
A Meta-Aspect Protocol
for Developing Dynamic Analyses

Michael Achenbach1 and Klaus Ostermann2

1 Aarhus University, Denmark, ma@cs.au.dk
2 University of Marburg, Germany, kos@informatik.uni-marburg.de

Abstract. Dynamic aspect-oriented programming has been widely used
for the development of dynamic analyses to abstract over low-level pro-
gram instrumentation. Due to particular feature requirements in differ-
ent analysis domains like debugging or testing, many different aspect
languages were developed from scratch or by extensive compiler or inter-
preter extensions. We introduce another level of abstraction in form of
a meta-aspect protocol to separate the host language from the analysis
domain. A language expert can use this protocol to tailor an analysis-
specific aspect language, based on which a domain expert can develop
a particular analysis. Our design enables a flexible specification of the
join point model, configurability of aspect deployment and scoping, and
extensibility of pointcut and advice language. We present the application
of our design to different dynamic analysis domains.

1 Introduction

Many dynamic analyses make use of program instrumentation tools to transform
the abstract-syntax tree (AST) of analyzed code. This leads to a tight coupling
between low-level language and analysis design. A designer needs expert knowl-
edge of the language specification, evolution of the language makes analyses
brittle, and the analysis code base includes many instrumentation details [5].

Aspect-oriented programming (AOP) has been used to overcome these prob-
lems [17, 25]. AOP allows high-level abstractions of program instrumentation
using pointcut and advice, and facilitates rapid design of small analysis aspects,
decoupled from language details. However, different dynamic analyses require
different aspect language features and instrumentation techniques. A debug-
ging tool might require a fine-grained instrumentation level (e.g., statement-
based) [19], while a memory profiler might need only object-allocation instru-
mentation [24]. Often, domain-specific aspect languages (DSALs) are built from
scratch or by extensive compiler extensions to fit particular requirements. A
general-purpose AOP language that covers all possible features, however, induces
unnecessary overhead and requires broader expert knowledge than a DSAL.

In object-oriented languages, metaobject protocols (MOPs) have been devel-
oped to access and adapt the language semantics from the programming level
of the language itself [14]. In AOP, meta-aspect protocols (MAPs) have been
suggested, where parts of the language semantics are like in MOPs controlled

through a concrete interface [11]. This enables domain-specific extensions (DSX)
without the requirement of a new compiler or interpreter. However, there exists
no MAP known to the authors that covers the requirements of dynamic analyses.

We present a MAP that focuses in particular on the requirements of dynamic
analyses in the setting of dynamically typed languages. It is based on a load-
time program transformation that inserts hooks for dynamic aspect weaving and
scoping. The join point model is based on a user-defined AST-transformation,
so that every syntactic element can be included as a join point. The language
interface facilitates the configuration of different dynamic deployment methods
(global, per block, per reference) and scoping mechanisms (stack/reference prop-
agation) [4, 6, 21], and the extension of pointcut and advice [1].

We present two DSXs based on our protocol focusing on the requirements of
the domains debugging and testing, respectively. Based on these extensions, we
develop two exemplary analysis aspects with a small code base.

The contributions of this work are as follows:

– We discuss several dynamic analyses that build on AOP. We point out par-
ticular dynamic AOP features that are required in certain analysis domains.

– We present a dynamic meta-aspect protocol that provides direct access to
the aspect language semantics at runtime and allows the configuration of
domain-specific extensions for particular dynamic analysis domains.

– We provide an implementation of our extensible language and evaluate its
applicability by developing language extensions and analysis aspects for the
domains debugging and testing.

We chose Ruby as implementation language, but the design could be applied
to other dynamic languages like Groovy as well. We intend our MAP to be used
for prototyping and developing analyses in domains like debugging and testing,
which are not limited by strict performance requirements, since dynamic AOP
comes with the cost of a certain runtime overhead.

The remainder of this paper is organized as follows: We analyze the require-
ments of dynamic analyses in Sec. 2 and discuss related AOP approaches. Sec-
tion 3 presents the design of our meta-aspect protocol for dynamic analyses. We
evaluate our protocol in Sec. 4 on two example applications, followed by our
conclusion.

2 Motivation

In the following, we analyze the requirements of dynamic analysis regarding
AOP, in order to build a flexible abstraction layer over program instrumentation.
We then discuss related approaches that either lack flexibility or generality.

2.1 Interception Requirements of Dynamic Analyses

Dynamic analyses vary widely in their interception requirements. We structure
the resulting design space in four dimensions: Join point model, aspect deploy-
ment, aspect scope, and pointcut and advice language.

Join Point Model Different analyses require different kinds of access to the pro-
gram structure or execution context in form of join points.3 To analyze perfor-
mance and relation of method calls or to analyze memory consumption, method
execution and object allocation join points are typically sufficient [24]. These
requirements are met by general-purpose AOP languages like AspectJ [13]. How-
ever, more advanced monitoring and debugging tools require instrumentation on
the level of basic blocks [5] or statements like assignment [17]. The debugging
approach of [19] also introduces line number join points. Data-race detection is
based on field access join points [7]. No general-purpose AOP language known
to the authors meets all these requirements.

Aspect Deployment The entity on which an aspect is deployed differs among
many dynamic analyses (e.g., on the whole program, on objects or methods).
Bodden and Stolz suggest dynamic advice deployment (with a global deploy/un-
deploy functionality) and per object deployment as in Steamloom [6] to optimize
temporal pointcuts over execution traces [8]. Toledo et al. also deploy security
aspects in the dynamic scope of application objects [23]. In earlier work, we used
deployment on a block of code like in CaesarJ [4] to separate design changing
aspects used in different test cases [2]. Deployment on a block is particularly
powerful in combination with expressive aspect scoping [21].

Aspect Scope Dynamic analyses often require fine-grained control over the scope
in which an aspect is active to determine what should be and what should not be
analyzed. E.g., omniscient debuggers (that can step backward in time) rely on
vast execution traces. Tanter suggests therefore a notion of partial traces defined
by an expressive scoping strategy [22]. Toledo et al. embed web application code
into the scope of a security aspect that monitors access attempts [23]. A so
called pervasive scope ensures that neither method calls nor references escape
the aspect.

Pointcut and Advice Language Allan et al. introduce binding of free variables in
pointcut expressions for trace matching [3]. Dinkelaker et al. integrate a 3-valued
logic language into the advice language [10], which is advantageous for analyses
that reason with boolean abstractions at runtime like Java PathFinder [26].
Aspects that augment a program for test generation could be extended with
domain-specific constructs for non-deterministic choice [12]. The possibility to
specify new keywords for pointcut and advice enables shorter, analysis-specific
pointcut and advice definitions [1].

Our survey shows that certain classes of analyses require different AOP features.
General-purpose AOP does not solve the problem. If it covered all necessary AOP

3 A join point is a point in the program text (static) or in the execution (dynamic),
where an interception with aspects can take place. A join point model defines the set
of possible join points and also the kind of interaction, e.g., if and how the program
state or control-flow can be changed at the join point and how aspects interact.

features of all analysis domains, it would induce a lot of performance overhead
for some domains. If it was specialized, some domains would lack important
features. Furthermore, the more features are covered, the more expert knowledge
is required by the analysis developer. A DSAL, in contrast, allows for domain-
specific abstractions of the respective analysis domain.

To avoid building a new DSAL for each class of dynamic analysis from
scratch, we need another level of abstraction between language and analysis
domain. This will allow a language expert to tailor a domain-specific extension
that covers the features of a certain analysis type like debugging. Based on the
DSX, a domain expert can rapidly prototype a dynamic analysis that is decou-
pled from host language details.

2.2 Related Work

There have been previous works on extensible AOP languages, but none of them
meets the requirements for dynamic analyses in a satisfactory way. A meta-aspect
protocol (MAP) has been developed for the dynamic language Groovy [11]. The
join point model is configurable, based on the one of AspectJ [13], which, as
illustrated above, is not sufficient for fine-grained instrumentation, e.g., on basic
block level. The MAP facilitates both static and dynamic deployment, but does
not provide configurable and expressive dynamic scoping concepts. There are
also approaches that extend AspectJ by modifying its sources to include more
fine-grained join points [9].

Javana is an instrumentation system for building customized dynamic anal-
ysis tools for the JVM [15]. The domain-specific Javana language, provides an
AOP-like join point model over virtual machine events like object allocation,
class loading, or method compilation. Unlike in our approach, the set of events
and the language are fixed and can neither be extended nor reduced.

There are specialized approaches for particular analysis domains. Nusayr et
al. suggest an AOP framework for runtime monitoring with basic block join
points and pointcuts over time and space [17]. Nir-Buchbinder and Ur present
a framework for concurrency-aware analysis tools [16]. Binder et al. develop
profiler aspects based on the @J language, that supports basic block join points
and inter advice communication [5]. Rakesh develops debuggers with line number
pointcuts [19]. All these approaches lack generality by implementing fixed sets
of features, focusing on the respective analysis domains.

3 The Meta-Aspect Protocol

A meta-aspect protocol (MAP) gives access to the aspect language semantics
through a concrete interface on the program level [11]. From the discussion in
Section 2.1 we can derive that a MAP for dynamic analysis requires variabil-
ity in the following dimensions: We need a flexible join point model that allows
every syntactical element to be a potential join point. We require different dy-
namic deployment methods and expressive dynamic scoping. Finally, pointcut
and advice language should be extensible with domain-specific constructs.

File Loading Interface Runtime Interface

AST-Processor

process x

JP Shadow Type

sexp

reification

meta

Prop Shadow Type

sexp

reification

prop up/down

meta

Language

weaving

prop up/down

context

Object Manager

access data

deploy

Evaluator

pseudo-keywords

Meta PC/Advice

evaluate(jp)

JP/Prop Shadow

Code Snippets

defines

Aspect

Environment

maintains

Aspect

Strategy

JP
defines

calls

references

instantiates

interprets

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. Overview of the language interface and the main components. Courier fonts
refer to actual source methods. Methods in italics are non-modifiable.

We provide a language interface that is instantiated with configurations and
extensions of the aforementioned dimensions. We give an overview of the inter-
face and the main components in Sec. 3.1. The join point model is defined by
an AST transformation, which we explain in Sec. 3.2. Section 3.3 presents our
extensible pointcut and advice language. We illustrate instantiations of different
dynamic deployment methods in Sec. 3.4 and demonstrate the configurability of
our language w.r.t. expressive aspect scoping in Sec. 3.5.

The features of all four dimensions can be selectively combined. We will
instantiate distinguished sets of features to develop two example applications in
Sec. 4. The implementation and all examples shown in this work are integrated
into the TwisteR project, available at http://twister.rubyforge.org.

3.1 Language Interface

Figure 1 gives an overview of the language interface and the main components.
We will briefly discuss each and go into more detail in the following sections. The
interface is separated into a file loading and a runtime interface. The first comes
into play when client code is loaded. The second contains callback methods and
extensible classes used at runtime. Loaded code is transformed by a custom
AST processor (1), which inserts join point and propagation shadows (4). A join
point shadow is a code snippet placed at join points. It guides advice interaction
through the weaving callback (9). Propagation shadows are code snippets that
maintain the scope of aspects. They embed the original code at the point of
insertion (e.g., a method call) and configure aspect propagation before and after

the embedded code with the prop up/down methods. These methods exist once
globally (9) and once for each propagation shadow type (3).

Aspects (7) are associated with scoping strategies (8) and stored in an as-
pect environment (6). The environment is maintained via the global language
interface (9) or through an object manager (10), which associates data with
arbitrary runtime objects using reflection. At runtime, join and propagation
points are reified through meta objects (5), on which context data is accessi-
ble. They are evaluated by meta objects for pointcut and advice (13), guided
by the weaving callback. Pointcut and advice are instantiated through extensi-
ble evaluators (12), which interpret aspects and scoping strategies, for enabling
the embedding of domain-specific pointcut and advice languages. Finally, aspect
deployment is performed by a user-defined method at (11), which modifies the
corresponding aspect environment.

3.2 AST-Based Join Point Model

We represent the AST of a program using S-expressions known from LISP. The
join point model of a custom AOP language is defined by a transformer on this
expression. The custom S-expression processor is part of the language interface
and augments particular AST nodes with join point and propagation shadows
for dynamic weaving and scoping.

S-expressions S-expressions are nested list-based data structures. In our imple-
mentation, we use external libraries for parsing code and translating S-expressions
back to code written in Ruby [18,20]. Each S-expression is represented by a func-
tion call s(...) listing nested elements as arguments. The list consists of a type
symbol, followed by nested S-expressions or primitives like symbols, strings or
numbers. We chose the S-expression representation dependent on the external
libraries – transforming it into an AST data structure would be straightforward.

Processor for Join Point Generation We distinguish two types of join point
shadows: the first type encloses a piece of code, which we will call interceptor
shadow, the second type only attaches statements to a sequence of code, which
we will call companion shadow. While the first can change the entire control
flow, the second can still access and change the state of the enclosing object.

At load-time, an AST-transformation, defined by a custom S-expression pro-
cessor (see Fig. 1 (1)), is applied to the code. The transformer performs a traver-
sal over the AST and calls visitor methods for each node type to insert join point
shadows. Each join point type is represented by a singleton class (see Fig. 1 (2))
that builds the corresponding shadows. At runtime, each join point is represented
by a reified meta object (see Fig. 1 (5)), accessible by pointcut and advice.

Figure 2 illustrates an S-expression processor that integrates method-execution
and if-condition join points, which we will need for our testing application (see
Sec. 4.1). The class CustomProcessor implements visitor methods process x

for each node type x that needs augmentation with join point shadows. The

class CustomProcessor
< JoinPointProcessor

(1) def process if(exp)
oldc = process(exp.shift)
newc = AroundIfCond.sexp(oldc)
return s(:if, newc, process(exp.shift),

process(exp.shift))
end
def process defn(exp)
name = exp.shift

(2) ast context[:name] = name
args = process(exp.shift)
old = process(exp.shift)
before = BeforeMExec.sexp

(3) cap = capture(:result, old)
after = AfterMExec.sexp(capture)

(4) newb = s(:block, before, cap.sexp,
after, cap.var)

return s(:defn, name, args, newb)
end
end

(5) class AroundIfCond
< InterceptorShadowType

def self.reification ast context
{:modifier=>:around}
end
def self.meta
IfConditionJoinPoint
end
end

(6) class BeforeMExec
< CompanionShadowType

def self.reification ast context
{:name=>ast context[:name],

...}
end
def self.meta
MethodExecutionJoinPoint
end
end

Fig. 2. Custom join point processor

singleton classes that create the join point shadows are defined at (5) and (6)
(AfterMExec not shown here). At (1), we augment the if-expression condition
with an interceptor shadow that embeds the original code. We iterate over the
subexpressions using exp.shift and process each recursively.

At method definitions (2), we add the actual method name to the context
stack, which stores context information of each AST node and its parents. The
original method body is transformed to capture its result in a fresh local variable
at (3). The join point shadows are inserted into a sequence before and after the
original method body at (4). The method evaluates to the captured result of the
original block. Connecting the capturing class and AfterMExec enables access
to the result through the reified meta join point.

The classes at (5) and (6) differ in their join point reification. The method
reification defines how to reify the dynamic context at runtime and spec-
ifies how to instantiate the meta object that represents the join point. E.g.,
the method execution join point provides access to the name of the executing
method, retrieved from the context stack. Each join point automatically provides
access to the self reference of the surrounding object.

Hooks for Weaving Each join point shadow defines the interaction with point-
cut and advice. As a default, interceptor shadows introduce around advice appli-
cation and embed the original code to be called if no advice can be applied or if
the proceed method is called. Companion shadows introduce advice like before

tracing = Aspect.new do
before pc{jp.type == :execution} do
puts ”Tracing #{jp.name}”
end
after ...

around pc{jp.type == :if cond} do
puts ”Cond => #{res = proceed}”
res
end
end

Fig. 3. Simple tracing aspect

and after at discrete points in the program, so that the original control-flow is
not modified.

3.3 Pointcut and Advice Language

In earlier work, we developed an extensible pointcut and advice language that
we adopted in the current approach [1]. Figure 3 shows the instantiation of a
simple aspect that traces method execution and condition evaluation. Aspects
are first-class values, their definition is passed as a closure (between do..end)
to the constructor (called by Aspect.new). The closure is interpreted on an
extensible evaluator object (see Fig. 1 (12)) on which pseudo-keywords like pc

are resolved as pretended method calls and property accesses [10]. Behind every
keyword is a meta class that represents the construct, e.g., each pointcut is
reflected by a meta pointcut with an evaluation function that takes the reified
join point as an argument and returns true or false (see Fig. 1 (13)). The
meta classes implement also operators that allow their composition and syntactic
sugar (like the operators &,| and ! to compose pointcuts). The before, around,
and after pseudo-keywords specify advice that will be executed at matching
join points. The pseudo-keyword jp gives access to the reified meta join point.
In [1], we presented extensions of this approach, e.g., the introduction of new
pseudo-keywords, which enables an AspectJ-like syntax, or the simulation of
cflow. Extensions could also comprise constructs that embed temporal logics or
binding of free variables.

3.4 Deployment

In this section, we present different aspect deployment methods and their appli-
cation. We first illustrate a simple global deployment mechanism, which we will
use for our debugging application (see Sec. 4.2). Then we define a deployment
of aspects on object references and deployment in the scope of a block of code,
which we will apply in our testing application (see Sec. 4.1).

Global Deployment Using the global deployment method, all deployed aspects
have a global scope. Figure 4 shows the language interface and sample deploy-
ment. The aspect language Global subclasses AspectLanguage, which manages
the registration of all language components. At (1), we initialize a global aspect
environment that stores a list of deployed aspects (see Fig. 1 (6)). The methods

class Global < AspectLanguage
def initialize

(1) @context = AspectEnvironment.new
end

(2) def processor; CustomProcessor end
def context; @context; end
def weaving jp
context.iterate aspects{ |a|
a.each advice(jp){ |pc, ad|
if pc.evaluate(jp)

(3) yield lambda{ad.evaluate(jp)}
end }}

end
end

(4) def deploy aspect
LANG.context.add aspect
end
def undeploy aspect
LANG.context.remove aspect
end

Example code:
def get sign x
if x>0; ”>0” else ”<=0” end; end
def sign x; puts get sign(x); end

(5) deploy tracing
sign(5)
undeploy tracing

Fig. 4. Global deployment of the tracing aspect from Fig.3

at (2) define the language semantics. They are called during language initializa-
tion and from the join point shadows. We reuse the join point processor defined
in Fig. 2. The weaving is performed at every join point shadow, it takes a meta
join point and an anonymous block as arguments. The block guides advice appli-
cation and is called with yield for each matching advice at (3). This abstracts
as a co-routine over the actual weaving loop of both companion and interception
types. Extensions of the weaving loop could comprise, e.g., advice precedence or
optimizations that omit aspects at particular join points.

The deployment methods are defined at (4), and manipulate the global aspect
environment (the aspect language is accessible via the global constant LANG). We
deploy the tracing aspect from Fig.3 at (5) on a simple example. The application
of the sign method causes tracing of sign and get sign and of the evaluation
of the condition in get sign.

Per Object Deployment The first column of Fig. 5 shows deployment in the
scope of particular objects. Instead of a global aspect environment, we maintain
an environment per object. The objects are augmented using a central object
manager (see Fig. 1 (10)), initialized at (1). It can be accessed using the objects
method of the language. At (2), the weaving process iterates over the object
stored in the target field of the join point, which is, e.g., the receiver object at
method calls or the self reference at an if-condition join point. The deployment
method at (3) creates a new aspect environment and adds it to the corresponding
object. Applying the example at (4) using the tracing aspect from Fig. 3 will
trace the method call to s of date, but no methods from other objects.

Per Block Deployment The second column of Fig. 5 introduces deployment in
the scope of a block of code. Instead of one global environment, an environment
stack is initialized at (5) and maintained with the callback methods at (6). The
deployment method at (7) takes an aspect, a (yet unused) scoping strategy and

class PerObject < AspectLanguage
def initialize

(1) @objects = ObjMan.new(:env)
end
def weaving jp

(2) if objects.augmented?(jp.target)
env = objects.get data(jp.target)
env.iterate aspects{ |a|
... }

end
end
end

def deploy on object, a
(3) env = AspectEnvironment.new

env.add a
LANG.objects.augment(object)
LANG.objects.set data(object, env)
end

Example:
(4) date = Date.new(15, 3)

deploy on date, tracing
puts date.to s

class PerBlock < AspectLanguage
def initialize

(5) @context = [AspectEnvironment.new]
end

(6) def context; @context.last; end
def prop up env
@context.push env
end
def prop down
@context.pop
end
end

(7) def deploy a, s=nil
env = LANG.context.clone
LANG.prop up(env)
LANG.context.add a, s
yield
LANG.context.remove a, s
LANG.prop down
end

Example:
(8) deploy tracing do sign(5) end

Fig. 5. Per object and per block deployment of the tracing aspect

an anonymous block as arguments. It maintains the aspect environment stack
around the call to the block (yield), so that the deployed aspect is active in the
dynamic extent of this block. The example at (8) will apply tracing to everything
in the control flow of the method call sign(5).

