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Abstract. In aspect-oriented programming, pointcuts are usually com-
piled by identifying a set of shadows — that is, places in the code whose
execution is potentially relevant for a pointcut — and inserting dynamic
checks at these places for those parts of the pointcut that cannot be
evaluated statically. Today, the algorithms for shadow and check com-
putation are specific for every pointcut designator. This makes it very
tedious to extend the pointcut language.
We propose the use of declarative languages, together with associated
analysis and specialisation tools, to implement powerful and extensible
pointcut languages. More specifically, we propose to synthesize (rather
than program manually) the shadow and dynamic check algorithms.
With this approach, it becomes easier to implement powerful pointcut
languages efficiently and to keep pointcut languages open for extension.

1 Introduction

Aspect-oriented programming (AOP) eases the modularization of crosscutting
concerns in a single module called an aspect. Pointcuts are used to describe at
which point in the execution an aspect affects the execution of the basic program.
The points that can be selected by a pointcut are called joinpoints. Pointcuts can
be thought of as defining a set of joinpoints and a pointcut is said to be triggered
at a joinpoint, if the joinpoint is in that set. Pointcuts are often used to control
the execution of advice. An advice is executed at every point in the execution
which triggers the associated pointcut. Although this is currently the primary
usage of pointcuts, they can be used for a wide range of purposes, such as reverse
engineering [6], detection of application errors [14], or flexible instrumentation
of applications [7].

The first pointcut languages such as those in early versions of AspectJ [10]
were static in that pointcuts could be mapped directly to locations in the source
code of the underlying program. Recently, there is a trend towards more dynamic
pointcut languages which can quantify over dynamic information such as the
callstack [20, 17], dynamic argument values [8], the full execution trace of the
application [1, 16], the structure of the dynamic heap [16], or even the future of
the execution [11]. Such complex dynamic pointcuts cannot easily be mapped to
places in the source code.



The most common approach to implement dynamic pointcuts is to identify
a set of pointcut shadows - places in the code, where the pointcut is potentially
triggered - and to insert dynamic checks at these places. However, the algorithms
for computing the set of shadows and computing the right dynamic checks are
highly non-trivial. Worse yet, these algorithms are specific to the constructs of a
particular pointcut language. Hence, if the pointcut language is to be extended,
the algorithm has to be revisited and extended as well. This is not only very elab-
orate. It is also a major obstacle to keeping the pointcut language extensible.
Extensible pointcut languages have been recognized as a way to make pointcuts
more robust, precise, and high-level, to enable domain-specific libraries of point-
cuts, and to put the pointcut language design into the hand of the programmers
[8, 4, 16, 5].

The contributions of this paper are as follows: We propose a generic approach
to finding shadows and generating dynamic checks, where the algorithms for find-
ing shadows and computing dynamic checks are synthesized from the pointcut
specification rather than programmed manually. To this end, we propose the use
of declarative languages, together with associated analysis and specialisation
tools—in particular partial evaluation—to implement powerful and extensible
pointcut languages. This is the first work to embed the shadow search and dy-
namic check generation problem into the framework of partial evaluation. Our
measurements show that our approach scales to reasonably large programs and
we describe different options to weave the remaining dynamic checks into the
program.

The remainder of this paper is structured as follows: Sec. 2 gives an overview
of our approach by means of small examples and describes the encoding of source
code in Prolog and the design of the pointcut language. The use of partial eval-
uation and the approximation of runtime entities in our framework is explained
in Sec. 3. Different possibilities to weave residual pointcuts into a program are
described in Sec. 4. Sec. 5 discusses related work and Sec. 6 concludes.

2 Overview

In this section we give a quick overview of our approach without going into
the details of the partial evaluation process itself. We limit our elaborations to
pointcut queries over Java programs in this work, but other languages can be
handled in a similar manner, with appropriate changes to the encoding of the
program and the type system related predicates.

2.1 Prolog Representation of the Bytecode

Pointcut queries in our language are Prolog predicates. To enable these Prolog
predicates to reason about the program’s static structure and execution, these
must be represented in the Prolog database.

We have built a converter which transforms Java bytecode into a Prolog
representation of the bytecode. Fig. 2 illustrates how the converted example
from Fig. 1 looks like.



