
A Virtual Class Calculus

Erik Ernst
University of Aarhus, Denmark

eernst@daimi.au.dk

Klaus Ostermann
Darmstadt Univ. of Technology, Germany
ostermann@informatik.tu-darmstadt.de

William R. Cook
University of Texas at Austin, USA

cook@cs.utexas.edu

Abstract
Virtual classes are class-valued attributes of objects. Like virtual
methods, virtual classes are defined in an object’s class and may be
redefined within subclasses. They resemble inner classes, which are
also defined within a class, but virtual classes are accessed through
object instances, not as static components of a class. When used
as types, virtual classes depend upon object identity – each ob-
ject instance introduces a new family of virtual class types. Vir-
tual classes support large-scale program composition techniques,
including higher-order hierarchies and family polymorphism. The
original definition of virtual classes in BETA left open the question
of static type safety, since some type errors were not caught until
runtime. Later the languages Caesar and gbeta have used a more
strict static analysis in order to ensure static type safety. However,
the existence of a sound, statically typed model for virtual classes
has been a long-standing open question. This paper presents a vir-
tual class calculus, vc, that captures the essence of virtual classes in
these full-fledged programming languages. The key contributions
of the paper are a formalization of the dynamic and static seman-
tics of vc and a proof of the soundness of vc.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Classes and objects, inheritance, polymorphism;
F.3.3 [Studies of Program Constructs]: Object-oriented constructs,
type structure; F.3.2 [Semantics of Programming Languages]: Op-
erational semantics

General Terms Languages, theory

Keywords Virtual classes, soundness

1. Introduction
Virtual classes are class-valued attributes of objects. They are anal-
ogous to virtual methods in traditional object-oriented languages:
they follow similar rules of definition, overriding and reference. In
particular, virtual classes are defined within an object’s class. They
can be overridden and extended in subclasses, and they are accessed
relative to an object instance, using late binding. This last char-
acteristic is the key to virtual classes: it introduces a dependence
between static types and dynamic instances, because dynamic in-
stances contain classes that act as types. As a result, the actual,
dynamic value of a virtual class is not known at compile time, but
it is known to be a particular class which is accessible as a specific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

attribute of a given object, and some of its features may be statically
known, whereas others are not.

When an object is passed as an argument to a method, the virtual
classes within this argument are also accessible to the method.
Hence, the method can declare variables and create instances using
the virtual classes of its arguments. This enables the definition and
use of higher-order hierarchies [9, 28], or hierarchies of classes
that can manipulated, extended and passed as a unit. The formal
parameter used to access such a hierarchy must be immutable;
in general a virtual class only specifies a well-defined type when
accessed via an immutable expression, which rules out dynamic
references and anonymous values.

Virtual classes from different instances are not compatible. This
distinction enables family polymorphism [8], in which families
of types are defined that interact together but are distinguished
from the classes of other instances. Virtual classes support arbitrary
nesting and a form of mixin-based inheritance [3]. The root of
a (possibly deeply) nested hierarchy can be extended with a set
of nested classes which automatically extend the corresponding
classes in the original root at all levels.

Virtual classes were introduced in the late seventies in the
programming language BETA, but documented only several years
later [21]. Methods and classes are unified as patterns in BETA.
Virtual patterns were introduced to allow redefinition of methods.
Since patterns also represent classes, it was natural to allow redef-
inition of classes, i.e. virtual classes. Later languages, including
Caesar [22, 23] and gbeta [7, 8, 9] have extended the concept of
virtual classes while remaining essentially consistent with the in-
formally specified model in BETA [20]. For example, they have
lifted restrictions in BETA that prevented virtual patterns (classes)
from inheriting other virtual patterns (classes). So in this sense the
design of virtual classes has only recently been fully developed.

Unfortunately, the BETA language definition and implementa-
tion allows some unsafe programs and inserts runtime checks to
ensure type safety. Caesar and gbeta have stronger type systems
and more well-defined semantics. However, their type systems have
never been proven sound. This raises the important question of
whether there exists a sound, type-safe model of virtual classes.

This paper provides an answer to this question by presenting a
formal semantics and type system for virtual classes and demon-
strating the soundness of the system. This calculus is at the core of
the semantics of Caesar and gbeta and would presumably be at the
core of every language supporting family polymorphism [8] and
incremental specification of class hierarchies [9].

The calculus does not allow inheritance from classes located
in other objects than this, and we use some global conditions to
prevent name clashes. The significance of these restrictions and the
techniques used to overcome them in the full-fledged languages are
described in Section 5 and 8. The approach to static analysis taken
in this paper was pioneered in BETA, made strict and complete in
gbeta, and adapted and clarified as an extension to Java in Caesar.

The claim that virtual classes are inherently not type-safe should
now be laid to rest.

The primary contributions of this paper are:

• Development of vc—a statically typed virtual class calculus,
specified by a big-step semantics with assignment. The formal
semantics supports the addition of virtual classes to mainstream
object-oriented languages.
• Proof of the soundness of the type system. This paper includes

the theorems, and the proofs are available in an accompanying
technical report [10]. We use a proof technique that was devel-
oped for big-step semantics of object-oriented languages [6].
The preservation theorem ensures that an expression reduces to
a value of the correct type, or a null pointer error, but never a
dynamic type error. No results are proven about computations
that do not terminate.
• We strengthen the traditional approach to soundness in big-step

semantics by proving a coverage lemma, which ensures that
the rules cover all cases, including error situations. This lemma
plays a role analogous to the progress lemma for a small-step
semantics [29]: it ensures that evaluation does not get stuck as
a result of a missing case in the dynamic semantics.

2. Overview of Virtual Classes
Virtual classes are illustrated by a set of examples using an informal
syntax in the style of Featherweight Java [17] or ClassicJava [12].
The distinguishing characteristics of vc include the following:

• Class definitions can be nested to define virtual classes.
• An instance of a nested class can refer to its enclosing object by

the keyword out.
• Objects contain mutable variables and immutable fields. Fields

are distinguished from variables by the keyword field. Fields
must all be initialized by constructor arguments.
• A type is described by a path to an object and the name of a

class in that object.
• The types of arguments and the return type of a method can use

virtual classes from other arguments.

These concepts are illustrated in the examples given below. A
formal syntax for vc is defined in Section 3. The main difference
between the informal and formal syntax is that the formal syntax
unifies classes and methods into a single construct, thus highlight-
ing the syntactic and semantic unification of these concepts.

class Base { // contains two virtual classes
class Exp {}
class Lit extends Exp {

int value ; // a mutable variable
}
Lit zero ; // a mutable variable
out.Exp TestLit () {

out. Lit l ;
l = new out.Lit();
l . value = 3;
l ;

}
}

Figure 1. Defining virtual classes for expressions.

class WithNeg extends Base {
class Neg extends Exp {

Neg(out.Exp e) { this .e = e; }
field out.Exp e;

}
out.Exp TestNeg() {

new out.Neg(TestLit());
}
}

Figure 2. Adding a class for negation expressions.

class WithEval extends Base {
class Exp {

int eval () { 0; }
}
class Lit {

int eval () { value ; }
}
int TestEval() {

out.TestLit (). eval ();
}
}

Figure 3. Adding an evaluation method on expressions.

class NegAndEval extends WithNeg, WithEval {
class Neg {

Neg(out.Exp e) { this .e = e; }
int eval () { −e.eval (); }
}
int TestNegAndEval() {

out.TestNeg().eval ();
}
}

Figure 4. Combining the negation class and evaluation method.

2.1 Higher-Order Hierarchies
Virtual classes provide an elegant solution to the extensibility prob-
lem [5, 19]: how to easily extend a data abstraction with both new
representations and new operations. This problem is also known
as the expression problem because a canonical example is the rep-
resentation of the abstract syntax of expressions [36, 34, 38]. We
present a solution to a simplified version of a standardized problem
definition [15].

In Figure 1, the class Base contains two virtual classes: a gen-
eral class Exp representing numeric expressions and subclass Lit
representing numeric literals. All classes in vc are virtual classes
and can be arbitrarily nested. Top-level classes are virtual by means
of an implicit root class containing all top-level declarations. The
method TestLit is explained below.

A family is a collection of virtual classes that depend upon each
other. For example, the classes Exp and Lit are a family that exists
within class Base. A family can be extended by subclassing the
class in which it is defined. For example, Figure 2 extends the
family to include a class Neg representing negation expressions.

Every virtual class has an enclosing object, to which the class
can refer explicitly via the keyword out. In Figure 2, class Neg
contains a field of type out.Exp. The type out.Exp is a reference to
the class Exp in the enclosing instance of Neg. In general the type

out.A in class B denotes the sibling A of B. Because of subclassing
and late binding, the dynamic value of out in Neg may be an
instance of WithNeg or a subclass thereof. The out keyword can
be repeated to access enclosing objects of the enclosing object.

The test functions in Figures 1 and 2 create a test instance of
each class. The objects are created by accessing a virtual class (Lit
or Neg) in the enclosing object. The return type of the methods is
out.Exp rather than Exp because activation records are treated as
separate objects whose enclosing object is the object containing the
method, hence a property of the object containing the method must
be accessed via out, whereas method parameters are accessed via
this. A test can be run by invoking new WithNeg().TestNeg().

