
Modules for Hierarchical and Crosscutting Models

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation

von
Diplom-Informatiker

Klaus Ostermann
aus Cloppenburg

Referent: Prof. Dr. Mira Mezini
Korreferent: Prof. Gregor Kiczales

Tag der Einreichung: 14. April 2003
Tag der mündlichen Prüfung: 09. Juli 2003

Darmstadt
D17

Erklärung: Hiermit erkläre ich, daß ich die vorliegende Arbeit selbst-
ständig und unter ausschließlicher Verwendung der angegebenen Quellen
und Hilfsmittel angefertigt habe.

Darmstadt, den 23. Juni 2003

The three dots ’...’ here suppress
a lot of detail – maybe I should
have used four dots.

Donald E. Knuth

Abstract

Good separation of concerns in software is the key for managing growing
complexity. The most important task of programming languages with re-
spect to this goal is to provide means to express the mental models of the
domain experts as directly as possible in the programming language.

Since the advent of ‘structured programming’, programming languages
feature modules for hierarchical models: We can view a software system at
different levels of abstraction, based on whether we look at the interface
of a module or zoom into the implementation of the module and the in-
terfaces/implementations of the next lower-level modules. The possibility
to view and implement a software system on different levels of detail has
greatly improved the quality of software.

An important insight of recent years was the identification of so-called
crosscutting concerns - concerns which cannot be localized in a given module
structure or cannot be localized simultaneouly with other concerns. Pro-
gramming languages with explicit support for crosscutting concerns have
already been proposed and implemented but this branch of language design
is at the very beginning.

This is the context within which this thesis tries to improve the state-of-
the-art. Based on the most successfull paradigm for separation of concerns,
object-oriented programming, a trio of proposals is described that refines and
generalizes the conventional constructs for modularization and composition
with respect to both hierarchical and crosscutting concerns.

The first two proposals deal with modules for hierarchical models. Firstly,
the thesis goes back to the foundations of object-oriented programming and
reasons about the relation between the two fundamental OO concepts for
hierarchical decomposition: Inheritance and aggregation. There is a well-
known tension between these two concepts: Inheritance enables incremental
specification whereas aggregation allows polymorphic composition at run-
time. Frequently, however, one needs a mixture of properties from both

1

aggregation and inheritance. Compound references are proposed, a new ab-
straction for object references that unifies aggregation, inheritance and del-
egation and provides explicit linguistic means for expressing and combining
individual composition properties on-demand.

The second approach explores how the means for hierarchical decompo-
sition can be generalized to work on sets of collaborating classes, motivated
by the observation that a slice of behaviour affecting a set of collaborating
classes is a better unit of organization and reuse than single classes. Differ-
ent techniques and language extensions have been suggested to express such
slices in programming languages but none of them fully fits in the concep-
tual framework of object technology. Delegation layers are a new approach
to cope with these problems. It scales the object-oriented mechanisms for
single objects, such as delegation, late binding, and subtype polymorphism,
to sets of collaborating objects.

The third approach of the thesis is devoted to language concepts for rep-
resenting crosscutting models, meaning independent models that represent
different overlapping views of a common system. A crosscutting concern is
seen as a concern that belongs to a different crosscutting model. Keeping
crosscutting models independent allows the programmer to reason about
each concern in isolation. The Caesar model is proposed, where ideas for
hierarchical decomposition from the first two parts of the thesis are used
and extended in order to provide means for representing and composing
independent crosscutting models. Caesar’s strengths are in the reuse and
componentization of aspects. The notion of aspectual polymorphism as a
generalization of subtype polymorphism to crosscutting models is introduced
and a novel concept for dynamic deployment of aspects is proposed.

2

Zusammenfassung

Eine gute Separierung der verschiedenen Aspekte eines Programms ist der
Schlüssel, um mit wachsender Komplexität umzugehen. Die wichtigste Auf-
gabe, die Programmiersprachen in Bezug auf dieses Ziel erfüllen sollten, ist,
Mittel zur Verfügung zu stellen, um die mentalen Modelle der Domainex-
perten so direkt wie möglich in der Programmiersprache auszudrücken zu
können.

Seit dem Anbruch der ‘Strukturierten Programmierung’ bieten Program-
miersprachen Modulkonstrukte für hierarchische Modelle: Wir können ein
Softwaresystem auf unterschiedlichen Abstraktionsebenen betrachten, je nach-
dem, ob wir nur die Schnittstelle eines Moduls oder auch seine Implemen-
tation und die Schnittstellen/Implementierungen der nächsten tieferliegen-
den Module betrachten. Die Möglichkeit, ein Softwaresystem auf unter-
schiedlichen Detailebenen zu betrachten und zu implementieren, hat die
Qualität von Software entscheidend verbessert.

Eine wichtige Erkenntnis der vergangenen Jahre war die Identifizierung
von sogenannten crosscutting concerns oder querschneidenden Aspekten -
Aspekte, die in einer gegebenen Modulstruktur oder simultan mit anderen
Aspekten im Programmtext nicht lokalisiert werden können. Erste Pro-
grammiersprachen mit expliziter Unterstützung für ‘crosscutting concerns’
wurden bereits entwickelt, doch dieser Forschungszweig ist noch im Entste-
hen.

Dies ist der Kontext, in dem diese Arbeit versucht, den gegenwärti-
gen Stand der Technik zu verbessern. Basierend auf dem erfolgreichsten
Paradigma für die Separierung von Aspekten, objekt-orientierter Program-
mierung, werden drei Ansätze beschrieben, die die konventionellen Konzepte
für Modularisierung und Komposition in Bezug auf hierarchische und quer-
schneidende Aspekte verbessern.

Die ersten beiden Ansätze behandeln Module für hierarchische Modelle.
Zunächst geht die Arbeit zurück zu den Grundlagen der objekt-orientierten

3

Programmierung und untersucht die Beziehung zwischen den beiden funda-
mentalen objekt-orientierten Konzepten für hierarchische Zerlegung: Ver-
erbung und Aggregation. Es gibt eine wohlbekannte Spannung zwischen
diesen beiden Konzepten: Vererbung ermöglicht inkrementelle Spezifikation,
während Aggregation polymorphe Komposition zur Laufzeit ermöglicht. Häu-
fig jedoch benötigt man eine Mixtur der Eigenschaften von Aggregation
und Vererbung. Ein Modell names Compound References wird vorgeschla-
gen. Eine Compound Reference ist eine neue Abstraktion für Objektreferen-
zen, die Aggregation, Vererbung und Delegation vereinheitlicht und explizite
Sprachunterstützung dafür bietet, deklarativ je nach Bedarf gewünsche Kom-
positionseigenschaften festzulegen.

Im zweiten Ansatz geht es darum, wie die Mittel für hierarchische Dekom-
position verallgemeinert werden können, um auch auf Mengen zusamme-
narbeitender Klassen zu arbeiten. Dies wird durch die Beobachtung mo-
tiviert, daß ein Modul, das das Verhalten mehrerer zusammenarbeitender
Abstraktionen definiert, eine besser wiederverwendbare Organisationsein-
heit ist als einzelne Klassen. Unterschiedliche Techniken und Spracher-
weiterungen wurden bereits vorgeschlagen, um solche Module in Program-
miersprachen ausdrücken zu können, doch keiner dieser Vorschläge passt
vollständig in den konzeptuellen Rahmen der objekt-orientierten Program-
mierung. Delegation Layers sind ein neuer Ansatz, um mit diesem Problem
umzugehen. In diesem Ansatz werden die objekt-orientierten Mechanismen
für einzelne Objekte, zum Beispiel Delegation, späte Bindung und Subtyp-
Polymorphie, auf Mengen zusammenarbeitender Klassen verallgemeinert.

Der dritte Ansatz dieser Arbeit behandelt Sprachkonzepte zur Repräsen-
tation von querschneidenden Modellen. Mit ‘querschneidenden Modellen’
sind unabhängige Modelle gemeint, die unterschiedliche, sich überschnei-
dende Sichten auf ein gemeinsames System repräsentieren. Ein querschnei-
dender Aspekt wird als Aspekt gesehen, der zu einem anderen querschnei-
denden Modell gehört. Wenn diese querschneidenden Modelle unabhängig
voneinander gehalten werden, wird es möglich, jeden Aspekt getrennt von
den anderen zu behandeln. Das Caesar Modell wird vorgeschlagen, in
dem die in den vorherigen Teilen vorgeschlagenen Ideen für hierarchische
Dekomposition benutzt und erweitert werden, um die Repräsentation und
Kombination unabhängiger querschneidender Modelle zu ermöglichen. Die
Stärken von Caesar liegen in der Wiederverwendbarkeit und Komponen-
tisierung von Aspekten sowie in der Möglichkeit, Aspekte polymorph zu be-
nutzen. Das Konzept der Aspekt-Polymorphie wird als Verallgemeinerung
der Subtyp-Polymorphie auf querschneidende Modelle eingeführt, und ein
neues Konzept für den dynamisches Einsatz von Aspekten wird vorgeschla-
gen.

4

Contents

Preface 8

1 Introduction 9
1.1 Benefits of Proper Separation of Concerns 10

1.1.1 Comprehensibility . 10
1.1.2 Reusability . 10
1.1.3 Scalability . 11
1.1.4 Maintainability . 12

1.2 Hierarchical Decomposition of Concerns 12
1.3 Crosscutting Decomposition of Concerns 16
1.4 The Silver Bullet? . 24
1.5 Thesis Organization . 25

2 Hierarchical Decomposition: Single Entities 27
2.1 Introduction . 27
2.2 Motivation . 29

2.2.1 Composition Scenario 1:
The Account Example 30

2.2.2 Composition Scenario 2:
The Stream Example 32

2.2.3 Composition Scenario 3:
The TextJustifier Example 34

2.2.4 Problem Statement Summary 36
2.3 Compound References . 38

2.3.1 Field Methods and Overriding 38
2.3.2 Field Redirection with Compound References 40
2.3.3 Field Acquisition . 44
2.3.4 Subtyping . 48

5

CONTENTS

2.3.5 Field Navigation . 49
2.4 Evaluation of the Model . 50
2.5 Reconciling dynamic specialization and static typing 54
2.6 Abstract Classes and Method Header Specializations 60
2.7 Related Work . 62
2.8 Chapter Summary . 65

3 Hierarchical Decomposition: Collaborating Entities 67
3.1 Introduction . 67
3.2 Collaboration Composition and Mixin Layers 70
3.3 Delegation . 74
3.4 Virtual Classes . 76
3.5 Delegation Layers . 78
3.6 Hot State and On-the-fly Extensions 80
3.7 Related Work . 86
3.8 Chapter Summary . 88

4 Encoding Crosscutting Models 90
4.1 Introduction . 90
4.2 Problem Statement . 95
4.3 Core Concepts . 101

4.3.1 Collaboration Interfaces, their Implementations and Bind-
ings . 101

4.3.2 Wrapper Recycling . 106
4.3.3 Composing Bindings and Implementations 107
4.3.4 Virtual Types . 108
4.3.5 Object Constructors . 110
4.3.6 Most Specific Wrappers 111
4.3.7 Interim Evaluation of the Model 111

4.4 Dimensions of Reuse . 112
4.4.1 Component Type Hierarchies 113
4.4.2 Implementation Hierarchies 113
4.4.3 Binding Hierarchies . 114
4.4.4 Polymorphism . 120
4.4.5 Section Summary . 121

4.5 Future Work: Layered Bindings and Implementations 122
4.6 Related Work . 124
4.7 Chapter Summary . 128

5 Combining Crosscutting Models 130
5.1 Introduction . 131
5.2 Problem statement . 133
5.3 Deploying Aspects With Caesar 138

5.3.1 Pointcuts and Advices 140

6

CONTENTS

5.3.2 Static and Dynamic Deployment 142
5.3.3 Dynamic Deployment and Concurrency 147

5.4 Evaluation . 147
5.5 Related Work . 151
5.6 Chapter Summary . 153

6 Conclusions 154
6.1 Transparent Redirection . 154
6.2 Incremental Specification, Increment Combination, and Subsump-

tion . 155
6.3 More Powerful Interfaces . 157
6.4 Runtime Composition and Static Typing 158
6.5 Summary and Future Work . 159

7

Preface

During the first four years of my computer science study in Bonn I was
convinced that a Ph.D. is a pretty useless waste of time. In the industry,
nobody cares for a Ph.D. Under the light of all the buzzwords that were
drummed into our heads by the media - start-up, going public, new market,
B2B etc. - an academic career seemed to be absurd anyway, and being a
poor Ph.D. student for another three years looked like a dumb idea.

Luckily, I recognized - before it was too late - that a Ph.D. study should
be viewed from a very different perspective: As a unique opportunity to
think about a problem really deep. Through my industrial experience I
knew that this is a privilege that I would probably never have in a regular
job. I am happy that I finally decided to ‘do it’.

Many people have contributed to this thesis. First of all, I want to
thank my thesis supervisor, Mira Mezini, for her extraordinary support.
She “showed me the ropes” in the art of paper writing and scientific work.
Despite her tight schedule, she was always willing to help in all conceivable
ways. This thesis would look completely different without her.

I am indebted to Frank Buschmann, Lutz Dominick, Roman Pichler, Ste-
fan Schulze, Christa Schwanninger, Egon Wuchner, and the whole Siemens
CT SE 2 team for their support. In addition, I would like to express my
gratitude to Siemens AG for their financial backup.

Gregor Kiczales, my co-supervisor, contributed with valuable comments
and agreed to take on a 8000km journey just for the thesis defence.

Michael Eichberg, Jürgen Hallpap, Raquel de Moura Gurgel Silva, Walter-
Augusto Werner, and Andreas Wittmann have implemented various propos-
als described in this thesis and provided important feedback concerning the
feasibility and usefullness of the respective ideas.

Finally, I would like to thank my partner Annekathrin for her unre-
stricted backup and for moving twice (including the search for a new job)
with me during the work on this thesis.

8

CHAPTER 1

Introduction

New language constructs for better separation of concerns in the develop-
ment of software systems are needed! This is the claim that is backed up and
explained in this chapter. First of all: What is meant by ‘good separation
of concerns’?

A concern is any coherent issue in the problem domain. A concern
might be an arbitrarily complex concept like ‘security’ or ‘pay-roll system’
or primivite concepts like ‘wait for mouse event’. Separation of concerns
in software is closely related to composition and decomposition mechanisms
in programming languages. Software composition and the reverse notion of
software decomposition are about the partitioning of a software system into
smaller parts (decomposition) and the assembly of software systems in terms
of these smaller parts (composition). This definition does not say anything
about how to decompose a software system. For example, dividing a software
into two parts, whereby one part contains all even code line numbers, and the
other part contains the odd code line numbers, would be a feasible software
decomposition mechanism. However, obviously this decomposition would
not make sense. A reasonable criteria to be used in decomposing systems
is needed.

This is the point where the notion of separation of concerns, usually
attributed to Parnas [Par72a] and Dijkstra [Dij76], proves useful. The sep-
aration of concerns principle postulates that every part of a decomposed
software system should be responsible for a well-defined task or concern of
the system. It should have as little knowledge about the other parts (and
other concerns) of the system as possible such that it is feasible to reason
about every concern in ioslation.

9

1.1. BENEFITS OF PROPER SEPARATION OF CONCERNS

1.1 Benefits of Proper Separation of Concerns

Proper separation of concerns has a number of benefits on different qualities.
These effects are divided into four categories: comprehensibility, reusability,
scalability, and maintainability.

1.1.1 Comprehensibility

“Our heads are so small that we cannot deal with multiple
aspects simultaneously without getting confused.”

Edsger W. Dijkstra in [Dij76]

Probably the most obvious benefit of separation of concerns is that it
becomes easier to understand a piece of software. If every program part
can be understood on its own, we do not need to know the structure of the
whole system in order to understand a part of it – we can concentrate on
the concern in question while ignoring the other concerns. In the knowledge
representation community, this problem is known as delocalization or delo-
calized plans, meaning that pieces of code that are conceptually related are
physically located in non-contiguous parts of a program [SL86]. Different
tools and techniques have been developed to ease knowledge discovery with
delocalized plans, for example, better documentation techniques [LLP+88]
or tool support [Wel95].

