
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–6 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

On aspectualizing component
models

Roman Pichler1,∗, Klaus Ostermann2,† and Mira Mezini2,‡

1 Siemens AG, Corporate Technology, D-81730 Munich, Germany
2 Darmstadt University of Technology, D-64283 Darmstadt, Germany

SUMMARY

Server-side component models such as Enterprise JavaBeans (EJB) add powerful
abstractions to the bare “business objects” layer in order to support a clean separation
of server-side application logic from other concerns such as distribution, security,
transaction management and persistence. An improved separation of concerns is also
the main goal of aspect-oriented programming (AOP). This paper compares the two
approaches and reasons about the possibility of substituting (parts of) component
models using aspect-oriented programming mechanisms. We conclude that AOP is
a promising approach to eliminate important shortcomings of the container-based
component approach. However, our analysis of concrete aspect-oriented languages shows
that current AOP technology is not yet mature enough to supersede component models.

key words: Aspect-Oriented Programming, Components, EJB

1. Introduction

Separation and modularization of concerns is an old and fundamental principle of software
engineering, which has given rise to different forms of decomposition approaches at different
stages in the history of programming languages and software engineering, with object-
oriented decomposition being just the most recent mainstream approach. However, with object
orientation finding its way into the construction of enterprise applications in the last decade,
its restrictions especially with respect to modularizing infrastructural services such as security,
transactions and persistence became evident.

In the terminology of aspect-oriented software development [9], infrastructural services as
those mentioned above are called crosscutting concerns to indicate that given a good class-
based modular structure of some base application, the implementation of these concerns cannot
be encapsulated in a single module. Instead, the implementation is spread around several

∗E-mail: roman.pichler@siemens.com
†E-mail: ostermann@informatik.tu-darmstadt.de
‡E-mail: mezini@informatik.tu-darmstadt.de

Copyright c© 2000 John Wiley & Sons, Ltd.

2 R. PICHLER K. OSTERMANN M. MEZINI

modules of the base application. Aspect-oriented software development is a new programming
paradigm, which aims at providing explicit linguistic means for modularizing crosscutting
concerns. In AspectJ [2], for instance, an aspect is a dedicated module that captures a
crosscutting concern separate from the base objects by basically specifying what points in
the execution of the base objects are affected by the crosscutting concern and how they should
be affected. Given the base objects and aspect definitions, a weaver composes the different
modules into a whole.

However, the aspect-oriented programming paradigm is not the only approach to modularize
crosscutting concerns. Component models such as Enterprise JavaBean [16] try to achieve the
same goal. The rationale underlying the programming model of the component technologies is
to relieve the business logic developer from having to implement and manage infrastructural
services. Component models achieve this by allowing to declaratively associate services with
components at deployment time rather than to explicitly address them in the component
implementation at design time.

Despite the commonalities of aspect-oriented programming and component models, an
effort to put both trends into a common reference frame is still missing. This paper is a
modest effort to fill this gap. To make things more concrete, we mainly focus on one aspect:
authorization as an important security aspect. In a first step, we analyze how the Enterprise
JavaBeans (EJB) technology [16] encapsulates infrastructural services and applies them to a
base application, highlighting the strengths and the problems of Sun’s server-side component
model. Our observations also apply to other services and to other component models, such
as the Corba Component Model (CCM) [14] or COM+ [6] due to the fact that all three
component models are container-based.

In a second step we investigate how AspectJ as a representative of a linguistic AOP tool can
be used to modularize the infrastructural services provided by the EJB component model. Later
in the paper we explain to which extent our findings about AspectJ apply to other approaches of
aspect-oriented software development available today. Our assumption is that aspect-oriented
technology can at least partially take on the responsibilities fulfilled by a component model. We
envision the next generation of component models to be a set of reusable aspects that can be
easily attached to base objects viz. components. Our observations of the way AspectJ supports
separation of crosscutting concerns shows that current AOP languages fail to adequately
aspectualize component models. They also allow us to put forward some important conceptual
prerequisites that next generation aspect-oriented languages should satisfy.

To summarize, the contribution of this paper is twofold. First, it provides an analysis of how
component models and AOP languages help to modularize crosscutting concerns, highlighting
the problems of both technologies and putting them in a common frame of reference. Second,
we outline requirements to be met by future aspect-oriented languages if they want to be a
key technology for developing the next generation of enterprise applications.

The remainder of this paper is organized as follows. Sec. 2 emphasizes the merits and flaws of
the container approach in separating crosscutting infrastructural concerns. Sec. 3 outlines the
merits and drawbacks of AspectJ as a representative of AOP languages. Sec. 4 puts forward
requirements to be met by future aspect-oriented languages. Sec. 5 summarizes the work and
outlines areas of future work.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 3

Figure 1. EJB Sample Application

2. Enterprise JavaBeans

2.1. Modularizing Crosscutting Concerns by the EJB Container

An EJB component is hosted by a container, which acts as the bean’s runtime environment
and provides the following infrastructural services to it: Resource and life cycle management,
concurrency, security, persistence, transactions and remoting [16]. In order to be hosted by
a container, a bean has to comply with certain idioms and programming restrictions. A
deployment descriptor allows associating the infrastructural services with the beans hosted
by the container in a declarative way at deployment time. By separating the business logic
provided by an EJB from services like security or transactions, the EJB component model
tries to encapsulate the infrastructural services (which are primary examples of crosscutting
concerns) within the container.