Redefinition of a virtual class occurs when it is declared and
it is already defined in a superclass. In Figure 3, Exp and Lit are
redefined to include an eval method; it is a redefinition because the
family WithEval extends Base and they both define Exp and Lit.
All superclasses in vc are virtual superclasses because redefinition
of a class that is used as superclass affects its subclasses as well, so
that the entire family is redefined.

The static path of a class definition is the lexical address of a
class definition defined by the list of names of lexically enclosing
class definitions. The static paths of the class definitions in Figure 3
are WithEval, WithEval.Exp and WithEval.Lit. Static paths never
appear in programs, because virtual classes are always accessed
through an object instance, not a class. However, they are useful
for referring to specific class definitions.

Note that references to classes are “late bound” just like meth-
ods: when Base.TestLit is called from WithEval.TestEval the ref-
erences to Lit are interpreted as WithEval.Lit, not Base.Lit.

A virtual class can have multiple superclasses, as in the defini-
tion of NegAndEval in Figure 4, which composes WithNeg and
WithEval and adds the missing implementation of evaluation for
negation expressions.

Hierarchies are not only first-class values, they can also be com-
posed as a consequence of composing the enclosing class. The
semantics of this composition is that nested virtual classes are
composed, continuing recursively into nested classes. This phe-
nomenon was introduced as propagating combination in [7] and
later referred to as deep mixin composition [38]. This is achieved by
combining the superclasses of the virtual class using linearization.
For example, the class NegAndEval.Neg implicitly extends class
WithNeg.Neg. Its also extends both Base.Exp and WithEval.Exp.

This behavior is a form of mixin-based inheritance [3] in that
new class bodies are inserted into an existing inheritance hierarchy.
For example, although WithNeg.Neg in Figure 2 has Exp as a
declared superclass, after linearization it has WithEval.Exp as its
immediate superclass.

2.2 Path-based Types
The example in Figure 5 illustrates path-based types and family
polymorphism. The argument types in the previous examples have
had the form C or out.C, where out can be repeated multiple
times. Types can also be named via fields, which are immutable
object instances that may contain virtual classes. The variable n
defined at the bottom of Figure 5 has type f1.Exp, meaning that
only instances of Exp whose enclosing object is identical to the
value of f1 may be assigned to n. In general, a type consists of
a path that specifies how to access an object, together with a class
name. To ensure that this is well-defined, the path must only contain
out and/or immutable fields, but not mutable variables. Hence, type
compatibility depends on object identity, but types do not depend
on values in any other way. More specifically, the type system
makes sure that two types are only compatible if they are known
to have identical enclosing objects.

class Test {
int Test(out.WithNeg f1, out.NegAndEval f2) {

this . f1 = f1; this . f2 = f2;
n = buildNeg(f1, n); // OK
// n. eval (); −− Static error
f2 . zero = new f2.Lit (); // OK
// n2 = buildNeg(f2 , f1 . zero) −− Static error
n2 = buildNeg(f2, f2 . zero); // OK
n2.eval (); // OK
}
ne.Neg buildNeg(out.out.WithNeg ne, ne.Exp ex) {

new ne.Neg(ex);
}
field out.WithNeg f1
field out.NegAndEval f2
f1 .Exp n
f2 .Exp n2
}
new Test(new NegAndEval(), new NegAndEval())

Figure 5. Example of family polymorphism

Although the resulting types may resemble Java package/class
names, they are very different because objects play the role of
packages, and the class that creates a package can be subclassed.

2.3 Family Polymorphism
A family object is an object that provides access to a class fam-
ily. A family object may be the enclosing object for an expression,
but it may also be a method argument or the value of a field. As a
provider of classes, and hence types, it enables type parameteriza-
tion of classes and methods. But virtual classes are different from
parameterized types: while type parameters are bound statically at
compile-time, virtual classes are bound dynamically at runtime.
Thus virtual classes enable a new kind of subtype polymorphism
known as family polymorphism [8].

Family objects can also be used to create new objects, even
though the classes in the family object are not known at compile
time. To achieve the same effect in a main-stream language like
Java, a factory method [13] must be used. However, the typing
relation between related classes is then lost, whereas a family object
testifies to the interrelatedness of its nested family classes.

In Figure 5, f1 and f2 inside Test are used as family objects.
The constructor call in the last line of the example shows how f1 is
polymorphically initialized with a subtype of its static types. The
field f1 of class Test is declared to be an out.WithNeg, but the
constructor is called with an argument of type NegAndEval, which
illustrates that entire class hierarchies are first class values, subject
to subtype polymorphism via their family objects, and the nested
family classes are usable for both typing and object creation.

The assignments and calls in the body of the Test constructor
illustrate the expressiveness of the type system. For example, al-
though the buildNeg method is not aware of the eval method intro-
duced by WithEval, it is possible to assign the result to n2 and call
eval on the returned value. This is an important special case of fam-
ily polymorphism where the types of arguments or the return type
of a method depend on other arguments. The example also shows a
few cases that are rejected by the type checker because they would
potentially lead to a type error at runtime.

3. Syntax
The formal syntax of vc has been designed to make the presentation
of the semantics as simple as possible, hence the formal syntax

Grammar of vc
CL ::= class C extends C { K CL; T f; T v }

K ::= T C(T f) { e; }
T ::= path.C
path ::= spine.f
spine ::= this.out
e ::= null | e ; e | path | path.v |

path.v = e | new path.C(e)
Identifiers

class names C
field names f
variable names v
members m = f ∪ v
(C, f, and v are pairwise disjoint)

Figure 6. Syntax of virtual class calculus vc

deviates from the informal syntax used in the examples in a few
points that will be described in this section.

3.1 Notational Conventions
Our formal definitions use a number of syntactic conventions. A
bar above a metavariable denotes a list: p stands for p1, ..., pk for
some natural number k ≥ 0. If k = 0 then the list is empty. The
length of p is |p|. The same notation is used for lists whose elements
are separated by dots or commas, e.g., f1.f2. · · · .fk = f. A list
may also be represented by a combination of barred and unbarred
variables: f.f stands for f1. · · · .fk.f, where f denotes the last item
of the list. Following common convention, T f represents a list of
pairs T1 f1 · · ·Tk fk rather than a pair of lists. An empty list is
written nilx, where x identifies the kind of items that the list should
contain. The subscript x may be omitted if it is clear from context.
The notation [f] represents a list with a single element f. Finally, in
function definitions with overlapping branches the first matching
case is used.

3.2 Formal Syntax of vc

The formal syntax of vc is defined in Figure 6. A class definition
CL consist of a name, the superclass names C, a constructor K, a
list of nested class definitions CL, declarations T f of immutable
fields, and declarations T v of mutable variables. A constructor K
consists of a return type T, the class name, the formal parameters
T f, and an expression e. The constructor has a return type because
it can return other things than the new object, which enables the
encoding of methods as classes.

The keyword field from the informal syntax is not needed,
because field and variable names are separate in the formal syntax
and use different metavariables—f for fields and v for variables.
Field and variable names must be unique within the program in
order to simplify the handling of name clashes in connection with
class composition. Class names are unique in that two definitions
of the same class name must have a common superclass. We will
later discuss the implications and possible relaxations of these
restrictions. Note, however, that any program in which the names
are reused can always be rewritten to a program with unique names.

Expressions include standard forms for the current object or any
of the enclosing objects via spine, access to fields of the current or
an enclosing object via path, access and assignment of variables,
path.v, and path .v = e, and the null value, null. Method calls and
object construction are unified in the expression new path.C(e).

Types in the syntax of vc have the form path.C. A path has the
form this.out.f. Thus a type allows a class C to be identified by
navigating to any enclosing object and then traversing fields to find
the object which contains C.

Metavariable
static paths p ::= C

Class table

CT (p) = CT2 (p, CLroot)

CLi = class C extends C { ... }

CT2 (C, CL) = CLi

CLi = class C extends C { K CL
′
; ... }

CT2 (C.p, CL) = CT (p, CL
′
)

All members
Members(nilp) = nilT f , nilT v

Members(p) = T f, T
′
v

CT (p) = class C extends C { K CL; T
′′

f
′
;T
′′′

v′}

Members(p p) = T
′′

f
′
T f, T

′′′
v′ T

′
v

Constructor

CT (p) = class C extends C { K CL; T
′′

f
′
;T
′′′

v′}
Constr(p) = K

Figure 7. Auxiliary definitions

Primitive types like bool and int are omitted; they just add
complexity to the formalism without adding value. A member m
is either a field or a variable.

3.3 Translating Informal Notation to vc

The translation of the informal language to the formal syntax of vc
is straightforward. The most significant difference is that vc unifies
methods and classes into a single definition construct. This tech-
nique originated in Simula, where classes were simply functions
that returned the current activation record. In vc activation records
are first-class values that are accessed by this. Thus a class is sim-
ply a definition that returns this, while a method is a definition that
returns any other value.

Hence, method definitions in the informal language correspond
to class declarations in vc, where the constructor represents the
method body. More formally, the translation is as follows:
T C(T f) { T v; e; } ⇒ class C extends { K nilCL; T f; T v }
where K = T C(T f) { e; }. Method calls are translated by prefixing
them with the keyword new.

