementation part of the module, respectively. The deduc-
tion rule for implication is Γ,A`B

Γ`A→B , hence we must prove
fun(compose(a, b)) in the context R ∪ I ∪ {fun(a),
fun(b)}. Now type-checking the function calls in the func-
tion generator will succeed, because when the type-checker
queries fun(a) and fun(b), respectively, in the last clause
of the bodyok predicate, this query succeeds because they
are in the context. Hence the interface of the function gener-
ator is now also sufficient to check, once and for all, that all
functions generated by this computation will be well-formed
- which solves the second problem identified in the previ-
ous section: The lack of separate checking of code genera-
tors/meta programs.

3.2 Consistency and Compatibility
So far, we have only looked at the problem of checking a
single module separately. However, the purpose of a module
is to be composed with other modules, which raises the
issue of module compatibility. A trivial solution would be
to regard all modules as mutually compatible, but this would
mean that many common compatibility requirements in real
languages could not be modeled within our system, like
forbidding two modules to export the same name or to create
a cycle in an inheritance hierarchy.

Such constraints arise frequently in conjunction with
metaprogramming. For example, a typical pattern for vari-
ability management in C++ is to use #ifdef preprocessor
directives to switch between different variants of a class or
method. Some configurations of the switches of #ifdef

directives are often contradictory because, say, the same
method would be defined twice. To enable separate check-
ing, it is hence important that one can state these dependen-
cies in the module’s interface.

In our setting, we model incompatibility between mod-
ules as interfaces that are contradictory – that is, the union
of the interfaces of the modules is inconsistent. Inconsis-
tency cannot be directly expressed using Prolog, because
sets of Horn clauses are always consistent by construction. A
common way [31] to deal with this problem in a resolution-
compatible way is to introduce a distinguished constant ⊥
to act as a symbol for inconsistency. This constant can be
used in heads of clauses and a proof of⊥ from a given set of
formulas marks this set as inconsistent.

For example, a module may define two variants of a func-
tion f1, one of which calls a conditionally included function



f2. The switches for these functions are a, b, and c. The
dependencies can be expressed as follows:

Module

Requires

⊥ ← a,b.

c ← b.

Implementation

funimpl(f1, add(5, arg)) ← a.

funimpl(f1, add(7, call(f2,arg))) ← b.

funimpl(f2, add(9, arg)) ← c.

Provides

fun(f1)← a.

fun(f1)← b.

fun(f2)← c.

The check for module validity will take care that this
module is well-formed for every combination of the switches
that satisfy the requirements (notice that the call to f2 in the
second variant of f1 will only type-check due to the c ←
b constraint in the REQUIRES part). Module compatibility
makes sure that this module will never be composed with a
module or a set of modules that make it possible to derive
both the a and the b switch; in this case, the system would
be able to prove ⊥ and would mark this set of modules as
incompatible.

With this notion of inconsistency, we can now define what
it means for modules to be consistent and compatible with
other modules. First, a module is consistent if it is valid, and
if its interface (i. e., REQUIRES∪PROVIDES) is consistent as
a logic theory, that is, it is impossible to deduce ⊥. Further-
more, a set of modules is compatible, if the union of their
interfaces is consistent. It is important that module compat-
ibility depends only on the interface but not the implemen-
tation because module compatibility should not depend on
implementation details. Later we will formulate a theorem
that module composition cannot “go wrong” if only consis-
tent and compatible modules are composed, and that module
compatibility is preserved by module composition.

A weaker notion of compatibility checking of a set of
modules would be to check compatibility only pairwise.
However, this would not be sound. For example, module 1
may provide a, module 2 may provide b, and module 3 may
require ⊥ ← a, b. These modules are pairwise compatible,
yet their composition would lead to an inconsistent module.

3.3 Information Hiding
Information hiding in our system is formalized by the re-
quirement that the union of requirements and implementa-
tion must logically imply (but not be logically equivalent to)
the PROVIDES part. However, since sets of logic (implemen-
tation) formulas may be inconsistent, we have to be careful
that the implementations of two modules are not incompat-
ible (meaning: their union is inconsistent) although their in-
terfaces are compatible. For example, if we would not re-
strict the kinds of formulas in the implementation part, the

following module would be consistent and compatible with
every other module (since its interface is empty), yet its im-
plementation is incompatible with any module that provides
a function foo:

Module

Implementation

⊥ ← funimpl(foo, arg).

This example illustrates that we need more fine-grained
control over the kind of information that can be hidden
in module implementations. It must not be possible to put
formulas into the implementation that may “silently” conflict
with implementations and interfaces of other modules. Just
forbidding the use of ⊥ in the implementation part does not
solve the problem, since one module may hide a function
foo in its implementation part, and another module may
contain a ⊥←funimpl(foo, arg) rule in its REQUIRES
part.

To deal with this problem, we make a distinction between
formulas that can be used to describe hidden implementa-
tion details (implementation formulas) and formulas that are
used to describe module interfaces. Implementation formu-
las have the property that they are always consistent with ar-
bitrary sets of other implementation formulas, and thus can
be used in the implementation without further restrictions.
If we want to use interface formulas in the implementation,
there would be the possibility of an inconsistency. To pre-
vent a module from hiding this possible source of inconsis-
tencies, we require that all interface formulas that appear in
the implementation must also appear in its PROVIDES part.
The details of this mechanism will be discussed in the formal
model presented in the next section.

The choice of implementation formulas and how the
aforementioned properties of implementation formulas can
be ensured depends on the logic. In our sample logic, we de-
note this distinction by a separation of the term constructors
into two classes: the name of implementation constructors
ends with impl (such as funimpl), and interface construc-
tors are all other constructors. We then define a formula to
be an implementation formula, if it uses an implementation
constructor in its head. The consistency check for a module
will then determine whether the module is consistent under
any possible assignment of truth values to implementation
literals - more about that later.

3.4 Composition, Finalization, and Code Generation
Consistent modules that are compatible can be composed to
form a new module, whose PROVIDES and implementation
parts contain the union of the PROVIDES and implementa-
tion parts of the constituents, respectively. The REQUIRES
part contains the union of the REQUIRES parts of the con-
stituents except those formulas that follow logically from the
PROVIDES parts of the constituents. In the formalization, we
will see that the computation of the new REQUIRES interface
is actually a bit more complicated due to the fact that there



may be circular dependencies and that the minimal set of re-
quirements that leave the module in a consistent state is not
unique. However, we later will show that the composition of
two valid, consistent and compatible modules is again con-
sistent and valid, and that the final result of composing a set
of modules, which together constitute a complete program,
is unique again.

At some point, all modules of the system have been com-
posed and it is time for the backend to generate source code.
We could define a (composed) module to be complete if its
REQUIRES part is empty. However, this would be too strict,
because a module may have formulas in the REQUIRES part
that are not provable, yet are true if we consider the program
to be complete. For example, the constraint⊥ ← a,b from
above cannot be proven in a monotonic logic: While it may
hold in some configuration of modules that not both a and b

are true, the addition of a new module could always invali-
date that property.

The source of this problem is that we expect our deduc-
tion relation to be monotonic, which means that whenever
we can prove f from a set F , then we can also prove f
from any set F ′ ⊃ F . Some well-formedness constraints
such as the one described above are inherently closed-world,
however. Other typical closed-world constraints use univer-
sal quantification, whereby the quantification is supposed
to quantify over all entities in a system, hence the proof-
theoretic rule for universal quantification is not applicable.

To deal with such closed-world constraints, it is necessary
to mark the point when a program is complete, i.e., no more
modules will be added to the program. When a program is
sealed in this way, it is safe to switch to an extended closed-
world version of the prover, which is no longer required to be
monotonic. To this end, we introduce a finalization operation
on a (composed) module, which attempts to prove all open
requirements but this time using a closed-world version of
the inference relation, where, say, ⊥ ← a, b is considered
proved if not both a and b can be deduced.

