
Engineering Abstractions in Model Checking and Testing

Michael Achenbach and Klaus Ostermann
Department of Computer Science

University of Aarhus
Aarhus, Danmark
{ma,ko}@cs.au.dk

Abstract— Abstractions are used in model checking to tackle
problems like state space explosion or modeling of IO. The
application of these abstractions in real software development
processes, however, lacks engineering support. This is one
reason why model checking is not widely used in practice yet
and testing is still state of the art in falsification. We show
how user-defined abstractions can be integrated into a Java
PathFinder setting with tools like AspectJ or Javassist and
discuss implications of remaining weaknesses of these tools.
We believe that a principled engineering approach to designing
and implementing abstractions will improve the applicability
of model checking in practice.

I. INTRODUCTION

All methods of program analysis have to deal with the
curse of Rice’s theorem, by which all interesting properties
of a program are not decidable. Therefore, abstractions
which approximate program entities are necessary to say
anything useful about the program. Abstract interpretation
is probably the best-known theory of approximation [1],
since it gives a precise mathematical framework to design
abstractions that are sound with respect to the operational
meaning of the program. Typically, one can distinguish two
different kinds of abstractions: Over-approximating abstrac-
tions, which are sound (but incomplete) from the verification
perspective, and under-approximating abstractions, which
are sound (but incomplete) from the falsification perspective.
Types in static type checking and predicate abstraction [2]
are examples of over-approximating abstractions, whereas
systematic test input creation methods [3], [4] and test cases
in general are examples of under-approximating abstractions.

In this work, we are interested in user-defined abstractions
of program entities. For example, an abstraction of a list may
only store the size of the list but not the actual list elements.
An abstraction of a file stream for checking exception han-
dling may throw exceptions whenever the file is used instead
of accessing any physical file. An abstraction of an integer
may only record whether the integer is zero or not. We
are not concerned with the soundness of such abstractions
from the perspective of verification or falsification — this
is of course an important and challenging problem, but it
is not in the focus of this paper. Rather, our focus is on
the engineering challenge: How can such abstractions be
programmed and integrated into a software system?

We will analyze this problem in the context of Java
PathFinder (JPF) [5], an explicit state model checker for
Java. Moreover, we apply JPF in the falsification setting,
i.e., for error detection by exploration. Software model
checking has received a lot of attention in the last decade [5],
[6]. Recent developments show, however, that due to the
state space explosion problem and other obstacles, model
checking is not applicable to large programs without the
use of abstractions [5]. We believe that one obstacle to
the practical application of such abstractions is the absence
of a principled engineering approach for their design and
implementation.

In practice, program testing is still the state of the art
of falsification. It is applied in all phases of software de-
velopment and used in unit, integration, and system testing.
In integration testing, mock objects — which are, in our
terminology, user-defined abstractions — are used to abstract
non-implemented or missing program parts [7]. In software
model checking, predefined abstractions for primitive types
(such as abstracting integers to their sign) are well-known.
Recently, also abstractions for some specific reference types
like linked lists or trees have been proposed [8], [9]. Due
to engineering difficulties, however, generalized user-defined
abstractions for complex types (such as classes) have re-
ceived little attention.

The hypothesis of this work is that user-defined abstrac-
tions are both useful and feasible for model checking and
testing. The contributions of our paper are as follows:

• We make the case for applying user-defined abstrac-
tions in testing and model-checking.

• We identify the engineering requirements for integrat-
ing such abstractions into a software project.

• We analyze different modularization technologies,
namely AspectJ, Javassist, and JPF’s Java Model In-
terface, with regard to their applicability to integrate
abstractions. We also identify a list of limitations of
these approaches.

• We discuss potential extensions to these tools that will
make them more applicable to abstraction engineering.

The remainder of this paper is organized as follows: In
Section II, we motivate user-defined abstractions for model
checking and testing and present examples that will be

used throughout the paper. Section III identifies the require-
ments of abstraction engineering, exemplifies how current
engineering methods perform, and compares the strengths
and weaknesses of these methods. Section IV discusses
concepts that address the limitations of the analyzed methods
and presents research challenges that focus on remaining
weaknesses. In Section V, we give an overview of related
approaches, Section VI concludes.

II. THE NEED FOR ABSTRACTIONS

The use of abstractions to deal with the state space
explosion problem in model checking is well-known in
literature. There are other issues which motivate the usage
of abstractions of program entities, such as the usage of
I/O resources like networks or databases, which may not be
available during the analysis. In Test Driven Development,
another concept of abstraction is used to enable integration
testing [10]. So called mock objects are used to simulate
missing program parts at runtime [7], [11]. Typically, mock
classes are alternative implementations of some concrete
classes, either handwritten or generated. They are introduced
into the system under test for simulating behavior, monitor-
ing, or checking of specifications.

While mock objects often are practical ad-hoc solutions,
their expressiveness is limited. Using an explicit state model
checker as test driver would enrich modeling possibilities,
e.g., the behavior of a mock object could be modeled with
non-deterministic choice. The term abstraction used through-
out the paper therefore addresses abstractions in a broader
sense, generalizing both over- and under-approximations as
well as generated or handwritten mock objects. Furthermore,
our notion of abstraction includes also specifications defined
in source entities, e.g., user-defined method preconditions.

We focus on the abstraction of classes, which in Java
excludes primitive types, such as integer and boolean. We
discuss the abstraction of primitive types in Section V.