Let us have a closer look how the EJB container encapsulates crosscutting concerns by means
of the sample application in Fig. 1 that illustrates the association between an EJB and
the container∗. The EJB OrderBean provides order processing capabilities and exposes two

∗For a more detailed account of the EJB container responsibilities, see [16].

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

4 R. PICHLER K. OSTERMANN M. MEZINI

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>Order</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>customer</role-name>
<method>
<ejb-name>Order</ejb-name>
<method-name>placeOrder</method-name>

</method>
</method-permission>

Figure 2. An EJB Deployment Descriptor Fragment

interfaces to Client, OrderHome and Order, which allow the Client class to create an EJB
instance, respectively to call business methods on it. OrderHome, Order and OrderBean have to
be created by the application developer. The class OrderBean implements the business logic. It
does not, however, implement the interfaces exposed to the client. The OrderHome and Order
interfaces are implemented by the class EJBContainer, which schematically represents the
EJB container.

When a client calls a business method on the component interface of an EJB, e.g.,
placeOrder() and cancelOrder() of OrderBean, the call is replaced by a call to the
corresponding proxy object that is provided (generated) by the container. The proxy object
informs the container about every call to the EJB. The container intercepts the method calls
to the EJBs it hosts and applies additional actions that have to be performed, e.g., executing
authorization checks, before the method calls are actually dispatched to the beans. In order
to ensure that this mechanism works, the bean developer has to obey a number of idioms. For
example, object creation has to be delegated to the container (which returns a corresponding
proxy object), and a bean must not attempt to pass this as an argument or method result
but retrieve its corresponding proxy from the container.

Infrastructural services provided by the EJB container are associated with bean instances
of type Order by editing the bean’s deployment descriptor. A deployment descriptor is an
XML file that makes it possible to configure EJBs declaratively. The EJB container reads
the content of the deployment descriptor at deployment time and generates the code that
applies the appropriate infrastructural services whenever the container intercepts a request to
an EJB. For instance, we can specify authorization constraints for order beans by setting the
appropriate values in the relevant section of the bean’s deployment descriptor, cf. Fig. 2.

The deployment descriptor fragment in Fig. 2 states that only the roles admin and customer
are allowed to execute methods on Order beans. The role admin is allowed to execute any

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 5

Figure 3. Simplified Interceptor Framework of the jBoss Container

method, while customer is only allowed to access placeOrder. Whenever the container
intercepts a call to one of the business methods of the component interface Order, it checks
the access rights specified in the deployment descriptor. If the client is authorized to access
the method requested, the container executes the corresponding method on the associated
OrderBean instance. Otherwise, it aborts and throws an exception back to the client. Notice
that the EJB deployment descriptor only supports a role-based authorization model.

Even though encapsulating services in dedicated classes and adding infrastructural services
to a framework without affecting existing code is a prime example of the application of the
interceptor pattern [15], the EJB specification [16] does not define any restrictions on the
internal structure of the container. The container vendor is responsible for the number of
and the dependencies between the container classes. Nevertheless, the design of some EJB
containers does make use of the interceptor pattern. The open source application server jBoss
[8], for instance, implements the interceptor framework shown in Fig. 3.

In Fig. 3, a client issues a request to OrderBean. Before the method call is dispatched to
the EJB, a number of interceptors intercept the call and apply infrastructural services. For
instance, SecurityInterceptor executes authorization checks (based on the information in
the bean’s deployment descriptor). jBoss requires that interceptors implement the interface
Interceptor. This allows extending the container by adding custom interceptors. This
solution, however, is not standardized by the EJB specification [16].

Using the interceptor pattern enables the EJB container to transparently add infrastructural
services such as authorization checks to EJBs. Since infrastructural services are associated with
an EJB via a deployment descriptor, the implementation of OrderBean in Fig. 3 does not have
to be aware of any authorization checks or contain any authorization logic. This leads to a
separation of business logic from infrastructural concerns. The EJB container thus fulfills a
similar role as an aspect in AOP [3, 7].

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

6 R. PICHLER K. OSTERMANN M. MEZINI

Even though an EJB container like the jBoss application server uses interceptors, the EJB
specification treats the container as a black box. The specification does not allow configuring
interceptors or adding custom interceptors and extending the container functionality.† The
consequence of this approach is that the EJB technology is fairly easy to use, but the approach
also imposes some important limitations.

2.2. Advantages

Every container compliant to the EJB specification offers the same set of infrastructural
services. A standard set of services allows easy reuse and the integration of off-the-shelf
components. An EJB can thus be easily deployed in various containers produced by different
vendors supposing the bean uses only standard interfaces.

Infrastructural services can be associated with EJBs via a declarative mechanism at
deployment time. A dedicated entity, the deployment descriptor, associates the services with
a bean. No source code is required, neither container nor EJB source code. In fact, EJBs are
deployed as byte code. Since the deployment descriptor is an XML file, a deployer deploying
an EJB and associating services with the bean does not have to be able to understand any
Java.

2.3. Problems

The EJB component model’s approach to modularize crosscutting concerns using a container
has the following drawbacks:

2.3.1. Lack of Tailorability

The EJB specification [16] does not provide a mechanism to configure the container or any of
its infrastructural services. The EJB specification also falls short to define how new services
can be added to the container. As a consequence, a developer can either use the services
provided by a commercial EJB container or decide not to use them at all. We call this lack
of tailorability. The EJB component model regards the container as a black box and assumes
that the container transparently encapsulates crosscutting concerns. The drawbacks of this
approach are illustrated below.

