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Abstract

Self-representation – the ability to represent programs in their
own language – has important applications in reflective languages
and many other domains of programming language design. Al-
though approaches to designing typed program representations for
sublanguages of some base language have become quite popu-
lar recently, the question whether a fully metacircular typed self-
representation is possible is still open. This paper makes a big step
towards this aim by defining the F∗

ω calculus, an extension of the
higher-order polymorphic lambda calculus Fω that allows typed
self-representations. While the usability of these representations
for metaprogramming is still limited, we believe that our approach
makes a significant step towards a new generation of reflective
languages that are both safe and efficient.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords Lambda Calculus, Language Design, Reflection, Self
Interpretation, Types

1. Introduction

It is a basic result of computability theory that every Turing-
complete programming language allows representing programs
in that language as data, and writing a metacircular interpreter in
terms of this self-representation. There is a long history in program-
ming languages on designing self-representations and metacircular
interpreters which dates back at least to the early days of LISP [18].

Self-representation plays a crucial role in the design of reflective
languages. For example, the classical reflective tower [26] consists
of a stack of interpreters such that each interpreter is program data
on the next level. In such reflective languages, self-representation is
usually formalized in the form of a quote function, which converts
terms to representations of terms, and an unquote or eval function
which converts term representations back to terms.

There are many good reasons to consider the possibility of stat-
ically typed self-representation. The expressive power of dynami-
cally typed reflective languages is well-known, but the lack of static
typing makes this power hard to control. Furthermore, statically
typed program representations allow tagless interpreters, which are
an order of magnitude faster than ordinary interpreters which use
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tagged unions to represent values. Another motivation for this work
stems from Steele’s idea of growable languages [27], which – ac-
cording to Steele – necessitates that features provided by a library
look like built-in language features. The ability to represent a whole
statically typed language within the language itself can be consid-
ered as a realization of Steele’s idea in that the language itself can
be made to look as if it were provided by a library.

Despite these exciting possibilities, the question of whether it is
possible to design languages that allow typed self-representations
is a long-standing open question. Reynolds has hinted at the ques-
tion of typed self-representation in his classic paper on definitional
interpreters [24]. There have been attempts, notably those by Pfen-
ning and Lee [21] and more recently by Carette et al. [7], but none
of these attempts have resulted in a fully metacircular typed self-
representation (more about that later).

In this paper, we present our attempt to make typed self-
representation possible and useful. More specifically, the contri-
butions of this work are as follows:

• We give a definition what typed self-representation is, by spec-
ifying a set of properties it should minimally fulfill.

• We identify problems of current approaches of typed self-
representation.

• We present a language, which allows typed self-representation.
We show how a metacircular interpreter can be written in the
language, and we discuss the scope of alternative interpreta-
tions that can be defined on this self-representation. The lan-
guage, which we call F∗

ω , is an extension of the higher-order
polymorphic lambda calculus Fω . The name is because the cru-
cial addition to Fω , which enables typed self-representation, is
a variant of the type:type rule from the λ∗ calculus [8].

• We have formalized F∗

ω in the Coq theorem prover [5] and
present a machine-checked proof that the proposed typed self-
representation is indeed metacircular. Furthermore, we have
implemented both a type checker and interpreter for F∗

ω .

• We present an embedding of F∗

ω into the pure type systems
framework [4, 29, 3]. By this embedding we can “reuse” the
meta-theory of pure type systems and give an accurate compar-
ison with other PTS instances.

• We conclude with a detailed discussion of the remaining open
issues in our representation, and future work, in particular the
issue of quoting terms with free variables and the use of type-
indexed datatypes to get more flexible self-representations.

The remainder of this paper is structured as follows. The next
section discusses the notion of typed self-representation. F∗

ω and
its self-embedding are introduced in Sec. 3. Section 4 presents our
technical results and open issues. Section 5 discusses the issue of
integrating typed self-representation into programming languages.
Section 6 discusses the design decisions, related approaches, open
issues and future work, and the final Section concludes.



2. Typed Self-Representation

Self-representation refers to the possibility of representing terms
of a programming language in the language itself. In the untyped
setting, this is typically implemented by a quote mechanism which
transforms a term into its representation, and a corresponding un-
quote or eval function that transforms a representation back to the
represented term. Correspondingly, a typed self-representation is
a self-representation of terms within a typed language, mapping
typed terms to typed representations of terms.

Like with untyped self-representation, a code transformation
quote is used to transform terms to representations of terms, which
can be processed by programs written in the language itself. In
the context of static typing, however, we want to describe both
the quote transformation and the individual operations on quoted
terms on the type level to guarantee the well-formedness of these
operations. These additional guarantees are an important reason to
search for a typed self-representation in the first place. It should
be noted, however, that this does not necessitate a corresponding
quote transformation on types, transforming them to terms or types
of the language. Instead, the type of the representation of a term
may simply reflect its character as being such a representation.

In a setting where quoted terms are represented by encoding
their abstract syntax trees as a data structure, the notion of typed
self-representation may seem to be intuitive. However, the notion
becomes less clear if one considers sophisticated encoding tech-
niques such as higher-order abstract syntax [20] or “final” rep-
resentations of programs [7]. Therefore, we first have to clarify
the notion of typed self-representation. We consider typed self-
representation to be constituted by the following five properties.
After the presentation of our solution, we will revisit these prop-
erties and discuss to what degree our solution has the properties
proposed here.

1. Representation. There is a family of types ExprT such that
quote(t) has type ExprT if and only if t has type T.

2. Adequacy. Every term t of type ExprT corresponds to a term t′

of type T, which means that for every t as above there exists a
t′ such that t = quote(t′).

3. First Class Interpretations. It is possible to express operations
on quoted terms so that they are well-typed for all terms of type
ExprT, without the need to refer to any specific such terms.

4. Self Interpretation. There is a family of contexts evalT〈〉 such
that evalT〈quote(t)〉 is observational equivalent to t if t has
type T.

5. Reflection. quote(t) exhibits the intensional structure of t in a
useful way.

The properties are formulated in terms of families of types and
contexts to make them applicable to different languages and type
systems, even if they do not provide functional abstraction. For
a functional language, one can read “family of types” as “type
constructor”, and “context” as “function”.

The first property ensures the full circularity of the represen-
tation: The quote transformation can transform every well-typed
term into a well-typed term. Furthermore, quote(t) can be seen as
containing a proof of the well-typedness of t. But to be more pre-
cise, we also have to say something about the typing context. While
one may like to allow free variables in t, and consequently allow ar-
bitrary typing contexts in Prop. 1, this leads to some complications
as we will see below. Hence for now we only demand that quot-
ing works correctly for closed terms, i.e., ∅ ` t : T if and only if
∅ ` quote(t) : ExprT.

Property 1 ensures that the type family ExprT is expressive
enough to encompass all representations of well-typed terms. On

the other hand, Prop. 2 states that ExprT is precise enough to rule
out exotic terms of type ExprT which do not correspond to any term
of type T. Together, these properties specify that the extension of
ExprT is precisely the set of quoted terms. Obviously, this property
cannot hold for languages which allow diverging terms of type
ExprT. However, a weaker variant is applicable, which requires
adequacy only for normalizing terms of type Exprt.