In the following, we show two examples where user-
defined abstractions are useful for analyzing runtime be-
havior. Later we discuss different engineering methods to
implement and integrate such abstractions.

A. Example: IO Abstractions

The example shown in Figure 1 describes a typical Java
implementation for reading the contents of a file. When
an exception is catched during execution, some logging
data is written to a separate log file using the method
logException. Our first goal is to verify the robustness
of this code regarding exceptions, i.e., that no unchecked
exception can be thrown to the surrounding scope. Our
second goal is to check if all executions obey the IO
stream protocol. As shown in Figure 2, a valid execution
never reaches the error state and ends in the acceptance
state closed. A systematic test of the code in Figure 1
should reveal a possible null pointer exception at the line

c l a s s C l i e n t C o d e {
S t r i n g r e a d F i l e (F i l e f i l e) {

S t r i n g o u t p u t = ” ” ;
S t r i n g l n = n u l l ;
F i l e R e a d e r r = n u l l ;
t r y {

r = new F i l e R e a d e r (f i l e) ;
B u f f e r e d R e a d e r i n =

new B u f f e r e d R e a d e r (r) ;
t r y {

whi le ((l n = i n . r e a d L i n e ()) != n u l l) {
o u t p u t += l n + ”\n ” ;

}
} f i n a l l y {

i n . c l o s e () ;
}

} catch (IOExcep t ion e) {
l o g E x c e p t i o n (e) ;

}
f i n a l l y {

t r y {
r . c l o s e () ; / / (∗)

} catch (IOExcep t ion e) {
l o g E x c e p t i o n (e) ;

}
}
re turn o u t p u t ;

}

void l o g E x c e p t i o n (E x c e p t i o n e){
F i l e l o g F i l e = new F i l e (” e r r o r . l o g ”) ;
. . .

}
}

Figure 1. Sample Java class that reads the contents of a file and logs
exception data to another file

closed

openedstart error

close

read

read

close

read,close

Figure 2. Automaton modelling the open/ close behavior of IO streams

HashSet un ion (HashSet s e t 1 , HashSet s e t 2) {
HashSet r e s u l t = new HashSet () ;
r e s u l t . add Al l (s e t 1) ;
r e s u l t . add Al l (s e t 2) ;
re turn r e s u l t ;

}

HashSet s e t 1 = new HashSet () ;
HashSet s e t 2 = new HashSet () ;
s e t 1 . add (1) ;
s e t 2 . add (2) ;

a s s e r t un ion (s e t 1 , s e t 2) . c o n t a i n s (1) ;
a s s e r t un ion (s e t 1 , s e t 2) . c o n t a i n s (2) ;

Figure 3. Toy example with set union implementation and some test cases

marked with (*), which can occur if FileReader causes
a FileNotFoundException during construction. Be-
cause files can be arbitrarily large and are located on
hard drive, we can test only some suspicious executions
systematically. These include executions where the system
file reader enters a failure state. It is, however, difficult
to put the system file reader into all its possible failure
states. Therefore, a replacement of the class FileReader
should simulate this behavior and integrate the FSM from
Figure 2. We assume that the code used in logException
works correct. The challenge here is to test readFile
independently, i.e., replacements for File or FileReader
used in the context of readFile should not influence the
concrete behavior of logException. We show different
implementations of such replacements in Section III and
discuss the challenge of using different versions of class
File at runtime in Section IV.

B. Example: Finite Set Abstraction

The toy example in Figure 3 shows a set union implemen-
tation with sets in Java. The union method creates a new
result set for each call locally. The example also contains
a selection of functional test cases. A broader verification
of behaviors and, hence, a reduction of the state space can
be achieved by using a finite abstraction for sets containing
{InSet, NotInSet} regarding one specific item [12]. The
partial functional specification can then be defined as:

union(InSet, NotInSet) = InSet

union(NotInSet, InSet) = InSet

union(NotInSet, NotInSet) = NotInSet

Such an abstraction could be implemented as a replacement
of the concrete HashSet class.

III. ENGINEERING ABSTRACTIONS

Every phase in software development like design, imple-
mentation, or testing has corresponding engineering methods
and tools. Currently, there exists no such method that fo-
cuses on the engineering of abstractions for software model
checking. In this section, we analyze the requirements of
such a method and make the case, to which degree current
engineering methods fulfill these. For illustration, we use the
IO example from Section II-A, since this example focuses
on different important aspects like abstractions of different
classes, different abstractions of one class, and modeling
of system classes. In the following subsections, we discuss
how to use AspectJ [13], Javassist [14], and the Java Model
Interface (JMI) of Java PathFinder [15] for abstraction
engineering, and thereafter we compare the methods. In the
following, we define requirements and criteria for abstraction
engineering that address important conceptual and technical
aspects of engineering and design:

Expressiveness denotes to which degree concrete code can
be refined or replaced by abstractions. We distinguish
behavioral replacement, where only the internal be-
havior of methods can be modified, structural refine-
ment, where a class can be refined with additional data,
and structural replacement, where data can also be
removed from a class or where a complete class can be
exchanged.

Scoping defines the level of control that is given to specify
when to use which abstraction or replacement. We
distinguish between global scoping, where only one
replacement can be used at runtime, and local scop-
ing, where time and place of different usages can
be controlled in more detail. In the example from
Section II-A, local scoping would allow the execution
of the client code with an abstraction of File to test
the readFile method, but in the same time use the
original File in the scope of the logException
method. We discuss different variants of local scoping
in Section IV.