As in Java, constructors in the informal syntax do not specify a
return type or return value, but these must be specified in vc. For
a class definition C in the informal syntax, the constructor return
type is always out.C and the returned value is always this.

In the informal syntax a class definition with no superclasses
may omit the extends clause. In the formal syntax it must be
present, but the list of superclasses can be empty. The assignments
of the constructor arguments is omitted in the formal syntax; in-
stead, the name of the constructor arguments are matched against
the field names. Constructors are required in vc, while the informal
syntax assumes a default constructor if none is given.

The informal notation omits this when followed by out or a
field. vc has no implicit scoping rules, and all access to fields,
variables, and classes must be disambiguated by a spine.

ιroot 7→ [[⊥ ‖ Croot ‖]]
ι1 7→ [[ιroot ‖ NegAndEval ‖ zero : null]]
ι2 7→ [[ιroot ‖ NegAndEval ‖ zero : ι5]]
ι3 7→ [[ιroot ‖ Test ‖ f1 : ι1 f2 : ι2 n : ι4 n2 : ι6]]
ι4 7→ [[ι1 ‖ Neg ‖ e : null]]
ι5 7→ [[ι2 ‖ Lit ‖ value : 0]]
ι6 7→ [[ι2 ‖ Neg ‖ e : ι5]]

Figure 9. Dynamic Heap after executing the example in Figure 5

The informal language allows more general expressions where
the calculus only allows paths: e.m, new e.C(e), and e.v = e′.
The general forms are translated into the calculus by rewriting e.m
as new this.C′(e) where C′ is a new local class with a field T f
where T is the type of e, and whose constructor returns this.f.m.
The translation is legal because the member is accessed through the
new field. The other two constructs (new e.C(e), and e.v = e′) are
handled similarly. The consequence of this is that the formal treat-
ment need not take types inside temporary objects into account.
This is a significant simplification, and handling types in tempo-
raries does not produce useful extra insight.

3.4 Auxiliary Definitions
Figure 7 gives some auxiliary definitions. A static path p is a list
of class names C. The function CT looks up a class definition.
We assume the existence of a globally available program in the
form of a list of top-level class declarations CLroot, which would
otherwise embellish many relations and functions. CT is a partial
function from static paths to class definitions. It uses the helper
function CT2 , which recursively enters each class definition named
in the path starting from root. For example, the static path Base.Lit
denotes the definition of Lit inside Base in Figure 1.

A static path that identifies a valid class is called a mixin. The set
of mixins in a program is equivalent to the static paths p for which
CT (p) 6= ⊥. Since there is a one-to-one correspondence between
a mixin (a static path) and its class definition, we also use the term
mixin to refer to the body of the corresponding class, i.e., the part
of a class declaration between the curly brackets { ... }.

The function Members collects all field and variable declara-
tions found in a list of mixins p. The function Constr(p) returns the
constructor of CT (p) given a static path p.

4. Operational Semantics
The operational semantics is defined in big-step style. The semantic
domains, evaluation relation, and helper functions are given in
Figure 8. Both the operational semantics and the type system have
also been implemented in Haskell.

4.1 Objects and the Heap
As in most object-oriented languages, an object in vc combines
state and behavior. An Object is a tuple containing a pointer to its
enclosing object ι, a class name C, and a list of fields and variables
with their values.

The fields and variables are the state of the object; fields are
immutable while variables can be updated. The heap is standard: a
map H from addresses ι to objects. The top-level root object has
the special address ιroot. An example heap is given in Figure 9.

The features of the object are determined by the enclosing ob-
ject ι and the class C. The enclosing object specifies the environ-
ment containing the class from which the object ι′ was created: an
object ι′ with enclosing object ι and class C must have been created
by evaluating an expression equivalent to new ι.C(...).

An object’s features are defined by a list of mixins, or class
bodies; these class bodies contain the declarations of members and
nested classes. In vc there are no methods, but classes may be used
as methods. The list of mixins of an object is computed from the
class name and the mixins of the enclosing object.

Note that the definition of Object is optimized for a situation
where all path expressions associated with an object should be un-
derstood relative to the same environment—the same enclosing ob-
ject. It would be a relevant extension of vc to allow inheritance from
classes inside other objects than this (i.e., to allow superclasses on
the form path.C), but it would then be necessary to maintain an
environment for each mixin or for each feature. It is possible to do
this, and for instance the static analysis and run-time support for
gbeta maintains a separate enclosing object for each mixin. This
causes a non-trivial amount of extra complexity, even though the
basic ideas are unchanged. It is part of future work to extend vc
correspondingly.

4.2 Mixin Computation
The Mix function computes the behavior, or mixin list, of an
object ι in the heap H. It does so by first computing the mixins
of the enclosing object. All definitions of C and its superclasses are
assembled into this mixin list. The mixin list of the root object has
only a single element, namely the empty static path.

The Assemble function1 computes the mixin list for a class C
relative to an enclosing mixin list p. It calls Defs to collect all the
definitions of C located in any of the class bodies specified by p.
If the resulting list of mixins is empty then the class is not defined
andAssemble returns⊥. Otherwise, the result is a list of static paths
that identifies all definitions of C contained in the list of enclosing
mixins.

As an example, let us consider the computation ofMix(H, ι4)
in the program in Figure 1-4 and the sample heap in Figure 9.
Assume that the mixin list p of the enclosing object ι1 has
been computed to yield [Base, WithNeg, WithEval, NegAndEval].
Then Defs(p, Neg) = [WithNeg.Neg, NegAndEval.Neg].

The complete mixin list must also include the mixins of all
the superclasses. To do so, Assemble maps Expand over the list of
static paths that was computed with Defs, and linearizes the result.
Expand assembles each of the superclasses of C, linearizes the re-
sult, and appends the class itself to the resulting list. In our example
[Expand(p, p) | p ← WithNeg.Neg NegAndEval.Neg] = p′p′′,
where p′ = [Base.Exp, WithEval.Exp, WithNeg.Neg] and p′′ =
[NegAndEval.Neg].

Linearization sorts an inheritance graph topologically, such that
method calls are dispatched along the sort order. The function
Linearize linearizes a list of mixin lists, i.e., it produces a single
mixin list which contains the same mixins as those in the operands;
the order of items in each of the input lists is preserved in the final
result, to the degree possible. Linearize is defined in terms of a
binary linearization function, Lin2. This function is an extension of
the C3 linearization algorithm [1, 7] which has been used in gbeta
and Caesar for several years. The linearization algorithm allows
a programmer of a subclass to control the ordering of the class’s
mixins by choosing the order in which the superclasses appear in
the extends clause.
Lin2 produces the same results as C3 linearization in every case

where C3 linearization succeeds—this result follows trivially from
the fact that the definition of C3 is just the four topmost cases in
the definition of Lin2. The cases where C3 linearization fails are

1 The [... | ...] notation used in the definition ofDefs,Assemble, and Expand
means list comprehension as for example in Haskell. Note that we append
an element to a list by just writing the element to append after the list. For
example, [2n | n← 1...5, n > 3]42 is the list [8, 10, 42].

Objects and the Heap:

Address = natural numbers ι

Object = {[[ι ‖ C ‖ f : val v : val
′
]]} [[...]]

Heap = Address ⇀fin Object H
Value = Address ∪ {null} val

Evaluation rules:

;: e×Heap×Address→ Value∪ {TypeErr, NullErr}×Heap

null, H, ι ; null, H (R1)

e, H, ι ; val, H′

e′, H′, ι ; val′, H′′

e ; e′, H, ι ; val′, H′′
(R2)

Walk(H, ι, path) = val

path, H, ι ; val, H
(R3)

path, H, ι ; ι′, H
H(ι′)(v) = val

path.v, H, ι ; val, H
(R4)

path, H, ι ; ι′, H e, H, ι ; val, H′

H′(ι′)(v) 6= ⊥ H′′ = H′[ι′ 7→ H′(ι′)[v 7→ val]]

path.v = e, H, ι ; val, H′′
(R5)

path, H, ι ; ι′, H H = H1

ei, Hi, ι ; vali, Hi+1 for i ∈ {1...|e|}
H′ = H|e|+1 p = Assemble(Mix(H′, ι′), C)

Members(p) = T f, T
′
v |f| = |val|

ι′′ is new in H′ Constr(p|p|) = T C(){e′; }
H′′ = H′[ι′′ 7→ [[ι′ ‖ C ‖ f : val v : null]]]

e′, H′′, ι′′ ; val, H′′′

new path.C(e), H, ι ; val, H′′′
(R6)

Enclosing object:
Encl([[ι ‖ ‖ ...]]) = ι

Evaluation functions:
Walk(H, ι, this) = ι
Walk(H, ι, spine.out) = Encl(H(ι′)) ifWalk(H, ι, spine) = ι′ 6= ιroot

Walk(H, ι, path.f) = val if H(Walk(H, ι, path))(f) = val

Walk(H, ι, path.f) = NullErr ifWalk(H, ι, path) = null
Walk(H, ι, path.f) = TypeErr if H(Walk(H, ι, path))(f) = ⊥
Walk(H, ι, spine.out) = TypeErr ifWalk(H, ι, spine) = ιroot

Error handling:

path, H, ι ; null, H
path.v, H, ι ; NullErr, H

path.v = e, H, ι ; NullErr, H
new path.C(e), H, ι ; NullErr, H

(ER1)

path, H, ι ; ι′, H H(ι′)(v) = ⊥
path.v, H, ι ; TypeErr, H

path.v = e, H, ι ; TypeErr, H

(ER2)

path, H, ι ; ι′, H
Assemble(Mix(H, ι′), C) = ⊥

new path.C(e), H, ι ; TypeErr, H
(ER3)

path, H, ι ; ι′, H
Assemble(Mix(H, ι′), C) = p
Members(p) = T f, |e| 6= |f|

new path.C(e), H, ι ; TypeErr, H
(ER4)

Mixin Computation:

Mix(H, ιroot) = [nilc]
Mix(H, ι) = Assemble(Mix(H, ι′), C)

where H(ι) = [[ι′ ‖ C ‖ ...]]

Assemble(p, C) = Linearize[Expand(p, p) | p← Defs(p, C)]

Defs(p, C) = check [p.C | p← p, CT (p.C) 6= ⊥]

where check(p) =

 ⊥ |p| = 0
p otherwise

Expand(p, p) = Linearize([Assemble(p, C) | C← C] p)
where CT (p) = class C′ extends C { ... }

Linearize(nilp) = nilp
Linearize(p p) = Lin2(Linearize(p), p)
Lin2(nilp, nilp) = nilp
Lin2(p p, p′ p) = Lin2(p, p′) p
Lin2(p, p′ p′) = Lin2(p, p′) p′, if p′ 6∈ p
Lin2(p p, p′) = Lin2(p, p′) p, if p 6∈ p′

Lin2(p p′p′′p, p′p′) = Lin2(p p′′p, p′) p′

Figure 8. Operational semantics of vc

exactly the cases covered by the bottommost clause in the definition
of Lin2, i.e., the cases where the two operands contradict each
other with respect to the ordering of shared mixins (intuitively this
means that they disagree about which mixin should be the more
specific one); in these cases, Lin2 resolves the conflict by letting
the rightmost operand decide the outcome.

The final result of computing Mix(H, ι4) is the mixin list
Base.Exp WithEval.Exp WithNeg.Neg NegAndEval.Neg .
Lin2 is a total function on lists of mixins, and the set of mixins in

the result is equal to the union of the sets of mixins in the operands.
For soundness the set of mixins is relevant but the ordering makes
no difference, so this generalization of C3 enhances the expressive
power without affecting type safety.

4.3 Evaluation Rules and Error Handling
The evaluation relation e, H, ι ; r, H′ reduces an expression, a
heap, and a current object to a value or an error and a new heap.
The current object plays the role of the environment.

The expression null evaluates to the null value (R1). An expres-
sion sequence e ; e′ evaluates to the result of evaluating e′ in the
heap that results from evaluating e (R2).

Evaluation of a path path does not affect the heap (R3). The
value of the path is computed by the function ⇓, which “walks” a
path from an address ι in the heap H to return the value specified
by the path. As a base case, ⇓ returns ι when applied to the trivial
path, this; spine.outn locates the nth enclosing object of ι; finally
a path path.f finds the object ι′ for path and then returns the value
of the field f in the object ι′.

Variable lookup path.v evaluates path to get ι′, which is then
looked up in the heap to get the variable’s value (R4). An assign-
ment path.v = e evaluates path and e to ι′ and val (R5). It then
checks that the variable is defined on the object and updates the
heap to set variable v of ι′ to val. The notation H(ι)(m) means
lookup of the value of a field or variable m in the object ι. The no-
tation [v 7→ val] appended to an object denotes (functional) update
of the variable v of that object, and H[ι 7→ ...] denotes heap update.

In (R6) a new object new path.C(e) is constructed by instanti-
ating the virtual class C defined in the enclosing object ι′ identified
by path. The behavior p of the new object is assembled from the
mixins of the enclosing object as described in Section 4.2. If the
enclosing object does not contain a definition of C, then Assemble
returns ⊥ and rule (R6) does not apply. The mixin list p also spec-
ifies the members and the most specific constructor of the new ob-
ject. To construct the object, the heap is extended to define a new
address ι′′ bound to a new object with enclosing object ι′, class C,
fields initialized to the evaluated constructor arguments, and vari-
ables initialized to null. The constructor body is then evaluated in
the context of this new object. The result of the constructor is the
result of the entire expression. If the constructor body is this (i.e.,
the class is used as a class in the conventional sense), then the result
of the constructor call is ι′′.

Two different kinds of error can occur during evaluation: Type
errors (TypeErr) and null pointer errors (NullErr). The rule (ER1)
handles access to a property of an object, where the object is null.
(ER2) to (ER4) define the situations in which a type error occurs,
namely if a member to be read or written is not available (ER2), or
when creating an instance of a class C, but the enclosing object has
no definition of C, i.e., its mixin list is empty (ER3), or the number
of parameters does not match (ER4).

The rules for propagating errors are standard and straightfor-
ward, so they are omitted; the sequel assumes that NullErr or
TypeErr errors are propagated. The complete list of error rules is
given in the technical report accompanying this paper [10].

5. Type System
The vc type system uses nominal typing based on paths to objects
containing virtual classes. Typing domains, type checking rules,
and functions for abstract interpretation are given in Figure 10.

5.1 Types
The type of an expression describes an object ι obtained by evalu-
ation of it in one of two ways. In the first case a path which leads
to the object ι itself is computed statically, and in the second case
a path to the enclosing object of ι is computed, as well as a class
name characterizing the class of ι itself. The former is an object
type, u, and the latter is a class type, s. An object type contains
more information than a class type, because every object type can
be converted into a class type, but not vice versa. Since a path only
makes sense as seen from a lexical point p′ in the program, typ-
ing judgements have the form p′ ` e : t, where t is a type and p′

represents the current this object.
An object type u has the form 〈p〉.f. If an expression has the

object type 〈p〉.f as seen from p′, then p is a prefix of p′, and
the object denoted by the expression can be reached by going out
(|p′| − |p|) steps and then following f in the heap. More formally,
if the program and heap H are well-formed, the expression e is
typable by p′ ` e : 〈p〉.f in this program, the object ι0 is ap-
propriate as this for p′, and e evaluates by e, H, ι0 ; ι, H′, then
Walk(H′, ι0, this.outj .f) = ι, where j = Depth(H′, ι0)− |p|.

A class type s is on the form 〈p〉.f.C. If an expression e has type
〈p〉.f.C and e, H, ι0 ; ι, H′ as above then 〈p〉.f is an object type
describing the enclosing object Encl(H′(ι)), and ι is an instance of
the class C which is nested in Encl(H′(ι)), or a subclass thereof.

The type checker computes object types for paths or path-like
expressions (like a sequence containing a path as last element). For
an expression like path.v or new path.C, an object type cannot
be computed because, in general, there is no path to that object.
However, there is always a path to its enclosing object in these
cases, hence such expressions can be assigned a class type.

5.2 Abstract interpretation of the heap
The operational semantics defines functions to navigate a heap and
compute mixin lists of objects. In particular, Encl navigates to an
enclosing object,WalkH follows a path starting from some object,
and Mix computes the mixin list of an object. An abstract inter-
pretation of these functions is at the core of the type system: E ,
W , andM are the static versions of Encl,Walk, andMix, respec-
tively. They serve the same purpose as their dynamic counterparts,
but they receive and produce types instead of objects. Before going
into the details of their definition, we will at first state some proper-
ties of E ,W , andM and discuss the connection with Encl,WalkH,
andMix (the formal statements and proofs of these properties are
in [10]).

The most important connections between the static and dynamic
semantics are (a) if a navigation along a path is ok in the abstract
interpretation of the heap then the corresponding navigation is also
ok in the dynamic heap, and (b) navigation preserves agreement.
Agreement, which is formally defined later in this section, states
that an object ι has type t as seen from an object ι0 in a heap H,
written H, ι0 ` ι . t. Given a well-formed program and a well-
formed heap and H, ι0 ` ι . t, then the following holds:

1. Enclosing types agree with enclosing objects: if t is not the
type of the root object, then Encl(H(ι)) exists and H, ι0 `
Encl(H(ι)) . E(t).

2. The statically known set of mixins is a subset of the dynamic
set of mixins,Mix(H, ι) ⊇M(t).

3. If a field or variable exists according to the abstract interpreta-
tion then it exists in the heap: Exists(t, m)⇒ H(ι)(m) 6= ⊥.

4. If t is an object type u and a path is valid in both the heap
and its abstract interpretation, then the results will agree: given
Walk(H, ι, path) = val and W(u, path) = t′ then H, ι0 `
val . t′.

Both the heap and its abstract interpretation are also enclosing-
correct, which informally means that for any declared field
path.C f, the enclosing object of the value of the field must
be equal to the object specified by the path, relative to the ob-
ject containing the field. More formally, a well-formed dynamic
heap ensures Walk(H, ι, path) = Encl(H(Walk(H, ι, f))), where
path.C f ∈ Members(Mix(H, ι)) and H(ι)(f) 6= null. Similarly,
the static semantics ensures W(u, path) = E(W(u, f)), where
DclType(u, f) = path.C.

Let us now consider the definition of these functions in detail.
The W function takes an object type u and a path path or a syn-
tactic type T and produces an object type or a class type, if it suc-
ceeds. If the second argument is a path path, the intuition is that
W computes a type for the object that is reached from the object
described by u by traversing path in the heap. A naive approach
would be to concatenate path to the path in u, but it would be hard
to tell whether such a concatenated path leads to the same object
as another concatenated path. The ability to decide whether two
paths lead to the same object, however, is crucial for determining
the subtyping relation, since only objects with identical enclosing
object are compatible. For this reason,W returns a canonical rep-
resentation of the combined path, namely a type. It is canonical in
that the path inside the type has the form spine.f. Object types can
hence be compared by simple equality tests in order to determine
whether they refer to the same object.

For the empty path this, W simply returns u (first case). For
paths ending in out, the function E is used to find the enclos-
ing type (second case). Paths ending in a field or a class are
checked for validity: an appropriate field or class must exist. The
last case in W extends the domain of the second argument to T;
this is the only case where W returns a class type. As an exam-

Typing domains:
u ::= 〈p〉.f q ::= this | out | f
s ::= 〈p〉.f.C Q ::= q | q.C
t ::= u | s

Expression Typing:
M(t) 6= ⊥
p ` null : t

(T1)

p ` e : t
p ` e′ : t′

p ` e ; e′ : t′
(T2)

W(〈p〉, path) = u

p ` path : u
(T3)

p ` path : u
W(u,DclType(u, v)) = s

p ` path.v : s
(T4)

p ` path.v : s p ` e : t C(t) <: s

p ` path.v = e : t
(T5)

p ` path : u p′ ∈M(u.C) p ` e : t
Constr(p′) = T0 C(T f) ... |T| = |t|

si =

W(u, this.Q) if Ti = this.out.Q
W(uj , this.Q) if Ti = this.fj .Q ∧ tj =uj

for i = 0...|t|
C(ti) <: si for i = 1...|t|
p ` new path.C(e) : s0

(T6)

Conversion to class types:
C :: t→ s
C(〈p.C〉) = 〈p〉.C
C(u.f) = W(u,DclType(u, f))
C(s) = s

Mixins:
M :: t→ p
M(〈〉) = [nilc]
M(u.C) = Assemble(M(u), C)
M(u) = M(C(u))

Enclosing object type:
E :: t→ u
E(u.C) = u
E(u) = E(C(u))

Static lookup:
W :: u× (path ∪ T)→ t
W(u, this) = u
W(u, spine.out) = E(W(u, spine))
W(u, path.f) =W(u, path).f if Exists(W(u, path), f)
W(u, path.C) =W(u, path).C if Exists(W(u, path), C)

Program Typing:

M(〈p〉.C) 6= ⊥
p ` C OK

(WF1)
W(〈p〉, T) 6= ⊥

p ` T OK
(WF2)

C = C′ ⇒ T = T′, T f = T
′
f
′

T C(T f) {e; } overrides T′ C′(T
′
f
′
) {e′; } OK

(WF3)

K = T C(T
′′

f
′
) { e; } M(〈p〉.C) = p

Members(p) = T
′′

f
′
,

p ` C OK p.C ` T OK p.C ` T
′
OK p.C ` T OK

p.C ` e : t C(t) <:W(〈p.C〉, T)
K’ = Constr(pj)⇒ K overrides K’ OK

p ` class C extends C {K CL; T f; T
′
v} OK

(WF4)

There is a strict partial order <f on field names such that
∀p, f. spine.f.C f ∈Members(p)⇒ ∀i. fi<f f

There is a strict partial order <c on class names such that
∀p. CT (p) = class C extends C {...} ⇒ ∀i. Ci<cC

CT is acyclic
(WF5)

CT is acyclic
∀p, p′, C : CT (p.C) 6= ⊥, CT (p′.C) 6= ⊥ ⇒

p′′.C ∈M(〈p〉.C) ∩M(〈p′〉.C)

∀p 6= p′ : CT (p) = class C ... {KCL; T f;T
′
v}

CT (p′) = class C′ ... {K′ CL
′
; T

′′
f
′
;T
′′′

v′}
⇒ f ∩ f

′
= ∅, v ∩ v′ = ∅

∀p, C : CT (p.C) 6= ⊥ ⇒ p ` CT (p.C) OK

CT OK
(WF6)

Subtyping:

s <: s (S-REFL)
s <: s′ s′ <: s′′

s <: s′′
(S-TRANS)

M(u) = p CT (pj .C) = class C extends ...C′...

u.C <: u.C′
(S-DECL)

Declared type of member:
DclType(t, m) = T where T m ∈Members(M(t))
Exists(t, m) = (DclType(t, m) 6= ⊥)
Exists(u, C) = (M(u.C) 6= ⊥)

Figure 10. Typing rules

ple based on the definitions in Figures 1 and 2, we would have
W(〈WithNeg.Neg〉.e, this.out.Lit) = 〈WithNeg〉.Lit.

Object types can be converted into class types by means of the
C function as follows: If the object type is just a static path and no
field accesses, then the enclosing object is described by the same
static path with the last element removed, and the class is that last
element (first case). If the object type ends with a field, the field
is replaced by its declared type (DclType is explained below) and
theW is called to normalize the resulting path (second case). If the
type is already a class type, there is nothing to do (third case).

The M function computes the statically known mixin struc-
ture of an object described by a type. The type 〈〉 describes the
root object which has only one mixin, namely the empty class
path: [nilc] (first case). For an object type u.C, u is a type that
describes the enclosing object, hence its mixin list can be recur-

sively computed from the enclosing object. This mixin list and the
class name C are sufficient to compute the mixin list for this type
by calling the Assemble function (second case). Finally, to com-
pute the mixin list of an object type it is first converted to a class
type (third case). For example, with the code in Figure 1-5 the
mixin lists are M(〈Test〉.f1.Neg) = [Base.Exp, WithNeg.Neg]
andM(〈Test〉.f2.Exp) = [Base.Exp, WithEval.Exp].

The DclType function uses M to look up a field or variable
declaration in the mixin list of a given type.
C, E , W , M and DclType depend on each other in non-trivial

ways, so it is not obvious that evaluation of these functions will
terminate. A proof is given in [10]. Informally, the functions termi-
nate because the arguments to recursive calls of W inside W and
DclType are smaller, and the recursive call inside C replaces a field
by its declared type. The latter case is also guaranteed to termi-

nate because programs are well-formed only if there are no cyclic
dependencies on field types, as explained later in this section.

5.3 Subtyping
Subtyping determines the compatibility of values for assignment or
parameter binding. It is defined only on class types but object types
can always be converted to class types via C. The main rule for the
subtyping relation, (S-DECL), defines type compatibility through a
combination of path equality and examination of declared subclass
relationships. The latter is standard in object-oriented type systems:
a class B is a subtype of A if B is derived by subclassing from A.
This traditional definition is modified in vc to take into account
virtual classes: two classes can only be in a subtype relation if they
are contained in the same object; this is a concrete manifestation of
the fact that types depend on the enclosing object. Rule (S-DECL)
ensures that subtypes are always based on the same object type u.
Since an object type describes a path to an object, the enclosing
objects must be identical. This comparison for identical enclosing
object types works because object types are paths in a normalized
form.

5.4 Expression Typing
Expressions are given a type in the context of a static path p which
describes the current object this. As in the operational semantics,
an environment is not needed because method parameters are en-
coded as fields.

The null value (T1) has any meaningful type, whereby “mean-
ingful” is checked by ensuring that the type has mixins. The type of
a sequence is the type of the last expression in the sequence (T2).
Paths (T3) are given a type using the static lookup function W
explained in Section 5.2. As is obvious from the definition, paths
have an object type. Variable lookup (T4) also usesW , but in this
case the type of the variable is passed instead of the variable name.
This is a manifestation of the fact that variables cannot be used in
types. This also means, however, that the type of a variable access
is always a class type, not an object type.

An assignment (T5) is checked by computing a type for the left
hand side, which is known to be a class type by (T4), computing a
type for the right hand side and then checking whether the left side
is a subtype of the right side. If the left hand type is an object type,
it is converted to a class type first.

The rule for object creation (T6) is the most complex, which is
not surprising given that it also handles method calls. First, the type
of the enclosing object u is computed. The statically known mixin
structure of the new object,M(u.C), is computed, and a mixin is
selected via the choice of p′, which is then used to find the construc-
tor signature. Note that all mixins will provide the same signature
due to program well-formedness. The types of the arguments are
computed; their number must be equal to the number of constructor
arguments. The actual set of mixins at runtime may be larger than
the statically known set, but program well-formedness ensures that
the signature of the most specific constructor at runtime is identical
to the one in the statically selected constructor.

To compare the syntactic types specified in the constructor with
the types of the actual arguments, class types si are computed for
every syntactic type in the constructor, including the return type.
Intuitively, the syntactic types Ti must be adapted to the viewpoint
p. To do that, the static lookup functionW is used again. The types
Ti are either of the form this.out.... or this.fj, depending on
whether the argument type comes from the environment or another
argument. (Syntactically, Ti could also have the form this.C′ for
some class name C′, but this type would not be useful because it
would refer to a virtual class of an object that does not yet exist.)

The first case applies to the traditional situation where the type
of the argument is taken from the environment; TestLit in Figure 1

Test ` this : 〈Test〉. M(〈Test〉.buildNeg) = Test.buildNeg
Test ` f2 : 〈Test〉.f2 Test ` f2.zero : 〈Test〉.f2.Lit

Constr(Test.buildNeg) =
ne.Neg buildNeg(out.out.WithNeg ne, ne.Exp ex)

s0 =W(〈Test〉.f2, this.Neg) = 〈Test〉.f2.Neg
s1 =W(〈Test〉., this.out.WithNeg) = 〈WithNeg〉.

s2 =W(〈Test〉.f2, this.Exp) = 〈Test〉.f2.Exp
C(〈Test〉.f2) = 〈NegAndEval〉. <: s1
C(〈Test〉.f2.Lit) = 〈Test〉.f2.Lit <: s2

Test ` new this.buildNeg(f2,f2.zero) : 〈Test〉.f2.Neg

Figure 11. Type derivation for buildNeg(f2,f2.zero) in Figure 5

is an example. In this case, this.out refers to the enclosing object
of the class. The type of this enclosing object is the type of path,
or the object type u. The actual argument type si is then found by
navigating from u into the tail of Ti usingW .

The latter case applies if an argument type depends on the
virtual class of another argument, as for example buildNeg in
Figure 5. In this case, fj is initialized with the value of ej at
runtime. The actual argument type si is then found by navigating
from tj into the tail of Ti usingW . If an argument is used as type
provider for another argument, then the expression for the argument
needs to have an object type. This restriction is enforced by the
condition uj = tj in (T6).

The complete list of argument types si is then checked to be
subtypes of the formal argument types. Finally, the viewpoint-
adapted constructor return type s0 is returned.

Figure 11 shows an example of a non-trivial usage of (T6) in
the example from Figure 5. It has been slightly adjusted to fit to the
formal syntax, see Section 3.3. The example illustrates only the last
step in the typing derivation, the result of sub-derivations has been
inlined. Notice in particular that the type of the expression contains
the information that the result has the family f2.

5.5 Program Typing
In order to separate out the problem of cyclic inheritance relations
and cyclic field type dependencies (the type of a field may depend
on the value of other fields), declared names are partially ordered
such that each of the two kinds of dependencies are known to
be acyclic (WF5). Consequently, cyclic inheritance relations and
cyclic relations via dependent types (which are expressed using
fields) cannot occur. We could relax this restriction without affect-
ing soundness, but with the current strict ruleset it is easy to see that
the type analysis always terminates, without adding special checks
for infinite loops in type computations.

The overall program well-formedness rule, (WF6), requires that
the program is acyclic, that two class declarations of the same class
name have a shared mixin, that field and variable declarations are
unique, and that each class declaration is well-formed.

A class is OK (WF4) if the list of constructor arguments
matches the list of fields in the statically known mixin structure
of the class, if all superclasses are valid, if the type of the construc-
tor expression is compatible to the declared return type, and if all
other mixins that have the same class name have the same construc-
tor signature, see also (WF3). The validity of superclass and type
declarations ((WF1) and (WF2)) is checked using theM andW
functions, which return ⊥ if the class or type, respectively, is not
known to exist in the context p.

Note that (WF4) implies that fields can only be declared in new
class declarations (i.e., if there is no inherited class declaration with
the same name); this restriction is not essential and we could easily
add initialized fields (declared as T f = e) to the calculus which
could be declared in all classes. (In fact, we developed the whole

calculus with initialized and redefinable fields before we decided
to add constructors and let fields be initialized via constructor
arguments.) We have chosen to leave out initialized fields because
they do add a number of details to rules, but do not provide much
additional insight. We could also have allowed field declarations
everywhere and accepted the possibility for additional run-time
NullErr errors due to uninitialized fields, but we felt that the current
strict approach is useful because it illustrates how to statically
ensure that all fields are initialized. Also note that the restriction
on fields does not affect the ability to declare variables and classes
(possibly used as methods) in all class declarations, so there are no
restrictions on ordinary width subtyping in the calculus.

As mentioned, (WF6) requires globally unique member names;
that is, field and variable names must be unique throughout the pro-
gram. This may seem like a serious restriction that could interfere
with separate compilation, but it is in fact just a simple way to em-
ulate an approach which is usable in a full-fledged language and
which does not interfere with separate compilation. In particular,
the gbeta compilation process extends all declared names with a
unique identification of the enclosing class body (i.e., something
that corresponds to the static path to the scope of the declaration).
It is then resolved statically which name declaration each name us-
age refers to, and the name usage is then extended correspondingly.
As a result, if a given object contains multiple members named
m, they will at run-time be distinct members with extended names
p1 m, p2 m, etc., and name usages will use these extended names
for lookups. Hence, field and variable lookup uses early binding,
which is also the desired semantics. In Caesar, such name clashes
are detected and rejected at compile time, so the programmer has
to rename one of the features in case of a clash.

For class or method lookup the desired semantics is late binding,
so in this case the technique is slightly different. (WF6) requires
any two declarations of a class with the same name to have a shared
declaration of that class in their statically known sets of mixins.
This global restriction may seem to interfere with separate compi-
lation. However, it can be removed in a way which is similar to the
one used for members. First, note that in vc it is easy to show that
for a given class name C there must be a unique declaration of C
which is in this sense shared among all declarations of C. In gbeta it
is required that an “introductory” class declaration—i.e., one where
no other declarations of the same class are known statically—is
marked syntactically, not unlike the distinction between virtual
and override methods in C#. Each introductory declaration for
a class is renamed with an identification of its enclosing class body,
just like a member declaration. Each non-introductory class dec-
laration is renamed like a member name usage to have the same
extended name as its introduction. This implies that every class
declaration has one particular introduction, which is resolved stat-
ically. Finally, class name usages are renamed to be like their ex-
tended statically known declarations. As a result, there is no need
for global restrictions, and it is possible for multiple classes with
the same name to coexist in the same object. With respect to bind-
ing time, there is early binding of the choice of class introduction
(class identity), but late binding of the actual value (the dynamic set
of mixins). Our formalization is thus much simpler, but it models
the approach taken in full-fledged languages in a faithful albeit not
always direct manner.

6. Wellformed Heaps and Agreement
The soundness of the operational semantics with respect to the type
system depends upon having a well-formed heap, and agreement
between a value and a type relative to a heap. The rules for heap
well-formedness and agreement are given in Figure 12. Since the
details of these definitions are not required to understand the vc
calculus as such, the remainder of this section can be skipped

Well-formedness:

H(ι)(m) = null
ι.m : T OK in H

(WF-NULL)

H(ι)(m) = ι′

Walk(H, ι′, out) = Walk(H, ι, path) p.C ∈Mix(H, ι′)
ι.m : path.C OK in H

(WF-MEM)

T m ∈Members(Mix(H, ι))⇒ ι.m : T OK in H

ι OK in H
(WF-OBJ)

H(ιroot) = [[⊥ ‖ Croot ‖]]

ιroot OK in H
(WF-ROOT)

∀ι. ι OK in H

H OK
(WF-HEAP)

Agreement:
H, ι0 ` null . vals (A-NULL)

H, ι0 ` ιroot . 〈〉 (A-ROOT)

j = Depth(H, ι0)− |p|
Walk(H, ι0, this.outj .f) = ι H, ι0 ` ι . C(〈p〉.f)

H, ι0 ` ι . 〈p〉.f (A-OTYPE)

p′.C ∈Mix(H, ι) H, ι0 ` Encl(H(ι)) . E(u.C)

H, ι0 ` ι . u.C
(A-CTYPE)

Auxiliary definitions:

Depth(H, ι) =


0, if ι = ιroot

1 +Depth(H, Encl(H(ι)))

Figure 12. Dynamic well-formedness and agreement

by readers who are less interested in how the soundness result is
reached.

A heap is well-formed if all its objects are well-formed (WF-
HEAP). An object is well-formed if all its members are well-formed
(WF-OBJ). An object member is well-formed if its value in the
heap is null (WF-NULL). Otherwise a member m of object ι is
well-formed if the member value ι′ = H(ι)(m) satisfies two
conditions: (1) the enclosing object of the value,Walk(H, ι′, out),
is equal to the objectWalk(H, ι, path) specified by the path in the
declared type path.C; and (2) the mixins of the value,Mix(H, ι′),
include a path ending with the class C. There is a special rule for
well-formedness of the root object because it does not have an
enclosing object.

Type agreement is specified as the agreement of an object at ι
with a type T, relative to a dynamic heap H and a starting point ι0.
The starting point specifies an address in the dynamic heap that is
related to the base of the type. null agrees with all types (A-NULL),
and the root object agrees with the empty object type (A-ROOT).