While Prop. 1 already implies that quoted terms are first-class
values at least in the sense that they can be separately typed, Prop. 3
requires the same for operations on quoted terms.

Property 4 guarantees that quoted terms contain enough infor-
mation to write a standard evaluator. Although there may be useful
weaker self-representations, we believe that this property is essen-
tial for many applications in reflective languages.

Property 5 aims at the capability to apply interesting non-
standard interpretations on quoted terms. Recurring examples are
pretty printing, size measuring, CPS transformation or converting
into an untyped representation. The definition of the property is
intentionally vague, as it is not clear which kind of interpretations
could or should be possible in a typed setting. Hence we do not
want to prematurely preclude other possible approaches to typed-
self representation by a too narrow definition.

However, without this property, the trivial encoding, using the
identity function as quote, or simple wrappers around terms such
as boxing [9], or staging annotations [28] would count as forms
of typed self-representation, as they fulfill some or all of the other
properties above. These representations, however, do not give ac-
cess to the intensional structure of terms. This precludes exploring
the syntactic structure of a term, e.g., whether it is a function appli-
cation or a λ-abstraction, or changing the meaning of the language
primitives in a non-standard interpretation.

3. F∗

ω
and its Self-Embedding

A language with the properties introduced in the last section has
to feature both a term language simple enough to allow quote to
encode all features of the language and a type system rich enough
to encode the family of types ExprT. Experiments by Pfenning et
al. [21] suggest that to support a level of abstraction in the encoded
language, a higher level of abstraction has to be supported in the
encoding language, e.g., second-order types are needed to represent
first-order types. With self-representation, encoded and encoding
language are identical. While this seems to preclude typed self-
representation at first, we will show how to escape from this circle
after we have introduced the style of quoting and evaluating we aim
at.

3.1 Encoding of terms and types

Instead of a representation of terms as an abstract syntax tree, we
choose a Church encoding, which has a number of advantages
over a datatype based representation, most notably that it keeps the
language simple since it is not necessary to add, and subsequently
represent, datatypes. Furthermore, we do not represent the types of
the language explicitly, but each term representation is associated
with a type in the meta-language that ensures type-safety. In order
to guarantee the type-safe representation of variables, we make
use of higher-order abstract syntax (HOAS) [20]. Our encoding
has been mainly inspired by related approaches of Pfenning / Lee
[21] and Carette et al. [7] which we will discuss in Sec. 6. In
the following, we will first describe our encoding technique in
an untyped setting, and subsequently develop our solution to the
typing problem.

A lambda term such as the church numeral two in the untyped
lambda calculus

λf . λx . f(fx)



can be encoded by abstracting over the meaning of the nodes in
the syntax tree. Since lambda terms contain only abstractions and
applications, we can encode the Church numeral two as

λlam . λapp . lam(λf . lam(λx . app f (app f x))).

The lam and app binders fulfill the analogous function in our en-
coding as the f and x binders in the Church encoding of numerals.
Due to the use of HOAS, the bound variables f and x are not rep-
resented by some first-order representation like de Bruijn indices
[10], but by employing the lambda binding mechanism of the meta-
language.

A context eval〈〉, as described in the previous section, for eval-
uating such quoted terms can be defined as

eval〈t〉= t (λf . f) (λf . λx . f x).

To lift this encoding to a typed lambda calculus, one has to give
types for lam and app. A first attempt might be the following
System F types:

Appattempt = ∀A ::∗ . ∀B ::∗ . (A → B) → A → B

Lamattempt = ∀A ::∗ . ∀B ::∗ . (A → B) → (A → B).

Note how these versions of App and Lam are polymorphic in the
domain and codomain of the processed function. We call the set
of types (like App and Lam) that describe a language a language
interface.

Unfortunately, the types for App and Lam above do not allow
interesting interpreters beyond self-evaluation, since all reasonable
functions with these types are identity functions. In type systems
with abstraction over type functions, such as Fω , we can add another
parameter R ::∗⇒ ∗ which represents the change in the type we
want to perform with app and lam. While a self-interpreter can
choose R = ID = λT :∗ . T, other interpreters are free to choose
more interesting type functions. Using R, the types of app and lam
are:

App R = ∀A ::∗ . ∀B ::∗.R (A → B) → R A → RB

Lam R = ∀A ::∗ . ∀B ::∗.(RA → RB) → R (A → B).

Note how the types now depend on R as free variable.
However, for a metacircular self-representation of all terms in

Fω, we have to account for the type abstraction and application
operations in these types, too. We call the types that describe
type abstraction and application TLam and TApp, respectively. For
example, we want to represent the polymorphic identity function
ΛT ::∗ . λx : T . x as

ΛR ::∗⇒ ∗ . λlam : Lam R . λapp : App R .
λtlam : TLam R . λtapp : TAppR .
tlam [∗] [∀T ::∗ . T → T] (ΛT ::∗ . lam [T][T](λx : R T . x))

with suitable types TLam and TApp in addition to the types Lam
and App introduced above.

We model tlam and tapp analogous to lam and app. The func-
tion that is processed is a function mapping types to terms, i. e.,
a polymorphic term. The first parameter of tlam and tapp states
the domain (on types, i. e, it is a kind, in the example: ∗), while
the second parameter states the codomain. However, the codomain
can depend on the respective inhabitant of the domain, i. e., it is a
family of types indexed by types. Thus, it has to be parameterized
by the respective inhabitant of the domain (∀T ::∗ . T → T in the
example). The third parameter is the actual polymorphic term, rep-
resented by a HOAS encoding on the type level.

Unfortunately, as the example illustrates for TLam, the types
TLam and TApp cannot be expressed in Fω , since they have to

App ≡ λR ::∗⇒ ∗ . ∀A ::∗ . ∀B ::∗.
R (A → B) → R A → RB

Lam ≡ λR ::∗⇒ ∗ . ∀A ::∗ . ∀B ::∗.
(RA → RB) → R (A → B).

TApp ≡ λR ::∗⇒ ∗ . ∀S :: � . ∀T :: S ⇒ ∗.
R (∀X :: S . TX) → (∀X :: S . R (TX))

TLam ≡ λR ::∗⇒ ∗ . ∀S :: � . ∀T :: S ⇒ ∗.
(∀X :: S . R (TX)) → R (∀X :: S . TX)

Expr ≡ λA ::∗ . ∀R ::∗⇒ ∗.
AppR → Lam R → TApp R → TLam R → R A

Figure 1. The F∗

ω language interface

allow abstraction over polymorphic terms of arbitrary kinds, but
Fω does not allow kind-polymorphism. Indeed, even adding kind-
polymorphism is not enough, because the representation of kind
polymorphism would again have to abstract over the form of the
kind being abstracted over, employing another, higher level of
polymorphism.