Abstraction dependencies arise if abstractions of different
classes access each other using a bigger interface
than visible to the client code. In our example from
Section II-A, e.g., a dependency would arise, if the
abstraction of File would implement a new method
which should be accessible within the abstraction of
FileReader. For type safety reasons, such a depen-
dency must not be visible to the class ClientCode. If
the used engineering method does not support abstrac-
tion dependencies, the structural interfaces of File
and FileReader in the abstraction must equal the
concrete structural interfaces, i.e., all method signatures
must be identical.

Static checking is a process that verifies the consistency
between abstraction and program to analyze. The ab-

sence of static checking could for instance lead to in-
compatible abstractions or missing methods at runtime.
In the example from Section II-A, an abstraction of
FileReader needs to provide the methods close
and read for the class ClientCode to be executable.
An abstraction of File, however, is only accessed
by the abstraction of FileReader. Hence, it only
needs to provide a structural interface visible in the
abstraction of FileReader.

Non-invasiveness states if a modification of the client code
can be avoided. E.g., in the IO example it is not
desirable to modify the code of the class ClientCode
and, e.g., expose the local variable r to enable the in-
troduction of different FileReader implementations.

Traceability denotes if the engineering method provides a
mapping from executed code to source code, i.e., if a
bytecode error trace can be mapped to a corresponding
trace of source artifacts. This increases understandabil-
ity of counter examples and enables further analyses
of the source code as well as visualization of the error
trace using source entities in an IDE.

System library support is a technical criterion that fo-
cuses on the Java programming language. It denotes if
an abstraction technique can manipulate runtime library
and core classes of Java.

Without the use of advanced program transformation tech-
niques, the application of abstractions often requires heavy
design changes. Either abstraction or simulation code is
directly implemented in the class containing the behavior
to abstract, or the client code uses unique interfaces for
concrete and abstraction classes. The introduction of the
corresponding object at runtime, however, might require the
exposure of local variables and other design changes that
are not desirable. In the following, we call this approach the
hand-written approach and compare it after an introduction
to Java PathFinder with AspectJ, Javassist, and JMI.

A. Java PathFinder

Java PathFinder (JPF) is implemented as a virtual machine
for Java and is able to execute analyzed programs with all
language features of Java [5]. JPF has an API for modeling
non-deterministic choice and execution pruning in the source
code of the analyzed program. For example, rather than
assigning a specific integer to a variable, one can specify
a range of integers (say, 1 to 10), and all possible execution
paths resulting from these non-deterministic choices are then
systematically executed. Pruning of executions can be mod-
eled with a special condition in the source code. Dependent
on its evaluation at runtime, the execution path containing
this condition is pruned. The main techniques in JPF for this
purpose are backtracking and state matching. Backtracking
enables resetting the state of the analyzed program to the
next non-deterministic choice point. State matching prevents
the repetition of already analyzed states. JPF can in fact be

c l a s s OpenCloseFSM ex tends FSM {

OpenCloseFSM () {
/ / Add t r a n s i t i o n s o f t h e s t r e am FSM
. . .

}

/ / Proceeds one t r a n s i t i o n w i t h t h e g i v e n
/ / name from t h e c u r r e n t s t a t e t o t h e
/ / n e x t s t a t e . E . g . a c t i o n ” c l o s e ”
/ / p r o c e e d s from ”opened” t o ” c l o s e d ”
void p r o c e e d (S t r i n g a c t i o n) {

super . p r o c e e d (a c t i o n) ;

/ / A s s e r t t h a t t h e ” e r r o r ” s t a t e can
/ / n e v e r be reached .
a s s e r t ! c u r r e n t S t a t e . e q u a l s (” e r r o r ”) ;

}
}

Figure 4. Implementation of the stream FSM from Figure 2

seen as a generalization of traditional testing methods in
the falsification setting [15]. Executing test cases with JPF
has several benefits: Backtracking saves computation time
compared to testing, since in testing each run executes from
the beginning. State matching automatically rules out re-
dundant test cases. Moreover, analyzing program executions
with an explicit state model checker includes different thread
interleavings of multi-threaded applications.

B. AspectJ

Our implementation of the IO example of Section II-A
with AspectJ [13] explores three different variants of intro-
ducing abstractions into client code:

• adding state with inheritance,
• using inter-type declarations,
• mapping additional state to existing objects.

We assume some familiarity with AspectJ pointcut and
advice — for further reading we refer to [16]. In our
examples, we implement the stream FSM from Figure 2
with the class OpenCloseFSM as shown in Figure 4. The
class FSM (not shown here) maintains the state of the FSM
in the field currentState and stores the available states
and transitions. These states and transitions are initialized in
the OpenCloseFSM constructor. The method proceed of
FSM performs one state transition on currentState. The
implementation of proceed in OpenCloseFSM keeps
track if the error state can be reached, e.g., if read is applied
in the closed state.

Inheritance: The example in Figure 5 shows the in-
troduction of state with inheritance. The around advice
intercepts constructor calls of FileReader using the
call pointcut and creates an instance of the new subclass
AbstractFileReader instead. We model the possible
non-existence of the file to read using the non-deterministic

c l a s s A b s t r a c t F i l e R e a d e r
ex tends F i l e R e a d e r {

FSM fsm ;

/ / Dummy c o n s t r u c t o r
p u b l i c A b s t r a c t F i l e R e a d e r (F i l e i n)

throws F i l e N o t F o u n d E x c e p t i o n {
super (i n) ;

}

p u b l i c vo id c l o s e () throws IOExcep t ion {

/ / Models t h e o c c u r r e n c e o f an
/ / e x c e p t i o n d u r i n g c l o s i n g
i f (V e r i f y . g e t B o o l e a n ())

throw new IOExcep t i on () ;

/ / Proceeds t o t h e n e x t s t a t e
/ / o f t h e s t r e am FSM
fsm . p r o c e e d (” c l o s e ”) ;

}

/ / S i m i l a r f o r o t h e r F i l e R e a d e r methods
. . .