Suppose we want to change the sample application introduced in Sec. 2.1 so that orders
can only be placed by certain users. To meet the requirement, we have to employ user-
based authorization, which is not provided by the EJB container. Since the EJB specification
does not provide a way to extend the container and add a new authorization service, we
have to explicitly address authorization in the EJB implementation (which, in fact, the EJB
specification discourages to do).

†Notice that another J2EE specification, the Servlet specification 2.3 [17], does provide a standardized way to
add new interceptors to the Servlet Engine, which acts as a web container, using the javax.servlet.Filter
interface. Developers are therefore able to extend the web but not the EJB container.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 7

public class OrderBean implements SessionBean {
public void placeOrder() throws EJBException, SecurityException {

if (EJBContext.getCallerPrincipal.getName.equals("Mr. Jones"))
//process the order

else
throw new SecurityException("Access denied. Unauthorized user");

}
}

Figure 4. EJB and User-based Authorization

In the code fragment in Fig. 4, a user-based authorization check is executed in
OrderBean.placeOrder(). The method uses the EJBContext interface provided by the EJB
container to obtain the client’s principal. Only if the client request is associated with the user
Mr. Jones, the order is placed. Authorization is thus hard coded in the bean.

Business and security logic are tangled in Fig. 4, and the two distinct concerns are
mixed. As a consequence, an application developer has to take care of authorization checks
while writing business logic. If other methods on OrderBean also need to employ user-
based authorization, the security logic is spread over several places. This leads to poor
understandability, maintainability and reusability of the security policy implementation.

Not being able to configure the container and its services leads to another drawback: Even
if the application in Sec. 2.1 requires only security and transaction-related services, we get all
the other container services as well. Since it is impossible to leave out crosscutting concerns
that are not applicable to a specific application, container vendors offer and sell one package
– the complete container.

Encapsulating infrastructural services in the EJB container and at the same time allowing
developers to implement their own authorization (as well as transaction or persistence)
mechanism seems to contradict the attempt to delegate all crosscutting concerns to the
container. It shows that the EJB component model does not succeed in encapsulating
crosscutting concerns in the container adequately. One could argue that if we need tailorability,
we should use an EJB container such as jBoss that does allow adding custom interceptors and
extending the container functionality. However, by doing so we commit to a non-standard
solution and lose portability and reusability – two of the key rationales behind the component
models.

2.3.2. Lack of Checking and Enforcement

An EJB developer has to obey many design rules and idioms that are not enforced and cannot
be always checked by the compiler. For example, the EJB specification defines 17 programming
restrictions [16, p. 494] for bean developers, such as “an EJB must not attempt to manage
threads” or “an EJB must not use read/write static fields”. In order to create an instance of a
class or call methods of another EJB, the standard language mechanisms, namely constructor

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

8 R. PICHLER K. OSTERMANN M. MEZINI

calls and message passing, are evaded. Instead, all actions have to be dispatched via the
container. For example, a simple constructor call

Order order = new Order();

has to be replaced by

Context ctx = new InitialContext();
Object objref = ctx.lookup("Order");
OrderHome home =
(OrderHome) PortableRemoteObject.narrow(objref, OrderHome.class);

Order order = home.create();

Although more than just a simple object creation happens in the container case, this is
no justification for the loss of type information. A solution that were integrated into the
programming language would let the programmer work with types instead of strings and do
the necessary conversions behind the scenes, thereby preserving static type safety. In case
OrderBean calls the method calculate() of another bean DiscountBean and wants to pass
this as a parameter, it cannot simply pass on the self-reference as in

discount.calculate(this);

Rather, the this parameter has to be replaced by the corresponding proxy, which can be
retrieved along the lines of

discount.calculate((OrderBean) SessionContext.getEJBObject());

Again, although the conversion above could be what really happens, an integrated solution
should shield the programmer from such details and insert the necessary calls automatically.

The decisive point is that these EJB-specific rules cannot be enforced at compile time. Even
if the developer remembers to use the container idioms everywhere, the compiler cannot verify
that these calls to the container are at least type safe, (cf. the type casts in the examples above)
because, due to the use of universal methods, e.g., getEJBObject(), and strings instead of
types, the type system is effectively discarded and all well-known benefits of static typing are
lost.

2.3.3. Insufficiency

A real world application will have to use ordinary Java classes in addition to EJBs. Ordinary
Java classes can profit from container services only if they live in the context of an EJB and
even then only in a very limited way. There are a number of reasons why container-hosted
entities are not sufficient for a large J2EE application. One of the reasons is that EJBs are
fairly constrained. They are not allowed to create threads or access the file system amongst
other things (see Lack of Checking and Enforcement). Another reason is that some of the
application logic that resides on the application server may well be needed on the web server,
too. In order to facilitate easy reuse, we could encapsulate this part of the application logic in
normal Java classes and have EJBs delegate to these classes using bean-managed persistence
(BMP). A good example is database access from the web server for reads (fast and efficient) and
database access from the application server for writes (using the transaction service provided

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 9

public class OrderBean implements SessionBean {
DataAccessObject dao = new DataAccessObject();
public void placeOrder() throws EJBException {

dao.saveOrder();
}

}

Figure 5. EJB and Ordinary Java Class

transparently by the EJB container). Employing ordinary Java classes and applying the Data
Access Object pattern [1] allows us to do this. In the code fragment in Fig. 5, the Session bean
OrderBean delegates persisting orders to the class DataAccessObject.