The key idea to break this circle is to add a constant � which
stands for the kind of all kinds. Furthermore, we unify the syntactic
categories of types and kinds, such that the regular type-level λ
can be used to express kind functions, and the regular expression-
level Λ to express kind-polymorphic terms. This extended version
of Fω allows giving sensible types for tapp and tlam, as shown
in Fig. 1, which also shows how the type family ExprT from the
previous section can be encoded directly as a type function. Hence
the type of the representation of our polymorphic identity function
is Expr (∀T ::∗ . T → T), as desired.

3.2 The language F∗

ω

Before we discuss our language w. r. t. typed self-representation,
we first have to formalize the extensions to Fω we had to introduce
to define the language interface. We call this language F∗

ω , because
it combines features of Fω and λ∗ [12]. Its formal definition can be
found in Fig. 2.

F∗

ω features the same term language as Fω , but collapses the
syntactic categories of types and kinds, similar to how in λ∗ all
syntactic categories are collapsed. Therefore every (well-typed) Fω

term is a (well-typed) F∗

ω term as well, and similarly (well-kinded)
Fω types are (well-kinded) F∗

ω types. Since we collapse types and
kinds, Fω kinds are again well-kinded F∗

ω types. On the other hand,
every typing statement in λ∗ can be transformed into a kinding
statement in F∗

ω , if one substitutes ∗ by �, and adapts the syntax to
account for the differences in the syntax definitions. In this sense,
every well-typed λ∗ term corresponds to a well-kinded F∗

ω type.
Note that we still distinguish typing and kinding, as the former

is about well-formedness of terms, while the latter is about well-
formedness of types. Furthermore, the typing and kinding rules en-
sure that in all bindings of form x : T, T must be a proper type,
while in bindings of the form X :: T, T must be a proper kind. In
the same way, we distinguish three function types: T → T, where
domain and codomain are proper types, ∀X :: T . T, where the do-
main is a proper kind, while the codomain is a type-indexed family
of proper types, and ΠX :: T . T, where the domain is a proper kind,
while the codomain is a type-indexed family of proper kinds. These
different syntactic forms follow the standard Fω syntax definition
and emphasize the difference between statements about terms and
statements about types. As we will argue later, they are not strictly
necessary.

Abstraction over terms is written with a lower-case lambda
λx : T . b while abstraction over types and kinds uses a upper-



Syntax

x := term variables
X := type/kind variables

t := terms:
x variable

| t t application
| t [T ] type application
| λx : T . t abstraction
| ΛX :: T . t type abstraction

T := types/kinds:
∗ kind of proper types

| � kind of all kinds
| X type/kind variable
| T T type/kind application
| λX :: T . T type/kind abstraction
| T → T function type
| ∀X :: T . T polymorphic type
| ΠX :: T . T dependent kind

T1 ⇒ T2 is syntactic sugar for ΠX :: T1 . T2 if X /∈ FV (T2)

Γ := contexts
∅ empty context

| Γ, x : T term variable binding
| Γ, X :: T type/kind variable binding

Typing

Γ ` T ::∗ x 6∈ dom(Γ)

Γ, x : T ` x : T
(T-VAR)

Γ ` t : T1 Γ ` T2 ::∗ x 6∈ dom(Γ)

Γ, x : T2 ` t : T1

(T-WEAK1)

Γ ` t : T1 Γ ` T2 :: � X 6∈ dom(Γ)

Γ, X :: T2 ` t : T1

(T-WEAK2)

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

(T-APP)

Γ ` t : (∀X :: T1 . T2) Γ ` T3 :: T1

Γ ` t [T3] : T2[X 7→ T3]
(T-TAPP)

Γ ` T1 ::∗ Γ, x : T1 ` t : T2

Γ ` (λx : T1 . t) : (T1 → T2)
(T-ABS)

Γ ` T1 :: � Γ, X :: T1 ` t : T2

Γ ` (ΛX :: T1 . t) : (∀X :: T1 . T2)
(T-TABS)

Γ ` t : T1 Γ ` T1 ::∗ T1 =β T2

Γ ` t : T2

(T-CONV)

Kinding

∅ ` ∗ :: �
(K-TYPE)

∅ ` � :: �
(K-KIND)

Γ ` T :: � X 6∈ dom(Γ)

Γ, X :: T ` X :: T
(K-VAR)

Γ ` T :: T1

Γ ` T1 :: �

T1 =β T2

Γ ` T :: T2

(K-CONV)

Γ ` T1 :: T2

Γ ` T3 ::∗ x 6∈ Γ

Γ, x : T3 ` T1 :: T2

(K-WEAK1)

Γ ` T1 :: T2

Γ ` T3 :: � X 6∈ Γ

Γ, X :: T3 ` T1 :: T2

(K-WEAK2)

Γ ` T1 :: (ΠX :: T3 . T4)
Γ ` T2 :: T3

Γ ` T1 T2 :: T4[X 7→ T2]
(K-APP)

Γ ` T1 :: �

Γ, X :: T1 ` T2 :: T

Γ ` (λX :: T1 . T2) : (ΠX :: T1 . T )
(K-ABS)

Γ ` T1 ::∗ Γ ` T2 ::∗

Γ ` (T1 → T2) ::∗
(K-FUN)

Γ ` T1 :: �

Γ, X :: T1 ` T2 ::∗

Γ ` ∀X :: T1 . T2) ::∗
(K-TFUN)

Γ ` T1 :: �

Γ, X :: T1 ` T2 :: �

Γ ` (ΠX :: T1 . T2) :: �
(K-KFUN)

Figure 2. Definition of F∗

ω

case lambda ΛX :: T . B. Type application is written with brackets
f [T ].

The type and kind language consists of two constants, the kind
of all types∗ and the kind of all kinds �. Abstraction over types or
kinds is written with a lower-case lambda λX :: T . B. There are
different syntactic forms for the three different kinds of functions:
A function λx : T . b has a type of the form T → B, a polymorphic
function ΛX :: T . b has a type of the form ∀X :: T . B and a type

or kind function λX :: T . B has a kind of the form ΠX :: T . B,
which can be abbreviated as T ⇒ B if X is not free in B.

The definitions of β reduction and β equivalence on terms and
types are not shown, but they are defined as usual and can be found
in our Coq formalization.