1.1.2 Reusability

“No matter how good our intentions, the first time we try to
reuse something we discover a facet of the new problem the old
module just can’t manage. So we tune it.”

Jack Ganssle, “The Failure of Reuse”, embedded.com, 2001.

Software reuse means that one piece of software is used in multiple places.
The relation to separation of concerns is as follows: The more a piece of
software concentrates on a single or few concerns, the more likely this piece
of software can be reused in different contexts. Why is this so? A piece
of software is all the more reusable if it contains as little dependencies on
the context of usage as possible, and this is exactly the case if the software
concentrates on a single concern. If the software in question encodes the
concerns A, B, and C and we are only interested in concern B, then this
piece of software is not reusable for our purpose.

Ubiquitous reuse leads to the software engineers’ dream of software that
is assembled from a number of COTS (commercial-off-the-shelf) compo-
nents, an idea that dates back to the late 1960’s [McI68]. The tremendous

10

CHAPTER 1. INTRODUCTION

effort that has been spent in commercial component models like Enterprise
JavaBeans (EJB) or Corba Component Model (CCM) emphasizes the com-
mercial importance of reusable software, see also [Szy98]. However, without
means for good separation of concerns the dream of reusable software com-
ponents is doomed.

1.1.3 Scalability

“Adding manpower to a late
software project makes it later ”

Brooks’s Law

In this context, scalability refers to a reasonable relation between cost
and size of a software system, i. e., the costs won’t explode in a big project.
Separation of concerns fosters scalability in different ways:

• Division of labor and knowledge: If we are able to reason about
every concern in isolation, we do not need omniscient geniuses but
can instead assign experts in one particular area to the corresponding
piece of software. This means that we can divide the labor into smaller
pieces that are concurrently worked out by many different people.

The famous “Brooks’s Law” [Bro75] states that adding more people
to a software project makes it later. In other words, the rule of three,
Time ≈ Size

People , does not apply to software engineering. The main
reason for this observation is that the communication and coordination
overhead increases quadratically with respect to the number of people
involved. In a world with good separation of concerns we should be
able to escape Brooks’s Law because the required communication and
coordination is minimized.

• Modular Checking: From a compiler perspective, program parts
will little dependencies on other program parts make it easier to per-
fom modular checking, that is, check and compile a single part in iso-
lation. However, this property does not only affect compiler scala-
bility (which is rather negligible nowadays) – if a program part can
be understood in isolation by the compiler, then it can also be un-
derstood by the programmer. This is also related to the question
whether we have a closed-world assumption or an open-world assump-
tion1. Informally, the world assumption relates to whether we need
to have global knowledge of all parts of a system (closed world) in
order to check/understand/compile/reason about parts of a system.

1The term closed-world assumption originally stems from artificial intelligence and
refers to the assumption that everything which cannot be proved true is assumed as false.

11

1.2. HIERARCHICAL DECOMPOSITION OF CONCERNS

Many modern concepts like runtime code loading, movable code, dis-
tributed computation etc. do not make sense if we have a closed-world
assumption. Therefore, separation of concerns also contributes to the
realization of these new concepts.

1.1.4 Maintainability

“There are many properties of objects that are non-local, for
example, any kind of global consistency. What tends to happen
in OOP is that every object has to encode its view of the global
consistency condition, and do its part to help maintain the right
global properties.”

William Cook

It is a well-known fact that maintenance of a software project frequently
accounts for the largest part of the budget. Maintenance usually means
adding, removing or changing a particular concern, e. g., changing the im-
plementation of a feature. If we want to change a feature, we have two
problems: a) localizing the feature and b) updating the implementation.

If a concern is not cleanly separated from the other concerns but instead
spread over a large part of the system, the localization of a concern can be a
real nightmare because we have to find all code snippets that contribute to
the particular concern. The whole process of reverse engineering becomes
much more complex if we have a software that has no good separation of
concerns.

Updating such a tangled concern does also lead to problems because it
is very difficult to make consistent changes such that the integrity of the
software is preserved. We have to make sure that all changes in all different
places are consistent with each other, which is highly non-trivial.

Similar observations apply to adding and removing concerns. In the first
case, we have to find all code locations were code has to be inserted or
changed, in the latter case we have to find all code locations were code has
to be removed.

1.2 Hierarchical Decomposition of Concerns

In the 1960’s and early 70’s the need for good organization of software be-
came apparent, due to more and more failures of large software projects. The
obvious solution seemed to be to transfer the divide and conquer principle
to software engineering: A large problem should be solved by solving many
small problems. Wirth called this kind of software engineering “program
development by stepwise refinement” [Wir71], meaning that

12

CHAPTER 1. INTRODUCTION

“In each step, one or several instructions of a given program are
decomposed into more detailed instructions. This successive de-
composition or refinement of specifications terminates when all
instructions are expressed in terms of an underlying computer
or programming language [...] A guideline in the process of step-
wise refinement should be the principle to decompose decisions
as much as possible, to untangle aspects which are only seem-
ingly interdependent, and to defer those decisions which concern
details of representation as long as possible.”

Already in 1968, Dijkstra wrote his influential article about the ben-
efits of a layered architecture [Dij68]. Some years later, the new insights
were also reflected in programming languages, leading to the development
of structured programming [DDH72] and modules [Par72b, Wir82, DoD83].

The basic principles of modules can still be found in today’s program-
ming languages: A module is a piece of software that may depend on other,
lower-level modules, has some internal secrets, and provides a well-defined
interface to other, higher-level modules. If we draw a dependency graph of
a software system consisting of modules, we end up with a directed, acyclic
graph (DAG). A DAG induces a hierarchy of layers because for every DAG
with nodes V and edges E there exists a (not necessarily unique) number
k and function λ : V → {1, . . . , k} such that (u, v) ∈ E ⇒ λ(u) < λ(k)
[BM76]. In other words, even if not explicitly intended by the programmer,
software written in a conventional module-based language is always implic-
itly organized hierarchically. Of course, careful developers take advantage
of modules in order to create the most useful hierarchies. For example, the
layer pattern [BMR+96] describes an architecture within which a system is
divided into layers, such that layer n depends only on layer n − 1, thereby
making it very easy to replace individual layers.

Modern languages such as Java [AG96] also allow circular dependencies
between modules, but the circles in the corresponding graph are usually
very small: Sometimes circular dependencies make sense in order to encode
‘mind-sized’ components [CHP99], that is, components that are realized by
a set of closely collaborating (hence mutually recursive) modules, but most
analysis and design methodologies discourage the use of mutually recur-
sive dependencies, see for instance Robert Martin’s Acyclic Dependencies
Principle [Mar96]. Hence, a circle can be viewed as a single module and,
from a high-level perspective, the claim is still true: today’s programming
languages foster a hierarchical structure.

Physical hierarchical decomposition, that is, the physical assignment of
source code to files, does not imply any particular semantic relation per se,
for example conceptual specialization or containment, between the modules.
However, from the perspective of clean separation of concerns, the implicit
assumption of hierarchical decomposition is that it is possible to organize

13

1.2. HIERARCHICAL DECOMPOSITION OF CONCERNS

the concerns of the system in a semantic hierarchy that can be more or less
directly encoded in a corresponding module hierarchy. In terms of Wegner
[Weg90], we want a direct correspondence between the logical hierarchy and
the physical hierarchy. Winkler talks about the concept-oriented view versus
the program-oriented view [Win92], Meyer postulates the direct mapping
principle [Mey97], Larman calls for a low representational gap [Lar01] –
many different names for the same idea.

If the conceptual and physical hierarchies of a system do not match,
however, one or more modules of the system are tangled [KLM+97], meaning
that they are responsible for more than one concern, or vice-versa, some
concerns of the system are distributed over multiple modules. In other
words, the separation of concerns principle is violated. We will have more
to say about tangling in Sec. 1.3.

Whether or not it is possible to find a reasonable concern-to-module
mapping depends greatly on the programming language used. For example,
object-oriented programming languages have inheritance, which enables to
represent semantic ‘is-a’ more easily and hence make it superior to other
languages that do not have this feature.

However, before reasoning about better mappings from concepts to mod-
ules it makes sense to think about a reasonable modeling of concerns them-
selves. This is also in line with one of the favorite messages of the Turing
Award winner and OO pioneer Kristen Nygaard, also emphasized on his last
banquet speech at ECOOP 2002 in Malaga, shortly before he passed away:
To program is to understand and describe.

If one considers this definition, one can draw conclusions from philosoph-
ical domains like ontology 2 and epistemology3 and scientific branches such
as knowledge representation or cognitive science, and it quickly turns out
that hierarchical modeling 4 of concerns is a most natural process.

For example, in Aristotelian logic, the essential character of a subject is
described by means of genus, a higher group to which the individual things
belongs, and difference, i.e., what makes the subject different from other
subjects with the same genus [Ros28]. In other words, Aristotle proposes to
organize things in conceptual hierarchies. To classify things has been the
most widely used approach to separation of concerns in the last 2000 years,
leading to such diverse and powerful classification systems such as the bio-
logical classification system by Linnaeus or the International Classification
of Diseases (ICD).

Nowadays, a wide range of relations that may hold between different
subjects have been identified: Different flavors of conceptual specialization
(for example, Chaffin identified four different flavors of conceptual special-

2The study of being or existence as well as the basic categories thereof. [Wik]
3The study of the origin, nature, and limits of human knowledge. [Wik]
4Please note that the term hierarchical refers to the DAG shape of the corresponding

semantic net and not to the semantic relation ‘specialization’

14

CHAPTER 1. INTRODUCTION

ization [CH88], Brachman six [Bra83]), different flavors of ‘part-of’ relations
(e.g., seven different flavors such as component-of(Engine, Car) and portion-
mass(Slice, Pie) identified in [Sto93]), antonyms, instance-of relations etc.

Object-orientation is the programming paradigm whose decomposition
mechanisms are most similar to those mentioned above: inheritance, ag-
gregation, and instantiation. The first part of this thesis deals with the
question of how well different flavors of conceptual specialization and ‘part-
of’ relations can be modeled with inheritance and aggregation only. The
result is a model called compound references, within which the strict sep-
aration of inheritance and aggregation is replaced by a smooth path from
aggregation to inheritance, that is, a multitude of different semantic flavors
in the interval between (possibly dynamic) inheritance and aggregation can
be expressed, thereby enabling a better mapping of different specialization
and part-of flavors to code.

The second part of the thesis deals with the problem that conventional hi-
erarchical decomposition like in object-oriented languages is primarily about
the description and relation of single entities. However, what happens if we
try to include something that involves multiple entities? For example, the
simple sentence

“Cato destroys Carthago”

involves at least three different things:

1. The person Cato

2. The city of Carthago

3. The destruction

Putting this behavior in any of the single entities abstractions would be
arbitrary. One of the problems with conventional (object-oriented) hierar-
chical models is that they do not provide good means to model collaborative
behavior. This is also reflected in the object-oriented view of a class as the
implementation of an abstract data type: A set of data values and operations
that operate on the data. This works quite well if one considers examples
like stacks because all operations on a stack operate only on the stack and
not on other data types. However, this does not work out if the operations
that operate on the data involve multiple data types5.

The purpose of the second part of this thesis is to be able to apply
the techniques and concepts to model single entities also to collaborative
behavior. For example, it is desirable to be able to specialize a set of col-
laborating abstractions simultaneously in one module. In the delegation
layers approach, collaborative behavior becomes a first class citizen in the

5This is also in line with a joke by Dijkstra who is said to have once stated that
“abstract data types are a remarkable theory, whose purpose is to describe stacks.”

15

1.3. CROSSCUTTING DECOMPOSITION OF CONCERNS

Figure 1.1: Abstract concern space

language, whereby the notions that proved so useful for single entities, such
as subsumption and polymorphism, also apply to collaborative behavior.

1.3 Crosscutting Decomposition of Concerns

“Concepts in the real world, which programs and databases
attempt to model, do not come in neatly packaged hierarchies.”

K. Baclawski and B. Indurkhya in [BI94]

In this section, it is argued that there are certain modularity prob-
lems that will never be solved satisfactorily with hierarchical decomposi-
tion mechanisms only, how sophisticated they may ever be. This claim is
also backed up by several other authors ([HO93, KLM+97, TOHS99, Ber90,
AB92, ML98, BI94], to cite just a few).

In the author’s opinion, the main failure of hierarchical decomposition is
that it assumes that real-world concepts have intuitive, mind-independent,
preexisting concept hierarchies. However, our perception of the world de-
pends heavily on the context from which it is viewed: There is no conceptual
lingua franca. Lakoff [Lak90] argues that there is no objective model of re-
ality:

“Knowledge, like truth, is relative to understanding. Our folk
view of knowledge as being absolute comes from the same source

16

CHAPTER 1. INTRODUCTION

Figure 1.2: Divide by size

Figure 1.3: Divide by shape

17

1.3. CROSSCUTTING DECOMPOSITION OF CONCERNS

Figure 1.4: Divide by color

as our folk view that truth is absolute, which is the folk theory
that there is only one way to understand a situation. When that
folk theory fails, and we have multiple ways of understanding,
or ’framing,’ a situation, then knowledge, like truth, becomes
relative to that understanding”

These observations also apply to software engineering. Every software
system can be viewed from multiple different perspectives, and each of these
perspectives may imply a different model of the concerns. The model which
we choose to decompose our software system into modules has a big influ-
ence on the software engineering properties of the software. For example,
Parnas observed that a data-centric decomposition eases changes in the rep-
resentation of data structures [Par72a]. Tool abstraction [GKN92] makes it
easy to modify functions of the system.

The problem can also be represented graphically. Each shape in Fig. 1.1
represents a particular concern of a software system. If we want to orga-
nize these concerns we could either divide them by size (Fig. 1.2), by shape
(Fig. 1.3) or by color (Fig. 1.4). Each of these decompositions is equally rea-
sonable. However, with a hierarchical modeling approach, we have to choose
one fixed classification hierarchy – if we want to use multiple classification
criteria, the criteria have to be organized in a sequence as in Fig. 1.5. In this
example, the classification sequence was (color, shape, size). However, the
problem is that with a classification sequence, only the first element of the
list is localized whereas all other concerns are tangled in the resulting hier-
archical structure. Fig. 1.5 illustrates this with the concern ‘circle’, which
is crosscutting in the hierarchical decomposition. Only the color concern is
cleanly separated into white, grey and black, but even this decomposition
is not satisfactory because the color concern is still blended with other con-
cerns. In the following, this problem will be referred to as the arbitrariness

18

CHAPTER 1. INTRODUCTION

Figure 1.5: Arbitrariness of the primary model

19

1.3. CROSSCUTTING DECOMPOSITION OF CONCERNS

Figure 1.6: Projection of the ‘color’ decomposition

of the primary model.
The ‘arbitrariness of the primary model’ problem is related to the ‘tyranny

of the dominant decomposition’ [TOHS99], meaning that “existing lan-
guages and formalisms generally provide only one, dominant dimension
along which to separate - e.g., by object or by function” [TOHS99]. We
prefer the term ‘arbitrariness of the primary model’ and its formulation
as above, because it emphasizes that the problem arises not because only
one dominant decomposition mechanism, such as classes versus functions, is
supported. One can actually simulate functional decomposition in an object-
oriented language [Wol97]. The problem is the primary mental model: Hi-
erarchical decomposition requires a primary model and other models are
subordinate as illustrated in Fig. 1.5.

With the conceptual framework introduced so far, crosscutting can be
seen as a relation between two models. For a technical definition of the
term “crosscutting”, the reader is referred to [MK03]; here we will give an
informal (graphical) characterization of it.

We define crosscutting via projections of models. Fig. 1.6 shows a pro-
jection of the ‘color’ model from Fig. 1.4 onto the abstract concern space of
Fig. 1.1. A projection of a model H is a partition of the concern space into
subsets h1, . . . , hn such that each subset corresponds to an element of the
model.