}

/ / C i r c u m v e n t s t h e ” F i l e R e a d e r ” c o n s t r u c t o r
F i l e R e a d e r around ()

throws F i l e N o t F o u n d E x c e p t i o n :
c a l l (F i l e R e a d e r . new (. .)) {

A b s t r a c t F i l e R e a d e r r e s u l t = n u l l ;
t r y {

r e s u l t = A b s t r a c t F i l e R e a d e r
. c l a s s . n e w I n s t a n c e () ;

} ca tch (E x c e p t i o n e) { . . . }

r e s u l t . fsm = new OpenCloseFSM () ;

/ / Models t h e e x i s t e n c e o f t h e f i l e
i f (V e r i f y . g e t B o o l e a n ())

throw new F i l e N o t F o u n d E x c e p t i o n () ;

re turn r e s u l t ;
}

Figure 5. Abstraction engineering with AspectJ — adding state with
inheritance

choice command of JPF, Verify.getBoolean(). This
leads to different execution paths of the analysis, some
paths with a FileNotFoundException thrown, oth-
ers without. The new close method models the pos-
sibility of an IOException and implements the state
transition close of the stream FSM. The construction
of AbstractFileReader, however, suffers from the
mandatory call to a super constructor, which should be
circumvented in the first place. This is a technical and not
a conceptual problem of the underlying virtual machine that
executes the code. The Java Virtual Machine does not allow

a s p e c t A b s t r a c t i o n {

/ / Models t h e e x i s t e n c e o f t h e f i l e t o
/ / read i n a new f i e l d o f c l a s s ” F i l e ”
boolean F i l e . e x i s t s

= V e r i f y . g e t B o o l e a n () ;

FSM F i l e R e a d e r . fsm = new OpenCloseFSM () ;

/ / C o n s t r u c t o r mode l ing f i l e e x i s t e n c e
F i l e R e a d e r . new (boolean e x i s t s)

throws F i l e N o t F o u n d E x c e p t i o n {
i f (! e x i s t s)

throw new F i l e N o t F o u n d E x c e p t i o n () ;
}

/ / C i r c u m v e n t s t h e o r i g i n a l c o n s t r u c t o r
/ / w i t h t h e new c o n s t r u c t o r above
F i l e R e a d e r around (F i l e f i l e)

throws F i l e N o t F o u n d E x c e p t i o n :
c a l l (F i l e R e a d e r . new (F i l e))

&& args (f i l e) {
a s s e r t f i l e != n u l l ;
re turn new F i l e R e a d e r (f i l e . e x i s t s) ;

}

/ / C i r c u m v e n t s t h e ” c l o s e ” method
void around (F i l e R e a d e r r e a d e r)

throws IOExcep t i on :
e x e c u t i o n (∗ F i l e R e a d e r . c l o s e ())

&& t a r g e t (r e a d e r) {

/ / Models t h e p o s s i b l e o c c u r r e n c e o f
/ / an e x c e p t i o n d u r i n g c l o s i n g
i f (V e r i f y . g e t B o o l e a n ())

throw new IOExcep t i on () ;

/ / Proceeds t o t h e n e x t s t a t e
/ / o f t h e s t r e am FSM
r e a d e r . fsm . p r o c e e d (” c l o s e ”) ;

}

/ / Around a d v i c e d e m o n s t r a t i n g l o c a l
/ / s c o p i n g : t h e method ” e x i s t s ” i s
/ / o n l y c i r c u m v e n t e d i f t h e c o n t r o l
/ / f l o w i s n o t i n ” l o g E x c e p t i o n ”
boolean around (F i l e f i l e) :

! c f low (c a l l (∗ ∗ . l o g E x c e p t i o n (. .)))
&& c a l l (∗ F i l e . e x i s t s ())
&& t a r g e t (f i l e) {

re turn f i l e . e x i s t s ;
}

/ / S i m i l a r l y f o r o t h e r ” F i l e ”
/ / and ” F i l e R e a d e r ” methods
. . .

}

Figure 6. Abstraction engineering with AspectJ — state introduced with
inter-type declarations

the instantiation of FileReader here, since no null-ary
constructor exists. The reflection implementation of JPF,
however, allows such a call and uses a default initialization
for all fields without calling one of the original constructors.
The inheritance approach is yet restricted to Java classes that
are not defined final. A dependency between different
abstractions is not possible without using inter-type declara-
tions. Therefore, the existence or non-existence of the file to
read must be modeled directly in the around advice of the
FileReader constructor and can not be maintained in an
abstraction of class File, like done in our next example.