The typing rules mostly follow the corresponding rules of Fω ,
but (T-WEAK2) and (T-TABS) have to explicitly check that the men-
tioned kinds are themselves well-kinded using a judgment of the



Quoting

` t : T B t′ R, lam, app, tlam, tapp 6∈ t, T

〈t〉= ΛR ::∗⇒ ∗ . λlam : Lam R . λapp : App R . λtlam : TLam R . λtapp : TApp R . t′
(QUOTE)

Pre-Quoting

Γ ` t : T B t2
Γ ` T2 ::∗ x 6∈ dom(Γ)

Γ, x : T2 ` t : T1 B t2
(Q-WEAK1)

Γ ` t : T1 B t2
Γ ` T2 :: � X 6∈ dom(Γ)

Γ, X :: T2 ` t : T1 B t2
(Q-WEAK2)

Γ ` t2 : T1 B t4

Γ ` t1 : T1 → T2 B t3

Γ ` t1 t2 : T2

B app [T1] [T2] t3 t4

(Q-APP)

Γ ` T1 ::∗

Γ, x : T1 ` t : T2 B t2

Γ ` (λx : T1 . t) : (T1 → T2)

B lam [T1] [T2] (λx : R T1 . t2)

(Q-ABS)

Γ ` T3 :: T1

Γ ` t1 : (∀X :: T1 . T2) B t2

Γ ` t1 [T3] : T2[X 7→ T3]

B tapp [T1] [λX :: T1 . T2] t2 [T3]

(Q-TAPP)

Γ ` T1 :: �

Γ, X :: T1 ` t : T2 B t2

Γ ` (ΛX :: T1 . t) : (∀X :: T1 . T2)

B tlam [T1] [λX :: T1 . T2] (ΛX :: T1 . t2)

(Q-TABS)

Γ ` T ::∗ x 6∈ dom(Γ)

Γ, x : T ` x : T B x
(Q-VAR)

Γ ` t : T1 B t2
Γ ` T2 ::∗ T1 =β T2

Γ ` t : T2 B t2
(Q-CONV)

Figure 3. Quoting of F∗

ω . Additions to the typing rules in Fig. 2 are marked by boxes.

form Γ ` T :: �. This is not needed in Fω because all syntacti-
cally possible Fω kinds are already well-formed.

The kinding rules of F∗

ω are substantially more complex then
the kinding rules of Fω , since kinds may now contain variables and
all contained kinds have to be checked for well-formedness using
judgments of the form Γ ` T :: �.

3.3 Self Representation in F∗

ω

Following the examples in Sec. 3.1, quoting is formalized as a type-
directed transformation, see Fig. 3. Quoting is defined in two steps:
A pre-quote computation that is embedded into the typing rules,
and a quote operation which turns a pre-quote into a quote by clos-
ing over its free variables from the language interface: The judg-
ment Γ ` t : T B t′ handles the introduction of free variables R,
app, lam, tapp and tlam, while the rule (QUOTE) defines a term
〈t〉 of type Γ ` 〈t〉:Expr T which binds these free variables. The
rules for Γ ` t : T B t′ are a syntactic superset of the rules for
Γ ` t : T in Fig. 2 that do not add any new constraints, hence
every well-typed term can be quoted. The newly added parts are
framed.

Note that according to that rule, a term t that contains the
variables R, app, lam, tapp and tlam cannot be quoted, but a
simple α-renaming is sufficient to remove potential name clashes:
As the pre-quoting relation is closed under α-renaming, there is
an α-equivalent term which can be pre-quoted, if a pre-quoting
judgment can be derived for the original term. Similarly, if a pre-
quoting judgment Γ ` t : T B t′ is derived for a term t such that
T contains these variables, there is an α-equivalent type, such that
t can be quoted, by the same argument.

Having shown the quoting mechanism, we can now demon-
strate, how to implement a meta-circular interpreter for quoted F∗

ω

terms in F∗

ω . In order to define the interpreter, we have to specify

ID ≡ λT ::∗ . T

selfapp : App ID
selfapp ≡ ΛT1 ::∗ . ΛT2 ::∗ . λf : (T1 → T2) . λx : T1 . f x

selflam : Lam ID
selflam ≡ ΛT1 ::∗ . ΛT2 ::∗ . λf : (T1 → T2) . f

selftapp : TApp ID
selftapp ≡ ΛT1 :: � . ΛT2 :: (T1 ⇒ ∗).

λf : (∀X :: T1 . T2 X) . ΛX : T1 . f [X]

selftlam : TLam ID
selftlam ≡ ΛT1 :: � . ΛT2 :: (T1 ⇒ ∗) . λf : (∀X :: T1 . T2 X) . f

eval : ∀A ::∗ . Expr A → A
eval ≡ ΛA ::∗ . λe : Expr A.

e ID selfapp selflam selftapp selftlam

Figure 4. Self Interpreter. The types of the terms are given for
better readability.

the meaning of (type) application and (type) abstraction in the in-
terpretation, and give an according definition of R that makes the
interpretation well-typed. For the meta-circular interpreter, this is
shown in Fig. 4. All the operations are basically identity functions,
and R is accordingly the identity function on type level.

4. Metatheory of F∗

ω

We establish basic properties of F∗

ω by encoding it as a pure type
system (PTS) [4, 29, 3]. PTS are a family of lambda calculi, param-
eterized by the sorts of terms they contain (e.g. expressions, types,
kinds, ...), their relations (e.g. expressions are qualified by types)
and the allowed abstractions (e.g. terms can abstract over types).



F∗

ω is the following PTS instance.

S = {∗, �}

A = {∗ : �, � : �}

R = {(∗,∗,∗), (�,∗,∗), (�, �, �)}

The set of sorts S specifies that we have two levels, terms whose
types are classified by∗ and types whose types are classified by �.
The axioms A correspond to the rules (K-TYPE) and (K-KIND), and
the relations R allow the three types of abstraction available in our
language: terms can abstract over terms, terms can abstract over
types, and types can abstract over types.

The PTS instances corresponding to Fω , λ∗ and F∗

ω are compared
in Fig. 5, which suggests that F∗

ω contains Fω on the term level, and
λ∗ on the type level (renaming ∗ to �).

While the representation of F∗

ω as a pure type system may be less
accessible for readers not familiar with PTS, it allows us to easily
derive a number of properties which hold for all PTS, including
subject reduction. To do so, we have to show that our typing and
kinding rules indeed correspond to the PTS rules specialized for
the instance defined above. A F∗

ω term is converted to PTS syntax
by dropping all brackets and replacing :: with :, Λ with λ, and
∀ with Π. While the syntactic categories collapse in this process,
the distinction between terms and types is still upheld by the type
system, which distinguishes between terms whose types are of sort
∗, and types whose types are of sort �. Therefore, each well-
typed PTS term can be translated back to F∗

ω in a type-directed
manner, replacing : by :: if the qualifier has type �, Π by ∀ if the
corresponding term has type∗, λ to Λ if the type of the whole term
has type ∗, but the qualifier in the λ-Expression has type �, and
f a to f [a] if the type of the type of a is �, but the type of the type
of f a is ∗.

The treatment of the term-type-dichotomy on the syntactic
level allows us to omit some checks of the form Γ ` t :∗ resp.
Γ ` t : � in the typing and kinding rules in Fig. 2, which have
to be done in the typing rules for general PTS as presented in [3].
However, it is easy to see that the omitted checks are syntactically
ensured in F∗

ω . By this embedding into the PTS framework we can
hence reuse the meta-theory of PTS, and in particular we have:

THEOREM 1 (Subject Reduction).

Γ ` t : T and t →β t′ =⇒ Γ ` t′ : T

Proof. Follows by encoding of F∗

ω as PTS and Thm. 5.2.15 in [3].