1 package shapes;
2

3 interface Shape {
4 public void moveBy(int dx, int dy);
5 }
6 class Point implements Shape {
7 private int x, y;
8 public int getX() { return x; }
9 public int getY() { return y; }

10 public void setX(int x) { this.x = x; }
11 public void setY(int y) { this.y = y; }
12 public void moveBy(int dx, int dy) {
13 x += dx; y += dy;
14 }
15 }
16 class Line implements Shape {
17 private Point p1, p2;
18 public Point getP1() { return p1; }
19 public Point getP2() { return p2; }
20 public void moveBy(int dx, int dy) {
21 p1.setX(p1.getX()+dx);
22 p1.setY(p1.getY()+dy);
23 p2.setX(p2.getX()+dx);
24 p2.setY(p2.getY()+dy);
25 }
26 }
27 class GraphicApp {
28 public void test(Shape s, Line l,
29 int dx, int dy){
30 s.moveBy(dx,dy)
31 l.moveBy(dx,dy);
32 l.getP1().setX(42);
33 }
34 }

Fig. 1. The shape example

1 class(’shapes’,ref(’shapes.Line’),
2 default,false,false,false,
3 ref(’java.lang.Object’)).
4 interfaces(ref(’shapes.Line’),
5 ref(’shapes.Shape’)).
6 field(ref(’shapes.Line’),’p1’,
7 private,false,false,
8 false,false, false,
9 ref(’shapes.Point’)).

10 field(ref(’shapes.Line’),’p2’,
11 private,false,false,false,false,
12 false,ref(’shapes.Point’)).
13 method(6,ref(’shapes.Line’),
14 ’moveBy’,public,false,
15 false,false,false,false,false,
16 [prim(int),prim(int)],void).
17 ...
18 def(6,2,21,ref(’shapes.Point’),p4,
19 get(ref(’shapes.Point’),’p1’,
20 ref(’shapes.Line’),thisValue)).
21 def(6,3,21,ref(’shapes.Point’),p6,
22 get(ref(’shapes.Point’),’p1’,
23 ref(’shapes.Line’),thisValue)).
24 def(6,4,21,prim(int),p7,
25 invokeFunc(’getX’,ref(’shapes.Point’),
26 p6,[],[],prim(int))).
27 def(6,5,21,prim(int),p9,
28 add(p7,param(1))).
29 invokeProc(6,6,21,’setX’,
30 ref(’shapes.Point’),p4,
31 [prim(int)],[p9]).
32 ...
33 return(6,22,25).

Fig. 2. Prolog encoding

The Prolog representation contains the declarations and definitions of all
classes in one database file. There a two kinds of facts in this database: infor-
mation about classes, interfaces, methods and fields and their relationships and
facts describing the bytecode instructions which form the body of the methods.

For each class there is a fact called class, which includes (in the order of
appearance) the package and class name, the modifiers (public, abstract, etc.),
the super class and the implemented interfaces. The class name is wrapped in a
ref term to indicate that it denotes a reference type (in contrast to a primitive
type) and can be used to access the methods defined in that class.

Methods are represented by method facts. Each method is identified by a
unique number (as its first argument) and the name of its enclosing class. The
remaining arguments are the method name, flags for the method modifiers, the
return type and the list of argument types, in that order.

The remaining facts in the representation encode the different types of byte-
code instructions: get and put for field access instructions, returns, and invoke
for method returns and calls, respectively. Assignments to local variables (which
are used to represent intermediate results) are encoded as def facts. A local
variable declaration includes an initializing instruction, which may be either



method calls which return a value (invokeFunc), reading field access (get) or
object creation via new. Each bytecode instruction starts with a number iden-
tifying the method which contains the instruction and a number denoting the
position of this instruction in the method body. The third argument identifies
the line number in the source code3.

2.2 Programming Model

Pointcut queries in our language can refer to the static structure of the program
and a well-defined subset of the dynamic runtime properties. Based on this
information, arbitrary calculations can be used to decide whether or not the
pointcut matches the current state of execution (and thus decide whether an
aspect is applicable or not).

The runtime information that can be used in pointcut queries is not limited to
the current joinpoint (or event), but comprises the whole callstack. The callstack
is represented as a list containing all calls to methods that are currently in
execution, i.e. have not yet finished.