Rule (A-OTYPE) handles object types, 〈p〉.f. The rules ensure
that the class path p is a prefix of the spine of ι0, so the value j
represents the number of enclosing objects that must be traversed
from ι0 to read an object with the same depth as p. The path
this.outj .f traverses to this object, and then traverses the field list

f. The object ι must be located at the end of this path. In addition,
ι must agree with the corresponding class type.

Rule (A-CTYPE) handles class types, 〈p〉.f.C. It requires that
the mixins of the value, Mix(H, ι), include a path ending with
the type’s class C. It also requires that the actual enclosing object
agrees with the enclosing type.

7. Soundness
The type system of vc is sound in the sense that a well-typed expres-
sion either returns a value that agrees with its type, terminates with
a NullErr, or diverges, but never terminates with a TypeErr. The
soundness result is composed of two formal results: preservation
and coverage. Preservation is the standard theorem which charac-
terizes the result of expressions that are well-typed and evaluate to
a result. Coverage is a new technique for ensuring that errors do not
prevent expressions from evaluating to a result.

Preservation assumes a valid program and heap. Given the static
path p of a class in which an expression e has type t, and the
address ι of an object that agrees with p; if the expression evaluates
to a result r then either the result is NullErr or it is a value that
agrees with t. Preservation also guarantees that the heap is still
well-formed after the execution, and that the current object still
agrees with its type.
THEOREM 1 (Preservation).
2
6664

CT OK
H OK
p ` e : t
H, ι ` ι . 〈p〉
e, H, ι ; r, H′

3
7775⇒

2
6664

H′ OK
H′, ι ` ι . 〈p〉

r = val ∧ H′, ι ` val . t
∨

r = NullErr

3
7775

This theorem only characterizes evaluations that terminate, which
is a natural consequence of using a big-step semantics. Hence
it is slightly weaker than the usual “progress and preservation”
theorems in a small-step semantics, where it can be expressed that
execution of a type correct program will never get stuck even if the
execution continues forever.

Preservation alone does not ensure soundness however, because
an expression may fail to evaluate due to a missing case in the
evaluation rules. We have followed standard practice by including
rules (ER1-4) to cover a variety of error cases in evaluation [14].
The complete list of error rules is given along with the soundness
proof. The second half of our soundness proof ensures that all error
cases have been handled. As a result, the only way an evaluation
can fail to produce a value is if the computation diverges. This
Lemma plays a role similar to the ‘progress’ theorem when using a
small-step semantics.

The purpose of the coverage lemma is to show that the evalua-
tion rules always produce a value unless the computation diverges.
First we define a notion of finite evaluation. If the evaluation ex-
ceeds the bound for finite evaluation, it produces a special termi-
nation value. The evaluation rules for error propagation propagate
this special value.

DEFINITION 1 (Finite Evaluation). Define an evaluation relation
;k as a copy of the rules for ;. Replace each occurrence of ; in
a premise by ;k−1. Replace ; in the conclusion of each rule and
axiom with ;k. Note that the copied axioms are defined for all k.
Add the following axiom:

e, H, ι ;0 KillErr, H (KILL)

The finite evaluation relation ;n returns KillErr if the deriva-
tion is more than n derivations deep. It is thus a finite approxima-
tion of the normal evaluation of an expression. The coverage lemma
states that finite evaluation always produces a value.

LEMMA 1 (Coverage). For all natural numbers n and e, H, ι,
there exists r, H′ such that

e, H, ι ;n r, H′

The coverage lemma ensures that the operational semantics
produces a value even in the face of runtime errors, such as access
to non-existing members, see (ER2) and (ER3) in Figure 8.

A terminating expression is one for which there is an n such that
finite evaluation ;n does not return KillErr. If the expression does
not return KillErr, then it cannot use the KILL axiom. As a result,
the derivation in ;n can be translated to a derivation in ;. Thus
every terminating expression has a corresponding derivation in ;.

Theorem 1 and Lemma 1 ensure the soundness of vc: execution
of well-typed expressions will either produce a value of the correct
type, return NullErr, or else diverge. But evaluation will never
access non-existing fields, variables, or classes, and is never stuck.

Note that all proofs are provided in [10].

8. Related and Future Work
The idea of virtual classes and their different kinds of bindings
stems from BETA [21]. The concept of virtual superclasses was ex-
plored but never fully realized in BETA and has not been supported
in the BETA compiler since the early eighties. Virtual classes in
their general form as defined in this paper have been presented in-
formally in the works on family polymorphism and higher-order
hierarchies in gbeta [8, 9], delegation layers [28], and Caesar [23].
vc represents the core of these languages.

In gbeta, classes can have superclasses of the form path.C,
which enables a new kind of dynamic composition that is not ex-
pressible in vc. However, we have analyzed the required extensions
to vc in order to support this kind of inheritance, and based on
the experience from gbeta it does not seem very hard, although it
does introduce many new details in the rules and proofs (essen-
tially, mixins must be on the form 〈u〉.p rather than simply p, and
each member in an object must have its own enclosing object). We
expect to explore this extension in some future work. Delegation
layers are more dynamic than vc in that they use object-based del-
egation instead of class-based inheritance, which enables polymor-
phic composition of types at runtime. It is also a natural part of our
future work to create a version of vc building on delegation, but in
this case it is not obvious how hard it is. In Caesar, virtual classes
are combined with some aspect-oriented mechanisms which make
the language very suitable for integrating independently-developed
software components. As in vc, both Caesar and gbeta distinguish
mutable variables from immutable fields and use this distinction
during type checking.

Odersky et al have presented a calculus with path-dependent
types called νObj [26]. The most important difference to νObj is
that vc allows virtual classes whereas νObj focuses on virtual types
only. This means that no objects can be created as an instance of a
virtual type (abstract type member) and no implementation can be
specified before the virtual type is final-bound to a concrete type.
Although it is possible to create a class that has a virtual super-class
in νObj, this mechanism cannot express hierarchy specialization
because the virtual superclass can only be replaced by a class that
has exactly the same signature (e.g., does not add methods) [37].
Another difference is that vc has assignments, whereas νObj is
purely functional. On the other hand, νObj is more powerful than
vc w.r.t. the encoding of parametric polymorphism, which is not in
the focus of this work. Finally, since our type-checker is completely
syntax-directed (in particular, we have no subsumption rule), type-
checking in vc is decidable, which is not the case for νObj.

In [25], a language with nested inheritance is described, which
has a number of similarities with virtual classes. An important dif-
ference to their approach is that they use classes in classes rather

than classes in objects. The classes-in-classes model can trivially be
simulated in a classes-in-objects model by using only one instance
of each class containing virtual classes, but the converse does not
hold—e.g., nested classes in [25] cannot access shared state of in-
stances of enclosing classes. For example, in vc every nested class
in Base and its subclasses can access the zero field declared in Fig-
ure 1. The expressive power of having access to the enclosing ob-
ject is also illustrated by our straightforward encoding of methods
by means of classes – accessing an instance variable foo of an ob-
ject in a method bar is encoded as an access to the enclosing object
out.foo in the corresponding class bar. Using nested inheritance,
it would be possible to manually declare an instance variable, say
‘enclosing’, in each nested class and thus emulate the enclosing
object, but it would require significantly more work to create and
administrate such simulated enclosing objects, and it is not obvious
that they could be given all the desired typing properties.

Another consequence is that a given program using nested in-
heritance has a fixed number of class families, whereas a given
program in vc can have an unlimited number of distinct class fam-
ilies because every new family object contains a new class family.
This enables a more fine-grained typing discipline in vc, because
the type system will ensure that all these families are not mixed
up. For example, this could be used to ensure that instances of
Student nested in a given University are used only with the uni-
versity from which they were obtained. With nested inheritance a
simple instanceof test could reveal that all students were in fact
members of the same class family, and hence the connection be-
tween a specific university and the associated students could not be
expressed or enforced.

Family polymorphism by means of passing an instance of the
enclosing class cannot be done directly in a classes-in-classes
model. Instead, the authors of [25] propose the notion of prefix
types to achieve a similar kind of polymorphism. Prefix types are a
mechanism to refer to the (statically unknown) enclosing class of
the class of an object. For example, A[b.class] denotes the enclos-
ing class of the class of the object b.

The nested inheritance language itself is much bigger (and
hence more complex) than our language. For example, there are
seven different syntactic forms of type declarations and type
schemas in [25], whereas the only form of type declaration is
path.C in vc. Yet another difference is that different extensions to
a class hierarchy cannot be combined in the nested inheritance lan-
guage, as illustrated by our example in Figure 4. This is a conse-
quence of the requirement in nested inheritance that the declared
superclass of a class C must be a subtype of the inherited version
of C, i.e., declared superclasses in redefinitions cannot be used to
mix in additional features.

One feature which is well-known from related languages and
calculi (including BETA and νObj) is that of final-bindings. A vir-
tual class/type may be final-bound, which means that the current
value must remain unchanged (e.g., no additional mixins can be in-
cluded). This feature is useful because it provides a lower bound
on the value of a class, which opens more opportunities for assign-
ments to variables having a given virtual class/type as their declared
type. It would hence make sense to add final bindings to vc as well,
but this extension is orthogonal to our work because our focus is
on extensibility and not on genericity. Moreover, many years of
experience with BETA seems to indicate that final bounds are not
that important when initialized immutable fields are available, be-
cause such fields can be used to obtain a lower bound on all virtual
classes in a given object. It is likely that the trade-off is different
in languages like νObj and Scala [27], because many details in the
language design are different and closer to the functional paradigm.