Inter-type declarations: The example in Figure 6
shows the aspect code of our implementation using
inter-type declarations and around advice. The definition
FSM FileReader.fsm inserts a new field fsm of type
FSM into the FileReader class. The existence of the file
to read is modeled with a new field File.exists. The
abstractions depend on each other, since the exists field
is read in the constructor around advice. The field exists
is initialized using non-deterministic choice like described
above. Calls to the other methods of FileReader are
circumvented with around advice. Local scoping is needed
in this example, since different instances of class File
are referenced at runtime. The first instance (the formal
parameter of readFile in Figure 1) should be part of the
abstraction, while for the local variable in logException,
the concrete behavior of File should be executed. We
implement such a local scoping using the cflow pointcut
to control the advice of the method exists. Within the
control flow of logException, the normal behavior of
the method exists will be executed, while in all other
cases the around advice will take place. Note that inter-type
declarations in Java library classes are not supported using
the default configuration. The AspectJ compiler must be
reconfigured to build a local copy of the java runtime library
with the options “-inpath rt.jar -outjar modified rt.jar”.

State mapping: Mapping additional state to existing
objects is conceptually not much different to the above
version. Therefore, we do not show detailed code examples
of this variant. Like in the former example, the behavior
of the FileReader class is circumvented with around
advice. State like the stream FSM is kept in a mapping
from FileReader to state. Unfortunately, such a mapping
requires a reference value of FileReader, i.e., one of the
original constructors of FileReader has to be called. This
is an obstacle to circumventing the undesired system call,
similar to the object construction problem in the inheritance
approach.

The usage of AspectJ could be eased by a design change
that makes use of an auxiliary method for creating the object
to abstract:

Reader r = c r e a t e F i l e R e a d e r () ;

/ / A b s t r a c t i o n o f c l a s s ” F i l e ”
c l a s s MyFile {

/ / Models t h e e x i s t e n c e o f t h e f i l e
boolean e x i s t s = V e r i f y . g e t B o o l e a n () ;

. . .
}

/ / A b s t r a c t i o n o f c l a s s ” F i l e R e a d e r ”
c l a s s MyFi leReader {

FSM fsm ;

/ / The c o n s t r u c t o r r e f e r e n c e s t h e t y p e o f
/ / t h e a b s t r a c t i o n c l a s s ”MyFile” o f
/ / ” F i l e ” i n o r d e r t o a c c e s s t h e ” e x i s t s ”
/ / f i e l d . T h i s c o n s t r u c t o r r e p l a c e s t h e
/ / o r i g i n a l ” F i l e R e a d e r (F i l e f)”
MyFi leReader (MyFile f)

throws F i l e N o t F o u n d E x c e p t i o n {
a s s e r t f != n u l l ;

/ / Models t h e e x i s t e n c e o f t h e f i l e
/ / d e p e n d e n t on t h e s t a t e o f ” f ”
i f (! f . e x i s t s)

throw new F i l e N o t F o u n d E x c e p t i o n () ;

fsm = new OpenCloseFSM () ;
}

void c l o s e () throws IOExcep t i on {
/ / Models t h e p o s s i b l e o c c u r r e n c e o f
/ / an e x c e p t i o n d u r i n g c l o s i n g
i f (V e r i f y . g e t B o o l e a n ())

throw new IOExcep t i on () ;

/ / Proceeds t o t h e n e x t s t a t e
/ / o f t h e s t r e am FSM
fsm . p r o c e e d (” c l o s e ”) ;

}

. . .
}

Figure 7. Abstraction engineering with Javassist — abstraction of multiple
classes with dependencies among the replacement classes

The client code has to be modified in this case, so that
both the concrete class and the abstraction class implement
the same interface. This would solve the object construction
problem of the inheritance and state mapping approaches.
It would also ease scoping, since only one around advice is
necessary to instrument this auxiliary method.

C. Javassist

Javassist is a bytecode manipulation tool that can serve as
program transformer or as custom class loader [14]. Unlike
in AspectJ, a static checking of the manipulated constructs
is not performed, i.e., it is possible to modify a class at
load time in a way, such that the class gets incompatible
at runtime. However, class members can be replaced, data

c l a s s M y T r a n s l a t o r implements T r a n s l a t o r {
p u b l i c vo id onLoad (C l a s s P o o l p , S t r i n g n)

throws . . . {
i f (n . e q u a l s (” C l i e n t C o d e ”)) {

C t C l a s s c l i e n t = p . g e t (” C l i e n t C o d e ”) ;
c l i e n t . r e p l a c e C l a s s N a m e (

” j a v a / i o / F i l e ” ,
” MyFile ”) ;

c l i e n t . r e p l a c e C l a s s N a m e (
” j a v a / i o / F i l e R e a d e r ” ,
” MyFi leReader ”) ;

}
}

}

Figure 8. Abstraction engineering with Javassist — translator for substi-
tution

c l a s s M y T r a n s l a t o r implements T r a n s l a t o r {
p u b l i c vo id onLoad (C l a s s P o o l p , S t r i n g n)

throws . . . {
i f (n . e q u a l s (” j a v a . i o . F i l e R e a d e r ”)) {

C t C l a s s a = poo l . g e t (” MyFi leReader ”) ;
a . setName (” j a v a . i o . F i l e R e a d e r ”) ;
a . r e p l a c e C l a s s N a m e (” MyFile ” ,

” j a v a / i o / F i l e ”) ;
}

i f (n . e q u a l s (” j a v a . i o . F i l e ”)) {
C t C l a s s a = poo l . g e t (” MyFile ”) ;
a . setName (” j a v a . i o . F i l e ”) ;

}
}

}

Figure 9. Abstraction engineering with Javassist — translator for loading
a replacement

fields and methods can be removed, complete classes can be
exchanged. Our notion of abstraction with Javassist is to ex-
change a concrete class with an abstraction implementation.
This can be done using two different methods:

• substituting the references to a class in client code,
• loading a different implementation of a class.

Substitution: The application of substitution suits our
IO example best. The implementation shown in Figure 7
introduces two new classes MyFile and MyFileReader
in order to abstract File and FileReader. A dependency
between the abstraction types is introduced with the field
exists in class MyFile. The structural interface of class
MyFileReader declares a parameter of type MyFile
instead of File in order to access the exists field in the
constructor. The class MyTranslator shown in Figure 8
contains an excerpt of the class loading configuration. It can
be used in a Javassist class loader, since it implements the
interface Translator, which is part of the Javassist API.
On load-time, the class File is substituted by MyFile
in the class ClientCode from Figure 1, FileReader

similarly. This substitution is local to class ClientCode,
but could be extended to other classes as well. A local
scoping that uses MyFile in readFile and File in
logException at the same time cannot be achieved that
way.

Loading a replacement: The replacement approach
uses a translator that configures the class loader to load a
different class file as soon as the class file containing the
concrete implementation is requested. This method is not
suitable for our example from Section II-A since the rebind-
ing of system classes is required. However, we give a sketch
of the corresponding translator class, since this approach can
be used for non-system classes in general. The replacement
classes are the same as in Figure 7. The translator is shown
in Figure 9. The abstraction classes MyFileReader and
MyFile replace their concrete counterparts globally. For
the client code to work, their structural interfaces have
to be compatible with the ones of FileReader and
File, i.e., the references to MyFile in MyFileReader
have to be substituted with File. Otherwise, calling the
FileReader constructor in class ClientCode from Fig-
ure 1 would cause a runtime exception, since the static call
site contains a reference to File.

The current implementation of Java PathFinder does not
fully support reflection and class loading functionality of
Java. Therefore, the load-time mechanism of Javassist is not
compatible with analyses using Java PathFinder at present,
so that the compile-time mechanism has to be used. The
GluonJ project is a new aspect-oriented programming system
that extends Javassist [17]. It includes a pointcut language
that provides local scoping. However, GluonJ does only
allow the refinement of existing classes and does not support
the exchange of classes.

D. Java Model Interface

The Java Model Interface (JMI) of Java PathFinder is
the intended mechanism of JPF for modeling Java core and
library classes [15]. By configuring the class loader of JPF,
it can be specified, which implementations should be used
at runtime. In our analysis we implemented the IO example
with a class that has the same interface as FileReader
and that models the test goals shown in Section II-A. After
configuring a Java PathFinder run with this class, we could
successfully reveal the errors discussed in Section II-A.

Similar to Javassist, a static type safety of the modeling
class is not guaranteed. Dependencies between abstractions
that require a change of method signatures are not supported,
since JPF does not provide an API for bytecode manipulation
during class loading and we assume that the bytecode is
compiled by a type-safe Java compiler, which would reject
classes that have a different structural interface compared to
their concrete counterparts.

AspectJ Javassist JMI h.w.
behav. replacement ! ! ! n/a
struct. refinement ! ! ! n/a
struct. replacement no ! ! n/a
global scoping 7 7 n/a
local scoping 7 n/a
abs. dependencies ! ! no n/a
static checking ! no no !

non-invasiveness ! ! ! no
traceability no no no !

system libraries ! (*) ! no

Figure 10. Comparison of engineering methods

E. Comparison

We compare the advantages and disadvantages of the
methods above using the requirements defined in Section III.
Figure 10 provides an overview of our results, which we
explain in the following. The abbreviation h.w. stands for
hand-written solution; the field marked with (*) is explained
later.

AspectJ enables static checking of the replacement behav-
ior, so that all code is guaranteed to execute at runtime. As-
pectJ provides local scoping with cflow and withincode
pointcuts. Pointcuts are encapsulated in aspects, which eases
the application of different test cases with different abstrac-
tions, e.g., by compiling each test case separately with its
corresponding abstraction aspect, or by refining the scoping
in subaspects per test case. Abstraction dependencies are
supported using inter-type declarations. We argue that the
major disadvantage of AspectJ is its limited expressiveness.
The object construction problem described in Section III-B
is a conceptual problem of AspectJ that prevents the removal
of data fields and the circumvention of their construction.
The desired direct exchange of a class with an abstraction
is not supported. Another disadvantage is that a source code
mapping does not exist for aspects or for classes manipulated
by the weaver.

Javassist outperforms AspectJ in expressiveness with sup-
port for exchanging classes. Structural replacement using
an abstraction class with the same structural interface can
easily be implemented. Dependencies between the abstrac-
tions are possible with the replacement strategies shown in
Section III-C. Unlike in AspectJ, replacement classes are
not guaranteed to be type-safe. The scoping of Javassist
is rather global, since the usage of different abstractions
at runtime is not impossible, but conceptually difficult to
implement. The exchanged class could serve as a root in
an inheritance tree that introduces abstraction variants in
subclasses. Even though also Javassist facilitates scoping
constructs like cflow, the instrumentation code is not
encapsulated in aspects and has to be performed separately

for each loaded class. How to manipulate library classes
with Javassist at load-time is currently unclear, since the
class loading mechanism that enables these manipulations
does not work in our experimental setup due to the missing
reflection support of JPF explained in Section III-C.

The Java Model Interface of JPF is comparable to a class
loading mechanism, but unlike in Javassist, dependencies
between different abstractions are not supported, since ab-
straction classes are forced to have the same interfaces as
the concrete classes to replace. There is no local scoping
that would facilitate the usage of more than one abstraction
at runtime. Like Javassist, JMI laks static checking. Even
though the method comes along with JPF, counter examples
do not map back to the exchanged but to the original source
entities.