Suppose we would like to control the access to methods of DataAccessObject and grant only
certain roles access rights. Suppose also that these roles may differ from the roles authorized
to access OrderBean. Even though the EJB container does provide an authorization service,
we cannot apply the service to DataAccessObject since it is an ordinary Java class and not an
Enterprise JavaBean.‡ Instead, we would have to provide an additional authorization service
on the web server, e.g., by programmatically implementing role-based authorization within the
DataAccessObject class mixing application with security logic.

We generally cannot associate services provided by the container with ordinary classes
independent of the EJBs in whose context the Java classes live. Similarly, ordinary Java classes
that live outside the context of an EJB (and thus outside an EJB container) cannot take
advantage of any EJB container services. Therefore, we face the problem how crosscutting
concerns can be modularized and how infrastructural services can be applied to ordinary
classes.

2.4. Summary

Using the EJB container to modularize crosscutting concerns works well as long as the following
constraints hold:

• We do not need to configure any services provided by the container.
• We do not need to extend the container and add additional services.
• We only use the deployment descriptor to associate an EJB with infrastructural services

such as authorization (i.e., no programmatic authorization checks).
• We do not use any Java classes that live outside the context of an EJB but require

infrastructural service (for instance, authorization checks).
• We can afford to discard static type checking.

‡Please note that local interfaces as introduced by the EJB specification [16] are not applicable to
DataAccessObject since DataAccessObject is an ordinary Java class and not an Enterprise JavaBean.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

10 R. PICHLER K. OSTERMANN M. MEZINI

public class Order {
public Order() {
}
public void placeOrder() {

//place the order
}
public void cancelOrder() {

//cancel the order
}

}

Figure 6. Simplified Order Class

As shown, the criteria above constrain the development of a real world application considerably.
A possible solution for some of the problems identified in Sec. 2.3 would be to enhance the
EJB component model allowing to add custom interceptors to the EJB container along the
lines proposed in [15], specified for the Servlet Engine in [17] and implemented by jBoss [8].
This would make the EJB container at least extensible. The latest EJB specification [16] does
not show any signs to add more flexibility to the component model, though.

Enhancing the EJB component model and improving the flexibility of the EJB container
also comes at a cost. It would complicate the usage of the EJB technology and potentially
endanger its acceptance and success. Furthermore, while this would address the tailorability
problem, the remaining two problems would still exist.

3. AspectJ and Infrastructural Services

3.1. Introduction

This section investigates the application of AspectJ 1.0 [2] to associate infrastructural services
that are usually provided by the Enterprise JavaBeans container with base objects. The
investigation is based on our vision of aspect languages and aspect-oriented frameworks
replacing container frameworks by providing a set of reusable aspects that encapsulates
infrastructural services and that can be applied to base objects on demand.

To make things more concrete, we base our discussion on a simplified order management
application, whose EJB version was introduced in Sec. 2.1. We also focus on authorization as
the core infrastructural service to be discussed. Let us assume we have the simplified Order
class in Fig. 6 as our base object, which allows us to place and cancel orders.

Suppose that we have to make sure that only clients that have the appropriate access rights
are allowed to invoke placeOrder() and cancelOrder(). To associate an authorization service
with Order and to add authorization checks to the class in a transparent way, we simply create
a first authorization aspect in AspectJ as in Fig. 7.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 11

aspect RoleBasedAuthorization {
AuthorizationService as =

SecurityServiceFactory.getAuthorizationService();

pointcut authorizedMethods() : call(public void Order.*);

before() : authorizedMethods() {
if (!as.isCallerInRole("customer"))
throw new SecurityException("Access denied. Unauthorized role");

}
}

Figure 7. Role-based Authorization in AspectJ

The aspect in Fig. 7 defines a pointcut that denotes those points in the execution of the
program when instances of Order receive messages that correspond to public methods on Order
with the return value void. The advice before() specifies what should happen before the
methods referred to by the pointcut are executed. The advice uses role information provided
by an instance of AuthorizationService and checks if the caller is in the customer role.
The aspect therefore uses linguistic means provided by AspectJ to associate an authorization
service with Order and to implement role-based authorization. The Order class is now
guarded with authorization checks. Every time a caller wants to execute the placeOrder() or
cancelOrder() methods, role-based authorization is enforced. As a consequence, the aspect
RoleBasedAuthorization fulfills a similar role in associating an authorization service with a
base object as an EJB container does in applying authorization to an EJB.

3.2. Advantages

The example in Fig. 7 shows that AspectJ does a great job at allowing us to add infrastructural
services to base objects in a straightforward and transparent way. It also offers us basically
the same authorization functionality as the interceptor framework of an EJB container, cf.
Sec. 2.1. In addition, we are not restricted to the services provided by the EJB container.
We can, for instance, easily add an authorization aspect that applies user-based rather than
role-based authorization to Order as shown in Fig. 8.