20

CHAPTER 1. INTRODUCTION

Figure 1.7: Crosscutting Hierarchies

Now, two models M and M ′ are said to be crosscutting, if there exist
at least two sets o and o′ from their respective projections, such that o∩ o′,
and neither o ⊆ o′, nor o′ ⊆ o. Fig. 1.7 illustrates how the black concern
of the color model (Fig. 1.4) crosscuts the big concern of the size model
(Fig. 1.2). These two concerns have in common the big, black shapes, but
neither is a subset of the other: the black module contains also small black
shapes, while the size model contains also non-black big shapes.

On the contrary, a model M is a hierarchical refinement of a model M ′

if their projections o1, . . . , on and o′1, . . . , o
′
m are in a subset relation to each

other as follows: there is a mapping p : {1, . . . , n} → {1, . . . ,m} such that
∀i ∈ {1, . . . , n} : oi ⊆ o′p(i). Crosscutting models are themselves not the
problem, since they are inherent in the domains we model. The problem is
that our languages and decomposition techniques do not (properly) support
crosscutting modularity (see the discussion on decomposition arbitrariness
above): If we have two crosscutting models M1 and M2 and make the de-
cision to use M1 as the primary model for our module structure, then the
elements of M2 cannot be cleanly localized in that module structure.

For a more concrete example, take a look at Fig. 1.8. It shows three
different hierarchical decompositions of software for order processing. Each
decomposition represents a different view on the system, a business logic
decomposition on top, a decomposition from the viewpoint of security and
finally at the bottom a persistence decomposition. The point is that with

21

1.3. CROSSCUTTING DECOMPOSITION OF CONCERNS

Figure 1.8: Different views of an order system

pure hierarchical decomposition mechanisms, a software developer has to
choose one of these decompositions in order to organize his software corre-
spondingly.

Most software developers would probably choose the business logic de-
composition in order to organize the software modules because for most
people it is the most ‘natural’ decomposition. However, the point is that
each of these decompositions is equally relevant. Baclawski and Indurkhya
state: “We would like to affirm a stronger point of view in which there are
no ‘standard’ conceptual hierarchies” [BI94].

Multiple inheritance has often been proposed and (mis-)used to model
multiple decomposition criteria. For example, Meyer proposed an inheri-
tance technique called view inheritance [Mey97, Sec. 24.10]. However, a
model consists of multiple collaborating abstractions, whereas with multi-

22

CHAPTER 1. INTRODUCTION

ple inheritance we can only model a single abstraction. Hence it is not
possible to encode crosscutting models appropriately with multiple inher-
itance. In addition, multiple inheritance has other well-known problems.
First, multiple inheritance has some inherent conceptual difficulties (name
collisions, diamond inheritance), for which no really satisfactory solutions
exist (“Multiple Inheritance is good, but there is no good way to do it”
[Syn87]). Second, the number of classes grows exponentially because one
has to create a new class for every combination. Third, view inheritance is a
maintenance nightmare, because the addition or removal of a classification
criterion implies the invasive modification of all other code that refers to
these classes. Last but not least, the integration of crosscutting hierarchies
frequently implies sophisticated interactions between the different ‘views’ of
an enitity that cannot be appropriatly expressed with multiple inheritance
solutions like overriding, renaming etc.

As an extreme example, consider a simple concern such as logging of all
I/O operations. With multiple inheritance, all classes that do I/O would
have to be subclassed in order to override all methods that include I/O
actions. Apart from the visibility problems (I/O might occur in private
methods), the overhead of this approach would not be acceptable.

The third part of this thesis is concerned with decomposition of cross-
cutting concerns. A new language called Caesar is developed, within which
it is possible to have multiple different decompositions simultaneously and
to add new decompositions on-demand. Besides its features for crosscutting
decomposition, a particularly interesting concept is its support for aspec-
tual polymorphism, which can be seen as a generalization of usual object-
oriented (subtype) polymorphism, by which polymorphism can be applied in
any hierarchical decomposition, that is, polymorphism is available in every
dimension of decomposition.

To make things more concrete, consider a hierarchy that divides figures
into different shapes, as in Fig. 1.36. This means that it is possible to write
a method with a Figure parameter that is polymorphic with respect to the
shape of the figure. Aspectual polymorphism means that polymorphism is
available with respect to any hierarchical decomposition. In terms of the
example this means that the code can simultaneously be used polymorphi-
cally with respect to color and size of figures as well! In terms of Fig. 1.8
this would imply that, for instance, we could choose and exchange the im-
plementation of the persistence or security concerns at runtime.

Aspectual polymorphism is strongly related to the idea of fluid aspect-
oriented programming, the “ability to temporarily shift a program (or other
software model) to a different structure to do some piece of work with it,
and then shift it back” [Kic01]. Let us see how usual object-oriented poly-

6In Fig. 1.3 the figures represented abstract concepts and not graphical figures but for
the purpose of this example let us just consider them as graphical figures.

23

1.4. THE SILVER BULLET?

morphism via late binding fits into this picture: Calling a method m(X x)
with a parameter x that can be assigned polymorphically (i.e., x might refer
to an instance of a subclass of X) at runtime can be seen as temporarily
(during the execution of the method) shifting or transforming this method
such that calls to methods of the parameter object are dispatched to the
method implementations of the respective class of x. In this way, usual late
binding can be seen as a primitive form of fluid AOP. It is limited because
one can only transform with respect to our single decomposition hierarchy.

1.4 The Silver Bullet?

In 1987, Fred Brooks wrote his influential article “No Silver Bullet: Essence
and Accidents of Software Engineering” [Bro87]. In this article, Brooks
states:

“Fashioning complex conceptual constructs is the essence; ac-
cidental tasks arise in representing the constructs in language.
Past progress has so reduced the accidental tasks that future
progress now depends upon addressing the essence.”

He concludes that difficulties are inherent in the nature of software and thus
software will always be hard: “There is inherently no silver bullet”.

To prevent a misunderstanding: This thesis is of course not Brooks’s sil-
ver bullet. However, it is worthwhile to reconsider the arguments that led to
his pessimistic conclusion under the assumption that we have programming
languages that enable better separation of concerns. He identifies four prop-
erties which he thinks are responsible for the inherent difficulty of building
software:

• Complexity. Brooks states: “A scaling-up of a software entity is not
merely a repetition of the same elements in larger sizes, it is necessarily
an increase in the number of different elements. In most cases, the
elements interact with each other in some nonlinear fashion, and the
complexity of the whole increases much more than linearly.” The cause
of this non-linear increase in complexity is due to a non-linear increase
of dependencies, and dependencies explode due to messy separation of
concerns! Hence, good separation of concerns can inherently lower the
complexity.

• Conformity. In this case, Brooks identifies the conformance to multi-
ple different interfaces as the problem: “Much of the complexity that
[the software engineer] must master is arbitrary complexity, forced
without rhyme or reason by the many human institutions and systems
to which his interfaces must conform. These differ from interface to

24

CHAPTER 1. INTRODUCTION

interface, and from time to time, not because of necessity but only be-
cause they were designed by different people.” This problem is related
to the arbitrariness of the primary model, identified in Sec. 1.3. The
ability to adapt to a new decomposition (i.e., a new interface) easily,
without modifying existing code, will substantially reduce the effort
related to conformity.

• Changeability. The positive influence of separation of concerns on
changeability and maintainability has already been discussed in Sec. 1.1.4.

• Invisibility. Brooks asserts that it is impossible to visualize soft-
ware: “As soon as we attempt to diagram software structure, we find
it to constitute not one, but several, general directed graphs superim-
posed one upon another. The several graphs may represent the flow
of control, the flow of data, patterns of dependency, time sequence,
name-space relationships. These graphs are usually not even planar,
much less hierarchical.” This is basically just another description of
the initial problem statement for motivating crosscutting decomposi-
tion: It should be possible to reason about any important viewpoint
of the system in isolation, if this is true, it becomes also much easier
to visualize the software.

This discussion should have made clear that better separation of concerns,
both hierarchical and crosscutting, is really about reducing the essential
difficulties of software engineering in Brooks’s sense.

1.5 Thesis Organization

Large parts of this thesis have previously been published and presented at
conferences like ECOOP, OOPSLA, and AOSD. This fact had a big impact
on the organization of the thesis.

Usually, a conference paper tackles a well-defined problem and presents
a relatively self-contained solution. Recognizing that the number of people
who are willing to read a Ph.D. thesis from front to cover is usually rela-
tively small, the author tried to stick with the self-contained format of the
conference papers in the sense that most chapters of this thesis can be read
without too much dependence on previous chapters. This also means that
this thesis does not present the big solution to one big problem but instead
proposes a couple of small solutions for a number of small problems.

It should also be noted that this thesis does not propose an aggregate
language that contains all language constructs proposed in all chapters of
the thesis. Every language mechanism proposed here should be understood
in the context of the problem it was introduced to solve.

However, this does not mean that the solutions proposed here are totally
isolated from each other. In the technical chapters, there are many links to

25

1.5. THESIS ORGANIZATION

other parts of the thesis that describe how one idea relates to another one
or how one solution might benefit from another one. In addition, the last
chapter of the thesis is devoted to the identification of recurrent themes or
‘red threads’ that pervade the thesis.

The remainder of this thesis is organized as follows: Chap. 2 and 3 are
about better hierarchical decomposition mechanisms for single and collabo-
rating entities, respectively. In Chap. 2 compound references are presented,
a model within which the strict separation of inheritance and aggregation is
replaced by a smooth path from aggregation to dynamic, object-based inher-
itance. Chap. 3 presents delegation layers, a model that scales well-known
object-oriented concepts for single classes and objects, namely inheritance,
subtyping and polymorphism, to sets of collaborating classes and objects.

Chap. 4 and 5 propose new modules for crosscutting models. Chap. 4
concentrates on the problem how crosscutting models can be represented
and encoded, whereas Chap. 5 presents new ideas for the combination and
deployment of crosscutting models with respect to aspectual polymorphism.

Chap. 6 concludes the thesis by a more abstract reflection on the different
technical ideas underlying the models proposed. In particular, a number of
recurring themes are identified that might be the topic of future research in
the area.

26

CHAPTER 2

Hierarchical Decomposition: Single Entities

This chapter shares material with the paper ‘Object-Oriented Compo-
sition Untangled’ [OM01] which has been presented at OOPSLA 2001.

In this part of the thesis we try to release the tension between the con-
ventional object-oriented mechanisms for hierarchical decomposition, inher-
itance and aggregation, by identifying and separating a set of properties
that together characterize the difference between inheritance (both class-
based and object-based) and aggregation. By providing dedicated language
means for each of these properties, it is possible to build a seamless spec-
trum of composition semantics in the interval between object composition
and inheritance.

2.1 Introduction

The two basic composition mechanisms of object-oriented languages, inher-
itance and object composition, are very different concepts, each character-
ized by a different set of properties. The properties of inheritance have
been discussed in several works, e.g., [Sak89, Tai96, Mez98]. Also, the re-
lationship between inheritance and object composition is carefully studied,
e.g., in [Hau93, HOT97]. The mixture of composition properties supported
by each mechanism is fixed in the language implementation and individual
properties do not exist as abstractions at the language level.

However, often non-standard composition semantics is needed, with a
mixture of properties, which is not as such provided by any of the standard
techniques. In the absence of linguistic means for expressing and combining
individual composition properties on-demand, such non-standard semantics

27

2.1. INTRODUCTION

are simulated by complicated architectures that are sensitive to requirement
changes and cannot easily be adapted without invalidating existing clients.

Actually, the need to combine properties of inheritance and object com-
position has already been the driving force for two families of non-standard
approaches to object-oriented composition.

On one side, delegation [Lie86] enriches object composition with inheri-
tance properties. Please note that in contrast to the frequent use of the term
delegation as a synonym for forwarding semantics, in this thesis it stands
for dynamic, object-based inheritance. In pure delegation-based models,
objects are created by cloning other prototype objects, and objects may
inherit from other objects, called parents. Hence, in such models one has
object composition and delegation, but no class-based inheritance. The
most prominent programming language in this family is Self [US87]. More
recently delegation-based techniques are integrated into statically typed,
class-based languages, which thus provide class-based inheritance, delega-
tion, and object composition [Kni99, Ern99, BW00]. On the other side,
several mixin-based models [BC90, Mez97, FKF98, ALZ00] approach the
goal of combining inheritance and object composition properties from the
opposite direction, enriching inheritance with object composition properties,
such as the ability to statically/dynamically apply a subclass to several base
classes.

Like standard composition mechanisms, these approaches also do not
provide abstractions for explicitly expressing individual composition prop-
erties that would allow to combine these properties on-demand. In this
chapter, we distinguish between five properties that can be used to describe
the relation that holds between two modules M and B (classes and/or ob-
jects) to be composed, whereby B denotes the base module, M denotes the
modification module, and M(B) denotes the composition.

1. Overriding: The ability of the modification to override methods de-
fined in the base. In M(B), M’s definitions hide B’s definitions with the
same name. Self-invocations within B ignore redefinitions in M.

2. Transparent redirection: The ability to transparently redirect B’s
this to denote M(B) within the composition.

3. Acquisition: The ability to use definitions in B as if these were local
methods in M(B) (transparent forwarding of services from M to B).

4. Subtyping: The promise that M(B) fulfills the contract specified by
B, or that M(B) can be used everywhere B is expected.

5. Polymorphism: The ability to (dynamically or statically) apply M to
any subtype of B.

28

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

dynamically

x

x

x

x

delegation

x-xredirection

staticallydynamically-polymorphic

x-xsubtyping

x-xacquisition

x-x overriding

mixin
inheritance

object
composition

inheritance

Table 2.1: Composition properties supported by standard mechanisms

Table 2.1 shows the set of properties which will be discussed as row in-
dexes. Columns are indexed by existing object-oriented composition mech-
anisms.

The key idea of the approach presented in this chapter is the separa-
tion and independent applicability of these notions by providing explicit
linguistic means to express them. This allows the programmer to build
a seamless spectrum of composition semantics in the interval between ob-
ject composition and inheritance, depending on the requirements at hand,
making object-oriented programs more understandable, due to explicitly ex-
pressed design decisions, and less sensitive to requirement changes, due to
the seamless transition from one composition semantics to another.

The remainder of the chapter is organized as follows. Sec. 2.2 discusses
examples where non-standard combinations of composition properties are
desirable. Sec. 2.3 presents the basic concepts of our model. The model
is evaluated in Sec. 2.4. Sec. 2.5 discusses some advanced issues related to
static type safety. Sec. 2.6 discusses some issues related to abstract classes
and method header specialization. Related work is discussed in Sec. 2.7.
Sec. 2.8 summarizes the chapter and suggests areas of future work.

2.2 Motivation

In this section we consider three composition scenarios where non-standard
combinations of composition properties make sense.

In all cases, we discuss various designs that can be used to achieve the
desired composition semantics. However, please note that this section is not
about proposing the ultimate designs for the given scenarios. The reader
might eventually come up with other, equivalent or even superior, designs to
the same scenarios. Yet, this is not essential for the purpose of this chapter:
The main message that should be conveyed is rather (a) that in all cases
some sophisticated design is needed, which does not explicitly state im-
portant conceptual relationships between the involved abstractions, and (b)

29

2.2. MOTIVATION

Account

CheckingsAccount SavingsAccount

Person

Company

SOP

account

payAccount

rentalAccount

*

OrderProcessingClerk

StandingOrder
src

dest

*

Figure 2.1: Class diagram for account example

that different designs are needed for different combinations of composition
properties.

2.2.1 Composition Scenario 1:
The Account Example

Consider an application in the banking domain with persons, companies, ac-
counts, and standing orders. The relation between persons/companies and
accounts is usually one to many. However, in this example each account
should have a dedicated role for its owner. For example, a company should
have a dedicated pay account and a dedicated rental account. This makes
it possible to choose the appropriate account for specific transfers automat-
ically. In this (simplified) example, a Person has only one “main” account
and a Company has a rental and a pay account. Different kinds of accounts
exist (SavingsAccount, CheckingsAccount), and accounts are subject to
frequent changes at runtime. A particular account may be shared, as e.g.,
two persons may use the same account, or the pay account and the rental
account of a company may be identical. A class SOP (standing order pro-
cessing) is used for the registration, deregistration and execution of standing
orders. On execution, multiple standing orders with identical source and
target accounts are summarized to a single transfer.