In order to describe the matched joinpoints, pointcuts need to refer to the
context in which they are evaluated. This context comprises — in our model —
the current callstack, the current lexical position and the program. This context
information can be kept implicitly available, as it is the case in AspectJ’s pointcut
language, or given as parameters to the pointcut query. In our case, we decided
to make the callstack and the lexical position explicit parameters of the pointcut
queries, whereas the program is implicitly available as a global set of facts in the
Prolog database.

We use the variable names Stack for callstacks and Loc for lexical posi-
tions. A location is a pair loc(MethodNumber,InstrNumber) which represents
the method- and instruction number as given in the bytecode. A callstack is rep-
resented by a list of stack frames, where each but the top frame must be a method
call, represented by terms using the functor calls. The current instruction is at
the top of the stack.

The following listing gives an example callstack as it may look like when mod-
ifying the field x in the method Point.setX, which was called by Line.moveBy:
[set(loc(10,2), value(ref(’shapes.Point’),ι2), x, 42),
calls(loc(6,6), value(ref(’shapes.Point’),ι2), setX, [value(prim(int),42)]),
calls(loc(2,2), value(ref(’shapes.Line’),ι1), moveBy, [value(prim(int),1),
value(prim(int),1)]) ]

The location loc(6,6) in the call to Point.setX corresponds to source code
line 21 (Figure 1) and to the bytecode instruction at line 29 in Figure 2.

The first parameter in each stack frame denotes the location of the cor-
responding instruction in the program - it is hence a pointer into the Prolog
representation of the bytecode. Values are encoded as pairs which consists of a
type and an address or primitive value like boolean or integer. The ιn expres-
sions are object references in the runtime environment. The representation of

3 Please note that there can be multiple bytecode instructions for a line of sourcecode.



values is hidden from the pointcut programmer, however; the static type, dy-
namic type and the value (address for reference values like objects, otherwise the
int, bool etc.) must instead be retrieved with the getter predicates stype(V,T),
dtype(V,T) and value(V,A), respectively. The reason is that the static repre-
sentation of values during specialisation is different from the representation of
runtime values, and hiding the representation by means of getters is an easy way
to hide details of the specialisation process from the pointcut programmer (as
well as leading to cleaner code).

Depending on the weaving strategy, such callstacks may never be explicitly
reified as physical data, but should mainly be seen as the data model upon which
pointcuts are expressed.

2.3 The Pointcut Library

So far, we have seen how pointcuts can be formulated using the representation
of the bytecode and of the callstack directly. The real power of the approach lies
in the fact that we can easily extend the pointcut language by means of Prolog
predicates on top of the raw representation of the callstack and the byte code.

calls( Stack, Location, Receiver, MethodName, Arguments ) :-
Stack = [calls( Location, Receiver, MethodName, Arguments ) | _ ].

% cflow/2: succeeds if the callstack contains a given event
cflow(Stack, Ev) :- member(Ev,Stack), !.
% cflowbelow/2: Like cflow/2, but excludes the current jointpoint(event)
cflowbelow([_|Cs], Ev) :- cflow(Cs, Ev).
% directSubtype/2: A is a direct subtype of B
directSubtype( A, B ) :- class(_, A, _, _, _, _, B) ; interfaces(A,B).
% subtype/2: transitive closure of directSubtype/2
subtype(A,B):-directSubtype(A,B) ; (directSubtype(A,C),subtype(C,B)).
% subtypeeq/2: reflexive closure of subtype/2
subtypeeq(A,B) :- A=B ; subtype(A,B).
% instanceof relations use subtype relation
instance_of(Val, Type) :- dtype(Val,T), subtypeeq(T,Type).
withinMethod( Location, MethID ) :- Location = loc(MethID,_),
method(MethID,_,_,_,_,_,_,_,_,_,_,_),
methodInvokation(Location,_,_,_,_,_,_).

Fig. 3. Excerpt from the pointcut library

The predicates which form the pointcut language are defined as Prolog pred-
icates themselves, which use the Prolog encoding of the program. The imple-
mentation of these predicates defines the connection between the semantics of
the pointcut language and that of the bytecode language. An excerpt is given
in Fig. 3. For instance, in the definition of instance_of the subtype relation is
used, which is directly extracted from the inheritance relation exposed by the
bytecode representation. Similar to the corresponding AspectJ pointcut desig-
nators, the cflow predicate checks whether a particular entry can be found in
the callstack; cflowbelow checks all but the first stack frame.