Unlike in the EJB example in Fig. 4 in Sec. 2.3.1, the implementation of Order in Fig. 8 is
unaware of any authorization checks. Authorization is completely transparent to the base
object. We could similarly add further infrastructural services, e.g., a persistence or QoS
service, to existing base objects. The services can also be easily customized and exchanged
by editing the appropriate advice. Additionally, no EJB-specific idioms and programming
restrictions have to be obeyed. Base objects like Order in Fig. 6 do not have to implement
specific interfaces such as SessionBean or EntityBean to be able to profit form infrastructural
services. Unlike EJBs, they are also allowed to create threads and to use file I/O, cf. Sec. 2.3.2.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

12 R. PICHLER K. OSTERMANN M. MEZINI

aspect UserBasedAuthorization {
AuthorizationService as =

SecurityServiceFactory.getAuthorizationService();

pointcut authorizedMethods() : call(public void Order.*);

before() : authorizedMethods() {
if (!as.getUserPrincipal().getName().equals("Mr. Jones"))
throw new SecurityException("Access denied. Unauthorized user");

}
}

Figure 8. User-Based Authorization in AspectJ

Furthermore, Order is an ordinary Java class. AspectJ thus allows us to apply infrastructural
services to any Java class using linguistic means instead of a combination of design patterns
and standard object technology.

3.3. Problems

Even though AspectJ works fine to associate an authorization service with base objects, we
encounter several problems when we try to substitute more container functionality using
AspectJ language constructs.

3.3.1. Reusing Aspects

With respect to reusablity the strength of the Enterprise JavaBeans component model is
twofold. First, EJB components are easily reusable in different application servers for different
plattforms with eventually different implementations of the infrastructural services. We can
drop any EJB into an EJB container and guard the bean’s methods with authorization checks
by editing the bean’s deployment descriptor (supposing the container is compliant to the
EJB specification [16]). The same is true for the implementation of infrastructural aspects
encapsulated by an EJB application server, which are reusable with any EJB component
deployed within the server. In this subsection we investigate how well reusability is supported
in AspectJ. We use the RoleBasedAuthorization aspect introduced in Sec. 3.1 for illustration
purposes.

Let us assume that our sample application consists not only of an Order class but also
of a Product class. We would like to protect Product by authorization checks as well.
To support better reusability of our aspects, we refactor RoleBasedAuthorization into an
abstract aspect that provides an abstract pointcut definition. We also introduce a new aspect
called OrderProductAuthorization, which extends RoleBasedAuthorization and applies
the authorization checks to the two base objects, cf. Fig. 9.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 13

abstract aspect RoleBasedAuthorization {
protected AuthorizationService as = ...;
abstract pointcut authorizedMethods();
protected before() : authorizedMethods() {

//authorization check implementation goes here
}

}
aspect OrderProductAuthorization extends RoleBasedAuthorization {
pointcut authorizedMethods() :

call(public void Order.*) || call(public * Product.*};
}

Figure 9. Aspect Reuse via Abstract Aspects

To apply authorization checks to Order and Product in Fig. 9, we don’t change
RoleBasedAuthorization but implement the pointcut of OrderProductAuthorization
instead. The pointcut now also denotes those points in the execution of the program when
instances of the Product class receive messages in addition to the points when instances of
Order receive messages. OrderProductAuthorization thus fulfills a similar role as a binding
in [12, 13].

Employing abstract aspects to increase aspect reusability in AspectJ has the following
drawbacks: First, using concrete aspects as connectors may easily lead to a complex and
bloated aspect hierarchy, which is hard to understand, extend and maintain. Second, when
we employ an abstract aspect, it is still necessary to have the aspect source code available as
well as being able to understand and modify AspectJ code in order to apply an authorization
service to base objects. As pointed out in [13] and [5], the process of binding an abstract aspect
to a concrete base object via inheritance requires sophisticated programming skills and is by no
means straightforward. Third, applying abstract aspects is limited especially if aspects define
aspect instance state, as discussed in detail in [13] and [5].

EJB technology makes it certainly much easier to apply infrastructural services to an
Enterprise JavaBean. If Order and Product were EJBs, we would just deploy the two EJBs
together with their deployment descriptor. The container would then automatically apply
the appropriate services. To modify authorization checks, we simply edit the deployment
descriptor. There is no need to programmatically change any container or EJB code. In fact
the container’s interceptor framework is neither specified by the EJB specification [16] nor is
the source code of any commercial EJB container available (see Sec. 2.1 for discussion).

3.3.2. Deploying Aspects

AspectJ requires that aspects are applied to base objects at design time (base object classes
are hard coded in pointcuts and aspects are compiled together with the base object code). As
a consequence, the application of infrastructural services to classes like Order and Product

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

14 R. PICHLER K. OSTERMANN M. MEZINI

cannot be changed at deployment time. Using EJBs, however, infrastructural services are
applied at deployment time via the deployment descriptor. Some J2EE application servers
even allow deployment descriptor changes in production (hot deployment). Delaying the
application of infrastructural services until deployment time increases the flexibility and
reusability significantly. Besides the useful delay of the deployment to runtime, this also
enables to choose the actual implementation of an aspect at runtime, i.e., we could choose
the transaction- or persistence implementation at runtime. In AspectJ, however, there exists
a static link between a particular aspect implementation and the base classes, and we have no
means whatsoever to change this link without modifying code (which is bad), and even if we
come to terms with code modification, this cannot be done after compile time.