If finalization is successful (all requirements have been
proved), the interfaces of the modules are discarded and the
backend can generate code from the implementation of the
finalized module. In modular logic metaprogramming, code
generation always operates on the set of all implementation
formulas. There is no separate compilation of modules, be-
cause the structure of the code that would result from a mod-
ule’s implementation may depend on the implementation of
other modules and thus we cannot generate any meaningful
code before we seal the composition of all modules.

3.5 Soundness
We have seen how various kinds of well-formedness condi-
tions can be modeled in our modular LMP approach. How-
ever, our approach itself is not specific to any object lan-
guage or set of well-formedness conditions, and hence our
system can only detect well-formedness violations that have
been modeled correctly. Therefore we can only guarantee

relative soundness, that is, soundness with respect to the part
of the static semantics that has been modeled, e.g., in the
form of well-formed rules in the system module.

A point which makes the correct formulation of well-
formedness constraints subtle is its interplay with the notion
of information hiding embodied by our module system. A
module can contain utter garbage in its implementation part
if nothing is promised in its PROVIDES part. If a module
contains, say, a function definition which is not exported
and not called (directly or indirectly) by any other function
which is exported, then a type error in this function cannot
be detected. However, the well-formedness constraints can
be specified in such a way that the type-check of an exported
function requires all transitively called functions within the
module (including those that are not exported) to be well-
typed, too. Our type checker in Fig. 2 has this property.

For this reason it is important that the code generator will
generate object language code only for those parts of the
database that are used in the the proof trees required to prove
the PROVIDES part of the module.

We believe that this is sufficient to model the well-
formedness constraints of object languages in such a way
that all well-formedness errors are detected within the mod-
ule system – but only if the logic is expressive enough, e.g.,
computationally complete.

For simple logics, such as propositional logic or variants
thereof, complex type-checking rules cannot be modeled
within the logic. This does not mean, however, that our
framework cannot be used. The key idea is to model those
program entities which are too complicated (or undesired)
to check within the logic as atomic constants. Then these
entities can be checked by an external tool before the MLMP
checking process takes place. Due to their representations as
constants, the entities cannot be manipulated within the logic
and will hence still be well-formed when they are later again
reified as object-language code in the backend.

In general, the level of detail in the program represen-
tation hence has to fit to the expressive power of the logic
and the complexity of the well-formedness constraints at that
level of detail.

4. Formalization
In this section, we generalize from the discussion in the
previous sections and present an axiomatization of a class
of logics together with a formal definition of modules on top
of the logic under which separate checking will be sound.
We call a logic that fits to the axioms a module description
logic (MDL).

The logic FP+, which was informally used in the previ-
ous section, is just one particular MDL, and we will give a
more detailed description of FP+ and other possible logic
languages later. The proofs for all theorems presented in this
section are contained in the appendix.



4.1 Module Description Logic
We assume that the formulas in an MDL are given by a setF .
In the examples in the previous section, this set of formulas
was the set of FP+ facts and rules. In the following, we use
upper-case letters F,G to denote subsets of F , and lower-
case letters f, g to denote single formulas.

We also assume a deduction relation, `⊆ P(F) × F ,
which defines what logically follows from a given set of
formulas. We use the notation F ` F ′ to denote that for
all f ∈ F ′ we have F ` f . The choice of this deduction
relation is not completely arbitrary, because we need to have
some important properties in the logic language to make the
module system well-defined, in particular to prove anything
about the result of combining modules.

The following definition sums up the properties of an
MDL.

DEFINITION 1 (Module Description Logic). A module de-
scription logic is a tuple (F , F̂ ,`,`CW,⊥F ) satisfying the
following conditions:

⊥F ∈ F (1.1)

If F ` F ′ and (F ∪ F ′) ` F ′′ then F ` F ′′ (1.2)

If F ⊆ F ′ and F ` G then F ′ ` G (1.3)

For all F ⊆ F we have F ` F (1.4)

F̂ ⊆ F (1.5)

F̂ 6` ⊥ (1.6)

If F ` f then F `CW f (1.7)

The first requirement (1.1) defines the notion of incon-
sistency. An important point we have stressed in the last
section was the possibility and identification of inconsisten-
cies between module interfaces. To make minimal assump-
tions about the structure of formulas, we only require that⊥,
standing for inconsistency, is a logic formula.

The next three requirements are that ` is transitive (1.2),
monotonic (1.3) and reflexive (1.4). Transitivity means that
if a set F ′ of formulas follows from another set F by de-
duction, and F ′′ follows from F ′, then F ′′ already follows
from F . This is important to make sure that what follows
from an interface also follows from an implementation of
the interface. Monotonicity means that if a formula can be
proved from a set F of formulas, then it can also be proved
from every larger set that contains F . This property is essen-
tial for modularity, because it guarantees that requirements
that are checked against interfaces of one module also hold
when checked against a larger interface, for example the in-
terface of a composition of modules. Reflexivity means that
everything that is in the context can be deduced.

As we argued in the previous section, we have to distin-
guish a subset of formulas that is always consistent, which
we call implementation formulas. We denote this set of for-
mulas F̂ (1.5, 1.6). Finally, we need a closed-world version

`CW of the deduction relation which must be an extension of
the ordinary deduction relation that is no longer required to
be monotonic (1.7).

4.2 Modules, Validity, and Consistency
Based on an arbitrary but fixed MDL (F , F̂ ,`,`CW,⊥F )
we can now define what a module is:

DEFINITION 2 (Module). A module is a triple (R, I, P ) of
finite subsets of F .

In correspondence with the previous section, we call R
the REQUIRES part, I the implementation part (the formulas
between BEGIN and END), and P the PROVIDES part. We
call the set R ∪ P the interface of the module. We do not
model the IMPLEMENTATIONPROVIDES part that was used
in the motivation, since it is just syntactic sugar for putting
copies of formulas in both I and P .

Not every combination of requirements, implementation,
and provided interface forms a valid module. To formalize
the requirements for valid and consistent modules, we gen-
eralize the requirements formulated in Sec. 3.1 and 3.2. First
we define what it means that a module is valid:

DEFINITION 3 (Valid Module). A module M = (R, I, P )
is valid, if R ∪ I ` P .

Valid modules have correct specifications in the sense that
their PROVIDES part is really a logical consequence of the
implementation and the requirements. In other words, the
system can trust the promises in the interface of the module
without referring to its implementation. However, a module
may still create inconsistencies, either by inconsistent for-
mulas in the interface or by containing interface formulas in
the implementation. For example, a module may require ⊥,
or hide ⊥ ← x in its implementation.

We deal with these problems by defining a stronger prop-
erty of modules, namely consistency. To do so, we first for-
malize the idea of a legal interface, which represents inter-
faces that are consistent and will never create inconsistencies
with hidden parts of other modules:

DEFINITION 4 (Legal interfaces). For a set F ⊆ F of for-
mulas, we say that F is a legal interface, written ifc(F ), iff
∀F ′ ⊆ F̂ . F ∪ F ′ 6` ⊥.

A valid module is consistent if it has a legal interface and
all implementation formulas are either part of the informa-
tion hiding space F̂ or announced in the PROVIDES part.

DEFINITION 5 (Consistent Module). A module M given by
the three sets (R, I, P ) is consistent, written module-ok(M),
iff

M is valid (5.8)

ifc(R ∪ P ) (5.9)

∀f ∈ I.(f ∈ F̂) ∨ (f ∈ P ). (5.10)



By 5.10, consistency guarantees that we can reason about
the possible effects or inconsistencies caused by a module
by looking at its interface only. Together with validity, con-
sistency defines the separate check that can be made on each
module in isolation. Any further checks will only concern
the interface of the modules. Hence, module-ok(M) can be
seen as our formalization of the requirements that enable
separate checking.