Furthermore, since F∗

ω contains λ∗ in the sense described above,
we get the following results:

THEOREM 2. The kind system of F∗

ω is undecidable. As a logic, it
is inconsistent.

Proof. Follows from the undecidability [23] and inconsistency [8,
12] of the λ∗ type system.

While the inconsistency result is not relevant for our purpose
of using F∗

ω as a programming language1 , the undecidability of the
kind (and hence type) system is potentially a more serious issue.
We believe that the undecidability is, as in many other undecid-
able type systems, not very significant in practical programming,
since the programs that lead to non-termination of the type check-
ing algorithm are quite esoteric [8]. This is supported by anecdotal

1 It would be interesting, though, to analyze whether the inconsistency is
confined to the kind system or whether it leaks into the type system

Fω F∗

ω λ∗

S ∗ ∗

� � ∗

A ∗ : � ∗ : �

� : � ∗ :∗
R (∗,∗,∗) (∗,∗,∗)

(�,∗,∗) (�,∗,∗)
(�, �,�) (�, �, �) (∗,∗,∗)

Figure 5. Comparison of PTS instances

evidence in the form of the experiments we made with our F∗

ω type-
checker implementation, where we never encountered the problem
that the typechecker loops.

Let us now discuss the properties of quoting and self evalua-
tion, in particular whether they comply to the criteria which we set
up in Sec. 2. In the paper, we only provide short proof sketches.
A full formalization in Coq using a locally nameless representa-
tion and corresponding machine-checked proofs are available for
download2 .

4.1 Representation Property

We first have to show that our quote transformation is applicable
to all well-typed terms.

LEMMA 1. For all t, T and Γ which do not contain R, lam, app,
tlam or tapp,

Γ ` t : T ⇐⇒ ∃t′ . Γ ` t : T B t′.

Proof. Assume t′ exists so that Γ ` t : T B t′, then the inference
tree for Γ ` t : T B t′ can be transformed into an inference tree
for Γ ` t : T by removing all parts not framed in Fig. 3.

Now assume that Γ ` t : T . Then the inference tree of Γ ` t : T
can be extended to an inference tree for Γ ` t : T B t′ for some
t′ by filling in the parts framed in Fig. 3, proceeding from top to
bottom, since no new premises have to be added.

THEOREM 3 (Existence of Quoting). For all t and T , where w. l. o. g.
R, lam, app, tlam, tapp 6∈ t,T,

∅ ` t : T =⇒ ∃t′ . 〈t〉= t′

Proof. Follows by inspection of (QUOTE) and Lemma 1
F∗

ω allows encoding the family of types ExprT directly as type
function Expr as shown in Fig. 1. We can prove that Expr adheres
to Prop. 1 in Sec. 2.

LEMMA 2. For all t, T and Γ which do not contain R, lam,
app, tlam or tapp, with Γ′ defined as Γ prefixed by R ::∗⇒ ∗,
lam : TLam R, app : TApp R, tlam : TLam R, tapp : TApp R and
with each occurrence of t : T replaced by t : RT ,

Γ ` t : T B t′ =⇒ Γ′ ` t′ : R T .

Proof. Follows by induction on the structure of the inference tree
of Γ ` t : T B t′. See the Coq formalization for details.

THEOREM 4 (Welltyped Quote). For all t and T ,

∅ ` t : T ∧ 〈t〉= t′ =⇒ ∅ ` t′ : Expr T

Proof. Follows by inspection of (QUOTE) and Lemma 2

2 http://www.daimi.au.dk/~rendel/metacircular



4.2 Adequacy Property

While we do not have a formal proof of adequacy yet, we believe
that the self-representation presented in this paper is weakly ade-
quate in the sense of Prop. 2 on the ground of the following argu-
ment.

Inspection of the typing rules in Fig. 2 shows that every nor-
malizing, closed term of type ExprT for some T must have been
ultimately built by λ and Λ abstractions of the form

ΛR ::∗⇒ ∗ . λlam : LamR.
λapp : App R . λtlam : TLam R . λtapp : TApp R . body

for some term body with

R ::∗⇒ ∗, lam : TLam R, app : TApp R,
tlam : TLam R, tapp : TApp R ` body : R A.

Since R is entirely abstract in body, the result of type RA must
have been produced by applications of the functions lam, app, tlam
and tapp, due to relational parametricity.

4.3 First-Class Interpretation Property

F∗

ω allows encoding an interpretation with respect to some repre-
sentation type function R directly as a term of type

∀A : � . Expr A → RA.

See eval in Fig. 4 for an example of such a term.

4.4 Self Interpretation Property

We can prove that eval T t′ is observational equivalent to t if t
has type T and 〈t〉= t′. In fact, eval T t′ is even β-equivalent to
t, which means that there is a potential for partial evaluation that
might allow self-interpretation to be done without the order-of-
magnitude slowdown in performance that is usually associated with
it.

LEMMA 3. For all t, T and Γ which do not contain R, lam, app,
tlam or tapp,

Γ ` t : T B t′ =⇒ t =β eval T t′

Proof. Follows by induction on the structure of the inference tree
of Γ ` t : T B t′. See the Coq formalization for details.

THEOREM 5. For all t and T ,

∅ ` t : T/ 〈t〉= t′ =⇒ t =β eval T t′

Proof. Follows by inspection of (QUOTE) and Lemma 3

4.5 Reflection Property

This property demands that other, non-trivial interpretation besides
standard evaluation must be possible. To this end, Figure 6 illus-
trates how an interpretation that measures the size of a term can be
expressed. Our language does not support natural numbers directly,
but we assume that a standard Church encoding of natural numbers
is used.

Unfortunately, a closer look at the definition of ctlam reveals
a significant problem: It is not quite clear which type argument
to supply to f. It is obvious that the type argument has no signif-
icance, since the type function ∀X :: T1 . Nat is constant func-
tion. But still, we have to supply one. In the figure, we have used
a constant ⊥ :: (ΠS :: � . S) which can easily be added to the lan-
guage. Another solution is to add syntax for coercing a term of type
∀X :: T1 . T2 to T2 if T1 is not free in T2. Both of these solutions
work fine for any constant representation function. This means, that
we can at least define reflective interpretations into an untyped do-
main. However, the solutions are still somewhat unsatisfactory. We
will revisit this problem in Sec. 6.