3.4. Summary

Our investigation of using AspectJ to apply authorization, transaction and persistence services
to base objects showed that AspectJ offers all the language mechanisms required to associate
an infrastructural service with a base class. Using pointcuts we can apply an aspect to various
base objects. Employing an aspect-oriented language rather than a container interceptor
framework to transparently apply infrastructural services to base objects allows us to tailor
the services according to our requirements. No idioms or programming restrictions are
imposed and infrastructural services can be applied to any Java class. This clearly shows that
AOP languages can provide infrastructural services and replace container technology while
introducing additional benefits including tailorability and general applicability of the services.

There are, however, several issues that make it very difficult to replace the EJB container’s
interceptor framework using AspectJ. First, it is very hard to make aspects reusable. If we
cannot reuse aspects for infrastructural services, the main benefit of using a container would
be gone because we have to do all the work ourselves. Second, there is no notion of deployment
in the AspectJ world. All we can do to integrate aspects is to hardwire them in the code, we
cannot deploy aspects at runtime and choose a particular aspect implementation (or variant).

The prerequisites listed above make it unfeasible to replace the interceptor framework
provided by EJB containers using current AspectJ language mechanisms. AspectJ however
provides a good tool to prototype the application of some (limited) infrastructural services to
base objects using AOP techniques.

4. Towards a Marriage of Aspects and Components

4.1. Introduction

Summing up our discussion of the previous sections, the key observations are: Neither
component models nor today’s aspect-oriented languages can adequately meet the challenges of
enterprise application development. The reliance on design patterns, idioms and programming
restrictions are the Achilles’ heel of component models. Current AOP languages are not
capable of properly modularizing infrastructural service since they lack black-box reuse due to
their code transformation centered approaches. They also fall short of providing appropriate

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 15

deployment support. Based on these observations, this section puts forward a few essential
requirements a model of software development with a strong commitment to a separation of
crosscutting concerns should fulfill. The next generation AOP languages and containers will
be characterized by the following properties:

1. Future AOP languages will turn conventions and idioms of today’s component models
into language features. For instance, instead of relying on conventions that components
have to follow in order to enable containers to take control over their execution and
attach infrastructural services to them in a transparent way, an intrinsic feature of the
language concept of a reusable component will be that its operations are late bound
depending on the runtime context of the component, i.e., on the available services in
this context. We call the polymorphism resulting from this type of late binding aspectual
polymorphism.

2. The next generation of AOP languages will allow aspectualizing component models by
providing appropriate linguistic means to capture individual infrastructural services in
separate modules. While today’s AOP languages such as AspectJ basically support
this property as indicated by the discussion in Sec. 3, the key difference is that the
infrastructural service modules we envision will be (a) as easy to reuse within different
applications as the infrastructural services provided by today’s application servers, (b)
easy to compose to build custom service infrastructures based on the concrete application
needs, and (c) dynamically deployable to support the dynamic adaptability of the
infrastructure depending on runtime conditions.

The remainder of this section first elaborates on the points stated above. We envision future
AOP languages to enable developers to employ a reusable set of infrastructural aspects that
can be easily attached to base objects. Our own language for aspect-oriented programming,
Caesar [12, 13, 4], is based on these observations. After stating our general outline of
future AOP languages/containers, we will very shortly discuss how (and to which degree)
our requirements are met in Caesar.

4.2. Language Integration

In the history of programming languages, idioms and patterns of good style have been turned
into rules imposed by language compilers. Next generation models for separating crosscutting
concerns should follow this approach by turning the conventions of component frameworks
into language features. The underlying rationale is that a software development model that is
based on idioms and patterns is more difficult to apply and renders maintenance harder since
it requires that developers carefully express concepts in a language that does not support the
concepts in the first place.

While conceptually working with components, an EJB developer has to map the higher-
level component concept into language means designed to express lower-level concepts such as
objects (i.e., Java classes and interface). The resulting software is harder to understand since
it encodes the mapping of a higher-level concept to lower-level language constructs rather than
the concept itself. For instance, the sample code for creating a new Order object in Sec. 2.3.2

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

16 R. PICHLER K. OSTERMANN M. MEZINI

is extremely hard to understand for someone unfamiliar with remote object communication
protocols. The code is prone to become invalid as soon as the remote communication protocols
change and because of extra-language coding conventions, the benefits of the static type
system are lost. Due to the idioms enforced by the EJB component model, the encapsulated
crosscutting concerns show up at several places in the application code like the top of an
iceberg.

One of the most important features that is realized via patterns and idioms in today’s
component models is some sort of aspectual polymorphism. An EJB component, for instance,
must be prepared to live in a context where its functionality is extended with infrastructural
services, e.g., it has to obey the rule not to pass an immediate reference to itself by means of
this as a parameter, but rather the EJBObject instance associated with it.

Instead of having to follow certain conventions to simulate aspectual polymorphism, next
generation languages with support for separating crosscutting concerns should integrate such
polymorphism as a key concept into the language. For instance, the meaning of this during
a method invocation should be late bound not only based on the concrete variant of an
abstraction at hand, e.g., depending on whether placeOrder() is invoked on a standard or
on an express order object, but also based on the infrastructural services available to the
component’s runtime system at the time of the call.