A class diagram for this problem is shown in Fig. 2.1. Based on the infor-
mation on a pay order, the OrderProcessingClerk gets the account objects
from the involved Person/Company, creates a StandingOrder and registers
it with a SOP. This design is simple and easy to understand. However, it
has a problem: If the account of a person changes, a previously registered
standing order will still be executed with respect to the outdated account.
With the design in Fig. 2.1, one has to update all account references that

30

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

write(int b) { stream.write(b); }

write(int[] ba) { stream.write(ba); }

FilterStream
FileOutputStream

write(int)

write(int[] ba) {

 for(int i=0; i<ba.length; i++)
 write(ba[i]);

}

OutputStream

write(int)
write(int [])

stream

BufferedOutputStream

write(int)

write(int [])

CompressedOutputStream

write(int)

write(int [])

Figure 2.2: Decorator design for output streams

were ever given out by a person or company manually. That is definitely
undesirable.

Given a reference p to a Person object, one ideally wants “p’s account”,
i.e., a compound, or indirect reference to account via p, to be passed to
SOP, rather than the account reference itself. In other words, some kind of
redirect semantics for references is desirable: the meaning of account should
be late bound within the current context of the object referred to by p,
whenever “p’s account” gets evaluated. Due to the lack of such compound
references in standard object-oriented languages, the architecture of the
design has to be changed in order to simulate them. Some possible solutions
are discussed below.

• A decorator [GHJV95] that contains an account object and forwards all
calls to it is passed to SOP instead of the account object itself. The base
object of the decorator (the account) can be changed without the need
for further manual updates. However, the identity test in SOP fails: If
two persons share an account, SOP compares non-identical decorators
with the same base object. Other subtleties of an architecture that
uses the decorator pattern for composition are highlighted in the next
scenario.

• A second approach is to change the SOP class so that it accepts Account-
Owner instead of Account objects with AccountOwner being an inter-
face with a single getAccount() method. Person and Company have
to implement the AccountOwner interface. This is difficult in the Com-
pany case, because a company has two different accounts. For this
reason, one has to create a separate AccountOwner subclass for Com-

31

2.2. MOTIVATION

write(OutputStream d, int b) { stream.write(d,b); }

write(OutputStream d, int[] ba) { stream.write(d, ba); }

FilterStream
FileOutputStream

write(OutputStream d,int b)

write(OutputStream d, int [] ba)

{
 for(int i=0; i<ba.length; i++)

 d.write(ba[i]);

}

OutputStream
stream

BufferedOutputStreamCompressedOutputStream

write(OutputStream,int)
write(OutputStream, int [])

write(OutputStream,int)

write(OutputStream, int [])

write(OutputStream,int)

write(OutputStream, int [])

Figure 2.3: Simulation of transparent redirection

pany1. Besides its complexity, the main drawback of this approach is
that we have to modify the StandingOrderProcessing class, which
might not be desirable or even possible in case this class is purchased
as part of a banking component library. Another limitation of this pro-
posal is that it works only for one level of redirection. For example,
one might want to register a standing order that transfers money to
the account of a person’s current spouse (and, spouses are also subject
to frequent changes these days).

• A common approach to avoid the coupling of the sender of a request to
its receiver is the chain of responsibility pattern [GHJV95]. Applied to
our example this would mean that each account has an optional succes-
sor account and new accounts are appended to the previous account.
Calls to the account are forwarded to the last and current account in
the chain. Besides its considerable complexity, this approach is not
compatible with sharing of accounts.

• Another possible solution would be to let the SOP class be an observer
[GHJV95] of persons and companies that is notified whenever an ac-
count is exchanged. However, it is easy to see that this would result
in a design that is even more complicated than the previous ones.

2.2.2 Composition Scenario 2:
The Stream Example

I/O Streams exist in multiple variations and different stream features are
typically implemented as decorators [GHJV95] of a basic stream class (see

1In Java, these classes would probably be implemented as inner classes.

32

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

e.g., the Java I/O package [Sun]), so that the set of desired features for a
stream instance can be choosen dynamically. A typical decorator design for
output streams is shown in Fig. 2.2.

The goal of using the decorator to compose basic OutputStream function-
ality with optional filtering features is to achieve the following composition
properties: (a) subtyping between the resulting composition and the base
component, (b) acquisition of the base behavior within the filtering function-
ality, (c) dynamic polymorphism - a certain filtering should be applicable to
any subtype of OutputStream, and (d) overriding of the methods that have
to be changed for the extended functionality. The decorator pattern realizes
dynamic polymorphism of the composition by means of object composition
and subtype polymorphism. Acquisition and overriding is achieved by im-
plementing the base component’s interface by means of forwarding methods
resp. decorator-specific methods. The decorator becomes a subtype of the
component by inheritance. The simulation of these composition properties,
however, has a number of shortcomings:

• The implementation of the decorator class is a tedious and error-prone
work, due to the manual simulation of the acquisition feature. In ad-
dition, it suffers from the syntactic fragile base class problem [Szy98]:
Whenever the interface of the base component changes, the corre-
sponding forwarding methods have to be added or deleted.

• There is no transparent redirection. This means that method calls to
this within the base component are not dispatched to their overridden
methods in the decorators but to the local implementations. A further
consequence is that if a base object passes this to other objects, it
passes itself instead of the decorator. In some situations, however,
the opposite effect would be desirable. This anomaly is known as the
self problem [Lie86] or as broken delegation [HOT97]. The manual
simulation of transparent redirection is rather complex and leads to a
design that is very different from the original decorator pattern because
the base object needs some way of knowing about the decorators. One
alternative is to store a back reference to the decorator in the base, but
this would prohibit multiple decorators for one base object. Another
solution with (again) a different design is to pass the decorator to the
base object in every method call. A corresponding design is illustrated
in Fig. 2.3.

• The base class may define state. All decorators inherit this state and
become unnecessary heavy. Although merely a subtype relationship
between the decorator and the base component is needed, the decora-
tor is enforced to inherit the state, due to the use of inheritance for
subtyping. This is usually no problem if the usage as a base for decora-
tors was already anticipated at writing time. However, if a predefined

33

2.2. MOTIVATION

TextJustifier

doc

ComposedDoc

DocElement

Simple

justState

*

TreeIterator
aggregate:Tree
doAll():void
doWhile():void
isDone():boolean
current():Object
next():void
first():void
test():boolean
action():void

first();
while !isDone() {

action();
next();

}

first();
while !isDone() && test() {

action();
next();

}

Figure 2.4: Structure of text justifier and tree iterator

library class should be decorated, this may be a problem.

2.2.3 Composition Scenario 3:
The TextJustifier Example

Envisage a TextJustifier command class in a text processing system,
which justifies all paragraphs in a document, except for preformatted para-
graphs. The document elements to be justified are stored in a recursive
object structure, as shown in the diagram on the left-hand side of Fig. 2.42.
For performing the document justification the text justifier needs to iterate
over the document structure. Assume that a tree iterator class as shown
on the right-hand side of Fig. 2.4 has already been implemented. The class
TreeIterator encodes a breadth-first iteration strategy for recursive object
structures. It can be used by overriding the action() and test() methods
for the specific purpose. The iterator class provides a number of iteration
mechanisms, e.g., applying action() to all elements that satisfy test()
(doAll()), or up to the first one that does not satisfy test() (doWhile()),
and so on.

Assume that the design shown in Fig. 2.53 where text justification and
iteration functionality are composed by means of inheritance is just good
enough for satisfying the requirements on our system during an early stage
of the development process. In light-weight processes such as Extreme Pro-
gramming [BFK00] where refactoring plays a key role the “make it work
first and then make it better” philosophy encourages such an iterative de-

2In a more realistic situation, one would have to apply the visitor pattern to connect
TextJustifier and the DocElement hierarchy. For the sake of simplicity, it is assumed
that this is not the case in our example. The problems discussed here apply to a visitor-
based design as well.

3In the design it is assumed that DocElement implements Tree

34

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

TreeIterator
aggregate:Tree
doAll():void
doWhile():void
isDone():boolean
current():Object
next():void
first():void
test():boolean
action():void

TextJustifier

doc

ComposedDoc

DocElement

Simple

justState

*

action():void
test():boolean

Figure 2.5: Usage of the iterator by inheritance

velopment.
In a later iteration stage it becomes apparent that inheritance is not the

correct composition semantics anymore. First, TextJustifier should not
be a subtype of TreeIterator anymore because a TextJustifier is not
a special kind of an iterator. In addition, the acquisition semantics that
comes with inheritance is not desired anymore; all methods of TreeItera-
tor pollute the interface of TextJustifier, which has become complex any-
way during the development. Second, the initial requirements have slightly
changed: It should be possible to determine the iteration strategy to be
used with a TextJustifier at runtime. For this purpose, subclasses Pre-
Order and PostOrder of TreeIterator have been implemented that refine
the default breadth-first semantics by overriding the first() and next()
methods.

Now, the question is how to compose the text justifier in Fig. 2.4 with
the iteration hierarchy, such that the above set of composition properties are
satisfied. A feasible solution is schematically presented in Fig. 2.6. Text-
Justifier has an instance variable, it, of type TreeIterator, which can
be assigned to an instance of MyPreOrder, MyIterator, or MyPostOrder.
The latter are defined as subclasses of the corresponding library classes and
redundantly implement the test() and action() methods for the justi-
fication purposes. It is quite reasonable to assume that the test and the
action performed in each step of the iteration needs information from the
text justifier object, which is provided via the context reference on the
TextJustifier.

Obviously, the design in Fig. 2.6 is very different from the predecessor
design in Fig. 2.5. That is, two different mixtures of features for composing
the same pieces of functionality are realized by two very different designs.
Furthermore, the design is more complex than the design in Fig. 2.5, and

35

2.2. MOTIVATION

TextJustifier

TreeIterator
aggregate:Tree
doAll():void
doWhile():void
isDone():boolean
current():Object
next():void
first():void
test():boolean
action():void

doc

it

PreOrder PostOrder

first();
while !isDone() {

action();
next();

}

next()
first()

next()
first()

first();
while !isDone() && test()
{

action();
next();

}

ComposedDoc

DocElement

Simple

justState

MyIterator

action()
test()

MyPreOrder

action()
test()

MyPostOrder

action()
test()

context

... (DocElement) current() ...

... context.justState ...

*

setIterator(TreeIterator):void

Figure 2.6: Initial design for dynamic composition

it does not reflect the conceptual relationships between the entities in it.
Additional classes and associations have been introduced, and the MyXXX
classes contain duplicated implementations of action() and test().

At this point, it becomes clear that the initial iterator design is unsatis-
factory because it leads to code duplication as in Fig. 2.6. It would have been
better to choose a more sophisticated design for the iterator classes right
from start, namely iterators that use a command class (IterationStep) as
shown in Fig. 2.7. But this still does not solve the problem: A complex
design such as in Fig. 2.7 is still required, although the conceptual relation-
ship between TextJustifier and TreeIterator is as simple as the initial
design in Fig 2.5. The design in Fig 2.5 would already be sufficient, even
for the dynamic composition, if only it would be possible to configure the
relation between TextJustifier and TreeIterator with the properties in
Tab. 2.1.

2.2.4 Problem Statement Summary

So far so good. In all cases, the desired composition semantics can indeed
be achieved somehow. Still, the result is highly unsatisfactory. Why? First,
the most severe problem is that the architectures we ended up with are com-
pletely different, depending on the desired mixture of composition proper-
ties. Second, the design gets complex, as soon as a composition is required
that deviates from the semantics of the standard composition mechanisms
directly supported by linguistic means.

As illustrated by the first composition scenario, different programmers

36

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

TextJustifier

TreeIterator
aggregate
doAll()
doWhile()
next()
first()
isDone()
current()

doc

it

PreOrder PostOrder

first();
while !isDone() {

step.action(current());
next(current());

}

next()
first()

next()
first()

first();
while !isDone() && test() {

step.action(current());
next(current());

}

Document

DocElement

Simple

justState

context

IterationStep

action(Object)
test(Object)

step

MyIterationStep

action(Object)
test(Object)

*

setIterator(TreeIterator):void

Figure 2.7: More sophisticated design for dynamic composition

may come up with different architectures even for the same composition
semantics. Moreover, any later change of the composition features might
require switching to another architecture. This is not only a tough chal-
lenge for any programmer. It also affects the understandability, and hence
maintenance of object-oriented programs: The very important knowledge
about the encoded composition semantics is not explicitly expressed by any
of the designs that simulate non-standard semantics. In general, it is not
obvious how to separate the part of the architecture that is directly involved
in encoding application logic from the part of the architecture that serves
as an infrastructure for encoding non-standard composition semantics. As
a consequence, it is hard to guess from looking at the design that two ar-
chitectures are different merely because they encode different composition
semantics, or that two different architectures actually implement the same
application logic, and only differ in the way they encode the same composi-
tion semantics.

The frequency of changes in the composition features is documented by
refactorings, such as, “Replace Delegation with Inheritance”4, “Replace In-
heritance with Delegation”, “Hide Delegate” and “Remove Middle Man”
[Fow99]. In the terminology of this model, each of these refactorings can be
seen as moving from an architecture with a certain mixture of composition
properties to another one with another mixture of composition features that
better fits the requirements or the current state of the development process.
The work on refactoring recognizes that such transformations are not triv-
ial and aims at aiding programmers in performing them by describing the

4Fowler uses the term delegation in the sense of decorator-like forwarding

37

2.3. COMPOUND REFERENCES

process in a systematic way, or even (partly) automating it by means of
refactoring browsers. The highly positive echo that the work on refactor-
ing has found in the object-oriented community, especially in the practice
of everyday programming, actually supports the claim that the need for
different architectures to express different composition semantics makes a
programmer’s life harder.

However, this model follows another path in approaching the problem,
motivated by the observation that identifying and describing common refac-
torings does not solve the core problem: It does not change anything in
the fact that different architectures for different composition semantics are
needed and one still needs to switch from one architecture to the other in
order to react to requirement changes. Consequently, the emphasis is put
on tackling the problem in its roots: At language design. This model is
based on the claim that besides identifying and describing refactorings one
should strive for language mechanisms that make some of the refactorings
obsolete, or at least explicit in the language. This requirement becomes even
more relevant in a component setting where refactoring steps like “adjust
all clients to call the new server” are no longer feasible.

2.3 The Compound
Reference Model

This section introduces the basic notions of our model as an extension of
the Java programming language [AG96]. However, the concepts are easily
applicable to other statically typed OO languages. Each introduced feature
corresponds to a row in Table 2.1 and represents a step forward on a seamless
transition from object to inheritance-based composition semantics.

2.3.1 Field Methods and Overriding

The operational semantics of the model is explained with the notion of field
methods. A field method is a method that pertains to a specific field. Syn-
tactically, the affiliation of a method to a field is expressed by prefixing the
method name with the field name using “.” as separator. A class C with a
field f of type F can be thought of as implicitly containing a method named
f.m() for every public method m() of F. The method named f.m() has
the same signature as m() in F, and its visibility is identical to the visibil-
ity of f in C. The default implementation of f.m() in C is one that simply
forwards m() to the object referred to by f, denoted within the implemen-
tation of f.m() by the special pseudo-variable field. This is similar to the
pseudo-variable super denoting an overridden method within the overriding
method. Finally, any invocation of m() on the object referred to by f within
C should be thought of as being dispatched to the corresponding implicit

38

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

class TextJustifier {
private TreeIterator it;
public void justify() { ... it.doAll() ... }

// ** begin of implicitly available field methods **

private void it.doAll() { field.doAll(); }
private void it.doWhile() { field.doWhile(); }
private void it.doUntil() { field.doUntil(); }
...
private void it.action(Item x) { field.action(x); }
private boolean it.test(Item x) {
return field.test(x);

}
// ** end of implicitly available field methods **

}

Figure 2.8: Implicit field methods in TextJustifier

class TextJustifier {
private TreeIterator it;

private void it.doAll() { ... }

public void justify() {... it.doAll(...); }
}

Figure 2.9: Explicit field methods in TextJustifier

field method f.m().
For illustration, recall the iterator example from Sec. 2.2. With the

implicit field methods written down, the code for the TextJustifier would
look like in Fig. 2.85. The call it.doAll() within justify() should be
thought of as actually calling the implicitly available field method named
it.doAll().