3.5 Scoping

Tanter generalized the scope of aspects with a set of propagation or scoping
functions [21]. An aspect can, for example, be propagated over the call stack at
particular join points or into object references to enable a so called pervasive
scoping. Our design facilitates a lightweight integration of some or all of these
scoping mechanisms as we will show in the following. A scoping strategy object
stores the scoping functions and is associated with each aspect (shown in Fig. 5
at (7) as parameter s). It can be accessed at various points during weaving
and propagation. Scoping functions have the same semantics as pointcuts in our
language (see Sec 3.3) and can be extended in the same way. The propagation of
aspects is performed by propagation shadows in the code. Those are inserted like
join point shadows by the AST transformation. A propagation shadow embeds
a piece of code like an interceptor shadow and inserts a propagation expression
before and after the code. Possible expressions are filter(x), where the current
aspect environment is filtered by function x, inject(x, f), where the aspect
environment is filtered by x and stored in the actual join point using field f,

class AroundMExecProp
< PropagationShadowType

def self.reification ast context
{:name => ast context[:name]}
end
def self.meta ...

(1) def self.prop up
filter(:c)

end
end

class CustomProcessor ...
def process defn(exp) ...
return s(:defn, name, args,

(2) AroundMExecProp.sexp(body))
end
end

Example:
s = Strategy.new {

(3) {:c => pc{jp.name != :get sign}}}
deploy tracing, s do sign(5) end

Fig. 6. Scoping strategy over the call stack

and extract(f), where the aspect environment is restored from the actual join
point using field f.

Call Stack Scope Figure 6 defines the propagation of aspects over the call
stack. The singleton class for propagation shadow creation (see Fig. 1 (3)) also
has an associated meta join point for reification. We reuse the processor from
Fig. 2 and the language PerBlock defined in Fig. 5, but augment method bodies
with the propagation expression at (2). The propagation expression automati-
cally calls the context propagation of the language (which we defined in Fig. 5
at (6)), so that the environment stack is extended in the context of the embed-
ded code. Before the embedded code is executed, the propagation at (1) applies
the filter method, which uses scoping function c of the scoping strategy associ-
ated with each aspect in the environment. The example at (3) defines a strategy
that associates with function c a pointcut that prevents propagating the tracing
beyond the dynamic extent of the get sign method.

Delayed Evaluation Scope In object-oriented languages, an object created
in the scope of a dynamic aspect can escape this scope through a reference
(which would be a flaw for a security aspect [23]). The propagation of aspects
into references allows a richer and more pervasive scoping [21]. We reuse the
language defined in Fig. 6, augmenting object creation sites with a propagation
shadow that applies inject(d, result) after the embedded code, which will
store the actual environment in the result (the created object) filtered by d. At
method executions, we use propagation extract(target) to restore the aspect
environment from the receiver. Now we can apply the language in the following
example:

s = Strategy.new do {:d => True} end
deploy tracing, s do; date = Date.new 17,4; end
puts date.to s

We associate the strategy function d with a constant pointcut that always returns
true, which propagates the tracing aspect into the escaping reference date.

class TestLangProcessor ...
def process if(e)
From Fig. 2
end
def process defn(exp)
From Fig. 6
end
end

Example:
def create display color, refresh
log ”Create display”
if color
Creates colored display...
if refresh; # ...with refresh
else; # ...without refresh
end
end
end

Variant without lazy choice:
(1) create display(choice(true, false),

choice(true, false))

Variant with lazy choice:
lazy choice = ExtAspect.new do
around if cond do
case (result = proceed)
when TVTrue then true
when TVFalse then false

(2) when TVUnkn then
choice(true, false)

else result
end; end; end

s = Strategy.new {
{:c => !name(:log)}}}

(3) deploy lazy choice, s do
create display(TVUnkn, TVUnkn)
end

Fig. 7. Aspect for lazy choice in testing with non-determinism

4 Applications

In the following, we present two instantiations of our MAP. They are used for the
development of two different analyses that build on distinguished AOP features.

4.1 Explorative Testing

In earlier work, we presented a test exploration tool that reduces the size of
test cases by applying a non-deterministic choice operator [2]. Such an operator
has also been used for the generation of complex test input [12]. The authors
of [12] suggest the application of lazy choice to avoid a combinatorial explosion
of possible executions. In the following, we instantiate the MAP for integrating
lazy choice with an aspect that delays choices to the evaluation of conditions.

The language components for instantiating the MAP are shown in Fig 7. We
implement a 3-valued boolean abstraction with TVTrue, TVFalse and TVUnkn.
We will reuse the stack propagation from Fig. 6 and the deployment on blocks
from Fig. 5. Due to the direct evaluation of choice, the execution of the example
at (1) will lead to four different execution paths of which two are identical. At
(2), we define a lazy choice aspect that resolves 3-valued logic abstractions at the
evaluation of conditions. Like that, the choice is delayed to the point were the
unknown value flows into a condition. In the scope of the aspect, the test at (3)
will yield only the three distinguished executions. For the sake of brevity, we omit
caching of made choices in this example. With the deployment strategy s, we
optimize the aspect’s scope by avoiding propagation into logging methods of the
program. While we saved only one execution, lazy choice becomes particularly
important when generating more complex test input.

class AtStmt
< CompanionShadowType

def self.reification ast context
result = {:modifier => :before,

:stype => ast context[:stype]}
if ast context[:var]
result[:var] =

ast context[:var]
end
return result
end
def self.meta ...
end

class CustomProcessor ...
def process if(exp)
ast context[:stype] = :if
return s(:block,

AtStmt.sexp, s(:if,...))
end
def process lasgn(exp)
ast context[:stype] = :lasgn
name = exp.shift
ast context[:var] = name
return s(:block,

AtStmt.sexp, s(:lasgn,...))
end
end

tracing = ExtAspect.new do
(1) before stmt & stype(:lasgn) do

puts ”Assignment to: #{var}”
end
end

debugging = ExtAspect.new do
around execution do
puts ”Entering: #{name}”
print ”Step [i|o|t|u]:”
com = gets.chomp

(2) deploy(tracing) if com =˜ /t/
undeploy(tracing) if com =˜ /u/
if com =˜ /o/

(3) undeploy debugging
begin
proceed
ensure
deploy debugging
end
else
proceed
end
end

(4) before stmt ...
end

deploy debugging
Application code...

Fig. 8. Debugging language components and debugging aspect

4.2 Debugging

In the following, we develop a debugging-specific extension of our protocol and
then build a prototype debugger based on it. The first column of Fig. 8 shows
an excerpt of the join point processor. We define a statement-based join point
model that introduces join point shadows, e.g., at assignments, conditions, loop
headers and bodies, method calls, etc. We reuse some language components like
method execution join points defined in Fig. 2, the global deployment mechanism
from Fig. 4 and some simplifying pointcut and advice expressions. We minimize
the reified context information for the sake of brevity, but it is straightforward
to include more data, e.g., about the static nesting of each statement.

The second column of Fig. 8 shows a simple debugging aspect. A statement
advice enables stepping per statement at (4). We reuse the tracing aspect from
Fig 4 extended with statement-based tracing, e.g., variable assignment at (1).
The tracing can be toggled on and off during debugging with a command at (2).
When tracing is off, the tracing aspect is not deployed and does not produce
additional runtime overhead. The around advice intercepts method executions

to facilitate a step over or step into functionality at (3). If the user chooses
step over, the debugging aspect undeploys itself in the dynamic extent of the
method’s proceed.

The example shows the instantiation of a fine-grained join point model that
goes beyond general-purpose AOP. Together with the testing example it demon-
strates the selection and combination of distinct AOP features. We expect that
analyses in other domains like profiling or security can also be rapidly developed
through different instantiations of our meta-aspect protocol.

5 Conclusion

We presented a meta-aspect protocol for tailoring analysis-specific aspect lan-
guages. Our discussion of dynamic analyses showed distinguished requirements
on AOP in different analysis domains. We illustrated a broad spectrum of dy-
namic AOP features that can be selectively combined. Analysis-specific instan-
tiations configure join point model, deployment and scoping, based on which the
actual analysis aspects can be rapidly prototyped. We discussed two example
analyses in the domains debugging and testing to validate the usefulness of the
approach. We demonstrated how to separate the work of language and domain
expert, which will greatly ease the rapid development and the maintenance of
dynamic analyses in different domains.

Acknowledgments

The authors would like to thank Christian Hofer and all the anonymous reviewers
for their insightful comments and suggestions.