The pointcut library is the extension point of the pointcut language: new
pointcut predicates can be introduced by defining them in the pointcut library in
terms of existing predicates and the bytecode representation. Furthermore it can
be of interest to add new descriptions of the program – for example, the complete
trace of the application or profiling information – and to use these descriptions
in the definition of new pointcut predicates, thus providing the programmer with
access to the new model. If the added descriptions are static (e.g., representations
of configuration files), the specialiser will automatically compile all references to
the static data away. If the added descriptions are dynamic, a corresponding
static approximation of the dynamic data has to be provided. We will discuss
this point later.

2.4 Example Pointcuts

Fig. 4 shows an aspect in the language AspectJ for keeping a display showing
graphical shapes up to date. The base program defining the shapes hierarchy
is given in Fig. 1. The pointcut change in line 1 describes the points in the
execution, where the display should be updated and the advice in line 8 specifies
that a call to display.update should be executed after such a modification
(specified by change).

1 pointcut change():
2 (call(void Point.setX(int))
3 || call(void Point.setY(int))
4 || call(void Shape+.moveBy(int, int)) )
5 && !cflowbelow(
6 call(void Shape+.moveBy(int, int)));
7

8 after() returning: change() {
9 display.update();

10 }

Fig. 4. Display updating in AspectJ

1 (calls(Stack,Loc,Target,setX,_),
2 stype(Target,’shapes.Point’) );
3 (calls(Stack,Loc,Target,setY,_),
4 stype(Target,’shapes.Point’) );
5 (calls(Stack,Loc,Target,moveBy,_),
6 instance_of(Target,’shapes.Shape’) ),
7 \+ cflowbelow(Stack,calls(_,_,moveBy,_))

Fig. 5. Pointcut in Prolog

The first two conditions (Lines 2 and 3) of the pointcut select calls to a
method called setX resp. setY of an object of static type Point with exactly
one parameter of type int. The condition in line 4 selects calls to the moveBy
method with two integer arguments defined in the type Shape or any of its
subtypes. This is expressed by the + sign appended to Shape. These conditions
are combined by || meaning or, which selects any point that satisfies one of
these conditions.

The last condition excludes (this is expressed by the negation operator !
in front of the pointcut) any joinpoint which is in the control flow of a call to
Shape+.moveBy(int,int) but not such a call itself. The control flow of a call
(expressed by cflow) comprises all joinpoints which appear while executing this
call, including the call joinpoint itself. The pointcut cflowbelow excludes this



call joinpoint from the set, selecting only joinpoints below the call joinpoint
in the control flow. This pointcut is combined with the other three by the &&
operator meaning and (or intersection). Fig. 5 shows how the same pointcut can
be expressed in our pointcut language.

In order to illustrate the effect of specialisation, we will now consider a few
pointcuts and the result of their specialisation, without talking yet about how
the specialisation actually works.

– calls(Stack,Loc,_,setX,_),withinMethod(Loc, MethID),method(MethID,_,_,public,_,_,_,_,_,_)

Shadows: (21,true), (23, true)
– calls(Stack,Loc,R,moveBy,_), instance_of(R, ’shapes.Line’)

Shadows: (30, dtype(R,T), subtypeeq(T,’shapes.Line’)), (31 true)
– calls(Stack,Loc,_, setX, _), cflow(Stack, calls(_,_,moveBy,_))

Shadows: (21, true), (23, true), (32, cflow(Stack,calls(_,_,moveBy,_)))

Fig. 6. Example pointcuts and their shadows and dynamic checks

Fig. 6 shows a few sample pointcuts and the result of specialising them with
the example program from Fig. 1. Shadows are given as pairs (line number from
Fig. 14, residual check).

The first pointcut selects all calls of a setX method within a public method.
The relation between the method and the call is expressed in terms of the location
(Loc) of the instruction and the identifier of the method (MethID). The predicate
withinMethod binds Loc to all locations in the code which are lexically contained
in the method identified by MethID.

The second pointcut (all calls of moveBy where the receiver object is an
instance of class Line at runtime) illustrates how static type information is
incorporated into the specialisation. At the first shadow, the static type of the
receiver is Shape, hence a dynamic check is required whether the receiver is
actually a Line. At the second shadow, however, the statically known receiver
type is already Line, hence no dynamic check is necessary.