Until know, the introduction of field methods into the implementation
of a class has no impact on the semantics of the class. The TextJustifier
implementation presented in Fig. 2.8 is semantically equivalent to an im-
plementation that does not contain any implicit field method. The deci-
sive point is that implicit methods can be replaced by explicitly available
methods. For example, in order to implement an action to be undertaken
whenever it.doAll() is called in TextJustifier, the programmer of Text-
Justifier would implement an explicit field method, called it.doAll(),

5In the context of this section, the reader should think of the abstract methods as being
implemented empty.

39

2.3. COMPOUND REFERENCES

encoding the desired behavior, as shown in Fig. 2.9. Please note that Fig. 2.9
is only an illustration of explicit field methods and not the final solution for
the TextJustifier problem.

Before leaving this section the reader should recall that implicit methods
were introduced as a means to describe the operational semantics of our
model, independently of a specific implementation.

2.3.2 Field Redirection with Compound References

The central mechanism of this model is the notion of compound references
(CR). In contrast to primitive references, the binding of a CR to an object is
not absolute, but rather relative to another reference. To gain a first insight
for the usefulness of CRs reconsider the account example from Sec. 2.2.1.
The problem discussed there could be solved if it would be possible to express
that “person’s account” - meaning the account reference within the context
of the person reference - should be passed to the standing order processing
unit. This is where CRs come into play.

A CR to a reference instVar within a class is created by means of this<-
instVar. To illustrate their semantics, consider the class in Fig. 2.106. The
getPersonsAccount() method returns a compound reference to the ac-
count instance variable of a person, while getAccount() returns a primi-
tive reference to the account instance variable of a person. The effect of
the CR returned by getPersonsAccount() is that it always refers to the
current value of the account reference within a Person object. After the
setAccount call in the last statement of Client::main in Fig. 2.10, which
changes Jack’s account from ubsAccount to dbAccount, jacksAccount will
refer to Jack’s current “Deutsche Bank” account, while anAccount will still
refer to his old UBS account. Fig. 2.11 and Fig. 2.12 schematically show the
state before and after changing Jack’s account.

Just like object methods that differ from functions in the sense that dif-
ferent calls to them may return different values, depending on the state of
the method’s owner (the receiver), a CR is different from a primitive ref-
erence in the sense that the evaluation of a CR might result in different
values depending on the state of CR’s owner object. CRs are very differ-
ent from pointers or pointers to pointers etc. A pointer always explicitly
specifies the dimension of indirection (in C++ the number of *). Pointer of
different dimensions (for example, Account **a1 and Account ***a2) are
not compatible or substitutable7. CRs, on the other hand, are a transpar-
ent replacement for usual references: It is generally not known whether a
reference is a CR or not, or how many levels of indirection are hidden in the

6Please note that in Java all object-typed instance variables are references.
7A conversion from ** to *** is possible in C++, for example a1 = *a2, but the

semantics is different: If the first indirection of a2 is changed after this assignment, a1
still points to the previous account.

40

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

class Person {
Account account;
Account getAccount() { return account;}
Account getPersonsAccount() {
return this<-account;

}
void setAccount(Account newAccount) {
account = newAccount;

}
}

class Client {
public static void main(String[] args) {

Person jack = ...
Account ubsAccount = new Account("UBS", "12345");
Account dbAccount =
new Account("Deutsche Bank", "54321");

jack.setAccount(ubsAccount);
Account anAccount = jack.getAccount();
Account jacksAccount = jack.getPersonsAccount();

// anAccount and jacksAccount
// refer to the UBS account

jack.setAccount(dbAccount);

// anAccount still refers to the UBS account
// but jacksAccount refers to the DB account

}
}

Figure 2.10: Illustration of compound references

anAccount

account

jack

ubsAccount
jacksAccount

main

dbAccount

UBS
12345

DB
54321

Figure 2.11: State before
changing Jack’s account

anAccount

account

jack

ubsAccount
jacksAccount

main

dbAccount

UBS
12345

DB
54321

Figure 2.12: State after chang-
ing Jack’s account

41

2.3. COMPOUND REFERENCES

CR. In a way, CRs are similar to symbolic links in a Unix file system. A
symbolic link may refer to a file or to another symbolic link. If objects were
directories, one could create a symbolic account link in the SOP directory
that refers to the account link in the Jack directory.

A CR can be defined relatively to a primitive reference or recursively
to another CR. Hence, each CR may in general induce a path of object
references. For example, a class Person might return a CR to the spouse of
that person. If the getPersonsAccount() method on this CR is called, a
new CR with path personOID<-spouse<-account is obtained. In general,
a CR is an OID o together with a sequence of field names v1, ..., vn. A
CR o<-v1<-...<-vn induces a corresponding path of objects o0<-o1<-...<-on

such that o0 = o and oi = oi−1.vi (details and subtleties about creating an
object path for a CR are discussed in Sec. 2.5). Such a path is not created
directly but incrementally as a result of creating a CR to a reference that
is actually already a CR. In the following, a usual primitive reference is
regarded as a special case of a CR of length one. Relative to an element
oi, oi−1 is called a predecessor and oi+1 a successor. Furthermore, o0 is the
head and on is the tail of the CR. Please note that a CR is itself immutable,
while the corresponding object path may change in the course of time due
to a changing instance variable on the path.

Just like any reference in a statically typed language, (a) a CR has
a type, (b) it can be compared to other CRs, and (c) methods can be
invoked on it. The static type of a CR is defined to be the static type of
its tail, and the dynamic type of the tail is the temporary type of a CR,
because the temporary type may change as a side effect of a field update.
Downcasts to the temporary type of a CR are disallowed in this model
because references that are typed to the temporary type may become invalid
after a field update. This issue is further discussed in section 2.5.

Let us now consider the identity semantics in the context of compound
references. The question is: Under which conditions are two compound refer-
ences s ≡ o<-v1<-...<-vn and t ≡ p<-w1<-...<-wm with their correspond-
ing object paths o0<-o1<-...<-on and p0<-p1<-...<-pm considered identical?

There are at least three possible answers:

• Head identity: s == t :⇔ o == p.

• Tail identity: s == t :⇔ on == pm.

• Path identity: s == t :⇔ n = m and oi == pi for i = 0, ..., n.

Head identity seems to be awkward because references would be considered
identical that are - in general - not even of the same type (the static type
of a CR is the static type of its tail). For example, CRs to the account
resp. to the address of the same person would be considered identical. Path
identity, on the other hand, seems to be too restrictive. Recall the account

42

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

class TextJustifier {
private TreeIterator it;
private void it.action(Object x) { ... }
private boolean it.test(Object x) { ...}
public void justify() {... it<-doAll(...); }

}

Figure 2.13: Explicit redirected field methods in TextJustifier

example. If Jack and Sally share an account, then one wants Jack’s account,
i.e., the CR jack<-account, to be identical to Sally’s account, i.e., to the
CR sally<-account. Hence, tail identity seems to be the only reasonable
identity semantics. For this reason, two CRs are defined to be identical if
and only if their tails are identical as defined above.

Finally, let us consider the method call semantics on a CR. If a method
implemented by an object o is called via a CR on o, the value of the implicit
this parameter is actually the CR and not o. That is, if during the execution
of the method the object o passes itself to another object, it actually passes
the CR by which the method was called. For convenience, some syntactic
sugar is added: A method call (this<-a).m() is abbreviated to a<-m().

For illustration, reconsider the TextJustifier implementation in Fig. 2.9.
Truly incremental modification would mean to implement only test() and
action() since these are the only methods, the semantics of which should
be specific when used in the context of a TextJustifier. The question
is now, how would then the specific iteration step semantics implemented
by TextJustifier::it.action() get integrated into the iteration process
which is performed by the doAll() method called on the instance variable
it of a TextJustifier? Here is where the interplay between field methods
and CRs becomes relevant. If methods are dispatched via a compound ref-
erence, field methods override corresponding methods of successive objects.
In more detail, the semantics is as follows. Let myref ≡ o<-v1<-...<-vn be
a CR with object path o0<-o1<-...<-on and m() be a method of the static
type of vn. Furthermore, let i be the lowest index such that the class of oi

contains a field method vi+1.....vn.m() (a normal method is regarded as
a field method with empty prefix). Then a method call myref.m() will be
dispatched to the field method vi+1.....vn.m().

The implementation in Fig. 2.13 illustrates the interplay of CRs and
explicit field methods. Within TextJustifier::justify(), the method
doAll() is not called directly on it, but rather via the compound reference
this<-it. Consequently, subsequent calls to action() and test() that are
made within the control flow of TreeIterator::doAll() will be dispatched
to TextJustifier::it.action(), respectively TextJustifier::it.test().

With the implementation in Fig. 2.13, the fact that TextJustifier uses

43

2.3. COMPOUND REFERENCES

// rf is a redirected field
private void rf.m() { field<-m(); }

// f is a non-redirected field
private void f.m() { field.m(); }

Figure 2.14: Field methods and field redirection

class TextJustifier {
private redirect TreeIterator it;
private void it.action() { ... }
private boolean it.test(Item x) { ...}
public void justify() {... it.doAll(...);}

}

Figure 2.15: TextJustifier with field redirection

and even customizes an TreeIterator is completely hidden from clients and
subclasses of TextJustifier. It is not required for overriding methods to
respect the visibility of the overridden methods, because TextJustifier is
not a subtype of TreeIterator. Without any further code modification, it
would also be possible to choose an iteration strategy at runtime (cf. subsec-
tion 2.2.3) by simply assigning a new iterator object to it. Thus, the imple-
mentation in Fig. 2.13 actually realizes a composition of TextJustifier and
TreeIterator functionalities that supports overriding, transparent redirec-
tion, dynamic polymorphism, without subtyping and acquisition.

So far, compound references to an aggregated object referred to by a field
f are only explicitly created by the aggregating class containing f before a
method call (cf. f<-m()). That is, the scope of the composition features
mentioned above (overriding, transparent redirection, and dynamic poly-
morphism) is an individual method call via an explicitly created CR to f.
This is different with fields that are declared with the modifier redirect.
Implicit field methods of a field that is annotated with the redirect key-
word have a different semantics: Instead of simply forwarding the call to the
field object, they first implicitly create a CR to that field and call the method
on the created CR. Fig. 2.14 shows the difference between the default imple-
mentation of implicitly available methods of a redirected field, rf and that
of a non-redirected field f. For illustration, a version of TextJustifier with
it declared as a redirect field is given in Fig. 2.15.

2.3.3 Field Acquisition

Field acquisition is another step on the road from object composition to
inheritance. Orthogonal to the other modifiers, the acquire modifier can

44

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

class OutputStream {
public void write(int b) {

System.out.println("Hello from write(int)");
}
public void write(int[] b) {

System.out.println("Hello from write(int[])");
}

}

class EmptyFilterStream {
acquire private OutputStream stream = new OutputStream();

}

class Client {
static public void main(String[] args) {

EmptyFilterStream efs = new EmptyFilterStream();
int[] array = ...;

efs.write(3);
// "Hello from write(int)" appears

efs.write(array);
// "Hello from write(int[])" appears

}
}

Figure 2.16: EmptyFilterStream with acquired fields

also be a modifier of a field declaration. The intuitive semantics is that the
features available in the field become an inherent part of the aggregating
class. A class C with an acquired field f of type F implicitly contains a
method m() for every public method m() of F. The method m() retains its
signature as declared in F and its visibility in C is public. The semantics
of the implicit field methods remains the same as with non-acquired fields,
except that they are now provided in the interface of C. For illustration,
consider the example in Fig. 2.16. Although EmptyFilterStream does not
itself implement write(int) or write(int[]), these methods can be in-
voked on efs – an instance of EmptyFilterStream – due to the declaration
of the instance variable stream as an acquired field.

Acquired implicit methods can also be replaced by explicitly programmed
methods with the same signature. For the sake of uniformity and in order to
facilitate changing of a given composition semantics by means of changing
the modifiers of an instance variable, the prefix notation has to be used when
explicitly overriding acquired methods. For illustration, consider the sample
code in Fig. 2.17 and 2.18. The class BufferedOutputStream acquires both
write methods from its acquired field stream and overrides them to add

45

2.3. COMPOUND REFERENCES

buffering.
Note that the bos.write(array) call in the client code in Fig. 2.18 only

displays “... buffering 5 ints ... ” on the screen. The fact that no
message “... buffering a single int ...” appears on the screen sug-
gests that the overridden write(int) method as implemented in Buffered-
OutputStream is not invoked, although, at this point the write(int) method
of the underlying fout stream will actually be called 5 times (since the buffer
is already full, the overridden field method will be called for both the buffer
and the int array passed as a parameter). However, “... buffering a
single int ...” is not displayed because neither stream is a redirected
field, nor are the calls field.write(buffer) and field.write(b) made via
a compound reference this<-stream. Therefore, the calls to write(int)
from within field.write(...) escape the override by the BufferedOut-
putStream. This corresponds to the broken delegation problem discussed in
Sec. 2.2. In this case, this is indeed the desired semantics, i.e., redirection
is actually not desired. Once the buffer is full, the buffer’s content should
be flushed and the integers should be written immediately to the underlying
data sink. Hence, buffering should indeed be escaped.

However, there might be cases, when one wants all calls occurring within
the control flow of a call to an overridden acquired method of an object outer
to be also dispatched to outer. If field acquisition is combined with field
redirection, one obtains a perfect solution for this composition requirement.
In the version of BufferedStream presented in Fig. 2.19, where stream is
declared to be acquired and redirected, it suffices to do the buffering in
the write(int) method, because calls to write(int) in the write(int[])
method are automatically redirected to the buffering method.

One important restriction is imposed on field acquisition: Every class is
allowed to have at most one field acquisition. Otherwise it would be
necessary to take charge of all those annoying multiple inheritance conflicts.
However, due to the fact that one can (a) do overriding and redirection
for multiple fields, and (b) combine multiple classes by means of organizing
them in an acquisition chain, this is no grave limitation.

There is a second restriction that needs to be imposed. Due to subtype
polymorphism, an instance of a subtype of OutputStream may be assigned
to the stream instance variable. This subtype may contain methods that are
not available in OutputStream. These methods should not be overridden,
because this might lead to unexpected or unsound results: The result might
be unexpected because the author of the overriding method does not know
about the existence and semantics of the overridden methods. The result
might also be unsound, because the overriding method may have a signature
that is not compatible with the signature of the overridden method (e.g.,
has a different return type, see also [Kni99]). For this reason, the following
restriction is necessary: A field method overrides a method defined in a field
type if and only if it is already defined in the static type of the field type.

46

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

class OutputStream {
public void write(int b) { ... }
public void write(int[] b) {

for (i = 0; i < b.size(); i++) write(b[i]);
}

}

class BufferedOutputStream {
acquire private OutputStream stream;
int[] buffer; int current;

public BufferedOutputStream(out) {
stream = out;
buffer = ... ;

}

public void stream.write(int b) {
System.out.println("... buffering

a single int ... ");
if (buffer.notFull()) buffer[current++] = b;
else {
field.write(buffer);
field.write(b);
current = 0;

}
}
public void stream.write(int[] b) {

System.out.println("... buffering "
+ b.size + "ints ...");

if (buffer.size() >= current + b.size()) {
System.arraycopy(b,0,buffer,current,b.size);
current += b.size;

} else {
field.write(buffer)
field.write(b);
current = 0;

}
}

}

Figure 2.17: Overriding acquired fields

47

2.3. COMPOUND REFERENCES

class Client {
static public void main(String[] args) {

FileOutputStream fout =
new FileOutputStream(aFileName);

BufferedOutputStream bos =
new BufferedOutputStream(fout);

int[5] array = ...;

bos.write(3);
// "... buffering a single int..."
// appears on the screen
...

//assume that buffer is full at this point

bos.write(array);
// "... buffering 5 ints ..."
// appears on the screen

}
}

Figure 2.18: Client code for Fig. 2.17

class BufferedStream {
acquire redirect private OutputStream stream;
public void stream.write(int b) {

...do buffering...
field.write(b);

}
}

Figure 2.19: Overriding and redirecting acquired fields

The addition of the acquire feature into the model, has further enriched
the range of composition semantics between the classes C and F that the pro-
grammer can express. Used in isolation, acquire enables C to transparently
forward services to F, whenever it needs to do so, in order to satisfy a re-
quest from an external client. On the other hand, combining redirect and
acquire yields a mechanism for incremental modification that mimics the
code reuse provided by inheritance or delegation.

2.3.4 Subtyping

One thing is still missing on the road to inheritance/delegation-based com-
position: Field acquisition does not imply subtyping. A class can explicitly
declare to be a subtype of a number of other types via a subtypeof clause.

48

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

class OutputStream { ... }
class FileOutputStream extends OutputStream { ... }

class FilterStream subtypeof OutputStream {
acquire redirect protected OutputStream stream;

}
class BufferedOutputStream extends FilterStream {

public void stream.write(in b) {
... do buffering ... ;
field.write(b);

}
class CompressedOutputStream extends FilterStream {

...
}

Figure 2.20: OutputStream in our model

Declaring a class C as a subtype of a type T, requires that C has to either
implement all methods that are defined in T or be abstract. In contrast
to Java’s implements clause, in our model both interfaces and classes may
appear on the right hand side of a subtypeof clause8.

Declaring a class D to be a subtype of another class C means that D imple-
ments the interface of C, but it does not mean that the implementation of C
can automatically be used for the realization of the corresponding methods
in D - D does not automatically acquire the state and method implementa-
tions of C. However, D can still make use of the behavior defined in C, if this
is desired, by declaring a field of type C with modifiers acquire and redi-
rect. This is an important step towards a better separation of types and
classes. Decoupling subtype declaration from implementation reuse solves
e.g., the last drawback of the decorator approach explained in section 2.2.2.

For illustration, the complete implementation of the stream example
from Fig. 2.2 in our model is given in Fig. 2.20. Compare this to the simu-
lation of redirect semantics in Fig. 2.3.

2.3.5 Field Navigation

If the object referred to by a field represents a facet that should be visible
to clients, it is desirable to make this fact explicit in the declaration of the
field, rather then relying on the presence of appropriate getter methods. For
serving this purpose, a field can be made navigable by annotating it with the
navigable modifier. For example, one could annotate the account field of
Person as navigable, as shown below. This allows clients to directly navigate
to this part of the object by retrieving a compound reference to that part.

8It is still possible to use traditional inheritance with extends.

49

2.4. EVALUATION OF THE MODEL

This is illustrated below by having the client of the Person object p retrieve
a CR to p’s account and store it in a. Technically, the declaration of a field
as navigable can be seen as short-cut for the corresponding getter methods
discussed above.

class Person {
private navigable Account account;

}
Person p = ...
Account a = p<-account;

Note that declaring a field as navigable does not imply that clients can
directly change the field. The possibility to navigate to a field becomes part
of the class interface, similar to a getter method that returns the current
value of a field. Actually, the navigable composition semantic flavor dis-
courages rather than supports breaking encapsulation. Exporting a CR to
an instance variable to external clients as part of the interface of a class C
can also be simulated by declaring a redirect field to be public. However,
this breaks the encapsulation of C: clients can freely change the value of the
reference. This is not possible with navigable references.

The inverse navigation operation is provided by a CR reduction operator
that can be used to access previous objects on the object path of a CR.
A reduction <AType> myref on a compound reference myref ≡ o<-v1<-
...<-vn creates a new compound reference o<-v1<-...<-vn−1. The reduction
succeeds if the type of the shortened compound reference (that is, the static
type of the vn−1 variable) is a subtype of AType. If the length of the source
path is two, a primitive reference to o is created. Since it is not statically
known whether an account reference is a compound reference via a person,
a CR reduction has to be checked at runtime. The reduction operation is
in a way similar to type downcasts in languages like Java. In the Account
example, a compound reference to an Account could be reduced to Person:

Person p = ...
Account a = p<-account;
Person p2 = <Person> a; // ok, checked at runtime
(p == p2) // true

2.4 Evaluation of the Model

After having introduced the individual steps on the road from object com-
position to inheritance, it is now time to show how the problems discussed in
Sec. 2.2 are addressed in our model. The key to addressing these problems
is the availability of rich linguistic means to express a variety of composition
flavors by simply decorating object references with composition properties.
To support the discussion, Fig. 2.21 introduces graphical notations for some

50

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

(b) Object composition
with redirection

(c) Object composition
with acquisition

(a) Object composition

(d) Object composition
with acquisition and redirection

(e) Object composition
with acquisition, redirection
and subtyping

Figure 2.21: Graphical notations for different composition flavors

of the most relevant composition flavors between two classes C and F that
can be expressed with the model9. Please note that these notations do not
address overriding because in our model overriding is implictly available by
means of field methods and need not be explicitly turned on or off.

Let us start with the the composition flavor (b) - in the middle of the
road between object composition and inheritance. A composition C(F) with
this flavor shares with inheritance overriding with late binding. This is
not available with object composition. On the other side, such a flavor
shares with object composition dynamic polymorphism as well as lack of
both acquisition and subtyping. The latter two features are inseparable
from inheritance/delegation, though. The discussion of the TextJustifier
example in Sec. 2.2 indicated that such a mixture of features might indeed
be needed and that the lack of linguistic means to express it forces the
programmer in an object-oriented language to simulate the same semantics
by means of complex, unclear architectures that are fragile with respect to
requirement changes.

In the previous section, the same composition scenario has been de-
scribed in our model. The implementation of the desired composition seman-
tics between TextJustifier and the TreeIterator hierarchy is as simple as
the code in Fig. 2.15 and the design as clear as the class diagram presented
in Fig. 2.22, which is as simple as the inheritance-based design in Fig. 2.5.

9This list is not intended to cover all possible combinations of composition features, but
only those that are relevant for evaluating the model with respect to the issues discussed
in Sec. 2.2.

51

2.4. EVALUATION OF THE MODEL

However, in contrast to the inheritance-based design, with the CR-based
solution (1) several iteration strategies can be chosen dynamically, (2) the
iteration functionality does not pollute the interface and implementation of
TextJustifier, and (3) the conceptual view that a TextJustifier is not
a special kind of TreeIterator is preserved. The latter are features that
were indeed also supported by the architecture based on object-composition
presented in Fig. 2.6 and 2.7. However, our design does not share the
complexity of the designs presented in Fig. 2.6 and Fig. 2.7.

The complexity of designs that simulate non-standard composition fla-
vors was only one of the problems that have been identified in Sec. 2.2. The
second and more important problem was that different composition flavors
were modeled by different architectures. In the following, it is demonstrated
that this problem can be avoided in this model, by reconsidering the text
justifier and stream example from Sec. 2.2.

The design in Fig. 2.22 encodes a composition with redirection, over-
riding and dynamic polymorphism. Assume that acquisition would also be
required. In this model, one would simply add the acquire modifier to the
declaration of it. The class diagram in Fig. 2.22 remains the same, except
for replacing the current it link with link (d) in Fig. 2.21. On the con-
trary, with the designs in Fig. 2.6 and Fig. 2.7 one would have to change
TextJustifier to implement all methods in the interface of TreeItera-
tor by forwarding these methods to it. If one additionally wants to have
TextJustifier be a subtype of TreeIterator, it would again merely be
necessary to replace the it link with the link (e) in Fig. 2.21. The resulting
design would still encode a different composition flavor as compared to the
inheritance based composition in Fig. 2.5, since (1) one still has a compo-
sition that supports dynamic polymorphism and (2) TextJustifier would
not inherit the state of TreeIterator.

A similar seamless transition from one composition flavor to the other
was observed when different flavors of BufferedOutputStream in Fig. 2.17
and 2.18 have been modeled, see Fig. 2.19 and Fig. 2.20. Here we started
with a flavor that is closer to the inheritance end of the composition flavor
spectrum: Object composition with acquisition semantics. Then redirection
and subtyping have been added in two separate steps.

Another important feature of our model which makes it superior to stan-
dard composition models is the fact that a class can simultaneously reuse
and adapt the functionality of several other classes without suffering from
the known multiple-inheritance conflicts:

• Naming conflicts: Different methods with the same name are inherited.

• Repeated inheritance (a.k.a. diamond inheritance): The same class is
inherited twice indirectly, for example D is a subclass of B and C, both
of which are subclasses of A. Is a single copy of A shared by B and C or
are there two copies? What happens to methods that are overridden

52

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

TreeIterator

aggregate:Tree

doAll():void

doWhile():void

isDone():boolean

current():Object

next():void

first():void

test():boolean
action():void

TextJustifier

doc

ComposedDoc

DocElement

Simple

justState

it.test():boolean

it.action():void

PreOrder PostOrder

next()

first()

next()

first()

it

*

Figure 2.22: TextJustifier using compound references

in B and C in the first case? Which copy of A do clients of D see in the
latter case?

Different mechanisms have been developed to cope with these problems,
but avoiding a problem is certainly better than fixing it. Due to the naming
definition for field methods (prefixing it with the name of the attribute),
there are no naming conflicts. Problems related to repeated inheritance do
not occur either, because every compound reference induces a unique path
for message dispatch. The question whether one has a shared or replicated
parent boils down to assigning the same, respectively different instances of
the aggregated class to the corresponding attributes.

Finally, navigable fields should be considered in this evaluation, because
they foster another spectrum of relationships not discussed so far. Industrial
component models like COM [Box97] and CCM [OMG99] have the notion
of independent interfaces or facets that a component exposes and that can
be retrieved by special navigation methods. Design patterns such as exten-
sion interface [SSRB00] or extension object [Gam98] propose architectures
to allow a class to export multiple unrelated interfaces à la COM and CCM
without employing inheritance or subtyping. However, as also acknowledged
by the authors, the proposed patterns incur increased design and implemen-
tation effort, e.g., navigation infrastructure that is of no functional use but
necessary to retrieve the facets [SSRB00], and increased client complexity
[Gam98, SSRB00]. This critique is in the vein of or our discussion in the
motivation section.

Navigable fields present an elegant approach to modeling classes that
export several unrelated interfaces. A class C exports the interfaces of all

53

2.5. RECONCILING DYNAMIC SPECIALIZATION AND STATIC TYPING

navigable fields. This is explicitly declared in the class’ interface. This
export involves no interface bloat because C’s interface does not itself contain
the methods of the exported interfaces. This is in contrast to a class in
Java implementing several different interfaces. In contrast to the extension
interface and extension object patterns, the feature of exporting several
unrelated interfaces is built into the language and integrated with static
type checking. The relationship that the exported interfaces are facets of
the behavior of the exporting class is explicit in the exporting class’ interface.
The same relationship is not explicit in the design of the extension interface
and extension object patterns as also indicated by Gamma [Gam98].

2.5 Reconciling dynamic specialization and static typing

In this section, we will elaborate on type safety issues related to compound
references. In particular, a method dispatch strategy is presented that is
statically type safe. Type safety is threatened by subtle combinations of
compound references and subtype polymorphism.

In section 2.3.2, the static and the temporary type of a CR have been
defined. It was argued that type conversions to the temporary type of a
CR should not be allowed because the temporary type may change in the
course of time. Enforcement of this invariant is trivial for explicit type
conversions (casts) in the program code. However, there are situations when
type conversions of a CR to its temporary type are inevitable: Consider a
class A with a field b of type B. At runtime, an instance of BSub, a subtype of
B, is assigned to b and A makes a call b<-m() to this object. The method m()
of B is overridden in BSub. This means that method m() of BSub is executed
and the actual value of this is the CR a<-b with static type B. However,
the type of this has to be (at least) the type of the enclosing class BSub
because otherwise features that are introduced in BSub could not be called.
We call this kind of inevitable type conversion an implicit conversion to the
temporary type of a CR.

These casts to the temporary type are the cause that under certain
conditions the naive algorithm for creating an object path o0<-o1<-...<-on

for a CR o<-v1<-...<-vn, namely o0 = o and oi = oi−1.vi, fails.
Fig. 2.23, 2.24, and 2.25 show three different scenarios that threaten

type safety if the aforementioned naive algorithm is employed. The problem
in all cases is the storage of a critical CR. Critical CRs can be stored in
three different places:

• In a usual object reference. This is the scenario shown in Fig. 2.23.
The object o stores a critical CR which is assumed to be of type BS, an
assumption that is invalidated by the update of a.b with an instance
b of the class B.

54

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

4. q()

A B

BSubOther

m(o: Other)

store(BSub bs) {

 this.bs = bs;

}

q() { bs.danger(); }

b

a:A o:Other

1. setB(bs)

2. p(o)

3. setB(b)

p(o:Other) {

 b<-m(o);

}

m(o: Other) {

 o.store(this);

}

danger() { ... }

bs

bs:BSub

b:B

Figure 2.23: Type safety problem: Other assumes that bs has type BSub

A B

BSub

Other

m(o: Other)
store(C c) {

 this.c = c;

}

q() {

c.danger(); }

m(o: Other) {

 o.store(this<-c);

}

b

a:A o:Other

1. setB(bs)

2. p(o)

3. setB(b);

p(o:Other) {

 b<-m(o);

}

4. q()

C

danger() { ... }

c

c

bs:BSub

b:B

Figure 2.24: Type safety problem: CR path cannot be evaluated because B
has no field c

55

2.5. RECONCILING DYNAMIC SPECIALIZATION AND STATIC TYPING

A B

BSub

m() {...}

n() {...}

b

a:A
1. setB(bs)

2. p()

b.n() {

 b = new B();

}

p() {

 b<-m();

}

m() {

 n();

 danger();

}

danger() { .. }

bs:BSub

Figure 2.25: Type safety problem: Updating while a critical CR is still on
the callstack

• Inside a CR that includes the critical CR. This is the scenario
shown in Fig. 2.24. The CR that is created inside BSub.m() and stored
in o includes the critical CR to BSub. After an update of a.b, the CR
cannot be evaluated because B has no field c.

• On the callstack. This is the scenario shown in Fig. 2.25. The field
a.b is updated while the method BSub.m() is still on the callstack.
The call to danger() cannot be dispatched to the current CR target
b because B has no danger() method.

Similar problems also occur in statically typed languages that feature
delegation. Different solutions to cope with this problem have been pro-
posed. Kniesel [Kni00, Chap. 5] classifies these solutions as follows:

• Pure Specialization. Pure specialization means that the new value
of a “parent” reference has to be a subtype of the previous value. This
solution is too restrictive and not applicable in our model. It is too
restrictive because there are many useful scenarios within which the
new “parent” is not a subtype of the previous one. In addition, this
restriction cannot be enforced statically offhand, hence dynamic checks
are needed to enforce it. This solution is also not practicable for our
purposes because, in our model, every field is a potential target of a
critical CR, and not only designated “parent” fields.

• Waiting for future states. This means that if a type error would oc-
cur in the current state, the current thread is halted until the method

56

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

can be correcly dispatched. This solution is clearly impracticable be-
cause it implies indefinite waiting (in a single-thread system: endless
waiting).

• Invariant split self. In this approach, the usage of an object as
parent needs to be anticipated during the design of the parent class.
In potential parent objects, the this reference is split into two different
pseudo-variables, receiver and holder. Only calls to receiver are
late-bound to potential child objects. Type-safety is preserved by the
restriction that the type of receiver does not change covariantly in
subclasses, see [Kni00] for more details. This solution is semantically
clean and safe, but it does not fit to our programming model because
all objects might be the target of a critical CR, hence an anticipation
of potential CR targets is neither acceptable nor feasible.

• Frozen paths. The rationale behind this approach is that previous
parents are stored such that under certain conditions (in particular:
if a type error would occur otherwise) methods are dispatched to the
stored old parents. The advantage of this approach over the other
ones is that it does not restrict the programming model. A potential
disadvantage is that the semantics of dispatching methods to outdated
parents may be confusing or semantically questionable.

The frozen path idea is the only feasible approach that preserves static
type safety without restricting the programming model. In the following, we
will present a dispatching strategy in this solution class. Its main difference
over the frozen path approaches presented in [Kni00] is that the target of
a method call does not depend on the method name but on the static type
of the variable that is used to call the method. We think that this leads
to a cleaner and easier semantics because otherwise the object path that is
created may be different for every method. In our case, it is guaranteed that
all methods to a CR that are called via the same variable are dispatched
along the same object path.