The characteristics of the hand-written solution are as
expected opposed to the other methods in our experiment. A
discussion of the requirements expressiveness, scoping and
abstraction dependencies is irrelevant, since these require-
ments highly depend on the invasiveness of the approach.
Enabling an analysis setup with abstractions, leads to design
changes like the introduction of common interfaces. Local
scoping leads to source modifications like the exposure
of local variables. A manipulation of library code is not
possible, but opposed to the other methods, the hand-written
solution preserves traceability.

F. Automation

All presented approaches require substantial manual work.
Several of the methods have room for a semi-automatic
solution. In the following we give a sketch of automation
possibilities, however, a detailed analysis of such approaches
is future work. A skeleton of an abstraction class could be
generated from the structural interface of a concrete class.
Then, a programmer could chose between default configura-
tions and user-defined configurations. Method defaults could
be, e.g., exploring all possible exceptions or returning a sub-
set of possible return-values using non-deterministic choice.
The configuration could also be acquired from documen-
tations that make use of the Java Modeling Language [18].
E.g., executable specifications maintained in so called model
variables could be used to generate an abstraction class that
explores these specifications.

IV. DISCUSSION

None of the engineering methods analyzed in Section III
is really satisfactory from the perspective of abstraction en-
gineering. In this section we would like to discuss the main
problems to which more engineering support is required.
The issues discussed here can hence be seen as a challenge
problem to the tool designers.

None of the approaches we discussed is well-suited to
replace families of collaborating classes (such as File
and FileReader) by an abstraction thereof. Ideally,

we would like to write classes AbstractFile and
AbstractFileReader which are statically verified to
have the same structural interface as their concrete counter-
parts. This would require some form of structural subtyping
or a form of nominal subtyping where a subtype of a class
can be created without inheriting its implementation, such
as in the work by Ostermann et al [19], [20].

Furthermore, it would be desirable if the abstractions can
have both wider and smaller interfaces than their concrete
counterparts. AbstractFile could have methods not
present in File, but accessing these additional methods
induces a covariance problem which calls for a notion of
class families that can be refined simultaneously [21]. It also
frequently occurs that some of the methods are “private”
within the class family, i.e., only called within the classes
that are abstracted, and then it should not be necessary to
provide these methods in the abstracted classes.

Approaches such as classboxes [22] or higher-order hi-
erarchies [21] are not a solution to this problem, since
they require that the simultaneous refinement of a family of
classes must be anticipated in the design of the application.

These problems become even worse if one considers the
possibility of sophisticated local scoping strategies, where
multiple versions of the same class can co-exist in the
same running program. If the interface of the abstracted
classes is not exactly identical to the concrete classes, then
typing problems arise if different versions of the same
class are mixed. It would be desirable to either check that
different families are never mixed (requiring a novel form
of family polymorphism [23]), or to have exact control over
what happens when different families meet, e.g., implicit
conversions to the most specific common abstraction. This
would require the abstractions to be organized in a lattice,
where the “join” of two abstractions always exists.

Scoping itself can also take multiple forms: Lexical
scoping, temporal scoping, thread-local scoping, scoping
determined by the heap structure, etc. In principle, AspectJ
provides a powerful scoping construct with its rich pointcut
language, but pointcuts are only applicable to advice, but not
to structural changes of classes. More research is needed on
how to reconcile sophisticated scoping with the possibility
to make structural changes to classes and types.

V. RELATED WORK

In the following, we give an overview of current applica-
tions of AspectJ in testing [24], [25], [26] and describe the
contributions of the Bandera toolkit to abstraction engineer-
ing [27].

AspectJ in Testing: AspectJ [13] has several applica-
tions in testing [24], [25], [26]. Laddad suggests the use
of AspectJ to enable testing of private data with privileged
aspects, monitor runtime behavior during testing, or use
aspects for error reporting [26]. Lesiecki and Jeffries present
several examples on the use of AspectJ to introduce mock

objects into the system under test saving invasive code
modifications and heavy design changes of client code [24],
[25]. Unlike these approaches, our research focuses on
abstraction engineering in general for testing and model
checking. We unify the notion of abstraction in model
checking and the concept of mock objects in testing and
analyze the general engineering requirements of both. Using
an explicit state model checker as test driver extends also
the expressiveness of abstractions and specifications used in
testing, e.g., by modeling with non-deterministic choice. We
do not restrict our research to one tool, but analyze several
program transformation methods and show their weaknesses
regarding abstraction engineering.

Bandera: The Bandera toolkit is an abstraction and
slicing tool for software model checking that enables the
extraction of finite state automata of Java programs [27].
It provides interfaces to several model checkers including
Java PathFinder. Bandera focuses on verification and allows
sound abstractions of primitive values like the abstraction
of signs for integers [12]. In its latest release, it does not
cope with all Java language features. Unlike the Bandera
toolkit, our approach focuses on abstractions of classes in an
object oriented language. With Bandera, only the abstraction
of primitive types and primitive class members is possible.
Moreover, Bandera builds on top of the Soot framework [28],
which offers a complex API for bytecode manipulation. We
believe, however, that the maintainability of an abstraction
engineering tool relies highly on the complexity of the un-
derlying back-end, for which tools like AspectJ or Javassist
are better qualified. There are several approaches in literature
that focus on the abstraction of a specific class of reference
types, like linked lists or trees [8], [9]. However, these
approaches focus on implications of the concepts and not
on the usability in practice.