The third pointcut (all calls of a setX method in the control flow of a moveBy
method) illustrates the effectiveness of the static approximation of the callstack
during specialisation. Whereas the first shadow requires a dynamic check, the
second (and third) shadow has no dynamic check because it is known statically
that the setX calls in lines 21 and 23 are in the control flow of a moveBy call.
We will see that the design of the static approximation of the callstack is an
important parameter for the specialisation in computing residual pointcuts.

4 In the actual implementation, the method/instruction indexes from the bytecode are
used for this purpose.



3 The Specialisation Framework

Our specialisation framework performs the task of computing shadows and the
respective residual programs for pointcut queries. This is achieved by partially
evaluating the pointcut query w.r.t. the static part of the input. This static part
is given by the representation of the program, which determines the possible
static contexts in which the pointcut may be evaluated. Specialisation is then
performed by a partial evaluator for Prolog. The behavior of this tool is con-
trolled by a description of the pointcut primitives and predicates in the pointcut
library which marks certain parts of the pointcut program as callable, i.e. they
can be (safely) evaluated at specialisation time.

In this section we present the partial evaluation of pointcut queries with
respect to the program source.

3.1 The Specialiser

Program specialisation is a technique to specialise a given general purpose
program for certain specific application area. Partial evaluation [9] is a well-
established technique that obtains a specialised program by pre-computing parts
of the original source program that only depend on some given part of the in-
put (called the static data) and leaving a residual program that only contains
the dynamic checks. The partial evaluation (or specialiser) tool used through-
out this work is based on the core of the offline specialiser presented in [12]
and is thus similar to the core of logen [13]5. To control the behavior of the
specialiser, an annotated form of the program has to be provided. We use the
following three annotations of those described in [12]: call evaluates the goal
using the prolog interpreter, rescall leaves the goal in the residual program
and unfold replaces the goal by the residual program obtained from specialising
the (annotated) body of the predicate.

There are basically two alternatives to obtain the annotations for a clause:
online specialisers generate the annotations on the fly while offline specialisers
use annotations provided by the user or a generator.

Although being based on an offline specialiser, our system does not require the
programmer to annotate most of her pointcuts manually, but we rather use a set
of rules for the standard predicates of the pointcut library. These rules are used
to perform the annotation automatically before specialisation. For predicates
that do not have a corresponding rule in the database the rescall annotation is
used by default. Only in the case where these annotations are not optimal from
the programmer’s view, should he annotate the program himself, for example,
when introducing user-defined predicates.

3.2 Approximation of Runtime Entities

In the scenario of pointcut specialisation, only the static part of the program
is available, i.e., the class, interface and field declarations and a set of bytecode
5 Albeit being an offline partial evaluator rather than a compiler generator.



instructions. However, our pointcut language allows to quantify over runtime
conditions. The easiest way to handle runtime values like the actual types of val-
ues is to generate all possible instantiations and explore them by backtracking.
Because this approach does not scale well for large programs, we use approxi-
mations of dynamic entities instead. We will now describe the approximation of
the actual type of a value and the elements of the callstack and how they are
used in the specialisation process.

The values of variables are not accessible at specialisation time. Nevertheless
specialisation should be able to benefit from the static information about the
variables that can be retrieved from the programs bytecode. We use an approach
based on the idea to associate with each variable the set of all classes whose
instances the variable can possibly hold. In the context of Java single inheritance,
we can describe the set of all possible types of a variable by the most general
(class) type of this set. To make this abstraction compatible with unification, we
encode this most general type of the variable as an open list containing all its
super classes6. In this form, two encodings can be unified if one is the prefix of
the other list, which means that it encodes a super type of the other list.

For example, the list presentation of the class shapes.Line
from our example is [’ java . lang .Object’,’shapes.Line’|_]. A class
shapes.Arrow which is a subtype of shapes.Line would be encoded as
[’ java . lang .Object’,’shapes.Line’,’shapes.Arrow’|_] and the unification of
both would yield the latter list as required.

To associate the abstract type with the variable for the dy-
namic type and argument, type variables are bound to a term
value(AbsType,DynType,DynValue), where AbsType is the encoding of
the possible types of this variable and DynType and DynValue denote the
dynamic type and value and are variables in the specialisation phase. The
predicate abstractValue(V,Class) is used to bind a variable V to an abstract
value of type Class.

For the approximation of the callstack, we use the notion of static events
for approximations of the real runtime events which have the same structure as
dynamic events, but contain variables or approximations for the runtime infor-
mation. Using the static event, we approximate the callstack at a given location
by a list containing the static event as first element. Furthermore, the second
element of the callstack must be a call to the method containing that location.
For the example callstack in the last section we can thus give the following
approximation:
[set(loc(10,5),value([’java.lang.Object’,’shapes.Point’|_],_,_),x,value([prim(int)],_,_)),
calls(_,value([’java.lang.Object’,’shapes.Point’|_],_,_),setX,[value([prim(int)],_,_)]),
_ ]

Better approximations that contain more elements or more precise type infor-
mation can be generated by using the call and control flow graph of the program.
As the construction of the application’s callgraph can be very costly, it is desir-

6 The approximation of interfaces is simply a variable as they lack a common base
interface.



able to be able to control the amount of approximation. In our framework this
can easily be accomplished by modifying the predicate which produces the stack
approximation.

3.3 Description of Pointcut Predicates

To take advantage from the approximation of runtime values and the callstack,
we provide descriptions of the pointcut predicates defined in the pointcut library:
a description of a pointcut library predicate does not only provide the necessary
annotations for the partial evaluator, but also includes additional calls to handle
the approximations of dynamic entities.

The following code listing shows the description of the instance_of and the
cflow predicate:
instance_of(Var,Cls) :- abstractValue(Var, Cls)︸ ︷︷ ︸

call

,dtype(Var, DT)︸ ︷︷ ︸
call

,subtypeeq(DT, Cls)︸ ︷︷ ︸
rescall

.

cflow(S,Ev) :- S = [Ev|Cs]︸ ︷︷ ︸
call

, (\+ var(Ev)︸ ︷︷ ︸
call

, Ev = calls(L, R, M, A)︸ ︷︷ ︸
call

,calls(S, L, R, M, A), !︸ ︷︷ ︸
call

;cflow(Cs, Ev)︸ ︷︷ ︸
rescall

).

The first subgoal of instance_of is evaluated at specialisation time and
checks if the variable can be unified with the abstract type of Cls; otherwise the
instance check can be refuted at specialisation time. The second subgoal binds
DT to the variable for the dynamic type of Var to be used in the subtype check
which is left as residual program by the third subgoal.

The first clause of the cflow description checks (at specialisation), if the
event Ev is at the top of the stack. In this case, no residual program is necessary.
Otherwise, for example, if the head of the list is a variable, a call to the cflow
predicate is left as residual program by the second clause.

3.4 Example Specialisations

After introducing the specialisation and approximation techniques, we demon-
strate the specialisation process using example pointcuts. We use the program
given in Fig. 1 in Sec. 2.

We will discuss three pointcuts (pc1-pc3), accessible via pointcut/2 and
the result of their specialisation. These examples show a statically determinable
shadow, a pointcut leaving a residual type check and an example for the results
of specialising the cflow predicate.

The first pointcut we want to discuss is pc1 = calls(S,L,Rec,moveBy,_),
selecting all method call joinpoints to a method called moveBy. The following
two interpreter invocations show the access to the pointcut predicates and the
result of specialisation:
3 ?- specialisePointcut(pc1,Result).
Result = pointcut([ [calls(loc(2, 2), _G394, moveBy, [prim(int), prim(int)]),

calls(loc(_G608, _G609), _G604, test, _G606)|_G529], loc(2, 2) ], true ) ;

Result = pointcut([ [calls(loc(2, 3),
value([ref(’java.lang.Object’), ref(’shapes.Line’)|_G644], _G620, _G621),
moveBy, [prim(int), prim(int)]), calls(loc(_G608, _G609), _G604, test, _G606)|_G529],

loc(2, 3) ], true )



The lengthy output is a result of the partial instantiation of the callstack
parameter and the binding of values to type abstractions. The shadows loca-
tion and the residual pointcut are marked with a frame in both results. Both
residual pointcuts are true, meaning that there is no dynamic check required at
the shadow. The locations (2,2) and (2,3) refer to lines 29 and 30 in Fig. 1,
respectively.