The main idea of this approach is as follows: On every implicit conversion
to the temporary type of a CR, the current field value is stored in the CR.
This original value is used whenever the current value would lead to a type
error in the sense that the current tail of the CR is not a subtype of the
static variable type.

A CR that has been implictly converted to its temporary type (or a su-
pertype of the temporary type that is not a supertype of the static type) is
called a critical CR. For the definition of this algorithm, a recursive repre-
sentation of CR is used: A CR is either a primitive reference primRef , or a
non-primitive compound reference parent<-v , whereby parent is a CR and
v a field name, or a critical compound reference parent<-v | s, whereby s
is the stored field value. Please note that due to the recursive construction

57

2.5. RECONCILING DYNAMIC SPECIALIZATION AND STATIC TYPING

parent may already be a critical CR. A non-critical CR is converted to a
critical CR by storing the current value of the field v in s. This conversion
(think of the CR as being passed by value) takes place whenever the CR
is subject to an implicit conversion to its temporary type. For example, in
Fig. 2.23, the CR a<-b that is created inside A.p() is converted to a critical
CR in the scope of the execution of BSub.m() because the CR needs to be
implicitly converted to its temporary type in order to execute BSub.m() The
stored field value s would in this case be the current value of the CR, bs.

The decision whether the current or the stored field value is used is based
on an additional parameter, the requested type reqType, that defines which
type is expected in the actual context. For a CR ref, reqType is the static
type of ref. In the following, Cv denotes the class in which the field v is
defined. For primitive and non-critical CRs, the object path is created as
follows:

objectPath(primRef, reqType) := primRef

objectPath(parent<-v, reqType) :=
objectPath(parent, Cv)<-tail(parent<-v, reqType)

tail(primRef, reqType) := primRef

tail(parent<-v, reqType) :=
tail(parent, Cv).v

Except for the additional reqType parameter, this algorithm is equiv-
alent to the non-recursive description oi = oi−1.vi: The object path of a
primitive reference is the primitive reference itself, and the object path of
a compound reference is the object path of the “parent” CR concateneted
with the current tail value.

In the critical case, the reqType parameter comes into play:
objectPath(parent<-v | s, reqType) :=

objectPath(parent, Cv)<-tail(parent<-v | s, reqType)

tail(parent<-v | s, reqType) :=
if tail(parent, Cv).v instanceof reqType

then tail(parent, Cv).v
else s

If the tail of a critical CR is evaluated, a typecheck instanceof decides
whether the current tail value or the stored tail value is used. For illus-
tration, let us consider the evaluation of bs.danger() inside Other.q() in
Fig. 2.23. The this reference that is passed to o in the o.store(this)
call inside BSub.m() is a critical CR, whereby the stored field value points
to bs. Since the requested type during the evaluation of bs.danger() is

58

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

BSub (the static type of Other.bs), the instanceof test in the definition of
tail(parent<-v | s, reqType) fails and s (the reference to the BSub instance
bs in this case) is returned. In Fig. 2.24, the critical situation occurs in the
evaluation of c.danger() inside Other.q(). In this situation, the value of
Cv in the recursive call to objectPath is BSub because c is defined in BSub.
Hence, the subsequent call to tail yields the stored field value again, which
points to bs. The call c.danger() is hence dispatched to bs.c. The situ-
ation in Fig. 2.25 is similar to Fig. 2.23, except that this time the critical
CR is on the callstack: Since the static type of this inside BSub.m() is the
enclosing class BSub, the reqType parameter is BSub and the stored value s
is returned in the this.danger() call inside BSub.m().

An induction proof on the length of CR shows that this algorithm pre-
serves type safety. It suffices to proof that the type of the object that is
returned by the tail function is always a subtype of reqType. For CRs of
length one (that is, primitive references) the claim holds because the base
language (without CR) is assumed to be statically type safe. Let ref be
a CR with length n and static type T. Then ref may be a critical or a
non-critical CR.

1. ref is non-critical. Let ref ≡ parent<-v. T = reqType is a super-
type of the static type of ref because otherwise ref would be critical.
By induction hypothesis, the type of tail(parent, Cv) is a subtype of
Cv, so that the field value v, ov can be safely retrieved. Subtyping
guarantees that this object is a subtype of the static type of v, and
therefore also a subtype of reqType.

2. ref is critical. Let ref ≡ parent<-v | s. By induction hypothesis,
the type of tail(parent, Cv) is a subtype of Cv, so that the field value
v, ov can be safely retrieved. The if statement guarantees that ov
is returned if and only if it is an instance of reqType. If this is not
the case, s is returned, so it is necessary to show that s is a subtype
of reqType. This is assured by the rule that a critical CR is created
and initialized whenever a non-critical CR is implicitly converted to
its temporary type. Hence, during the assignment of ref, s has been
assigned to a subtype of the static type of ref.

The dispatch algorithm presented here renders the model statically type-
safe. However, a price has to be paid: It is unfortunate that the invariant
“all calls to a CR are always dispatched to the current object of the cor-
responding field” does not hold anymore. It would be desirable to have a
better strategy that does not violate this invariant but is still unrestrictive.
A possible idea would be to detect whether there are critical CRs that point
to the target of a field whenever the field is written. If field writes would
be prevented in such situations, the typing problem would go away. How-
ever, it is unclear whether it is possible to detect such a dynamic situation

59

2.6. ABSTRACT CLASSES AND METHOD HEADER SPECIALIZATIONS

class A {
void p() throws AnException {

...
}
void q() {...}

}

class B extends A {
void p() {...}
void q() { ...p()...}

}

class C {
override A a;

C(A a) {
this.a = a;

}

void a.p() throws AnException
{

throw new AnException();
}
void f() { a.q(); }

}

aC aBf()

p()

q()

Figure 2.26: Unsafety of method header specializations: B::q() assumes
that p() will not throw an exception

appropriately with a conservative static algorithm.

2.6 Abstract Classes and Method Header Specializations

Subtype polymorphism is usually defined in terms of subsets of available
methods: an object type A is a subtype of B, if A has all features of B
and possibly more. This definition of subtyping can be insufficient if it
is employed in a scenario where methods of objects that are only known
by upper bound can be overridden, as with delegation or our compound
reference model. For example, this is the case if one considers abstract
classes and method header specializations:

• Abstract classes: Abstract classes are an important conceptual mech-
anism to force overriding of methods. It would be useful to transfer
this concept to dynamic overriding, that is, allow instances of abstract
classes to be used as values for overriding attributes. The purpose
of this mechanism would be the same as in the static case: To force
overriding of methods. However, in the dynamic case we have to deal
with the complex situation that we might have instances of abstract
classes. Means to prevent unsafe method calls to an instance of an
abstract class are needed.

60

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

• Method header specializations. An overriding method is said to
specialize the header of its “parent” method, if it widens the domain of
the method or narrows its range. In Java, for example, an overriding
method can declare less exceptions than the method it overrides, or it
can declare a method as final that is non-final in the superclass. Other
examples of method header specializations are covariant return type
definitions and contravariant parameter redefinitions. A combination
of method header specialization with dynamic overriding may lead to
problems, however. Fig. 2.26 shows a class C that overrides the method
p() of a field a that is only known by upper bound A. B overrides p with
a method header specialization (it omits the exception AnException)
therefore the call to p() inside B.q() does not need to be guarded
by a try..catch block. The problem is that p is also overridden in
the context of C, this time without omitting the exception. If a.p()
overrides B.p(), there is no exception handler for the exception that
is thrown in a.p().

The crucial point is that substitutability for usual clients does not imply
substitutability for clients that may also override methods of the object. For
this reason, an extended type system is presented that takes the aforemen-
tioned observation into consideration.

In the following definitions, we call an object a that calls methods of
another object b without overriding methods of b a client of b. If a over-
rides methods of b, we call a a specialization client of b. The basic idea
is that we introduce a more restrictive subtyping relation for specialization
clients by means of specialization interfaces. For each type X we define @X to
be the specialization interface of X. The subtyping relation of specialization
interfaces does not only consider sets of available methods but also addi-
tional informations that are of interest to specialization clients, for example
informations about final or abstract methods. The subtyping definition is
as follows:

A subtypeof B :⇔ publicMethods(B) ⊆ publicMethods(A) (2.1)
@A subtypeof @B :⇔ A subtypeof B ∧ (2.2)

abstractMethods(B) ⊇ abstractMethods(A) ∧
no method header specializations in A

@A subtypeof A :⇔ A interface or A non-abstract class (2.3)
A subtypeof @A :⇔ false (2.4)

The first definition is the usual subtype polymorphism. The second def-
inition ensures that a subtype of a specialization interface does not con-
tain method header specializations or additional abstract methods. The
third definition ensures that an instance of an abstract class can never be
assigned to a client interface. The fourth definition states that a usual

61

2.7. RELATED WORK

interface is never a subtype of a specialization interface. The missing defini-
tions follow from the transitivity of the subtyping relationship, for example
@A subtypeof B⇔ @A subtypeof A ∧ A subtypeof B.

The extended type system is integrated into the language by the follow-
ing definitions:

• The type of the reference of a specialization client is required to be a
specialization interface.

• Method calls instVar.m() on an instance variable instVar with type
@X are allowed if and only if @X subtypeof X.

• For any class C, the type of the expression new C() is @C.

• For an instance variable x of type @X in a class C, the type of this<-x
is X.

An example for these mechanisms can be found in figure 2.27. The abstract
class IteratorImpl can be safely instantiated and used as a value for the
it attribute in TextJustifier. The non-abstract class SafeIteratorImpl
cannot be used for this purpose because it contains method header special-
izations. Nevertheless, it can be assigned to a variable of type Iterator
because the client interface of SafeIteratorImple is a subtype of the client
interface of Iterator.

2.7 Related Work

Delegation appeared first in untyped, prototype-based languages [Lie86].
The most prominent example in this category is Self [US87]. As shown
in Tab. 2.1, delegation includes all composition properties simultaneously;
applying individual properties independently is not explicitly supported.

More recent proposals have been proposed to restrain the extreme flexi-
bility offered by Self and a number of related proposals by embedding del-
egation in a statically typed language. The Darwin model [Kni99, Kni00]
combines delegation and static inheritance in a statically typed language.
Darwin already incorporates a limited variant of composition property sep-
aration: Besides delegation and inheritance, Darwin also has the notion of
consultation, which, in our terminology, corresponds to delegation without
redirection.

Generic wrappers [BW00] support a restricted variant of delegation:
Once a “wrappee” is assigned to a “wrapper”, the wrappee is fixed. In our
terminology, this corresponds to delegation with “semi-dynamic” polymor-
phism (parent fixed at runtime), and in our model would be expressed by
declaring the corresponding attribute as final. Büchi and Weck [BW00]
emphasize the importance of being able to dynamically cast a wrapper to

62

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

abstract class Iterator {
protected abstract void action(Item x);
public void doAll()
throws IterationException {}

}
class TextJustifier {
redirect protected @Iterator it;
public TextJustifier(@Iterator it) {
this.it = it; }

protected void it.action(Item x) {...}
}
abstract class IteratorImpl implements Iterator {
protected abstract void action(Item x);
public void doAll() throws AnException {...}

}
class SafeIteratorImpl implements Iterator {
public void action(Item x) {
defaultAction(it);

}
public void doAll() { // throws no exception
}

}
@IteratorImpl i1 = new IteratorImpl();
Iterator i2 = i1; // static error, no subtype
i1.action(); // static error, no direct calls allowed
new TextJustifier(i1); // ok, @IteratorImpl subtype of @Iterator
@SafeIteratorImpl i3 = new SafeIteratorImpl();
Iterator i4 = i3; // ok, @SafeIteratorImpl subtype of Iterator
new TextJustifier(i4); // error, @SafeIteratorImpl

// no subtype of @Iterator

Figure 2.27: Example for subtyping of specialization interfaces

the dynamic type of its wrappee (transparency). In our model, this could
be achieved by allowing explicit dynamic casts to the temporary type of a
CR, which is not problematic, when the attributes are annotated final.
However, further details on this aspect have been left out of the scope of
this model.

gbeta [Ern99] also has a number of dynamic features that are related
to delegation. Like in Generic Wrappers, parents in gbeta are fixed at
runtime. gbeta also allows dynamic behavior additions to objects that pre-
serve object identity, for example a statement like aClass##->anObject##
adds the structure of aClass to anObject. Another delegation-based ap-
proach is described in [SM95]. Steyaert and De Meuter propose a variant
of delegation in which a class has to anticipate all its possible extensions in
order to avoid certain encapsulation problems.

63

2.7. RELATED WORK

Compared to these approaches to supporting delegation in a statically
typed language, delegation, in our model, comes out as a special mixture
of composition properties, among many other possible mixtures. In addi-
tion, our model is more flexible in that in contrast to the aforementioned
approaches, objects do not have a single special parent attribute. In our
model it is possible to override and redirect multiple arbitrary attributes.

Predicate objects [Cha93], Rondo [Mez97], and the context rela-
tionship [SPL98] allow the programmer to express certain kinds of context-
dependent facets of an object by explicit linguistic means. The composition
of the basic behavior of an object and its facets obeys delegation semantics in
[Cha93, SPL98], and some form of mixin-based inheritance in [Mez97]. Our
model shares with these approaches the support for a two-dimensional in-
cremental modification: (1) vertically by means of inheritance in our model,
Rondo, and context relationship, respectively by means of delegation
in predicate objects, and (2) horizontally by means of an advanced form
of delegation in [Cha93], an advanced form of inheritance that supports the
static/dynamic polymorphism property in [Mez97, SPL98], and by means
of CRs in our model. However, in [Cha93, Mez97, SPL98] the composition
flavors in both axes are built in; individual composition properties are not
explicitly available for on-demand combination.

Mixin-based inheritance [BC90, FKF98, ALZ00] is an enrichment of
normal inheritance with the static polymorphism feature of Tab. 2.1. In
contrast to the normal inheritance, the super pseudo-variable of a subclass
is not bound to a certain base class when the subclass is defined. Rather,
there is an explict composition stage, where super is statically bound to a
composition-specific superclass. In this way, the same subclass (mixin) can
be statically applied to several base classes. However, inheritance enhanced
with static polymorphism is the only composition flavor supported.

Jigsaw [BL92] improves the modularity of the original mixin-based in-
heritance [BC90] by providing a suite of language operators that indepen-
dently control several roles that classes play in standard languages such as
combination of features, modification, encapsulation, name resolution, and
sharing. This untangling of class composition semantics is in its core very
similar to our untangling of standard composition semantics. The motiva-
tion for undertaking these untanglings is different, though. The main focus
in Jigsaw is on fine-grain control over the visibility of the features from the
individual modules in a composition, to allow mixins, multiple inheritance,
encapsulation, and strong typing to be combined in cohesive manner.

The flexible control over the method dispatch via filters attached to an
object complemented by the ability to define different factes of an objects in
so-called internal and external objects supported by the composition
filters approach [AWB+93] can probably also be used to simulate some
of the flavors of composition semantics that can be expressed in our model.
Still, there are important differences between the two models. First, the

64

CHAPTER 2. HIERARCHICAL DECOMPOSITION: SINGLE ENTITIES

composition filters approach lacks a static type system. Second, differ-
ent flavors of composition semantics need to be manually implemented in
different dispatch filters. This might turn out to be a tedious end error-prone
activity, especially if several internals and mixtures of composition proper-
ties are involved. In contrast, the specification of the desired semantics is
more declarative in our model. Third, it is not obvious how redirection
semantics could be ”programmed” with dispatch filters.

Our notions of field methods and field navigation share some commonal-
ity with the as-expressions of the point of view notion of multiple
inheritance [CG90] in that they allow to adapt and combine multiple
classes without suffering from multiple inheritance conflicts. However, due
to the use of object rather than class composition, our approach is more flex-
ible when coping with issues such as sharing and duplicating the features of
common parents, typical for approaches to multiple inheritance.