INTR ≡ λT ::∗ . Nat

capp ≡ ΛT1 ::∗ . ΛT2 ::∗ . λf : Nat . λx : Nat . f + x + 1

clam ≡ ΛT1 ::∗ . ΛT2 ::∗ . λf : Nat → Nat . (f 0) + 1

ctapp ≡ ΛT1 :: � . ΛT2 :: (T1 ⇒ ∗) . λf : Nat . ΛX :: T1 . f + 1

ctlam ≡ ΛT1 :: � . ΛT2 :: (T1 ⇒ ∗).
λf : (∀X :: T1 . Nat) . f[⊥T1] + 1

ceval : ∀A ::∗ . Expr A → Nat
ceval ≡ ΛA ::∗ . λe : Expr A.

e INTR capp clam ctapp ctlam

Figure 6. Interpreter which measures the size of a term

4.6 Coq Formalization

We have formalized F∗

ω in the Coq theorem prover [5] using a lo-
cally nameless representation as proposed by Aydemir et al. [2].
The representation uses de Bruijn indices to represent bound vari-
ables and atoms with decidable equality to represent free variables.
This allows easy reasoning up to α equivalence, in fact, term equal-
ity is α equivalence. However, a number of technical lemmas have
to be formulated and proved which connect the various forms of
substitution for free and for bound variables. Unfortunately, the ap-
proach described by Aydemir et al. seems not to scale well in the
number of syntactic categories. Even with only two syntactic cate-
gories as for F∗

ω , we need up to five versions for some of the lem-
mas opposed to only one version in the case of a single syntactic
category. This explosion of technical proof obligations somewhat
overshadows our experience with Coq and the locally nameless ap-
proach.

We have formalized the typing, kinding and quoting relation,
and proved Lemmas 2 and 3 and Theorems 4 and 5 as stated in
Sec. 4. In our ongoing work about this topic, we plan to formalize
our proof sketch from Sec. 4.5. It would be also interesting to
formalize the embedding into the PTS framework.

5. Language Integration

The obvious application of our quoting mechanism is to integrate
it into the programming language itself, which in turn enables a
lot of applications well-known from untyped reflective languages.
The application we are most interested in is a polymorphic embed-
ding [16] of the host language, meaning that programs written in
the language can be given a non-standard meaning by enabling a
parameterization with the desired denotation of the language con-
structs.

The main conceptual challenge in integrating the quote mecha-
nism into the language is the change of environment as described
in Thm. 4, or, equivalently, the question of how to deal with free
variables in quoted terms.

While the exact way how a quote function is integrated into the
language is not in the scope (and page limit) of this paper, we want
to sketch different ways how typed self-representation can be used
to this end. Hence we assume that the syntax of our language is
extended with terms of the form quote t.

5.1 Static Quoting

One way of interpreting quoting is by a transformation during type
checking. The easiest (but most restricted) way of dealing with free
variables is to allow only quoting of closed terms. Hence the typing
rule for quoted terms is:

∅ ` t : T

∅ ` quote t : Expr T



The quotes can simply be “compiled away” by a syntax-directed
transformation during type checking, i.e., quote t is transformed to
〈t〉.

If we want to allow free variables within quoted terms, they have
to be lifted from a type A to a type RA. One way to do this is letting
the programmer specify their lift function by making it part of the
language interface. For example, for a self-interpreter, where R is
the identity function, the lift function could be the identity function.
For the interpreter in Fig. 6 the lift function could be the function
returning zero for all inputs.

In order to allow this, one could extend the language interface
by a lift function of type

Lift ≡ ΛR ::∗ . ∀A ::∗ . A → RA,

which lets the programmer control how external terms are lifted
into the respective representation. The language interface compo-
nent Expr hence becomes

Expr ≡ . . . → TLam R → Lift R → RA.

To this end, the definition of quoting in Fig. 3 must be changed
such that the quote of every occurrence of a variable x that is bound
outside the quote is lift x. Occurrences of variables bound inside
the quote can easily be distinguished from those bound outside by
splitting the environment into two parts – one for the externally
bound variables, and one for the internal ones.

5.2 Dynamic Quoting

Another interesting, but more speculative possibility would be to
perform the quote transformation during reduction. This means that
free variables in the term to be quoted may have been substituted
with other terms during reduction before the actual quote transfor-
mation takes place. This implies that the result of the transforma-
tion depends on the reduction strategy (call-by-value, call-by-name
etc.). This will make the result of quoting harder to predict. On
the other hand, dynamic quoting enables exciting new possibilities,
such as a propagating quote: Assuming that we have a fixed-point
operator µ, and are given a representation R and interpretation func-
tions lam, app, tlam, and tapp, we could then write a lift function
such as

µ lift : Lift R . ΛA ::∗ . λx : A .
(quote x) R lam app tlam tapp lift

which would transitively quote every term that is bound outside
the current quote and interpret it with the given interpretation. The
exact design of dynamic quoting and an evaluation of its practical
utility is part of our future work.

6. Discussion

We can now reflect on the design decisions that we have made on
the way. This will lead to the identification of a number of areas of
future work.

First, we will discuss the most important design choices we
have made in our implementation: the choice of language, the
representation of terms, and of variables. Then, we will discuss the
problems arising from the integration of externally defined terms.

6.1 The choice of F∗

ω

Pfenning / Lee [21] have been the first to explore metacircularity in
the context of statically typed functional languages, in particular, in
extensions of System F.

They are able to represent terms of F2 in F3, and terms of Fω in
F+

ω . The latter is their extension of Fω with kind variables and kind
polymorphism on terms. They claim that it is strongly normalizing
and type-checking is decidable.

However, they do not achieve metacircularity, missing Prop. 1.
As we will discuss below, they furthermore do not achieve Prop. 5.
In order to embed F+

ω , they would need a language that allows for
the representation of kind abstraction and kind application, which
would require a notion of sorts. By fusing the categories of types
and kinds, we are able to evade this problem and achieve full
metacircularity, for the price of losing strong normalization and
decidable type-checking.

Carette et al. [7] (in the journal version) attempt to write a self-
interpreter without drawing on higher-rank and higher-kind poly-
morphism. Instead they use a simply-typed lambda calculus ex-
tended with let-bound polymorphism. However, they cannot de-
fine a transformation quote that returns a term in their language.
They can only specify a pre-encoding that contains free variables
and has to be put in the context of an evaluator in order to build
a closed term. Therefore, it is impossible to type-check a term
separately (Prop. 1). Accordingly, it is impossible to talk of ade-
quacy (Prop. 2). Furthermore, interpretations can therefore not be
regarded as first-class citizens (Prop. 3). In the sense of Prop. 4,
however, they define a self interpretation, and their representation
allows for non-standard interpretations in the sense of the reflection
property (Prop. 5).

Another conceivable choice of language would be to use λ∗

rather than F∗

ω . However, it is not obvious whether and how
typed self-representation in λ∗ is possible. The main problem in
λ∗ is that terms have exactly the same structure as types, and
hence terms like ∗ or Πx : T . T′ must also be represented. An-
other problem is the fact that types may depend on terms. In-
tuitively, it is not clear how to abstract over the interpretation
of a term, if the type of the term depend on a fixed interpreta-
tion of the term. For example, to consider types that depend on
terms, the App type, which (omitting the boilerplate declarations)
is R (A → B) → R A → R B in F∗

ω (see Fig. 1) would have to
become something like R (Πt : A . B t) → Πt′ : R A . X in λ∗ –
but then it is not clear which reasonable type to fill in for the X
placeholder.