In the next example we show the effect of constraining the set of possible
types of a variable. In the pointcut pc2, only calls to a moveBy method are
selected that go to an instance of ’shapes.Point’ at runtime. Calculating the
shadows gives

5 ?- pointcut(pc2,P).
P = pointcut([_G338, _G341], (calls(_G338, _G341, _G349, moveBy, _G351),

instance_of(_G349, ’shapes.Point’)))
6 ?- shadows(pc2,S).
S = [ (loc(2, 2), subtypeeq(_G383, ref(’shapes.Point’)))]

The call at location (2,2) requires a runtime check (via subtypeeq) to de-
termine, if the receiver is an instance of shapes.Point.

The location (2,3) is not a shadow of this modified pointcut, as the static
type of the receiver is shapes.Line and its abstract type thus cannot be unified
with the abstract type of shapes.Point used in the pointcut.

In our last example, calls to setX in the control flow of a call to the method
test are selected.

7 ?- pointcut(pc3,P).
P = pointcut([_G335, _G338], (calls(_G335, _G338, _G346, setX, _G348),

cflow(_G335, calls(_G353, _G354, test, _G356)))) ;
8 ?- shadows(pc3,S).
S = [ (loc(2, 5), true),
(loc(6, 6), cflow([calls(loc(_G427, _G428), _G423, moveBy, _G425)|_G420],

calls(_G430, _G431, test, _G433))),
(loc(6, 16), cflow([calls(loc(_G396, _G397), _G392, moveBy, _G394)|_G389],

calls(_G399, _G400, test, _G402))) ]

The location (2,5) corresponds to line 31 of Fig. 1, (6,6) and (6,16) to
line 21 and 22, respectively.

The specialisation of the three example pointcuts is quite fast (about 0.1 ms),
which is no surprise given the size of the program. To demonstrate the feasibility
of our approach for larger programs, we tested specialisation of pointcuts on a
bytecode toolkit project called BAT with about 800 types (classes+interfaces)
and a bytecode size of about 2,25 MB. We used some quite general point-
cuts which return a large number of shadows to test the performance of
our specialisation tool: callStringMethod matches each call to a method of
the class java.lang.String, ctor matches all invocations of a constructor,
ctorRec matches all invocations of a constructor inside another constructor,
and ctorNotRec matches all invocations of a constructor not inside another
constructor. Fig. 7 shows the results of specialising these pointcuts7.

7 Tests performed with SWI-Prolog on a 2.8GHz Windows XP machine.



Pointcut Shadows Time

callStringMethod 6,655 0.30 sec
ctor 3,187 0.32 sec
ctorRec 1,313 0.55 sec
ctorNotRec 1,874 0.50 sec

Fig. 7. Specialisation runtime

3.5 Language Extension

An important feature of our framework is the extensibility of the pointcut lan-
guage. This is a necessary property to write aspects on an abstract level, as
stated in [16]. Extensions to the language can be written by the programmer
to adapt the language to a single program or implemented as domain-specific
pointcut library to be used within a whole class of applications.

Extending the pointcut language requires the follow steps: 1) its implemen-
tation must be added to the pointcut library to make it available to predicates
that call it at runtime, 2) the annotation of its body has to be provided as a rule
for unfolding and 3) an unfold-annotation for the predicate has to be added to
the annotation database, which is used by the rule generator.

As an example, we extend our pointcut language with a predicate to detect
loops in the callstack. A loop is the re-occurence of a method call to the same
method on the same object and with the same argument values. Below is the
annotated implementation of this predicate.
loop_detect(S,L) :- calls(S, L, Rec, Method, Args)︸ ︷︷ ︸

call

, cflowbelow(S, calls( , Rec, Method, Args))︸ ︷︷ ︸
unfold

.

To integrate this predicate, the predicate definition without the annotations
has to be added to the pointcut library and the annotated form has to be stored
into the annotation database (we omit the technical details for brevity).

4 Weaving Residual Programs

Hitherto we have only tackled the problems of finding shadows and computing
efficient residual pointcut programs. However, this is only one part of the weaving
process. What remains is to insert the residual pointcut checks into the bytecode.
We identified the following possibilities to process the residual Prolog programs:

Under the assumption that a Prolog interpreter is part of the runtime envi-
ronment, Java code can be inserted which calls this interpreter for the residual
pointcut query, checks the solutions and possibly calls the advice. Although this
approach is quite simple, the overhead of keeping a Prolog interpreter and the
libraries available for the virtual machine may not be tolerable in practice. Still,
there are many tools for embedding Prolog within Java (e.g., [3], [22]), so this is
a definitely a feasible solution. In order to produce efficient Java code, there are
in principle several possible avenues. A first approach is to produce code in a
special subset of Prolog that can be efficiently translated to Java. For example,



one could try and ensure that all the residual code is in a form similar to Mercury
[18] which can be compiled into efficient imperative code. Another solution is to
ensure that the specialized code is close to abstract machine code or assembly
code. This can be achieved by threading the environment of the interpreter via
definite clause grammars; see [21] for more details and a worked out case study.