There are a couple of other approaches that widen the express-
ibility of the static type system with respect to collaborating classes

and parametric polymorphism but do not support incremental hier-
archy specification [4, 33, 16].

Thorup proposes a virtual type system for Java [32]. It supports
instantiation of a virtual class and hence late bound classes, but it
does not support virtual superclasses. Furthermore, the type system
relies on dynamic type checks.

There have been a couple of approaches for hierarchy refine-
ment in the context of product lines (e.g., [2, 30]) but polymorphic
usage of a hierarchy variant is not in the focus of these works. It will
be interesting to explore how virtual classes improve the express-
ibility of languages with respect to product lines. Virtual classes are
interesting from a software architecture point of view because they
enable both incremental specification of class hierarchies and com-
position of different extensions to a class hierarchy, a problem that
is hard to solve in conventional object-oriented languages. Hence,
the language constructs in vc are well-suited to implement layered
software architectures like mixin layers [30] or GenVoca [2].

Family classes used as argument types give rise to covariant
typing, which is known to be non-trivial to handle in a type-safe
manner. Other examples of a strict and safe treatment of covari-
ance are the formalization of variant parametric types in [18], and
the inclusion of wildcards into the J2SE 5 version of the Java plat-
form [35]. Note, however, that virtual classes are different from
variant parametric types or parametric types with wildcards, be-
cause those mechanisms do not support family polymorphism, but
they provide a different kind of flexibility through structural equiv-
alence among type applications.

The notion of having a first-class representation of a hierarchy is
also highly relevant to the domain of aspect-oriented programming,
which can be seen as an approach to have multiple cross-cutting
decompositions (that is, hierarchies) of a system [31, 24].

The only prior work related to our coverage lemma that we
know of is a paper by Fisher and Reppy [11]. They also improve on
the traditional approach to proving type soundness for big-step se-
mantics by differentiating diverging expressions from errors. They
use an ‘evaluation height function’, whose definition is similar in
structure to a small-step operational semantics, to count the number
of steps during evaluation. Their soundness proof involves show-
ing that a well-typed term with an evaluation height of n will al-
ways evaluate to a value of the correct type. They define diverging
programs as those for which the evaluation height function is un-
defined, but there is no proof that the evaluation height function
correctly characterizes divergence of the operational semantics. In
our technique, the correspondence between ; and ;k is obvi-
ous by construction, all non-diverging programs have an evaluation
tree because of the error rules, and missing rules are prevented due
to the coverage lemma. Since Fisher and Reppy do not give full
proofs, it is difficult to compare our techniques in detail.

9. Conclusions
We have presented the calculus vc of virtual classes with path-
dependent types, described its dynamic and static semantics, and
proved soundness. The approach to static analysis which was pio-
neered in BETA, made strict and complete in gbeta, and adapted for
Java-like languages in Caesar has thereby been documented, clar-
ified, and characterized as fundamentally sound. Our calculus has
certain uniqueness requirements on declared names, but we have
explained how these restrictions have been lifted in a full-fledged
language at the cost of some extra complexity. All in all, we have
hereby provided a foundation which shows that the widespread im-
age of virtual classes as being inherently unsafe is too pessimistic.

Acknowledgments
We are very grateful to Sophia Drossopoulou and Christopher An-
derson who have been involved in the process at an earlier stage,

and to Gary T. Leavens who helped us explaining several issues
more clearly.

References
[1] K. Barrett, B. Cassels, P. Haahr, D. Moon, K. Playford, and P. T.

Withington. A monotonic superclass linearization for Dylan. In
Proceedings OOPSLA ’96, pages 69–82. ACM Press, 1996.

[2] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin.
The genvoca model of software-system generators. IEEE Software,
11(5), 1994.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings
OOPSLA/ECOOP’90. ACM SIGPLAN Notices 25(10), pages 303–
311. ACM, 1990.

[4] K. B. Bruce, M. Odersky, and P. Wadler. A statically safe alternative
to virtual types. In Proceedings ECOOP ’98. LNCS 1445, pages
523–549. Springer, 1998.

[5] W. Cook. Object-oriented programming versus abstract data types.
In Proc. of the REX Workshop/School on the Foundations of Object-
Oriented Languages, LNCS 173. Springer-Verlag, 1990.

[6] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini.
More dynamic object re-classification: FickleII. ACM Transactions
On Programming Languages and Systems, 24(2):153–191, 2002.

[7] E. Ernst. Propagating class and method combination. In Proceedings
ECOOP’99, LNCS 1628, pages 67–91, Lisboa, Portugal, June 1999.
Springer-Verlag.

[8] E. Ernst. Family polymorphism. In Proceedings ECOOP ’01, LNCS
2072, pages 303–326. Springer, 2001.

[9] E. Ernst. Higher-order hierarchies. In Proceedings ECOOP ’03,
LNCS. Springer, 2003.

[10] E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus.
Technical report, University of Aarhus, Aarhus, Denmark, 2005.

[11] K. Fisher and J. Reppy. Statically typed traits. Technical Report
TR-2003-13, University of Chicago, Chicago, USA, 2003.

[12] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syntax and
Semantics of Java, pages 241–269, London, UK, 1999. Springer-
Verlag.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison Wesley, 1995.

[14] C. A. Gunter. Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press, 1992.

[15] R. Harrejon, D. Batory, and W. R. Cook. Evaluating support for
features in advanced modularization technologies. In Proceedings
ECOOP ’05. Springer, 2005.

[16] A. Igarashi and B. Pierce. Foundations for virtual types. Information
and Computation, 175(1):34–49, 2002.

[17] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM Trans. Program. Lang.
Syst., 23(3):396–450, 2001.

[18] A. Igarashi and M. Viroli. On variance-based subtyping for parametric
types. In Proceedings of ECOOP ’02. Springer LNCS 2374, 2002.

[19] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthesizing
object-oriented and functional design to promote re-use. In
Proceedings of ECOOP ’98, LNCS 1445, 1998.

[20] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object Oriented
Programming in the Beta Programming Language. Addison-Wesley,
1993.

[21] O. L. Madsen and B. MÃ¸ller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Proceedings of
OOPSLA ’89. ACM SIGPLAN Notices 24(10), pages 397–406, 1989.

[22] M. Mezini and K. Ostermann. Integrating independent components
with on-demand remodularization. In Proceedings OOPSLA ’02,

ACM SIGPLAN Notices 37(11), pages 52–67, 2002.

[23] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In
Proceedings AOSD ’03, pages 90–99. ACM, 2003.

[24] M. Mezini and K. Ostermann. Modules for crosscutting models.
In International Conference on Reliable Software Technologies.
Springer LNCS 2655, 2003.

[25] N. Nystrom, S. Chong, and A. C. Myers. Scalable extensibility via
nested inheritance. In Proceedings OOPSLA ’04, pages 99–115.
ACM Press, 2004.

[26] M. Odersky, V. Cremet, C. RÃ¶ckl, and M. Zenger. A nominal
theory of objects with dependent types. In Proceedings ECOOP ’03.
Springer LNCS, 2003.

[27] M. Odersky and M. Zenger. Scalable component abstractions. In
OOPSLA ’05: Proceedings ACM SIGPLAN Conference on Object
oriented programming systems languages and applications, pages
41–57. ACM Press, 2005.

[28] K. Ostermann. Dynamically composable collaborations with
delegation layers. In Proceedings of ECOOP ’02. LNCS 2374,
pages 89–110. Springer, 2002.

[29] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[30] Y. Smaragdakis and D. Batory. Implementing layered designs with
mixin-layers. In Proceedings of ECOOP ’98, LNCS 1445, pages
550–570, 1998.

[31] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. In Proceedings
International Conference on Software Engineering (ICSE) ’99, pages
107–119. ACM Press, 1999.

[32] K. K. Thorup. Genericity in Java with virtual types. In Proceedings
ECOOP ’97. LNCS 1241, pages 444–471, 1997.

[33] K. K. Thorup and M. Torgersen. Unifying genericity - combining the
benefits of virtual types and parameterized classes. In Proceedings
ECOOP ’99, 1999.

[34] M. Torgersen. The expression problem revisited. In European
Conference on Object-Oriented Programming, 2004.

[35] M. Torgersen, E. Ernst, C. P. Hansen, P. von der Ahé, G. Bracha,
and N. Gafter. Adding wildcards to the Java programming
language. Journal of Object Technology, 3(11):97–116, Dec. 2004.
http://www.jot.fm/issues/issue_2004_12/article5.

[36] P. Wadler. The expression problem. Message to java-genericity
electronic mailing list, November 1998.

[37] M. Zenger. Personal communication, 2003.

[38] M. Zenger and M. Odersky. Independently extensible solutions
to the expression problem. Technical Report IC/2004/33, École
Polytechnique Fédérale de Lausanne, 2004.