4.3 Composing Modules
The composition of two or more modules requires two ac-
tivities: A check whether the modules are compatible, and a
process which discharges those requirements of the modules
that are exported by the other module and merges the defini-
tions of the modules. Compatibility is defined as follows:

DEFINITION 6 (Module compatibility). A set of modules
M = {(R1, I1, P1), . . . , (Rn, In, Pn)} is compatible, writ-
ten ÷(M), iff

ifc(
⋃

i∈{1,...,n}

Ri ∪ Pi).

If only two modules are involved, we write M ÷M ′ to
stand for ÷({M,M ′}).

It is crucial that the compatibility between modules does
not depend on their respective implementation. Hence it
would in principle be possible that the implementations are
contradictory. But if all modules are consistent, then the
fact that these modules are compatible also means that their
implementations are compatible:

THEOREM 7. If a set {(R1, I1, P1) . . . , (Rn, In, Pn)} of
modules is compatible and every module Mi is consistent,
then ∪i∈{1,...,n}Ii 6` ⊥.

As a consequence, we can merge these implementations
without the danger of inconsistencies, and we can then cre-
ate a new module for the merged implementation by creating
a new interface. This interface contains only those formulas
of the original modules’ interfaces that are not proved by the
combined provided parts. Module reduction is a formaliza-
tion of this process as a transition system on modules:

DEFINITION 8 (Module Reduction). A module (R, I, P ) is
reducible by f ∈ R, if P ` f and (R \ {f}, I, P ) is valid.
The reduction relation on modules is defined as

(R, I, P ) (R \ {f}, I, P ) if (R, I, P ) is reducible by f.

The reflexive and transitive closure of  is  ∗. M ′ is a
minimal reduction of a module M , written M  min M

′, if
M  ∗ M ′ and (¬∃M ′′) M ′  M ′′ (M ′ is a normal form
of M ).

The validity check of (R\{f}, I, P ) can fail in the case of
non-wellfounded circular definitions. For example, a module
may require fun(f) and provide fun(f). Such situations

can, in the general case, not be detected in a modular way,
which explains why we have to look into the implementation
part. Rather than throwing an error, we have decided to
just not allow the reduction of this requirement, since the
situation may still be resolved by adding another module
later on which adds the missing feature.

Module reduction preserves consistency.

LEMMA 9 (Preservation of consistency under reduction).
If module-ok(M) and M  M ′, then module-ok(M ′).

The composition of two modules M1 = (R1, I1, P1)
and M2 = (R2, I2, P2) is defined as the set of all possible
minimal reductions of composing the parts of both modules:

DEFINITION 10 (Module composition).

M1 +M2 = {M | (R1 ∪R2, I1 ∪ I2, P1 ∪ P2) min M}.

This definition of module reduction will correctly dis-
charge circular dependencies between modules. For exam-
ple, if

M1 = ({fun(a)}, {funimpl(b, call(a,arg))}, {fun(b)})

and

M2 = ({fun(b)}, {funimpl(a, call(b,arg))}, {fun(a)})

and M ∈M1 +M2 then

M  min

(∅, {funimpl(a, . . . ), funimpl(b, . . . )}, {fun(a),fun(b)})

Module composition produces a unique new module, un-
less the module contains non-wellfounded circular depen-
dencies. For example, if M1 = ({a}, {b ← a}, {b}) and
M2 = ({b}, {a ← b}, {a}) are combined, the resulting re-
quirements can be reduced to {a} or {b}, but no further,
since the module would become invalid otherwise. However,
we will later show that all of the modules in M1 + M2 are
equivalent with regard to the final program at the end of the
composition process.

DEFINITION 11 (`-Equivalence). We say that two mod-
ules M1 = (R1, I1, P1) and M2 = (R2, I2, P2) are `-
equivalent, written M1 ≈` M2, if

I1 = I2 and P1 = P2 = P,

P ∪R1 ` R2 and P ∪R2 ` R1

THEOREM 12 (Composition and `-Equivalence). If both
M ′ and M ′′ are minimal reductions, i.e., M ′,M ′′ ∈ M1 +
M2, then M ′ ≈` M ′′.

We can pick any of the minimal reductions without losing
information and thus can choose an arbitrary deterministic
module composition.

DEFINITION 13 (Deterministic Composition). We define the
deterministic composition of two modules M1 and M2 as

M1 ⊕σ M2 = σ(M1 +M2),

for some selection function σ : S 7→ m ∈ S.



The ⊕σ composition operation has the property that it pre-
serves consistency and validity of modules:

THEOREM 14 (Composition). LetM1 andM2 be two mod-
ules with module-ok(M1) and module-ok(M2) and M1 ÷
M2. Then module-ok(M1 ⊕σ M2).

Let us now come to the composition of sets of arbitrary
many modules. For this we must first establish that compo-
sition preserves compatibility:

THEOREM 15 (Preservation of Compatibility).

If ÷ ({M1,M2,M3}), then (M1 ⊕σ M2)÷M3

The order in which modules are composed is not signifi-
cant:

THEOREM 16. The operation⊕σ is associative with respect
to `-equivalence:

(M1 ⊕σ M2)⊕σ M3 ≈` M1 ⊕σ (M2 ⊕σ M3).

Thus we can write
⊕σ

1≤i≤nMi for the result of iteratively
combining adjacent modules from the list (Mi)1≤i≤n in
arbitrary order.

This means that we can generalize Thm. 14 to sets:

THEOREM 17 (Composition of module sets). Consider a
set M = {M1, . . . ,Mn} of modules with module-ok(Mi)
for all i and ÷(M). Then module-ok(

⊕σ
1≤i≤nMi).

4.4 Finalization and Code Generation
Using the composition operator defined in the previous para-
graph on all modules of a program, we obtain a single mod-
ule representing our program, but this resulting module may
still contain formulas in its REQUIRES part even if all de-
pendencies are satisfied. As discussed in Sec. 3.4, these for-
mulas are closed-world requirements that cannot be proved
with the monotonic deduction system.

To generate code for a program represented by a mod-
ule we have to ensure that the module’s REQUIRES part
is empty, because otherwise required information could be
missing in the final program or there could be unsatisfied
constraints. As discussed before, this cannot be achieved us-
ing ⊕, because composition uses the ` deduction relation,
which is monotonic by definition. Monotonicity is neces-
sary for composition, because the resulting module may be
composed with other modules later, but as soon as we want
to generate code we know that there will be no more com-
positions. What we need is an operator that turns the final
module into a program or indicates an error, if one of the
closed-world requirements is not satisfied. We call this oper-
ation finalization.

For finalization we use the (typically) non-monotonic ex-
tension `CW of the deduction relation `. There are different

ways to define non-monotonic extensions such as negation-
as-failure [36], and the choice of the non-monotonic ex-
tensions determines which kinds of non-monotonic well-
formedness requirements can be declared. Usually, the
closed-world extension will contain additional deduction
rules such as F 6`CWf

F∪{f}`CW⊥ . For the purpose of our formalism,
the exact kinds of non-monotonic extensions are not signif-
icant; the only role of `CW is to discharge nonmonotonic
requirements, hence it only matters that the deduction rela-
tion is an extension of the monotonic one that is no longer
required to be monotonic, as required by Def. 1.7.

The result of finalization is what we call a program,
namely the database of all implementation formulas which
forms the input to the code generator backend. If finalization
succeeds, neither the REQUIRES nor the PROVIDES part are
needed anymore. For the definition of finalization we use
 CW, a variant of that is defined by using `CW instead of
`.

DEFINITION 18 (Closed-World Module Reduction). A mod-
ule (R, I, P ) is closed-world reducible by f ∈ R, if
P `CW f and (R \ {f}, I, P ) is valid. The reduction re-
lation on modules is defined as

(R, I, P ) CW (R \ {f}, I, P )

if (R, I, P ) is closed-world reducible by f . The reflexive
and transitive closure and minimal reductions of  CW are
defined like in Def. 8.

It is obvious that  CW preserves validity and consistency.
With this definition, finalization is defined as follows:

DEFINITION 19 (Finalization).

Final(R, I, P ) =

{
I if (R, I, P ) CW

min (∅, I, P )

failure otherwise

The following theorem sums up the main properties of
our approach. By this theorem we know that in whatever
order we compose our modules, the result is well-defined if
the comprising modules are.

THEOREM 20. Given a set {M1, . . . ,Mn} of consistent and
compatible modules, a selection strategy σ, and the com-
posed module M = (R, I, P ) =

⊕σ
1≤i≤nMi, the following

statements hold:

• M can be computed in a finite number of reduction steps.
• M is consistent, i.e., module-ok(M).
• If σ and σ′ are two selection functions (Def. 13) and ⊕σ

and⊕σ′
are their associated composition operators, then

Final(
⊕σ

1≤i≤nMi) = Final(
⊕σ′

1≤i≤nMi).
• The implementation part of M is consistent, i.e., I 6` ⊥.
• If Final(M) = I ⊆ F then I ` P .



5. Implementation
We have implemented a system for MLMP which is built
according to the formal model described in the last section.
As in the formal model, our MLMP implementation can be
parameterized with an MDL and a corresponding solver,
and is independent of any particular object language. We
have also developed a prototypical system module for the
Java programming language. In the following, we describe
both the MLMP system and our solver for the FP+ module
description logic.

The system and the solver are available for download at
http://daimi.au.dk/~klose/mlmp.

5.1 The MLMP System
We have implemented our MLMP system in SWI-Prolog4. It
comprises a central module, the module composer, which is
defined in terms of the three variation points of the system:
the frontend interface, the MDL interface with correspond-
ing system module, and the backend interface.

The frontend, which is responsible for reading mod-
ule descriptions, can support multiple input formats. There
is a “raw” input format, namely input terms of the form
mod(R, I, P ) which describe the three parts of a module.
To ease writing modules, the frontend can be equipped with
functions to accept quoted object language code and trans-
form it into formulas accepted by the system, or to convert
files written directly in the object language.

The module composer is the central component of our
implementation, which provides the top level interface to the
user and coordinates the use of the frontend, the MDL imple-
mentation, the system module, and the backend. The mod-
ule composer takes a list of modules as input, checks each
module for consistency using the MDL interface, and pro-
duces a composed module according to our formalization. If
required by the user, the module composer will also try to
finalize the module and, if successful, produce code using
the backend. We have developed a sample code generator
component that produces Java code from FP+ modules.

Whenever module checks or reduction are necessary, the
system invokes the deduction relation through the MDL in-
terface. The system module is another parameter, and the
module composer will take care of adding the system mod-
ule constraints to all consistency and compatibility checks,
as described in Sec. 3.1.

All in all, the system is a straightforward and direct im-
plementation of our formalization.

5.2 The FP+ Module Description Logic
The logic we use in our examples, FP+, consists of the
“pure” and monotonic core of Prolog [37] (which means: no
negation-as-failure or other closed-world reasoning, no cuts,
no side effects), and a few simple extensions well-known
from λProlog [32, 33] and its extensions. Hence we do not

4 http://www.swi-prolog.org/

claim any originality of our solver from the perspective of
logic programming and theorem proving.

We have implemented a solver for this logic in Prolog, as
an extension of the standard meta-circular Prolog interpreter
[37]. Although the Prolog extensions we need are available
in λProlog, we have not used λProlog itself for two reasons:
First, it is not clear whether the higher-order extensions of
λProlog interfere with our definition of F̂ and the require-
ments of Def. 1. Rather, for this work we were looking for
the simplest logic that fulfills our formal requirements and
is sufficient for the examples we are interested in. Second,
we need control over the deduction mechanism such that we
can perform the consistency check (see next subsection) and
switch to closed-world deduction for finalization, and this
turned out to be much easier if we have our own solver im-
plementation.

Programs in FP+ consist of standard Prolog Horn-
clauses, the term ⊥, which is used to denote inconsis-
tency, and the following features from λProlog: implications
as goals, explicit quantification, and universally quantified
goals. The set FP+ of formulas in our language is defined
over a set L of (positive) literals. There is a subset L̂ ⊂ L
which contains all implementation literals and for which
⊥ /∈ L̂. Syntactically, we use the notation from Sec. 3.3 and
distinguish implementation literals from other literals by the
functor suffix impl.

The set of implementation formulas is defined inductively
as follows:

F̂P+ = L̂ ∪ {l̂← l1 ∧ . . . ∧ ln, (∀v)f̂ , (∃v)f̂}
where li ∈ L, l̂ ∈ L̂, f̂ ∈ F̂P+.

Since ⊥ cannot be used in the head and there is no negation,
this definition satisfies (1.5) and (1.6) of Def. 1.

Formulas in F̂P+ can be used both as clauses in the logic
program and as goals, which makes it necessary to give
an interpretation of implication and universal quantification.
Formally, the set of F̂P+ formulas is a subset of the first-
order hereditary Harrop formulas (fohh) [32], and the proof
method (which was sketched in the motivation in Sec. 3) for
fohh agrees with the classical proof-theoretical semantics in
predicate logic [32]. A detailed discussion of how a solver
for such formulas works is not relevant for this paper. The
basic structure of the solver is that of a standard resolution-
based Prolog solver, and the additional features (quantifica-
tion, implications as goals) are handled as described in [32].

For the interface formulas in FP+, ⊥ is allowed as the
head of a clause. Operationally we treat ⊥ like a literal
and we interpret the meaning of ⊥ as minimal-logic nega-
tion [31, Sec. 7], that is, we are only interested in detecting
inconsistencies but we do not allow deducting arbitrary for-
mulas from a proof of⊥. The full set of formulas is given by



the following inductive definition:

FP+ = L ∪ {l← l1 ∧ . . . ∧ ln, (∀v)f, (∃v)f}
where f ∈ FP+, l ∈ L ∪ {⊥}, li ∈ L.

Regarding the remaining properties of Def. 1, (1.1) and
(1.4) hold trivially, and (1.3) holds because we use only the
monotonic core of Prolog and monotonic extensions. (1.2)
holds modulo the depth bound of the solver, see discussion
in the next section.

5.2.1 Checking Module Consistency
The definition of legal interfaces (Def. 4) involves checking
the public interface of the module together for consistency
with arbitrary sets of implementation formulas, and is hence
instrumental to make information hiding sound. However, in
FP+ it is not obvious how to implement this check, since
it quantifies over an infinite set. Fortunately the solution is
simple: During the consistency check, the solver assumes
that every implementation literal is true. This check is sound
because implications in FP+ can only contain positive liter-
als. It is also complete, since there could always be an addi-
tional module which contains the respective implementation
literal.

Formally we can describe this strategy by a mapping
T : FP+ → FP+ which removes all implementation literals
from a given formula. If the resulting body of the clause
is empty, the head literal is returned and if the head literal
is an implementation literal, it is replaced by true. This
strategy for consistency checks is both sound and complete,
as guaranteed by the following theorem:

THEOREM 21.

(∃F ⊆ F̂P+) {fi}i∈I ∪ F ` ⊥ ⇔ {T (fi)i∈I} ` ⊥.

5.2.2 Closed-World Reasoning
As discussed in Sec. 4.4, the finalization phase of the module
composition process requires a closed-world version of the
deduction relation, which is no longer required to be mono-
tonic. Our FP+ solver introduces the following two non-
monotonic proof rules during finalization: First, a formula
⊥ ← l1∧ . . .∧ ln is considered proved if any of the li cannot
be proved (this is essentially negation-as-failure). Second, a
universally quantified implication can be proved by iterating
over all possible instantiations of the premise (in the SWI
Prolog system this non-monotonic rule is available as the
forall primitive).

5.2.3 Termination and Incompleteness of the Solver
Since FP+ is an extension of (pure) Prolog, the solver is
incomplete, just like any Prolog solver. This means that
the proof search is either not guaranteed to terminate, or
the solver will sometimes answer unknown instead of yes
or no. We have chosen the latter approach by limiting the
search depth of the prover. If the limit is exceeded, the

Module

Requires x: Nat

Implementation z : Nat = 3, f : Nat→ Nat = λy.y+x+z
Provides f : Nat→ Nat

Figure 3. Module in F1

prover answers unknown. For our purposes, it is sufficient
to make sure that the solver only errs on the “safe side”.
This means that whenever unknown occurs during a check
(module validity, consistency, or compatibility), the check
fails. The practical significance of incompleteness will be
discussed in the next section.

5.3 The Java binding
We have also implemented a prototypical system module
and a code generator for the Java programming language.
Obviously the static semantics of the Java programming lan-
guage is much more complex than FP (our example from the
introduction), but conceptually the system module for Java
has the same shape as the one for FP in Fig. 2. We have
choosen open representations for both classes and methods
(cf. Sec. 2.3), which enables more flexibility from the per-
spective of metaprogramming - for example, methods can
be added to a class ‘externally’.

Our code generator just iterates over the database and
computes, starting from a set of “start classes” transitively
the code of all classes that are referenced from this set. A
Java compiler is then used to compile the code to Java byte
code.

6. Discussion
In this section we demonstrate the versatility of MLMP and
discuss alternative MDLs, other applications, and limitations
of the approach.

6.1 Alternative MDLs
In the previous section we introduced the MDL instance
FP+ as a very expressive and undecidable language. How-
ever, FP+ is just one data point in a wide spectrum of pos-
sible MDLs, which also includes simpler, decidable logics.
In the following we discuss other MDLs and their potential
applications.

6.1.1 Simple Signature Matching
Our first example demonstrates how our module system is
connected to traditional module systems that use simple lists
of signatures in their export/import interfaces. For illustra-
tion, we choose Cardelli’s module system for F1 [8] as an
example. An example for an F1 module is given in Fig. 3.

The module system for this language has the following
responsibilities: a) It must check that the modules are well-
typed given the specified imports, b) it must check that what
is promised in the PROVIDES part is available in the imple-



Module

Requires bound(x,Nat)
Implementation

def(l1,Nat,3),
def(l2,Nat →Nat,λy.y + x+ l1),
export(l2,f)

Provides

export(l2,f), bound(f,Nat→Nat)

Figure 4. Encoding of Fig. 3 in FF1

mentation, c) two modules must be deemed incompatible if
they have conflicting expectations regarding the type of an
imported term, d) two modules that export the same name
must be deemed incompatible. Furthermore, the composi-
tion of two compatible modules should not produce acciden-
tal name clashes of hidden names, i.e., lexical scoping must
be preserved.

In the following we present the Module Description
Logic for F1. In particular, we show how the problem with
the lack of name spaces and scoping can be solved in the
context of our framework.

Lexical scoping is a subtle issue if modules are repre-
sented as flat sets of formulas. Module composition (Def. 10)
combines modules by merging their implementation parts,
and care must be taken to preserve scoping during this oper-
ation. We deal with this problem by a definition of F̂F1 which
takes care that every name has a globally unique label l; tech-
nically, this could be realized by assigning, say, sufficiently
large random numbers to every internal name. Formally, we
define the set of formulas in the logic as follows (x, t, and e
range over all names, types, and terms, respectively):

F̂F1 = {def(l, t, e) | l is unique in F̂F1}
FF1 = F̂F1 ∪ {export(l, x), bound(x, t)} ∪ {⊥}

The corresponding encoding of the example is given in
Fig. 4. We represent the definition of names by def terms.
Internal labels can be exported as name x via export. The
bound predicate is used in the interface parts to specify im-
ported and exported names. The deduction relation ` over
these formulas is given by the following four inference rules:

F ` def(l, t, e)
F ` export(l, x)
welltyped(F, l, t, e)

F ` bound(x, t)

f ∈ F
F ` f

F ` bound(x, t)
F ` bound(x, t′)

t 6= t′

F ` ⊥

F ` export(l, x)
F ` export(l′, x)

l 6= l′

F ` ⊥
The first rule takes care of points a) and b) discussed above:
If a module declares that it provides a definition of x with
type t, then it will be defined and well-typed. We assume that

a type checking algorithm is given in the form of a welltyped
predicate, which builds a typing context out of the F param-
eter and then checks that e has type t under this context. The
welltyped predicate must type-check exactly the term t and
any other term in F that is (transitively) referenced by t – if
it checks less, then hidden terms that are needed in the final
program may not be well-typed. If it checks more, then the
deduction rule would not be monotonic (1.3). The next rule
is just set membership and guarantees (1.4) of Def. 1. In par-
ticular, this rule is responsible for matching signatures, i.e.,
required and provided bound formulas. The last two rules
declare a set of formulas inconsistent if it has contradict-
ing expectations with regard to the type of an identifier, or
the same name is provided twice, respectively (see c) and d)
above). The last rule also explains why the internal label l2 is
also published in the PROVIDES part of Fig. 4: It denotes that
there is an actual hidden implementation associated to that
label. Without this information, it would be impossible to
detect whether another module has a definition of the same
name. In fact, Def. (5.10) forces any consistent module to
publish all its exports in its PROVIDES part.

It is not hard to see that this deduction system has the
properties demanded by Def. 1. (1.1) and (1.5) are trivial,
and we have already discussed (1.4). (1.2) is trivial since the
logic has no implication or the like. (1.3) was already dis-
cussed for the first rule above, and the other rules are triv-
ially monotonic. (1.6) is more interesting: If it were possible
to deduce more bound formulas by adding more def formu-
las, then (1.6) would not hold due to the last two deduction
rules. But due to the incorporation of the export formu-
las, which are not part of F̂F1, this cannot happen and (1.6)
holds. Closed-world reasoning is not required for F1, hence
`CW=`, which trivially fulfills 1.7.

In a more expressive logic, such as FP+, FF1 can be
encoded within the logic, that is, the deduction rules given
above are encoded as formulas within the system module
of the logic. Hence the above encoding of the F1 module
system could also be performed in FP+.

6.1.2 Propositional Logic
Propositional logic also trivially fulfills Def. 1 by taking
F̂ = ∅. This logic is too simple to represent programs, but it
can still be useful to express configuration well-formedness
constraints, such as constraints on the valid configurations
of a product line or feature model [4]. For example, in a
feature model it is typical to have constraints of the form
“feature X requires feature Y” or “feature X and feature Y
cannot be used together”, and such constraints can easily be
formulated in propositional logic [4]. A nice property of our
approach is that the compatibility and consistency checks
are by construction again modular, as with every instance
of our model. In contrast, configuration checkers for feature
models are typically global checkers that need the complete
configuration of a feature model in one place. In our model,



this would correspond to checking all constraints not until
finalization.

If necessary, the idea can easily be generalized to more
powerful constraint systems for configuration checking,
such as the one investigated by [5]. It is only necessary to
make sure that Def. 1 holds.

6.1.3 Datalog
Datalog [9] is a subset of Prolog that is decidable and can
be implemented very efficiently, as compared to full Prolog.
These properties come at the price of restricted arithmetic,
restricted negation, and the prohibition of complex terms as
arguments. This restricted logic is not expressive enough to
model complex constraints, such as a type systems, but it is
sufficient to reason about simpler properties of software sys-
tems, for example source code querying, detection of design
guideline violations, and enforcement of architectural con-
straints [18, 23]. We could combine these approaches with
our module system to provide modular checks for architec-
tural constraints on arbitrary collections of source code arti-
facts.

6.2 Other Applications
In the previous presentation of alternative MDLs we also
discussed a set of applications of these logics. Since our
FP+ logic can encode all these logics, these applications
would work equally well in FP+. In this section, we want
to discuss three more application areas that make full use of
the expressiveness of FP+.

6.2.1 Design Pattern Generators
It is known that logic metaprogramming can be used to gen-
erate parts of the implementation of design patterns that de-
pend on the structure of the rest of the system [15]. Typi-
cal examples are visitors for class hierarchies, proxy/wrap-
per/decorator classes, and flyweight objects [21]. The im-
plementation of such design pattern consists of one or more
class computations and a set of predicates through which the
user can control the application of the class computations.

For example, a visitor generator for a class hierarchy with
root X is realized by the module in Fig. 5, which uses the pro-
gram representation from Sec. 3. This generator creates the
visitor class visitor(X) and visit methods for all possi-
ble subtypes of X. It also takes care of creating all the nec-
essary accept methods in the elements of the class hier-
archy. The generation of a visitor can be triggered by an-
other module by putting make visitor(’MyClass’) into
its PROVIDES interface (and the implementation). Just as in
our function generator example, the code generator can be
type-checked once and for all, and clients using visitors can
be type-checked in terms of the visitor interface only.

6.2.2 Cross-Language Typing
A particular strength of our approach is that it is indepen-
dent of a specific object language, which makes it partic-

Module

Implementation

classimpl(visitor(X), ’Object’) ←
make_visitor(X), class(X).

methodimpl(visitor(X), visit(Y), [y], [Y],

void, return ) ←
make_visitor(X),

class(Y, S), subtypeeq(Y, X).

methodimpl(Y, accept, [visitor], [visitor(X)],

void, Body ) ←
make_visitor(X),

class(Y, S), subtypeeq(Y, X),

Body = call(visitor, visit(Y), [this]).

Provides

class(visitor(X), ’Object’) ←
make_visitor(X), class(X).

method(visitor(X), visit(Y), [Y], void) ←
make_visitor(X), class(Y, _), subtypeeq(Y, X).

method(Y, accept, [visitor(X)], void) ←
make_visitor(X),

class(Y, S), subtypeeq(Y, X).

Figure 5. Visitor generator

ularly simple to integrate different object languages. There
are often complex constraints between different code arte-
facts written in different languages. For example, classes
for database access may be generated from specifications
in an XML format. One would like to typecheck clients
of these classes against the XML specification rather than
against generated code. Similarly, there are often complex
well-formedness constraints between configuration files and
ordinary source code. For example, a class name occuring
in a configuration file for a component container may be re-
quired to be the name of an existing class which must be a
subclass of a container class. Finally, it would also be de-
sirable to have a fine-grained modular typing discipline for
calls between program parts written in different languages.
The lack of modular cross-language checks typically leads
to subtle errors that occur late in the build process or some-
times not until deployment- or runtime.

All such cross-language well-formedness constraints can
easily be modeled and hence checked in our framework. All
a user of our framework has to do to integrate several lan-
guages is to provide a frontend for each of these languages,
and then add the cross-language well-formedness constraints
either to the system module or to an ordinary module that is
imported by the modules to be checked.

6.2.3 Pluggable Type Systems
Another interesting application is to provide support for
pluggable type systems [3, 6]. Pluggable type systems check
optional or domain-specific well-formedness constraints that
are not part of the type system of the object language. Typi-
cal examples include non-null type checkers or type systems
for alias control.



In our setting, pluggable type systems can be defined in
the PROVIDES part of a module, just like the normal base
type system is defined in the system module, and other mod-
ules could then use the type system by importing it and ex-
porting, say, method nonnull ok well-formedness certifi-
cates in their PROVIDES part, whereby method nonnull ok

is defined by the type system module and holds if the respec-
tive method is well-formed with regard to the non-null type
system. In fact, the type system discussed in Sec. 3 can al-
ready be considered a pluggable type system if the rules are
moved from the system module into an ordinary module.

Another conceivable application of pluggable type sys-
tems would be to retroactively check an existing module ac-
cording to a new type system (or, more generally, static anal-
ysis). However, there is one major problem with this idea:
typically, the actual code to be type-checked is hidden in the
implements part of the module, and hence another module
that is not explicitly imported has no access to these hidden
parts. The implementation details would have to be exposed
in the PROVIDES part of a module to make this work, but
this would be in conflict with information hiding. A possible
solution to this problem would be a more fine-grained notion
of information hiding, where, say, some modules are allowed
to see more implementation details than other modules. The
exact design of such a mechanism is part of our future work.

6.3 Limitations
We conclude the discussion with a consideration of the lim-
itations of our approach.

6.3.1 Incompleteness of the Solver
Although we have seen that our formal framework is also ap-
plicable and useful if it is instantiated with simple, decidable
logics, many interesting applications – in particular those re-
lated to type checking – require undecidable logics such as
FP+. In Sec. 5.2.3 we have already discussed how incom-
pleteness is being dealt with technically. Here we want to
discuss the implications on the programming model.

The consequence of the incompleteness of a solver is that
sometimes modules are unfairly rejected. The situations in
which this can happen depend on the deduction algorithm of
the solver. Our resolution-based FP+ solver, for example,
is suspectible to the same programming patterns that lead to
non-termination in Prolog programs, such as left-recursion.
For example, if the transitive hull of the subtyping relation
in our Java binding would be specified via a rule such as

subtypeeq(A,C) ← subtypeeq(A,B), subtypeeq(B,C).

subtypeeq(A,B) ← class(A,B).

then the solver will return unknown whenever this rule is
used. Similarly, the backtracking algorithm may always
backtrack to the wrong choice points, although another
choice point would quickly lead to a successful answer.
There are techniques to reduce the number of situations
where the solver loops (such as tabling, or left-recursion

elimination), but this does not change the fact that a user
of our system has to encode his formulas in a way that is
compatible with the solver algorithm, if the solver is incom-
plete, for example by rewriting the two rules to remove the
left-recursion:

subtypeeq(A, A) ← class(A, S).

subtypeeq(A, C) ← class(A, B), subtypeeq(B, C).

Our FP+ implementation uses a depth-limit approach to
avoid infinite loops in the prover, which means that programs
of a certain complexity (i.e., requiring a proof of large depth)
will be rejected even if they are correct. Our experience
shows, however, that this is not a problem in practice, since
most proofs have small depth.

6.3.2 Influence of the Representation
Under a closed-world assumption, such as in traditional
LMP, the form of program representation is not very im-
portant, because different representations can easily be com-
puted from each other. In our modular setting, however, the
choice of representation directly influences which kinds of
properties can be proven modularly, and which kinds of pro-
gram computations can be expressed.

We have already hinted at the question of open versus
closed representation in Sec. 2.3. In the program representa-
tion chosen in this paper, classes, methods, fields, and con-
structors were represented openly in the form of predicates,
whereas we chose a closed representation of method- and
constructor bodies as terms nested inside their respective
method and constructor declaration.

Open representations are extensible: It is possible to add
new classes/methods/fields/constructors without modifying
any existing module code. Closed representations are not: It
is not possible to add, say, another statement to a method
body without changing the method body representation.

On the other hand, all properties that quantify over all
entities of a kind (such as: all classes, all methods etc.) can-
not be established modularly if these entities have an open
representation. For example, with our open representation
of methods it is not possible to check modularly that there
is no ambiguous overloading of two methods. It is possi-
ble to specify such constraints, and violations against these
constraints are detected “early” (as soon as two modules are
composed that violate the property), but these constraints
will stay in the REQUIRES part of the composed module and
they will only be proved during finalization, when the solver
switches to closed-world reasoning.

This is not a problem when entities have a closed repre-
sentation. For instance, it can be established modularly, once
and for all, that a method body is well-typed. Hence, the
choice of the program representation is a tradeoff between
extensibility and modularity.

In Sec. 6.1.1 we have seen that dealing with names, name
clashes, and lexical scoping properly also requires a care-
fully chosen program representation. The fact that formulas



in a logic do not have an “identity” (e.g., if two modules
provide the same property then they are indistinguishable)
has to be taken into account when encoding well-formedness
constraints related to name clashes or double definitions.

Finally, the design of the information hiding discipline
(the F̂ set) influences what kinds of well-formedness con-
straints can be retroactively imposed on a module, since
retroactive constraints (that are not anticipated by import-
ing the module containing the checks) can only operate on
the interface of the module. We have seen that this can be a
limitation in the context of pluggable type systems.

6.3.3 Alignment with the Object Language
As discussed in Sec. 3.5, it is the responsibility of the pro-
grammer to make sure that the constraints modeled into the
system module are sufficient to make sure that no well-
formedness errors arise after code generation. If the well-
formedness constraints of an object language were available
as a machine-readable specification (rather than being bur-
ried in a compiler or an informal language specification),
then it might be possible to design a frontend for the lan-
guage the specification is written in, such that the checks
agree by construction with the specification.

6.3.4 No Silver Bullet
The fact that program generators can seemingly be checked
so easily once and for all may seem to be a bit suspicious.
However, logic solvers are no silver bullet to the problem,
and the fact that program generators can be checked is not
due to some black magic but due to a careful declaration of
the requirements on the input of the program generators.

To illustrate this point, consider a method generator,
which takes a method body B (or other statement) and pro-
duces a method that is equivalent to

void execNtimes(int n) {

for (int i=0; i<n; i++) {B}

}

How could this generator be proved safe, once and for all?
B might have open variables that must be available in the
context. B may declare itself a variable i or n which clash
with the loop variable or the method argument, respectively.
B may itself not even be a well-typed statement.

The answer to this question is that the REQUIRES inter-
face of this code generator must be derived from the defini-
tion of the typing rule of the for statement. For better read-
ability, we will not use Prolog syntax in the following, but
standard type system notation. The (simplified) typing rule
for for loops will typically be something like

Γ ` e : int Γ ∪ {i : int} ` c : bool Γ ∪ {i : int} ` b : void

Γ ` for (int i = e; c; i++) {b} : void

and in FP+ this typing rule would be encoded as a univer-
sally quantified implication. Obviously, in the specific ex-
ample above, the body has to fulfill the constraint C = {i :

int, n : int} ` B : void, hence the program generator
will only be accepted by the system if C is demanded as a
constraint on the input of the program generator.

Hence, in general, to prove program generators correct,
one has to look at the proof tree that the solver will attempt
to generate, check what the solver will try to prove about the
input parameters, and add these properties to the REQUIRES
interface of the program generator.

7. Related Work
Our work is related to three different areas of work: program
generation, module systems and separate compilation, and
logic programming.

7.1 Program Generation
There is a wide spectrum of program generation and meta-
programming approaches, such as macros, C++ templates,
meta-object protocols, open compilers, or logic metapro-
gramming, the latter being the starting point of this work.
Typically, these approaches are not modular, and checking
only takes place on generated programs. Logic metapro-
gramming was investigated in detail in the PhD theses of
[14] and [39]. Despite its generality and expressiveness,
there have not been many follow-up works, although more
recently several forms of logic metaprogramming have be-
come popular again as program query languages [18, 23,
34].

There are various approaches to make certain forms of
static metaprogramming safe [17, 19, 25–27]. CJ [26] offers
statically safe conditional declarations. CTR [19] as well as
safegen, MJ and MorphJ [25, 27, 28] offer forms of statically
safe iteration over, say, the methods of a class, which can
then be used to generate various forms of wrappers. These
works are tailored towards a specific object language and
a specific form of metaprogramming. Hence our work is
not a “competitor”; rather, our formal model provides a
common foundation for these works in that it characterizes
the relation between modular checking and expressiveness
of the metalanguage. We believe that each of these languages
corresponds to a particular program representation, system
module, and logic in our model. Our logic FP+ is more
expressive than any of these approaches, albeit at the price
of an undecidable solver.

Staging [38], such as in MetaML or MetaOCaml, can also
be seen as a form of statically safe program generation, but
staging does not increase the expressiveness of the language;
it is mainly a technique for program specialization.

7.2 Module Systems and Separate Compilation
There is a large body of literature on module systems in
both functional and object-oriented programming, but few of
these works deal with the problem of incorporating metapro-
gramming into the module system.

The work of Cardelli [8] was the first to formally inves-
tigate the issue of separate checking, and his formal model



was an important inspiration for this work. In fact, this whole
work started with the idea of what happens if one revisits
Cardelli’s definitions and generalizes name-based imports/-
exports to arbitrary formulas in a logic. Sec. 6.1.1 makes this
connection explicit.

Ancona et al. [1, 2] discuss the problems of modular
checking, separate compilation and linking in the context
of the Java programming language. In order to cope with
inter-module dependencies, they introduce a special kind of
bytecode, called polymorphic bytecode, which can be used
to infer constraints on possible linking contexts. This can be
seen as an interface which consists of formulas described
in a non-trivial logic. Their approach is tailored to separate
checking of Java and hence complementary to our work.
However, the idea to infer the requirements from the code
rather than writing them down explicitly would also be in-
teresting in our setting.

Many module or type systems allow some form of inter-
face parameterization, such as generics in Java, SML func-
tors, or typed λ-calculi where types can be parameterized
by types (higher-order types) or values (dependent types).
In such languages, the “matching” process between required
and provided interfaces also involves some form of infer-
ence or, more generally, computation. However, these forms
of parameterization do typically not involve computations
over reifications of programs, which is the main source of
the expressive power of metaprogramming.

The idea to express module consistency and compatibility
by means of logic validity and consistency can also be found
in other works on interface languages such as [10, 13, 20],
but none of these works deal with the problem of modular
metaprogramming.

7.3 Logic and Logic Programming
There is a large amount of work on module systems for
logic programming, such as the module system for Prolog
from [7], but all these approaches use predicate names and
properties (such as arity, argument types, modes) as the
basic building blocks of interface specifications, but not the
logic itself as in our approach. Although module systems
have been proposed for metaprogramming in logic [24, 29],
these approaches are either based on names of language
symbols (or declarations) and relations are usually expressed
as parametrization of declarations over names or signatures,
or use features that modularize the definition of predicates,
but not of arbitrary logic formulas.

In the context of logic meta programming, De Volder
et al. [16] propose a generic component model which is
syntactically similar to our modules in that a component
consists of a REQUIRES and PROVIDES interface together
with an implementation, which is a list of clauses. In contrast
to our framework, De Volder et al.’s component model lacks
support for static checking of well-formedness and instead
focuses on composition. Therefore, the approach can not be
compared to the framework developed in this paper.

As described earlier, our logic FP+ is a straightforward
extension of (pure) Prolog with universally quantified goals
and implications as goals - techniques well-known from
λProlog [33]. Our treatment of inconsistency via a desig-
nated ⊥ constant is also standard [31].

In our future work, we would like to explore the use of
other logics, such as full λProlog, as MDL in more detail.
For this work, our main goal in the design of FP+ was to
keep it as simple as possible, such that the description of
this specific logic does not distract from our general module
framework, which we consider the main contribution of this
work.

Institutions [22] are similar to our axiomatization of mod-
ule description logics in that both are abstractions over a
range of concrete logics. However, the results in the liter-
ature on institutions are mainly about the problem of com-
posing different logics, whereas our work is about the com-
position of modules that are formulated in the same logic.