References

1. Achenbach, M., Ostermann, K.: Growing a dynamic aspect language in Ruby. In:
Proceedings of the 2010 AOSD Workshop on Domain-Specific Aspect Languages.
ACM (2010)

2. Achenbach, M., Ostermann, K.: Testing object-oriented programs using dynamic
aspects and non-determinism. In: Proceedings of the 1st ECOOP Workshop on
Testing Object-Oriented Systems. ACM (2010)

3. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA ’05. pp. 345–364. ACM (2005)

4. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An overview of CaesarJ.
Transactions on AOSD I, LNCS 3880, 135 – 173 (2006)

5. Binder, W., Villazón, A., Ansaloni, D., Moret, P.: @J: towards rapid development
of dynamic analysis tools for the Java Virtual Machine. In: Proceedings of the
Third Workshop on Virtual Machines and Intermediate Languages. pp. 1–9. ACM
(2009)

6. Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual machine support for
dynamic join points. In: AOSD ’04. pp. 83–92. ACM (2004)

7. Bodden, E., Havelund, K.: Racer: effective race detection using AspectJ. In: Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis.
pp. 155–166. ACM (2008)

8. Bodden, E., Stolz, V.: Efficient temporal pointcuts through dynamic advice de-
ployment. In: Open and Dynamic Aspect Languages Workshop (2006)

9. Copty, S., Ur, S.: Multi-threaded testing with AOP is easy, and it finds bugs! In:
Parallel Processing, 11th International Euro-Par Conference. LNCS, vol. 3648, pp.
740–749. Springer (2005)

10. Dinkelaker, T., Mezini, M.: Dynamically linked domain-specific extensions for ad-
vice languages. In: Proceedings of the 2008 AOSD Workshop on Domain-Specific
Aspect Languages. pp. 1–7. ACM (2008)

11. Dinkelaker, T., Mezini, M., Bockisch, C.: The art of the meta-aspect protocol. In:
AOSD ’09. pp. 51–62. ACM (2009)

12. Gligoric, M., Khurshid, S., Gvero, T., Kuncak, V., Jagannath, V., Marinov, D.:
Test generation through programming in UDITA. In: ICSE ’10. pp. 225–234. ACM
(2010)

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: ECOOP ’01. pp. 327–353. Springer (2001)

14. Kiczales, G., Rivieres, J.D., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, USA (1991)

15. Maebe, J., Buytaert, D., Eeckhout, L., De Bosschere, K.: Javana: a system for
building customized Java program analysis tools. In: OOPSLA ’06. pp. 153–168.
ACM (2006)

16. Nir-Buchbinder, Y., Ur, S.: ConTest listeners: a concurrency-oriented infrastruc-
ture for Java test and heal tools. In: Fourth International Workshop on Software
Quality Assurance. pp. 9–16. ACM (2007)

17. Nusayr, A., Cook, J.: AOP for the domain of runtime monitoring: breaking out of
the code-based model. In: Proceedings of the 4th Workshop on Domain-Specific
Aspect Languages. pp. 7–10. ACM (2009)

18. Parse Tree and Ruby Parser. http://parsetree.rubyforge.org/
19. Rakesh, M.G.: A lightweight approach for program analysis and debugging. In:

Proceedings of the 3rd India Software Engineering Conference. pp. 13–22. ACM
(2010)

20. Ruby2Ruby. http://seattlerb.rubyforge.org/ruby2ruby/
21. Tanter, É.: Expressive scoping of dynamically-deployed aspects. In: AOSD ’08. pp.

168–179. ACM (2008)
22. Tanter, É.: Beyond static and dynamic scope. In: Proceedings of the 5th ACM

Dynamic Languages Symposium. pp. 3–14. ACM (2009)
23. Toledo, R., Leger, P., Tanter, É.: AspectScript: Expressive aspects for the Web.

In: AOSD ’10. ACM (2010)
24. Villazón, A., Binder, W., Ansaloni, D., Moret, P.: Advanced runtime adaptation

for Java. In: GPCE ’09. pp. 85–94. ACM (2009)
25. Villazón, A., Binder, W., Ansaloni, D., Moret, P.: HotWave: creating adaptive

tools with dynamic aspect-oriented programming in Java. In: GPCE ’09. pp. 95–
98. ACM (2009)

26. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: Auto-
mated Software Engineering. pp. 3–11. IEEE (2000)