Today’s AOP languages do not support aspectual polymorphism. The approach used by
most of the current “mainstream” AOP languages to bind aspects is mainly based on some
sort of either source-code or byte-code transformation that weaves aspect code (or meta-level
code for triggering execution of the aspect code) into the right place of the base code. Compiling
AspectJ code, for instance, happens in two steps: A preprocessor first transforms the Java base
code integrating the aspect code. Second, the compilation of the merged Java code takes place.
The current implementation of Hyper/J [18] basically follows the same approach. The only
difference is that Hyper/J creates a new name space for the merged code instead of in-place
modifications.

As an analogy, let us consider how subclass polymorphism is used to separate concerns
that relate to different kinds of a data abstraction in object-oriented languages. In order to
introduce, say, express orders by extending the existing implementation of a generic order
abstraction in a base class Order, we do not use add-on language preprocessing tools to insert
the specific code for express orders into the Order code. With subclass polymorphism of
object-oriented languages, any abstraction that we write has the built-in potential of being
incrementally extended with future variations.

An incremental extension of the base functionality by crosscutting concerns is missing
in today’s AOP languages. With AspectJ for instance, the extension happens in-place by
modifying the code of the base functionality to integrate the extension. The modified code
physically replaces the original code. The extension is not incremental in Hyper/J either: While
the result of composing a crosscutting concern with an existing hyperslice is a new hyperslice,
the latter is merely a copy of the former transformed to integrate the implementation of the
crosscutting concern. It is by no mean related to the original hyperslice by subtyping.

With aspectual polymorphism, no transformation of a base object’s or component’s code at
development and even deployment time is required. Hence, AOP technology with support for
aspectual polymorphism will not rely on the availability of source code or on tools for byte-code

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 17

transformation. This is an important prerequisite in the context of container-based software
development. In order to protect their intellectual property, component providers are not
willing to deliver the source code. Additionally, approaches based on byte-code transformations
only work on languages with a well-structured byte code such as Java. They are not applicable
to classes written in other languages such as C++. Furthermore, byte code transformation
might render component testing more difficult.

To summarize, aspectual polymorphism is the key to bridge the gap between tailorability
as provided by current AOP technology and black-box reuse as provided by container-based
approaches.

4.3. Deploying Components into Aspectual Contexts

Besides the integration of component concepts and aspectual polymorphism, another key
feature of the next generation AOP technology is the support for declarative deployment of base
objects and components into any given aspectual context similar to today’s container-based
deployment. The term aspectual context is used to denote the composition of infrastructural
services. The process of weaving aspects that encapsulate infrastructural services into
application logic with next generation AOP technology should be at least as simple, declarative,
and tool supported as the deployment of EJB components is today. Two key and interrelated
issues need to be addressed with this respect: better reusability of aspects and postponing the
deployment of beyond design time.

The discussion of reusability problems of aspects in Sec. 3.3 showed that aspects in AspectJ
are associated with their base objects at design time. The association is hard coded in the
aspects’ pointcut. AspectJ does neither employ a dedicated module to associate aspects with
base objects nor does it allow to specify the association at deployment time. To be able to easily
apply aspects to different base objects, the aspects have to be reusable in the sense that they
are not coupled to specific base objects. In Hyper/J, a hypermodule is not directly coupled to
the code with which it is composed. Instead, the composition specification is outsourced into a
hypermodule specification. However, the frequent use of so-called merge-by-name composition
may lead to indirect coupling of different modules due to reliance on identical method and
class names.

In the APPC [11] and Aspectual Components [10] approach, the aspect functionality is
completely separated from the specification. An explicit connector construct associates the
aspect code with the base code. However, similar to AspectJ and HyperJ, APPC and Aspectual
Components also take a code transformation approach.

In container-based environments, infrastructural services are applied and configured at
deployment time. This is essential for the separation of competence among the different EJB
roles (EJB provider, application assembler, deployer, container provider etc. [16]). For example,
the EJB provider is a domain expert and is responsible for the production of specific EJB
components, whereas the deployer is responsible for deploying the components in a specific
operational environment.

In most AOP approaches, the binding of aspects to base code happens at compile time,
though. This renders the aforementioned separation of competence impossible. Therefore, we
should strive for some kind of late binding of aspects, whereas “late” might refer to deployment

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

18 R. PICHLER K. OSTERMANN M. MEZINI

or even runtime. Deploying aspects at runtime is necessary for hot deployment and enables
the creation of aspects whose applicability depends on runtime conditions. For example, the
applicability of an optimization aspect like instance pooling may depend on current system
resources or system load.

4.4. First Steps Towards the Vision: The Caesar Model

Caesar is our own proposal to cope with the problems which were identified in the course of
this paper. Details about Caesar can be found in other papers [12, 13] and on the project
homepage [4]. In this section we want to discuss shortly how Caesar adresses the main
problems identified with AspectJ: reusability, deployment and aspectual polymorphism.

4.4.1. Reusability

In Caesar, aspect implementations and aspect bindings into a base code are separated
from each other. Aspect implementations play a similar role as the abstract aspect in
Fig. 9, whereas bindings play a similar role as the concrete aspect in Fig. 9. However,
there are a number of important differences as compared to the AspectJ approach.
First, the aspect binding and implementation are defined in completely independent
program units which are related to each other by means of a so-called collaboration
interface, a specification of the common communication protocol. Hence, in contrast to
Fig 9, the binding OrderProductAuthorization would not be hardwired to the aspect
RoleBasedAuthorization. This separation enables us to compose different bindings with
different implementations of the same collaboration interface, hence both implementations
and bindings can be reused independently.