6.2 Representation of Terms

Our representation of terms contains several design decisions. Our
basic decision is to follow Pfenning / Lee [21] in not representing
types explicitly, but mapping them to types in the meta-language.
This automatically precludes the construction of non-welltyped
terms. However, as a consequence, the representation of variables
also has to be delegated to the meta-language. Therefore, we like-
wise use higher-order abstract syntax (HOAS).

The central difference to Pfenning / Lee [21] is in how we em-
bed object language terms into the meta-language without an ex-
plicit notion of data types. The concept of representing terms within
lambda calculi goes back to Church’s numerals and booleans.
Böhm / Berarducci [6] first defined a representation in the typed
setting of System F.

Pfenning / Paulin-Mohring [22] have extended this approach
to allow Church encodings for inductive definitions of generalized
abstract data types (GADTs), i. e. data types whose (polymorphic)
constructors are non-uniform in their type variables, within Fω .
Pfenning / Lee [21] apply this approach to their embeddings of
System F terms in F3 and of Fω terms in F+

ω .
However, this representation only works for inductively defined

data types. In particular, the data type must not appear in a negative
position of a constructor. In our representation, lam has type

λR ::∗⇒ ∗ . ∀A ::∗ . ∀B ::∗ . (RA → R B) → R (A → B),



and RA appears in negative position. Pfenning / Lee [21] instead
propose a solution, where lam has type3

∀A ::∗ . ∀B ::∗ . (A → π B) → π(A → B),

which strongly restricts the range of definable interpretations to
basically only the standard interpretation [21, p. 150]. Besides not
being metacircular, their approach therefore cannot satisfy property
5 of a typed self-representation (see Sec. 2).

The representation of terms that we have chosen has been in-
spired by Carette et al. [7], who developed it in the context of a
simply typed lambda calculus. In this setting, the representation
allows for implementing simple alternative semantics, like count-
ing the number of terms. We have defined a straightforward exten-
sion of their representation to type abstraction and application. In
Sec. 3.3 we discussed the limitation of this extension: If the repre-
sentation is a constant function, then we have the problem that no
appropriate type parameter is available in the TLam case. We have
discussed two different solutions to this problem and can conclude
that in the case of non-polymorphic representations, these solutions
are sufficient.

However, one could argue that our solutions are somewhat ad
hoc since they do not address the real cause of the problem, which
lies in the design of the language interface itself: Each tlam gets
domain S and codomain T and a parametric function f as a pa-
rameter. Depending on the type R (∀X :: S . TX), it has potentially
three options. Firstly, if there is a closed term that inhabits the type,
it can return this term (in our case, it could return the Church en-
coding of a constant number). Secondly, if the type is β-equivalent
to a type ∀X :: S . R (TX), it can simply return f. The only alterna-
tive option to make use of f, which is the only available term, was
to supply a type X :: S. However, as S can be any kind, this can only
be a type ⊥ S. Hence we conclude that our current representation
is not very good at representing type abstraction.

6.3 Accessing the intensional structure of programs

However, the representation of type abstraction is just one issue
in a wider context of questions related to type-safe program rep-
resentations. A general challenge for the expressivity of each kind
of representation is the “degree of access to the intensional struc-
ture of programs” [21, p. 156]. Carette et al. [7] recognize that their
representation is too limited in this regard, as they cannot define
type functions which destruct or inspect their argument. In this rep-
resentation, they cannot express a partial evaluation or a transfor-
mation to continuation-passing style (CPS). To overcome this, they
propose an ad-hoc solution involving adding an additional type ar-
gument to R for every different type function which is to be imple-
mented. However, this means that adding a new interpretation to
the language potentially necessitates a redefinition of the language
interface. This non-modularity strongly suggests the search for a
better solution.

However, in F∗

ω we have a very expressive type system at our
disposal. We can therefore overcome this limitation by using type-
indexed types [15]. To demonstrate this capability, we have so far
developed an embedding of the simply typed lambda calculus with
natural numbers into F∗

ω , and defined an evaluator and a call-by-
name continuation passing style interpreter (the latter is modeled
after the corresponding interpreter in [7]). To this aim, we con-
structed a simply typed universe as in [1], with a constructor Num
for representing the base type Nat, and a constructor Arrow for
representing function types. However, we had to find a way to rep-
resent typecasing [14]. We used a simple Church encoding of the
types in the universe, defining the universe U and the constructors
Num and Arrow as in Fig. 7.

3 Where π corresponds roughly to our Expr.

U = ΠX :: � . X ⇒ (X ⇒ X ⇒ X) ⇒ X
Num = λX :: � . λN :: X . λAr :: X ⇒ X ⇒ X . N
Arrow = λA :: U . λB :: U . λX :: � . λN :: X . λAr : X → X → X.

Ar(A NAr)(BNAr)

NumR = λR :: (U ⇒ ∗) . Nat → RNum
App = λR :: (U ⇒ ∗) . ∀S :: U . ∀T :: U.

R(Arrow S T) → RS → R T
Lam = λR :: (U ⇒ ∗) . ∀S :: U . ∀T :: U.

(R S → RT) → R(Arrow S T)
Expr = λA ::∗ . ∀R :: (U ⇒ ∗).

NumR R → AppR → LamR → R A

Figure 7. Embedding of STLC using type-indexed types

Reval = λX :: U . X∗Nat(λA ::∗ . λB ::∗ . A → B)
inteval = λx : Nat . x
appeval = ΛA :: U . lambdaB : U . λf : (RevalA) → (RevalB).

λx : (RevalA) . f x
lameval = ΛA :: U . λB : U . λf : (RevalA) → (RevalB) . f
eval = ΛA :: U . λe : Expr A . e [Reval] inteval appeval lameval

Figure 8. An evaluator using type-indexed types

Every interpretation has to define a decoding function R :: U ⇒ ∗

on types that reflects the types of the produced values. We call it R,
as its role is similar to the type constructor in our representation.
Accordingly, the language interface NumR, App, Lam, and Expr
is similar to the one given in Fig. 1.

The code for the evaluator is shown in Fig. 8. The decoding
function for the evaluator Reval represents numbers by the type Nat
and arrows by →. The code for the call-by-name CPS interpreter is
shown in Fig. 9. Its decoding function Rcps is more complex. R′

cps

reflects that numbers and arrows have to be represented differently.
These examples demonstrate that very expressive interpreta-

tions can be encoded using the same language interface in this style.
In the future, we want to analyze how this approach can be general-
ized to the full self-embedding of F∗

ω by finding an encoding that en-
compasses the representation of universal quantification. It should
be noted, however, that this is still concerned with the representa-
tion of terms and finding an appropriate mapping for the types that
reflects this representation. Therefore, we do not require a represen-
tation of dependent kinds, as they are not contained in the language
interface. Furthermore, the interpretations themselves still are para-
metric. For example, the interpretation of lam cannot depend on the
type of the function’s parameter. This is, because interpretations
are ordinary F∗

ω terms, and F∗

ω does not support type-indexed func-
tions. As part of our future work, we also want to consider defining
an explicit representation of types by terms. This would imply the
possibility of defining type-indexed functions.