VI. CONCLUSION

We illustrated in our work how useful and feasible user-
defined abstractions can be integrated into software systems
in order to facilitate the application of model checking and
to extend the modeling possibilities of common testing.
We identified problems with engineering and design as the
main obstacles for the application of such abstractions. Our
analysis of current engineering methods showed to which
degree these methods fulfill the requirements of abstraction
engineering. Our comparison showed, however, that neither
of the approaches is really satisfactory. We discussed how
to solve the present weaknesses and addressed the tool
developers with new challenges on extensions of the current
tools. In our future work, these extensions will enable the
design of a principled abstraction engineering approach,
which will significantly increase the applicability of model
checking in practice.

REFERENCES

[1] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages. Los Angeles, California: ACM, 1977, pp. 238–
252.

[2] W. Visser, S. Park, and J. Penix, “Using predicate abstraction
to reduce Object-Oriented programs for model checking,” IN
PROCEEDINGS OF THE 3RD ACM SIGSOFT WORKSHOP
ON FORMAL METHODS IN SOFTWARE PRACTICE, pp.
3—12, 2000.

[3] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed
automated random testing,” SIGPLAN Not., vol. 40, no. 6,
pp. 213–223, 2005.

[4] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit
testing engine for c,” in Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of soft-
ware engineering. Lisbon, Portugal: ACM, 2005, pp. 263–
272.

[5] W. Visser, K. Havelund, G. Brat, and S. Park, “Model check-
ing programs,” in Automated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International
Conference on, 2000, pp. 3–11.

[6] P. Godefroid, “Model checking for programming languages
using VeriSoft,” in Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages.
Paris, France: ACM, 1997, pp. 174–186.

[7] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock
roles, not objects,” in OOPSLA ’04: Companion to the
19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications. ACM
Press, 2004, pp. 246, 236.

[8] S. Khurshid, C. Pasareanu, and W. Visser, Generalized sym-
bolic execution for model checking and testing, 2003.

[9] S. Anand, C. S. Psreanu, and W. Visser, “Symbolic execution
with abstraction,” Int. J. Softw. Tools Technol. Transf., vol. 11,
no. 1, pp. 53–67, 2009.

[10] K. Beck, Test Driven Development: By Example. Addison-
Wesley Professional, Nov. 2002.

[11] T. Mackinnon, S. Freeman, and P. Craig, Endo-testing: unit
testing with mock objects. Addison-Wesley Longman Pub-
lishing Co., Inc., 2001, pp. 287–301.

[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Psreanu, Robby, and H. Zheng, “Bandera: extracting finite-
state models from java source code,” in Proceedings of
the 22nd international conference on Software engineering.
Limerick, Ireland: ACM, 2000, pp. 439–448.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of AspectJ,” in Proceed-
ings of the 15th European Conference on Object-Oriented
Programming. Springer-Verlag, 2001, pp. 327–353.

[14] S. Chiba, “Load-Time structural reflection in java,” in
Proceedings of the 14th European Conference on Object-
Oriented Programming. Springer-Verlag, 2000, pp. 313–336.

[15] “Java PathFinder,” http://javapathfinder.sourceforge.net/,
2005.

[16] “Aspectj documentation,” http://www.eclipse.org/aspectj/doc/
next/, 2009.

[17] “Gluonj,” http://www.csg.is.titech.ac.jp/projects/gluonj/,
2005.

[18] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards, “Model
variables: cleanly supporting abstraction in design by con-
tract: Research articles,” Softw. Pract. Exper., vol. 35, no. 6,
pp. 583–599, 2005.

[19] K. Ostermann, “Nominal and structural subtyping in
component-based programming,” Journal of Object Technol-
ogy, vol. 7, no. 1, pp. 121 – 145, 2008.

[20] K. Ostermann and M. Mezini, “Object-oriented composition
untangled,” in Proceedings of ACM 16th Annual Conference
on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA ’01), Tampa, Sigplan Notices, Vol. 36,
No. 10, 2001.

[21] E. Ernst, “Higher-order hierarchies,” in Proceedings ECOOP
2003, ser. LNCS 2743, L. Cardelli, Ed. Heidelberg, Ger-
many: Springer-Verlag, Jul. 2003, pp. 303–329.

[22] A. Bergel, S. Ducasse, and O. Nierstrasz, “Classbox/J: con-
trolling the scope of change in java,” in Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. San
Diego, CA, USA: ACM, 2005, pp. 177–189.

[23] E. Ernst, “Family polymorphism,” in Proceedings ECOOP
2001, ser. LNCS 2072, J. L. Knudsen, Ed. Heidelberg,
Germany: Springer-Verlag, 2001, pp. 303–326.

[24] N. Lesiecki, “Test flexibly with AspectJ and mock objects,”
http://www.ibm.com/developerworks/java/library/j-aspectj2/,
2002.

[25] R. Jeffries, “Virtual mock objects using AspectJ with JUNIT,”
http://www.xprogramming.com/xpmag/virtualMockObjects.
htm, 2002.

[26] R. Laddad, AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications, Jul. 2003.

[27] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.
Psreanu, and H. Zheng, “Tool-supported program abstraction
for finite-state verification,” IN PROCEEDINGS OF THE
23RD INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, pp. 177—187, 2001.

[28] R. Valle-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot - a java bytecode optimization frame-
work,” in Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research. Missis-
sauga, Ontario, Canada: IBM Press, 1999, p. 13.