Certain parts of the residual program, for example predicates that refer to
entities which are present in the Java virtual machine, like the callstack, or
argument values, could be treated in a special way. It is a promising idea to
include a way to make this information directly accessible from the Java virtual
machine. Calls to those predicates could then be translated directly into special
bytecode instructions for an augmented virtual machine. The analysis of such
techniques and their efficient implementation is part of ongoing research.

5 Related Work

Masuhara et al. have proposed a model where an aspect-oriented compiler is
generated from a Scheme interpreter of the AO language using partial evalua-
tion of Scheme programs [15]. Hence this work assumes that an interpreter for
the whole base language is available. Also, the execution speed of a partially
evaluated interpreter cannot keep up with today’s optimizing compilers and vir-
tual machines. Our work takes a different approach which does not require an
interpreter for the language and with which programs can still be executed on
optimizing virtual machines.

Ostermann, Mezini and Bockisch [16] present Alpha, a prototype language
with a very expressive logic-based pointcut language. Alpha’s pointcut language
served as the base of our pointcut language. An implementation approach based
on abstract interpretation of pointcut queries is presented, which aims primarily
at the reduction of space usage. Our work goes beyond [16] in that we give a re-
alistic approach to implement (a subset) of such an expressive pointcut language
in the context of Java, a non-toy programming language.

Walker and Viggers [19] discuss temporal pointcuts, called tracecuts, to en-
rich the AspectJ [2] pointcut language with the ability to reason about former
calls and their temporal relations. Moreover, data that has been passed as an
argument can be accessed by the advice as it could be done via variable binding
in our language. Although more information about the computation history is
available, the expressiveness of the pointcut language is very limited in compar-
ison to our approach.

In [1], Allan et al. discuss the extension of the AspectJ language to be able to
express sequences of ”classic” AspectJ pointcuts. The extended language allows
a sequencing pattern of ordinary AspectJ pointcuts to be considered as a point-
cut and to bind values to variables which are unified on later occurrence. The
implementation of shadow computation and optimization remains hand-coded,
which is the main difference to the approach we presented.

Goldsmith et al. [7] present PARTIQLE, a framework to automatize the
instrumentation of source code to find static and dynamic pattern in programs.



The language PQTL they introduce is basically a subset of SQL which operates
on a database representing the program trace. In the database, each type of event
is represented as a table, include timing information for each event. The relations
between events are expressed using JOIN s and SQL logical connectives. The
difference between PARTIQLE and our approach lies in the expressiveness and
extensibility of the pointcut language: PQTL can recognize patterns formulated
in a very limited and fixed language, whereas in our language arbitrary predicates
over the callstack can be expressed and user-defined pointcuts can be added to
the pointcut language.

Another work targeting at detection of statically or dynamically wrong be-
havior, is discussed in [14] by Martin et al. The PQL language has a Java-like
syntax which allows to define named queries and to use them to build more
complex and even recursive queries. PQL queries are composed of the primi-
tives method call, field access, object creation and the end of the program as
well as negation, matching another query and partial-order matching of events.
Although the language can match context-sensitive patterns over the execution
trace, the pattern language is fixed and is - in comparison to our language -
limited in its expressiveness.

6 Conclusions

We have presented a generic and extensible framework for finding pointcut shad-
ows in Java programs using logic programming together with associated analysis
and specialisation tools.

The framework is extensible at different points: the joinpoint model can be
extended by adding new events or modifying existing ones, new program models
and pointcut predicates can be added to provide the programmer with a more
domain specific language and the level of abstraction used in the approximation
of the runtime behavior can be varied to switch between fast compile-test cy-
cles and more accurate — but slower — compilation. Furthermore, as we have
demonstrated, the performance of our framework scales reasonable with program
size.
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