Second, our bindings are equipped with dedicated linguistic means for a hierarchy
transformation in the sense that the data model (names, relations etc.) of the application can
be transformed to the data model used by a particular family of aspects. Hence, the aspect
can be written in terms of its own ‘world’ and is thus truly independent from a particular
application.

Third, the structure of aspects in Caesar is that of a collaborating family of entities,
whereby state and behavior can be applied independently to each entity. Hence, in contrast to
AspectJ, it is easy to cope with aspect instance state (cf. the discussion in Sec. 3.3.1).

4.4.2. Deployment and Aspectual Polymorphism

Although Caesar has pointcuts and advices similar to those in AspectJ, there is an important
difference: By default, pointcuts and advices in Caesar are passive, that is, their declaration
and compilation alone does not have any computational effect on the remainder of the software
– aspects have to be deployed before their pointcuts and advices become effective. For the
deployment, there exists a special deploy clause in the language, with which it is possible to
activate an aspect in the context of a method call (the aspect does not become active globally
because that would lead to undesirable concurrency problems).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

ON ASPECTUALIZING COMPONENT MODELS 19

During this deployment, it is possible to make use of the subtype polymorphism of aspects
in Caesar: All aspects are subtypes of their collaboration interface (cf. above), such that it
is possible to choose among different implementations (i.e., different aspect variants) of the
collaboration interface at runtime.

5. Summary and Future Work

In this paper, we compared two important approaches to modularize crosscutting concerns
such as transaction, persistence and security: Server-side component models represented by
the Enterprise JavaBeans (EJB) component model and aspect-oriented programming (AOP)
represented by AspectJ. Our investigation showed that both approaches have their strengths as
well as their drawbacks. Based on this observation, the paper reasoned about the possibility of
combining the strength of both approaches into a future technology for separating crosscutting
concerns, while avoiding their respective problems.

The paper put forward important requirements in order to achieve this goal. We first argued
that patterns and idioms for separation of crosscutting concerns underlying the design of
component frameworks should be integrated into languages. Broadly speaking, we strive to
provide language constructs that directly support the concept of a component instead of
requiring the application developer to obey rules and idioms for mapping the higher-level
component concept onto the lower-level concepts of objects.

We also highlighted aspectual polymorphism as one of the key features that emerges when
idioms and patterns are turned into language features. Similar to the definitions of a base
class that has the built-in capability to late bound via subclass polymorphism, we promote
the idea of having the built-in ability of component definitions to be late bound, based on
the infrastructural services available in a deployment context. This feature will be the key
to bridge the gap between the tailorability supported by current AOP technology and the
black-box reuse promoted by container-based approaches. In addition, we proposed that next
generation AOP languages should provide deployment constructs equivalent to the deployment
descriptors of component models and that runtime deployment should be supported.

We gave a very short introduction to our model to cope with these problems, Caesar. Our
future work will continue to focus on improving Caesar based on these requirements and
applying it to the design of next generation component models.

REFERENCES

1. D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Best Practices and Design Strategies. Prentice
Hall, 2001.

2. AspectJ Homepage, 2001. http://aspectj.org.
3. Gregory Blank and Gene Vayngrib. Aspects of enterprise java beans. In ECOOP Workshop on Aspect-

Oriented Programming, 1998.
4. Caesar Homepage. http://www.st.informatik.tu-darmstadt.de/pages/projects/caesar.
5. Siobhn Clarke and Robert J. Walker. Composition patterns: An approach to designing reusable aspects.

In Proceedings of the 23rd International Conference on Software Engineering, 2001.
6. Guy Eddon and Henry Eddon. Inside COM+. Microsoft Press, 1999.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

20 R. PICHLER K. OSTERMANN M. MEZINI

7. Stephan Herrmann, Mira Mezini, and Klaus Ostermann. Joint efforts to dispel an approaching modularity
crisis. In Sixth International Workshop on Component-Oriented Programming at ECOOP, 2001.

8. jBoss Homepage, 2001. http://www.jboss.org.
9. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,

and John Irwin. Aspect-oriented programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
Proceedings ECOOP’97, LNCS 1241, pages 220–242, Jyvaskyla, Finland, 1997. Springer-Verlag.

10. Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with aspectual components. Technical
Report NU-CCS-99-01, March 1999.

11. Mira Mezini and Karl Lieberherr. Adaptive plug-and-play components for evolutionary software
development. In Proceedings OOPSLA ’98, ACM SIGPLAN Notices, 1998.

12. Mira Mezini and Klaus Ostermann. Integrating independent components with on-demand
remodularization. In Proceedings of OOPSLA ’02, Seattle, USA, 2002.

13. Mira Mezini and Klaus Ostermann. Conquering aspects with Caesar. In Proc. International Conference
on Aspect-Oriented Software Development (AOSD ’03), Boston, USA, 2003.

14. Object Management Group. CORBA Components Final Submission. OMG TC Document orbos/99-02-
05, 1999.

15. Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented Software
Architecture Vol. 2. Wiley, 2000.

16. Sun Microsystems. Enterprise JavaBeans Specification, Version 2.0. 2001.
17. Sun Microsystems. Java Servlet Specification, Version 2.3. 2001.
18. Peri Tarr and Harold Ossher. Hyper/J user and installation manual, 1999.

http://www.research.ibm.com/hyperspace.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls

