
Implementing Reusable Collaborations
with Delegation Layers

Klaus Ostermann
Siemens AG, Corporate Technology SE 2

D-81730 Munich, Germany

Klaus.Ostermann@mchp.siemens.de

ABSTRACT
It has been recognized in several works that a slice of behav-
ior affecting a set of collaborating classes is a better unit of
reuse than a single class. Different techniques and language
extensions have been proposed to express such slices in pro-
gramming languages. We present a Java language extension
that builds up on mixin layers and combines and generalizes
virtual class and delegation concepts. The result is a lan-
guage that allows runtime composition of components and
better reusability of client code.

1. INTRODUCTION
In the early days of object-oriented programming there has
been a general agreement that the class should be the pri-
mary unit of organization and reuse. However, over the
years it, has been recognized that a slice of behavior affect-
ing a set of collaborating classes is a better unit of organiza-
tion than a single class. Application frameworks [9, 5] have
been the first effort towards reusable collaborations. How-
ever, application frameworks have proven to be too inflexi-
ble for a number of reasons, see [14, 21, 15]. On the design
level, methodologies for collaboration- or role-model based
design have been developed [2, 8, 17]. On the other hand,
main stream programming languages have been equipped
with light-weight linguistic means to group sets of related
classes, e.g. name spaces in C++ or packages and inner
classes in Java.

Mixin layers [18] are a more flexible implementation tech-
nique for collaborations. The key advantage over traditional
framework techniques is (a) that they allow sets of classes
to inherit from other sets of classes, that is, inheritance
is scaled to a multi-class granularity, and (b) these sets of
classes can be composed with each other by layering the sets
and composing the corresponding classes in each layer with
mixin-inheritance.

First OOPSLA Workshop on Language Mechanisms for Programming Soft-
ware Components at OOPSLA 2001, Tampa Bay, FL, USA.

A B

C

A B

C

B

Base

V1 V2
D

Figure 1: Collaboration inheritance

Fig. 1 shows sets of classes V 1 and V 2 that inherit from
another set of classes Base. The Base collaboration defines
classes A, B and C, and subcollaborations may extend or re-
fine these classes (V1) or add additional classes (V2). For ex-
ample, Base may encode a basic graph structure with classes
Node and Edge, and V1 and V2 may be extensions of this ba-
sic collaborations that refine these classes to ColoredNode

or ColoredEdge.

These subcollaborations can be combined freely. Fig. 2
demonstrates the semantics of a combination V1(V2(Base)):
All inner classes are organized in a mixin style according
to the definition of the outer abstractions. For example,
we can easily create layers to mix-and-match the aforemen-
tioned different kinds of graphs. Fig. 3 shows the source
code for C++ mixin layers Graph, NodeColoredGraph, and
EdgeColoredGraph, which can be composed to a graph that
has both colored nodes and colored edges (NECG) or only
colored nodes (NCG).

Our model builts up on the concepts of mixin layers and
extends it in two ways:

• Runtime composition: In contrast to the template
technique by Smaragdakis and Batory we want to be
able to compose our collaborations dynamically, that
is, the desired sets of features should be determined at
runtime.



V1.A

Base.A

V1.B

Base.B

V2.B V2.D

Base.C

A B DC

V1.C

Figure 2: V1(V2(Base)):Layer combination with
mixin-inheritance

class Graph {

...

public:

class Node { };

class Edge { Node* n1, Node* n2; ... }

Edge* connect(Node* n1,Node* n2) {

return new Edge(n1,n2);

}

void addNode(Node *n) {...}

};

template <class Super>

class NodeColoredGraph : public Super {

public:

class Node: public Super::Node {

Color c;

...

}

};

template <class Super>

class EdgeColoredGraph : public Super {

class Edge: public Super::Edge {

Color c;

...

}

};

typedef

NodeColoredGraph<EdgeColoredGraph<Graph> > NECG;

typedef NodeColoredGraph<Graph> NCG;

Figure 3: Graph Example with C++ mixin layers

class Client {

void buildCompleteGraph(Graph *graph, int size) {

... Graph::Node *n = new Graph::Node; ...

... Graph::Edge *e = new Graph::Edge(n,m);

... graph->addNode(n); ...

}

};

Figure 4: Client class that creates instances of the
component classes

• Client reusability: We want to be able to use the
same client code with different collaboration configu-
rations. For this purpose, we introduce a notion of
runtime polymorphism for these collaborations. This
makes it possible to use existing client code (code that
uses a composed collaboration, e.g. the aforemen-
tioned graph collaboration) with different collabora-
tions at runtime. In general, this is not possible with
mixin layers as presented in [18].

Delegation [11] can be seen as a generalization of mixin-
based inheritance that allows to determine the inheritance
hierarchy at runtime. For this reason, we think that delega-
tion layers are a natural generalization of mixin layers, and
they will be used to enable runtime composition.

The second point is more subtle and has to do with con-
structor calls. Constructors of a class A are called in code
that creates instances of A and in constructors of subclasses.
We distingiush two cases:

1. Constructor calls inside a collaboration, e.g., the con-
structor call inside Graph::connect in Fig. 3 creates
an instance of Edge.

2. Constructor calls outside a collaboration, e.g., the
method Client::buildCompleteGraph in Fig. 4 cre-
ates instances of Node and Edge.

In standard type systems, the binding of a constructor call to
a specific constructor/class is static. This may be a problem:
In the context of a compound collaboration as in Fig. 2, e.g.,
a NECG as in Fig. 3, we want the code in Graph::connect

resp. Client::buildCompleteGraph to create an instance
of the compound Node and Edge classes. However, with a
usual type system, the constructor call in Graph::connect

is statically bound to Graph::Edge, and the constructor call
in Client::buildCompleteGraph is statically bound to the
outer class that has to be annotated in the constructor call.

The same argument applies to calls to superclass construc-
tors. Please note that in Fig. 2 the compound C inherits from
the compound A. In the mixin layer approach, however, the
compound C would be a subclass of Base::A.

We think that this problem can be seen as a variant of the
self problem [11], a.k.a. broken delegation [7]: In a compos-
ite component, all actions should be applied to the compos-
ite component, rather than to an individual part of it. In
the original formulation of the self problem, this refers to
method calls; in our case, this refers to constructor calls.

Smaragdakis and Batory acknowledged this problem and
proposed to use virtual classes to cope with it. Virtual
classes are a concept from the Beta programming language
[13]. A virtual class can be refined by subclasses in an in-
heritance chain and the most refined version is the one used
by the superclass code. However, further details about their
notion of virtual classes are not provided.



class A {

void foo() { print("A"); }

}

class B extends A {

void foo() { print("B); super.foo();}

}

class C extends A {

void foo() { print("C"); super.foo();}

}

...

A a = new C();

a.foo(); // prints "CA"

A a = new C<new B()>();

a.foo(); // prints "CBA"

Figure 5: Code example for delegation

This problem could be partly avoided by using factory meth-
ods [6] for the instantiation of the collaboration classes. In
fact, factory methods can be seen as an insufficient sim-
ulation of virtual classes because the usage of the factory
methods cannot be enforced by the compiler, and impor-
tant type information is lost whenever a factory method is
used, leading to unsafe dynamic type casts. In addition, this
does not work for constructor calls in subclasses as explained
in the previous paragraph, because superclasses cannot be
dynamically assigned in a language with static inheritance.

We try to fill this gap and combine virtual classes with a
notion of type variables as recently presented by Erik Ernst
[4]. The important difference of his family polymorphism
approach to the previous virtual classes approaches is that
a virtual class is a type variable of objects of the enclos-
ing class. These type variables are valid type annotations
in the program; objects of the enclosing class can be seen
as a repository of types. Family polymorphism is especially
useful in our context because it guarantees statically safe,
consistent usage of a collaboration and does not need run-
time type checks as in [19] and [12]. By using type vari-
ables, many programs can be proved statically safe without
employing final bindings [20] or type exact variables [3].

2. DELEGATION LAYERS AND VIRTUAL
CLASSES

In the first step we add a restricted variant of delegation
to Java, and in the second step we generalize this notion to
multi-class granularity by adding virtual classes.

To make the discussion simple, we restrict our notion of del-
egation to static delegation. This means that parent objects
can be initialized at runtime, but once these references are
initialized, they cannot be changed, similar to a final vari-
able in Java. This restricted variant has also been employed
by Büchi and Weck [1], who in addition add the notion of
transparency, meaning that an object is a subtype of the
dynamic type of its parent (in contrast to other proposals
like [10] and [16]1). In the context of delegation layers we

1In models that support full dynamic delegation there are
good reasons for not supporting transparency

class Base {

virtual class A {

B b;

void foo() { b = new B(); }

}

virtual class B { ... }

virtual class C extends A { ...}

}

class V1 extends Base {

override class A { ... }

override class B { ... }

override class C { ... }

}

class V2 extends Base{

override class B {

D d;

...

}

override class D { ... }

}

class Client {

void bar(Base base) {

B b = new base.B(); // creates V1::B

}

}

...

main() {

Base base = new V1<new V2()>();

new Client().bar(base);

V2 v2 = (V2) base; // succeeding dynamic cast

}

Figure 6: Delegation layers

use delegation with transparency.

We unify standard inheritance and our restricted variant of
delegation as follows: In a new C() expression for a class C

extends A we may optionally specify a parent object (de-
limited by <>) that has to be a subtype of A. For example, let
B be a subclass of A. Then new C() creates an instance of C
with superclass/parent A (usual semantics), and new C<new

B()>() creates an instance of C with superclass/parent B (see
Fig. 5). For further details about the semantics of delegation
we refer to the existing approaches, e.g., [10, 1, 16].

So far, nothing really exciting happened. The crucial point
is that we extend the delegation semantics recursively to
nested classes by incorporating virtual classes in the sense
of [4], that is, with virtual classes as type variables of objects.

We annotate an inner class as a virtual class with the vir-

tual modifier (corresponds to :< in Beta). A class that
overrides a virtual class is annotated with the override key-
word (corresponds to ::< in Beta). If an inner class A of a
class Base is annotated as virtual, this means, that Base.A



is no longer a valid type specifier because A is a type vari-
able of objects of type Base. Instead, base.A is a valid type
specifier, whereas base is a reference of type Base.

Delegation and virtual classes work together as follows:
The superclass of a class V1.A that overrides an-
other class Base.A is the virtual superclass super.A.
Please note that in the case of delegation super is a ref-
erence to the parent object. The consequence is that the
superclass of a virtual class is determined at runtime, based
on the class of the outer parent object. For example, let
Base base = new V1<new V2()>(). In the context of base,

• the statement b = new B() in foo() creates an in-
stance of V1.B with superclass/parent V2.B, the sub-
sequent superclass/parent of V2.B is Base.B.

• the class base.C is the class V1.C with superclass path
Base.C, V1.A, Base.A.

In essence, the combination of delegation and virtual classes
allows us to combine our collaboration classes at runtime
with the composition semantics illustrated in Fig. 2.

Fig. 6 shows source code that corresponds to Fig. 1 and
uses these features. The classes Base, V1 and V2 specify
slices that can be composed. The main() method composes
V1 with V2 dynamically. The semantics of the composition
new V1<new V2()>() becomes clear in Fig. 7. It shows the
same code as in Fig. 6 but it makes the implicit type scop-
ing explicit: All type annotations that correspond to virtual
classes are type annotations relative to an object reference.
The internal behavior of the resulting compound collabora-
tion is similar to the one schematically presented in Fig. 2:
The different parts are layered on each other and combined
in a mixin-style.

Fig. 8 rewrites the functionality in Fig. 3 using our model.
The advantages of this rewritten version become apparent
if we compare the “main functions” for these pieces of code
(Fig. 9 and 10):

• We are able to compose our layers at runtime by us-
ing delegation. Due to subtype polymorphism, we do
not even need to know exactly which components par-
ticipate in the composition. For example, instead of
creating the instance of NodeColoredGraph in Fig. 9
we could have composed EdgeColoredGraph with some
unknown layer that has been passed as a parameter of
type Graph.

• The client code can be used with all kinds of graphs.
The virtual class mechanism assures that the client
creates the “right” instances of the nested classes, re-
gardless of the particular collaboration combination.
For example, in the control flow of main(), instances of
ColoredNode and ColoredEdge are created in build-

CompleteGraph(). In contrast, the constructor calls
in the buildCompleteGraph method in Fig. 4 are stat-
ically bound to the inner classes of Graph.

class Base {

virtual class A {

Base.this.B b;

void foo() { b = new Base.this.B(); }

}

virtual class B { ... }

virtual class C extends this.A { ...}

}

class V1 extends Base {

override class A extends super.A { ... }

override class B extends super.B { ... }

override class C extends super.C { ... }

}

class V2 extends Base{

override class B extends super.B {

V2.this.D d;

...

}

virtual class D { ... }

}

Figure 7: Semantics of delegation layers

class Graph {

List nodes;

virtual class Node { ... }

virtual class Edge {

Node n1,n2; ...

}

Edge connect(Node n, Node m) {

return new Edge(n,m);

}

class NodeColoredGraph extends Graph {

override class Node {

Color c;

...

}

}

class EdgeColoredGraph extends Graph {

override class Edge {

Color c;

...

}

}

class Client {

void buildCompleteGraph(Graph graph, int size) {

... graph.Node n = new graph.Node() ...

... graph.Edge e = new graph.Edge(n,m); ...

... graph.addNode(n); ...

}

}

Figure 8: Graph variations with delegation layers
and virtual classes



...

main() {

EdgeColoredGraph g =

new EdgeColoredGraph<new NodeColoredGraph()>();

Graph g2 = g; // statically safe

new Client().buildCompleteGraph(g2,5);

NodeColoredGraph g3 =

(NodeColoredGraph) g; // succeeding dynamic cast

}

Figure 9: Main method for the source code in Fig. 8

...

main() {

NECG *g = new NECG;

Graph *g2 = g; // statically safe

// the next call will not work properly

(new Client)->buildCompleteGraph(g2,5);

// NCG *g3 = g; rejected by the compiler

}

Figure 10: Main method for the source code in Fig. 3
and 4

• The aforementioned notion of transparency enables us
to access the features of all layers that constitute a
component. For example, the graph reference in Fig. 9
can be dynamically casted to NodeColoredGraph. In
contrast, an equivalent type conversion in Fig. 10 is
rejected by the compiler.

3. CONCLUSIONS AND FUTURE WORK
We presented a Java language extension that builds up on
mixin layers and combines virtual class and delegation con-
cepts. The resulting model is more flexible than previous
approaches and allows better reuse of client code.

However, at the time of writing, this is a work in progress,
and there are several open issues. The combination of dele-
gation and virtual classes with type variables has some typ-
ing implications not explictly addressed so far. The point is
that the same layer instance may be used in different con-
texts, e.g., there may be direct references to an instance of
NodeColoredGraph, and it may be simultaneously used as a
parent of a EdgeColoredGraph. This would mean that the
type variable would have a different value, depending on the
context in which this layer instance is used. Without fur-
ther restrictions, this would be unsound, because instance
variables, that are shared among all contexts, would have a
different type, depending on the context in which they are
accessed.

One solution to cope with this problem would be to forbid
such unsound sharing. However, we think that this problem
is due to the fact that virtual classes intermix two differ-
ent concepts. The first concept is the typing part of virtual
classes: With the typing part of virtual classes, more pro-
grams can be verified to be statically type safe, but this part
of virtual classes is passive: The semantics of the program

is not changed. The second concept is the active part of vir-
tual classes, namely the redirection of constructor calls, as
for example the new B() statement in foo() (Fig. 6). This
part of the virtual class concept changes the control and
data flow of the program and is independent of the typing
part.

We feel that each of these concepts is useful on its own
and thus seek for a model that separates these notions. We
hope that this allows us to cope with the aforementioned
problem because the active part of virtual classes has no
typing implications at all.

Another interesting typing issue is related to Java’s separa-
tion of classes and interfaces. It would be desirable to be
able to specify interfaces for our collaborations, so that client
code can access a particular collaboration via a well-defined
interface. We would need some special tag that could be
used to mark an inner interfaces in Java as a virtual, e.g.,
the keyword virtual. The semantics is that all classes that
implement this interface have to create a virtual class with
the same name. For example, an interface for the graph
collaboration would look like this:

interface GraphInterface {

virtual interface Node { ... }

virtual interface Edge { ... }

}

class Graph implements GraphInterface {...}

class Client {

void buildCompleteGraph(GraphInterface graph,

int size ) {

... new graph.Node() ...

...

}

}

Some additional notational means are needed to cope with
constructors that require arguments. For example, we may
allow to introduce a “constructor interface” into such virtual
interfaces. Conformance of the constructors of implementing
virtual classes can be checked easily at compile time.

4. REFERENCES
[1] M. Büchi and W. Weck. Generic wrappers. In

Proceedings of ECOOP 2000, LNCS 1850, pages
201–225. Springer, 2000.

[2] K. Beck and W. Cunningham. A laboratory for
object-oriented thinking, 1989.

[3] K. B. Bruce, M. Odersky, and P. Wadler. A statically
safe alternative to virtual types. In Proceedings
ECOOP ’98, 1998.

[4] E. Ernst. Family polymorphism. In Proceedings of
ECOOP ’01, 2001.

[5] M. Fayad, D. Schmidt, and R. Johnson. Building
Application Frameworks. Wiley, 1999.



[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[7] W. Harrison, H. Ossher, and P. Tarr. Using delegation
for software and subject composition. Technical
Report RC 20946(92722), IBM Research Division T.J.
Watson Research Center, Aug 1997.

[8] R. Helm, I. M. Holland, and D. Gangopadhyay.
Contracts: Specifying behavioural compositions in
object-oriented systems. In Proceedings
OOPSLA/ECOOP’90, ACM SIGPLAN Notices, pages
169–180, 1990.

[9] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22–35,
1988.

[10] G. Kniesel. Type-safe delegation for run-time
component adaptation. In R. Guerraoui, editor,
Proceedings of ECOOP ’99, LNCS 1628. Springer,
1999.

[11] H. Liebermann. Using prototypical objects to
implement shared behavior in object-oriented systems.
In Proceedings OOPSLA ’86, ACM SIGPLAN
Notices, 1986.

[12] O. L. Madsen and B. Møller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA ’89. ACM
SIGPLAN, 1989.

[13] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard.
Object Oriented Programming in the Beta
Programming Language. Addison-Wesley Publishing
Company, 1993.

[14] M. Mattson, J. Bosch, and M. E. Fayad. Framework
integration problems, causes, solutions.
Communications of the ACM, 42(10), October 1999.

[15] M. Mezini, L. Seiter, and K. Lieberherr. Component
integration with pluggable composite adapters. In
M. Aksit, editor, Software Architectures and
Component Technology: The State of the Art in
Research and Practice. Kluwer, 2001. University of
Twente, The Netherlands.

[16] K. Ostermann and M. Mezini. Object-oriented
composition untangled. In Proceedings OOPSLA ’01,
2001.

[17] D. Riehle and T. Gross. Role model based framework
design and integration. In Proceedings OOPSLA ’98,
1998.

[18] Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin-layers. In Proceedings of ECOOP
’98, pages 550–570, 1998.

[19] K. K. Thorup. Genericity in Java with virtual types.
In Proceedings ECOOP ’97, 1997.

[20] M. Torgersen. Virtual types are statically safe. In 5th
Workshop on Foundations of Object-Oriented
Languages, 1998.

[21] M. VanHilst and D. Notkin. Using role components to
implement collaboration-based design. In Proceedings
OOPSLA 96, 1996.