6.4 Representation of variables

Representation of variables, both bound and free, can be seen as
the main challenge in typed self representation. We already dis-
cussed the issue of free variables in Sec. 5. There, the problem has
been described as one of lifting external terms into the respective
interpretation using a static or dynamic quoting approach. While
bound and free variables may be represented differently in some
representations, they are always closely related, because an open
term can be closed by adding lambda binders around it. That means
that even a typed self-representation which restricts itself to closed
terms should account for free variables, since they naturally occur
during construction of closed terms.



Rcps = λX :: U . Ct(R′

cps X)
R′

cps = λX :: U . X∗Nat(λA ::∗ . λB ::∗ . Ct A → Ct B)
Ct = λA ::∗ . ∀W ::∗ . (A → W) → W

intcps = λx : Nat . λW :∗ . λk : (Nat → W) . k x
appcps = ΛA :: U . ΛB : U . λf : Rcps(Arrow AB) . λx : RcpsA.

ΛW ::∗ . λk : ((R′

cpsB) → W).
f W(λg : ((RcpsA) → (RcpsB)) . g x [W] k)

lamcps = ΛA :: U . ΛB :: U . λf : (RcpsA → RcpsB).
ΛW ::∗ . λk : ((RcpsA → RcpsB) → W) . k f

cps = ΛA :: U . λe : Expr A . e [Rcps] intcps appcps lamcps

Figure 9. A call-by-name CPS interpreter using type-indexed
types

In the tradition of Pfenning/Lee [21] and Carette et al. [7], we
have chosen to use HOAS to represent variables of the embedded
language as variables of the host language. But there is an impor-
tant difference between their approaches regarding the type of the
variables. Pfenning/Lee [21] represent embedded variables of type
A by host variables of type A, while Carette et al. [7] use host vari-
ables of type RA. Pfenning and Lee’s approach allow them to rep-
resent terms with free variables similar to how they represent terms
with bound variables. A term of type A with a free variable of type
B can be represented as A → π B. Indeed, their constructor lam for
representing lambda abstraction can also be used to wrap a term
with a free variable in a lambda binder to bind it, independently of
the semantics.

However, as we have already discussed in the previous section,
this representation of variables does not allow for interesting se-
mantics, since the values of all variables have to be given in the
host language semantics, not some embedded semantics.

To have more flexible variables, which values can be expressed
according to the embedded semantics, Carette et al. [7] use terms of
type (RA → RB) to represent bound variables. While this allows
interesting semantics, the authors do not present an analogue to the
lam function above and do not discuss the representation of free
variables.

Naively, one would like to represent terms of type B with a free
variable of type A as ExprA → ExprB. Consider, we had a datatype
of terms containing a free variable that is constructed from this
function type. In order to work with such terms, we had to find a
way to decompose them. It is well known that one can not generally
decompose datatypes which contain function types (like the type of
lam). Fortunately, we can further restrict the type of functions that
are allowed to be used to represent terms with free variables: A term
should not be allowed to have access to the internals of the repre-
sentation of the variable. This corresponds to the requirement that
the function has to be parametric. Fegaras / Sheard [11] have shown
that terms constructed from those functions can be decomposed.
Recently, Washburn / Weirich [30] proposed a representation of the
untyped lambda calculus into the Fω fragment of Haskell that al-
lows for a binding operation of type (Expr → Expr) → Expr, and
still is able to apply the technique of [11]. The authors believe that
this approach can be adapted to the typed self-representation de-
scribed in this work.

6.5 Further Approaches

20 years ago Hagiya [13] presented a very innovative approach
to writing a meta-circular interpreter in the setting of typed lan-
guages. It is based on a variant of the lambda calculus with Boolean
and integer constants and symbols (variable constants), let bind-
ings, if expressions, errors and casts. The language has type anno-
tations, in particular for functions and fixed-point operations. It is
a dependently-typed system, and types are considered just normal

values. The base evaluator is untyped. A quote operation is defined
in the style of quoting in Lisp, giving a term of type exp.

A meta-circular interpreter evaluates each quoted term to a
dependent pair of its type and its value. It therefore works both
as an evaluator and a type-checker. In this way, well-typedness for
the meta-circular interpreter is shown, by running it on top of itself.
The language can be redefined or extended by modifying the meta-
circular interpreter. This new version can be run on top of the old
version, as in the original ideas about reflection (e. g., [26]). This is
certainly a great result, however it comes with its own problems.
The phase distinction between evaluation and type-checking is
abolished. Some normalization takes place under binders to ensure
well-typedness. In this way, type-checking is not only undecidable
from a theoretical point of view, but it is also clear that it has
only limited applicability in practice. Still, there is no indication
that type-checking is sound. It is not clear, how well-typedness of
terms can be established in this dependently-typed system without a
complete evaluation. We would therefore consider it more related to
systems of untyped self-representation. Seen from the perspective
of our properties of a typed self-representation, Prop. 1 is not
fulfilled: each representation of a term is of type exp. Accordingly,
Prop. 2 and Prop. 3 are not applicable. Prop. 4 is fulfilled, as a meta-
circular interpreter is given. The kind of representation allows full
access to the structure of the code, guaranteeing Prop. 5.

Another early approach of implementing reflection in the con-
text of typed languages is from Läufer / Odersky [17]. They write
a meta-interpreter for typed terms of the SK calculus in Haskell,
together with a reification mechanism that lifts natural numbers to
their representations, and a reflection mechanism that evaluates rep-
resented expressions to values. Although an interesting result in it-
self, it does not create a self-representation of the SK calculus, but
a representation of SK terms in Haskell.

Our idea of propagating dynamic quoting is similar to the idea
of MapClosure [25]. Apart from the fact that MapClosure is not
statically safe, an operational difference is that MapClosure allows
changing the meaning of bindings in the environment, whereas we
allow changing the meaning of the language primitives.

Nanevski [19] proposes a language with explicit distinction
of free and bound variables, and corresponding distinct abstrac-
tion mechanisms. In contrast to this work, Nanevski’s encoding
is not metacircular, but it would be interesting to check whether
Nanevski’s ideas could be transferred to our setting to address the
representation of free variables. Nanevski provides pattern match-
ing for intensional code analysis. However, the lack of polymorphic
patterns precludes operations which work for terms of arbitrary
types. It seems therefore not to be possible to implement interesting
non-standard interpretations like size measurement in Nanevski’s
system.

7. Conclusion

Achieving a typed self-representation of programs is a longstanding
goal in programming language development. We have analyzed the
difficulties associated with its accomplishment and have seen that
Fω and related languages are probably not sufficient for achiev-
ing this goal. To remedy the problem, we have proposed a new
language, F∗

ω , which is the first language that allows typed self-
representation. We have analyzed the metatheoretical properties of
F∗

ω and have established the main technical results in a mechani-
cally checked proof. However, we have also seen that our approach
to representing programs is not satisfactory with respect to repre-
senting type abstraction and application, hence our future work will
concentrate on better representations of the type structure of terms.
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