8. Conclusions and Future Work
We have shown that it is possible to tame the tiger: Ex-
pressive static metaprogramming via LMP can be reconciled
with separate checking. We have presented a formal frame-
work which identifies very general conditions under which
separate checking is sound, and have described the imple-
mentation of a powerful metaprogramming system which
has been designed according to the formal framework.

Our future work will concentrate on four areas: First, we
want to explore the trade-off between openness and separate
checking in more detail. Second, we want to model existing
safe metaprogramming systems such as those described in
the previous section in our work. We believe that the design
of an MDL and program representation for these approaches
will give new insights into their expressiveness and makes it
easier to compare safe metaprogramming approaches. Third,
we want to investigate a larger space of possible logics
and their utility for metaprogramming, such as full first or
higher-order logic. Fourth, we want to study the relation
between the expressiveness of type systems viewed as a
logic (Curry-Howard isomorphism) and MDLs.
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APPENDIX
A. Proofs
We will need the following lemmas for the proofs:

LEMMA 22 (Monotonicity of ifc). If ifc(F ) and F ′ ⊆ F ,
then ifc(F ′).

Proof. Assume that ifc(F ) and¬ifc(F ′), i.e., (∃I ⊆ F̂) F ′∪
I ` ⊥. By monotonicity of ` it follows that F ∪ I ` ⊥ and
therefore ¬ifc(F ), which is a contradiction.

LEMMA 23. ≈` is an equivalence relation.

Proof. We have to show:

Reflexivity Since R1 = R2, we have to show that P ∪ R `
R, which follows from the monotonicity of `.

Symmetry The definition of ≈` is symmetric.

Transitivity Both = and ` are transitive.

LEMMA 24. ∀k ∈ N,M,M ′ (M  k M ′ ⇒M ≈` M ′)

Proof. The case k = 0 is trivial. To prove k = 1 we assume
that (R, I, P ) (R \ {f}, I, P ).
Now we have to prove that R∪P ` R \ {f}, which follows
from 1.4 and 1.3, andR\{f}∪P ` R, which is true, because
R \ {f} ` R \ {f} and P ` {f}.
The case k > 1 follows from Lemma 23 (transitivity of≈`).

A.1 Theorem 7
Proof. Let I = ∪i∈{1,...,n}Ii be the implementation and
P = ∪i∈{1,...,n}Pi the PROVIDES part of the composed
module. By 5.10, we can split I into two disjunct sets I =
I ′∪P ′, where I ′ ⊆ F̂ and P ′ ⊆ P . Because all modules are
compatible, we have ifc(P ) and by Lem. 22 we get ifc(P ′),
which means that P ′ is consistent together with arbitrary
implementation formulas, and in particular it is consistent
with I ′. From this follows that I 6` ⊥.

A.2 Lemma 9
Proof. By definition of , M ′ is valid. IfM ′ were inconsis-
tent, then M would have been inconsistent, too, by Lemma
22. But M is consistent by assumption, hence M ′ must be
consistent.

A.3 Theorem 12
Proof. Let M = (R1 ∪R2, I1 ∪ I2, P1 ∪P2). Since M ′ and
M ′′ are minimal reductions of M , we have M  k M ′ and
M  l M ′′. By Lemma 24 it follows that M ≈` M ′ and
M ≈` M ′′ and by transitivity and symmetry of≈` we have
M ′ ≈` M ′′.

A.4 Theorem 14
Proof. Let Mi = (Ri, Ii, Pi) for i = 1, 2. Let M =
(R1 ∪ R2, I1 ∪ I2, P1 ∪ P2) as in the first step in Def. 10.
Then M is valid because for each f ∈ P1 ∪ P2 we have
R1 ∪ R2 ∪ I1 ∪ I2 ` f by the validity of M1 and M2 and
the monotonicity of ` (Def.1.3). (R′, I ′, P ′) = (R′, I1 ∪
I2, P1 ∪ P2) = M1 ⊕σ M2. M is also consistent because
ifc(R1∪R2∪P1∪P2) byM1÷M2. By Lemma 9 consistency



is preserved in every reduction step, hence M1 ⊕σ M2 must
also be consistent.

A.5 Theorem 15
Proof. Let Mi = (Ri, Ii, Pi) for i ∈ {1, 2, 3} and M1 ⊕σ
M2 = (R, I, P ). By Def. 8 and 10, P = P1 ∪ P2 and
R ⊆ R1 ∪ R2. The theorem now follows by Def. 6 and
Lemma 22.

A.6 Theorem 16
Proof. Let (Mi)1≤i≤3 = (Ri, Ii, Pi), then

(M1⊕σM2)⊕σ M3

≈` (I1 ∪ I2, R1 ∪R2, P1 ∪ P2)⊕σ M3

≈` (I1 ∪ I2 ∪ I3, R1 ∪R2 ∪R3, P1 ∪ P2 ∪ P3)

≈` M1 ⊕ (I2 ∪ I3, R2 ∪R3, P2 ∪ P3)

≈` M1 ⊕σ (M2 ⊕σ M3)

A.7 Theorem 17
Proof. By induction on n. The base case n = 1 is trivial,
the case n = 2 is covered by Thm. 14. For the inductive case
n ≥ 3, letM =

⊕σ
1≤i≤n−1Mi. By induction hypothesis we

know module-ok(M). By applying Thm. 15 n−2 times, we
getM÷Mn. Now the theorem follows by applying Thm. 14
to M and Mn.

A.8 Theorem 20
Proof. We prove the parts of the theorem in the order as
stated.

• A reduction step removes exactly one formula from the
REQUIRES set of the module, and the REQUIRES set is
finite.
• Follows by Thm. 17.
• From Thm. 12 we know that M ′ =

⊕σ
1≤i≤nMi ≈`⊕σ′

1≤i≤nMi = M ′′. By transitivity of ≈` we know that
M ′ ≈` M ′′ and by the definition of , their implemen-
tation and PROVIDES part are equal. Thus, the only way
it could happen that Final(M ′) 6= Final(M ′′) is when

one finalization fails while the other succeeds. But be-
cause M ′ ≈` M ′′, there is no requirement formula, that
can be proved for one module but not for the other.
• The implementation part of M is the union of the im-

plementation parts of the modules M1, . . . ,Mn and thus
consistent by Thm. 7.
• If M is valid, and M  CW

min M ′ then M ′ is valid by
definition of min, that is, R ∪ I ` P . By the definition
of Final, M ′ has the form (∅, I, P ), thus I ` P .

A.9 Theorem 21
Before proving the theorem, we have to define T .

DEFINITION 25.

T (l) =

{
l l ∈ L
true l ∈ L̂

T ((∀v) f) = (∀v)T (f)

T ((∃v) f) = (∃v)T (f)

T (l← l1, . . . , ln) = T (l)← T (l1), . . . , T (ln)

T ({l1, . . . , ln}) = {T (l1), . . . , T (ln)}

Proof. Let Γ be arbitrary but fixed.
⇒Assume that ∃F ⊆ F̂P+ such that Γ∪F ` ⊥. We observe
that a proof of ⊥ does not include proofs of implications.
Thus, the proof tree contains only substitutions of literals
by bodies of matching clauses, eliminations of existential
quantification and substitution of constants for universally
quantified variables. By replacing every node of the tree that
contains implementation literal with true and removing their
subtrees, we end up with another valid proof tree. All the
substitutions of clause bodies that are in the tree can be done
using formulas from T (Γ), which means that the modified
tree is a proof tree for ⊥ in T (Γ), and thus T (Γ) ` ⊥.
⇐Assume that T (Γ) ` ⊥. We can choose F = L̂, for which
Γ ∪ F ` ⊥, because all implementation literals that can be
used in the proof are true.