2.8 Chapter Summary

In this chapter, it has been showed that the traditional object-oriented
composition mechanisms, object composition and inheritance/delegation,
are frequently inappropriate to model non-standard composition scenarios.
Non-standard composition semantics are simulated by complicated architec-
tures that are sensitive to requirement changes and cannot easily be adapted
without invalidating existing clients. This unsatisfactory situation is due to
the fact that the combination of composition properties supported by each
mechanism is fixed in the language implementation and individual properties
do not exist as abstractions at the language level.

Compound references have been proposed as a new and powerful abstrac-
tion for object references. On this basis, it was possible to provide explicit
linguistic means for making individual composition properties available and
to allow the programmer to express a seamless spectrum of composition se-
mantics in the interval between object composition and inheritance. The
model is statically type-safe and makes object-oriented programs more un-
derstandable, due to explicitly expressed design decisions, and less sensitive
to requirement changes.

There are some areas of future work. First, the fine-grained scale between
object composition and inheritance renders the common visibility modifiers
public and protected too coarse, so that a more sophisticated visibility
concept is desirable. Such a refined visibility concept may also solve en-
capsulation problems as described in [SM95]. Another interesting area is
to investigate the space of possible composition property combinations for
invalid combinations, which need to be rejected at compile-time. Finally,
an interesting extension of the CR concept would be to also allow CRs to
dictionary entries, so that the dictionary keys take the roles of field names,

65

2.8. CHAPTER SUMMARY

and the corresponding values the role of field values.

66

CHAPTER 3

Hierarchical Decomposition: Collaborating Entities

This chapter shares material with the paper ‘Delegation Layers’ [Ost02]
which has been presented at ECOOP 2002.

In this chapter we will enhance the common mechanism for hierarchical
decomposition with respect to a kind of ‘higher-order’ decomposition, that
is, we will provide means to organize and decompose the decompositions
themselves. This is very useful in order to reason about sets of collaborat-
ing modules because with these mechanisms collaborating modules have an
explicit representation in the programming language. In more detail, we will
generalize the object-oriented notions of subtyping, subsumption, polymor-
phism and delegation to sets of collaborating classes. Technically, this is
realized by combining class-based delegation with the idea of virtual classes.
Thereby, it is possible to organize collaborating classes in layers that can be
combined via delegation, hence the approach is called delegation layers.

3.1 Introduction

In the early days of object-oriented programming there has been a general
agreement that single classes should be the primary unit of organization and
reuse. However, over the years it has been recognized that a slice of behavior
affecting a set of collaborating classes is a better unit of organization than
a single class. In the face of these insights, mainstream programming lan-
guages have been equipped with lightweight linguistic means to group sets
of related classes, for example name spaces in C++ [ES95] or packages and
nested classes in Java [AG96]. On the other hand, the research community
has developed a great deal of models related to collaboration- or role-model
based design, for example [BC89, HHG90, RG98, VN96].

67

3.1. INTRODUCTION

Our point of view is that we should not try to invent a completely new
kind of module for grouping classes just to realize (sooner or later) that
we need means to express variants, hide details, have polymorphism etc.
Instead, we propose a model within which all the concepts that proved so
useful for single classes/objects, for example inheritance, delegation, late
binding, and subtype polymorphism, automatically apply to sets of collab-
orating classes and objects.

In particular, we deal with the question of how sets of collaborating
classes can be defined and composed in terms of different variants (layers)
of a base collaboration. The running example in this chapter is a graph
collaboration with classes like Node and Edge and variations of this collab-
oration for colored graphs and weighted graphs.

One of the most advanced approaches with respect to our goals is the
mixin layer approach by Smaragdakis and Batory [SB98]. Mixin layers
allow (a) sets of classes (which represent a particular collaboration and are
implemented as nested classes of an outer class) to inherit from other sets of
classes, and (b) the composition of different variants of a base collaboration.
With regard to our running example, this means we can (a) implement
a Graph collaboration with Node and Edge classes and refine the Graph
collaboration to ColoredGraph or WeightedGraph via inheritance, and (b)
combine ColoredGraph and WeightedGraph to a ColoredWeightedGraph.

Technically, the most important difference between our delegation layer
approach and mixin layers is that the mixin layer notion of multi-class mixin-
inheritance is replaced by multi-object delegation1. This can be tentatively
summarized as: With mixin layers, everything happens on classes at com-
pile time, whereas with delegation layers, everything happens on objects at
runtime.

This has a deep impact on the semantics and expressiveness of the model.
In particular, delegation layers have the following two properties:

• Polymorphic runtime composition: In our approach, a collabo-
ration is composed at runtime by combining different delegation lay-
ers. Since delegation layers are subject to subtype polymorphism, the
code which combines the layers is decoupled from the specific layers
to be composed. For example, we may combine a ColoredGraph with
a Graph g, but at runtime, g may actually refer to an instance of
WeightedGraph.

• Local on-the-fly extensibility: We can extend a group of collabo-
rating objects’ behavior on-the-fly, whereby these behavior extensions
are local, meaning that after the extension both the original and mod-
ified behavior of the object group are simultaneously accessible. For

1Please note that in contrast to the frequent use of the term delegation as a synonym
for forwarding semantics, in this thesis it stands for dynamic, object-based inheritance as
defined in [Lie86].

68

CHAPTER 3. COLLABORATING ENTITIES

example, we may have an existing graph instance g with a set of node
and edge objects and extend g with all its nodes and edges to be a col-
ored graph cg. After the extension, the nodes and edges of the graph
behave as a colored graph if they are accessed via cg and as a usual
graph if they are accessed via g. We may even have multiple indepen-
dent color extensions of a specific graph denoting different colorings of
the same graph.

These properties are consequences of the runtime semantics of delegation
layers. In addition, our approach eliminates two subtle flaws of the mixin
layer approach related to polymorphism and consistency:

• Polymorphism: We define a notion of subtyping among collabo-
rations which guarantees substitutability and allows us to use a com-
pound collaboration where an instance of a particular layer is expected
if and only if this layer is a part of the compound collaboration. For
example, a graph that is both colored and weighted can be used where
a colored graph is expected. Thus the advantages of standard OO sub-
typing (reusability, decoupling etc.) are transferred to collaboration
inheritance. In general, this property does not apply for mixin layers.

• Composition consistency: Our approach guarantees that all oper-
ations inside a compound collaboration are applied to the composite
collaboration rather than to a specific layer alone. In particular, this
proposition holds for constructor calls, thereby eliminating a compo-
sition anomaly of mixin layers.

Composing and extending collaborations at runtime yields type safety
and consistency questions not emerging with compile time composition. In
order to give answers to these questions, our model combines delegation
techniques with virtual classes [MMP89], family polymorphism [Ern01], and
a wrapper technique that is based on the idea of lifting and lowering as
described in [MSL01]. Although - to the best knowledge of the author -
delegation has never been combined with virtual classes before, the interplay
between these two mechanisms is elegant and natural.

The rest of this chapter is structured as follows: Sec. 3.2 elucidates the
concept of composable collaborations and gives a short overview of mixin
layers. In addition, it emphasizes the weaknesses of mixin layers with respect
to the aforementioned benefits we aim at. Sec. 3.3 and 3.4 introduce simple
variants of delegation and virtual classes with family polymorphism as ex-
tensions of Java [AG96]. Sec. 3.5 shows how delegation and virtual classes
interact and introduces the notion of delegation layers. Sec. 3.6 elaborates
on on-the-fly extensions and the impact of delegation layers on sharing and
aliasing. Sec. 3.7 discusses related work. Sec. 3.8 summarizes and indicates
areas of future work.

69

3.2. COLLABORATION COMPOSITION AND MIXIN LAYERS

Node Color

ColoredGraph

Edge Node
float weight; shortestPath(Node)

WeightedGraph

Edge Node

UEdge Graph

* 2

shortestPath(Node)

Figure 3.1: Collaboration inheritance

3.2 Collaboration Composition and Mixin Layers

The rationale behind collaboration composition is that sets of collaborating
classes can be defined and composed in terms of different variants (layers)
of a base collaboration. Consider the situation in Fig. 3.1. It shows two
collaborations ColoredGraph and WeightedGraph that inherit from a base
collaboration Graph. The Graph collaboration defines classes Node, Edge
and UEdge. The graphs in this example are assumed to be directed in gen-
eral, and the class UEdge represents undirected edges which enter themselves
in the adjacency list of both nodes. The subcollaborations ColoredGraph
and WeightedGraph extend the base collaborations by defining classes that
extend (i.e., are subclasses of) the base collaborations’ classes. For example,
the class ColoredGraph.Node extends Graph.Node by an additional associ-
ation to Color. The class WeightedGraph.Edge adds a field float weight
and WeightedGraph.Node overrides the inherited shortestPath() method
in order to consider the edge weights.

The key issue is the ability to compose different variants of a base collab-
oration. For example, we may want to create a graph that is both colored
and weighted by means of the collaborations in Fig. 3.1. Fig. 3.2 demon-
strates the desired semantics of WeightedGraph(ColoredGraph(Graph)):
The collaborations are organized in layers according to the order in the
composition expression; i.e. the outermost WeightedGraph collaboration is
at the bottom, in the middle the ColoredGraph, and the Graph collaboration

70

CHAPTER 3. COLLABORATING ENTITIES

WGraph.Edge

Graph.EdgeGraph.Node

Edge UEdgeNode

WGraph.Node

CGraph.Node

Graph.UEdge

Figure 3.2: Layer combination: WeightedGraph(ColoredGraph(Graph)):

on top.
All inner classes are organized according to the definition of the outer

abstractions. For example, in the context of the compound collaboration
in Fig. 3.2, WeightedGraph.Node is a subclass of ColoredGraph.Node, and
the compound UEdge is a subclass of the compound Edge class rather than
of Graph.Edge.

In other words, superclasses of the collaboration classes are replaced by
subclasses of the annotated superclass. This kind of class combination is
commonly known as mixin-inheritance [BC90]. Mixin-inheritance relaxes
the strong coupling between a class and its superclass by enabling the in-
stantiation of a class with different superclasses. This property renders
mixin-inheritance suitable for defining and combining uniform incremental
extensions of a class.

Mixin layers [SB98] scale this concept to multi-class granularity. In
[SB98], the authors propose the usage of C++ [ES95] to implement mixin
layers. Fig. 3.3 shows C++ mixin layers corresponding to Fig. 3.1 and 3.2.
The basic technique is that the collaborating classes are implemented as
nested classes of an outer class representing the collaboration. Subcollabo-
rations are implemented as template classes with a parameterizable super-
class. This superclass also determines the superclasses of the nested classes.
Since C++ does not support F-bounded polymorphism [CCH+89], the tem-
plate parameters are not explicitly bounded, but they should be thought of
as being restricted to subclasses of Graph. The typedef statements at the
bottom of Fig. 3.3 compose different collaboration variants. The type CG
designates a colored graph, and CWG designates a colored weighted graph.

In the following, we want to elaborate on the two flaws of mixin layers
mentioned in the introduction.

71

3.2. COLLABORATION COMPOSITION AND MIXIN LAYERS

class Graph {
public:
class Node {
public:
NodeList shortestPath(Node *t) {...}

};
class Edge { ... };
class UEdge: public Edge { ... };

};
template <class SuperGraph>
class ColoredGraph : public SuperGraph {
public:
class Node: public SuperGraph::Node {
Color color;
...

}
};
template <class SuperGraph>
class WeightedGraph : public SuperGraph {
class Edge: public SuperGraph::Edge {
float weight;
...

}
class Node: public SuperGraph::Node {
public:
NodeList shortestPath(Node *t) {...}

}
};
typedef ColoredGraph<WeightedGraph<Graph> > CWG;
typedef ColoredGraph<Graph> CG;

Figure 3.3: Graph Example with C++ mixin layers

class Client {
void createTransitiveHull(Graph *g, Graph::Node *n) {
... Graph::Node *m = currentNode->neighbor(i); ...
if (! n->isNeighbor(m)) {
Graph::Edge *e = new Graph::Edge(n,m); ...

}
}

};

Figure 3.4: Restricted polymorphism in the mixin layer approach

72

CHAPTER 3. COLLABORATING ENTITIES

• Polymorphism: Mixin layers have two flaws concerning polymor-
phism. First, subtyping among collaborations is too restrictive. Con-
sider for example the two types CWG and CG in Fig. 3.3. Although a
colored weighted graph of type CWG has all features of a colored graph
type (CG), the former one is no subtype of the latter one2. Secondly,
in the cases where subtyping is possible, the effect of substitution is
not as expected. Consider the example in Fig. 3.4. If the method
createTransitiveHull is called with an instance of a colored graph
CG, the new statements will still create instances of Graph.Node and
Graph.Edge rather than of their corresponding implementations for
colored graphs. The problem is that the constructors in a new state-
ment are statically bound to a specific implementation and we have
no means to express that the new statements should instantiate the
classes that are appropriate in the specific collaboration represented
by g. Please note that the factory pattern [GHJV95] is in general no
satisfactory solution because this pattern needs to be anticipated and
cannot be applied to superclasses (i.e., we cannot retrieve the super-
class of a nested class via a factory object).

• Composition consistency: Inside a compound collaboration, all op-
erations should be applied to the composite collaboration rather than
to a specific layer. This is in general not true for constructor calls
in mixin layers. Consider for example the compound UEdge class in
Fig. 3.2. In a weighted graph, the weight property should of course
also apply to UEdge. This means that in the context of a weighted
graph, UEdge should inherit from the compound Edge rather than from
Graph.Edge (see also Fig. 3.2). The same argument also applies to new
statements inside a collaboration. If the class to be created is a partic-
ipant of the collaboration, we expect a corresponding new statement to
create an instance of the respective compound participant class. How-
ever, in the mixin layer approach the constructor calls refer to a fixed
implementation in both cases. For example, the UEdge class in Fig. 3.3
is always a subclass of Graph.Edge and not of WeightedGraph.Edge,
even in the context of the weighted graph collaboration.

The second problem has also been acknowledged in [SB98]. We think
that it can be seen as a variant of the self problem [Lie86], a.k.a. broken del-
egation [HOT97]: In a composite component, all actions should be applied
to the composite component, rather than to an individual part of it. The
original formulation of the self problem refers to method calls; in our case,
it refers to constructor calls.

2However, this flaw can be attributed to the C++ template implementation and is no
conceptual weakness of mixin layers

73

3.3. DELEGATION

3.3 Delegation

This section introduces the first building block of delegation layers, namely
a simple variant of delegation as an extension of Java. Delegation means
that objects inherit from other objects, with roughly the same semantics
as classes which inherit from other classes. An object o that inherits from
(delegates to) another object p is called child of p, and p is a parent of o.

To make the discussion simple, we restrict ourselves to static delegation,
meaning that the parent of an object can be set at runtime, but once the
parent reference is initialized, it cannot be changed, similar to a final
variable in Java. This restriction avoids many problems which are not in
the scope of this model; see Sec. 2.5 of the previous chapter.

Consider the situation in Fig. 3.5. It shows classes Graph, Colored-
Graph and WeightedGraph as well as some demonstration code that uses
delegation. In our approach, we unify standard inheritance and delegation
as follows: In a new WeightedGraph() expression for a class WeightedGraph
as in Fig. 3.5, we may optionally specify a parent object (delimited by <>)
that has to be a subtype of the original superclass Graph. For example, let
ColoredGraph be another subclass of Graph. Then new WeightedGraph()
creates an instance of WeightedGraph with superclass Graph (usual seman-
tics), and new WeightedGraph<cg>() creates an instance of WeightedGraph
with parent cg (see Fig. 3.5). In the latter case, the parent object replaces
the superclass.

The unification of delegation and inheritance has two advantages. First,
the usage of a class with a different superclass than initially intended does
not have to be anticipated. Second, we have a default superclass/parent, so
that it becomes easier to create instances of such a class. In the remainder
of this chapter, we will treat the direct instantiation of an object (without
specifying a parent object) as an abbreviation for assigning an instance of
the superclass as parent object. For example, new ColoredGraph() is an
abbreviation for new ColoredGraph<new Graph()>()3. The parent object
of an object o is always available via the implicit super field o.super.

The key issue in combining classes and objects via delegation is the
treatment of the this and super pseudo variables. This is illustrated in the
demonstration code in Fig. 3.5 and in Fig. 3.6: The this pseudo variable
refers to the receiver of a method call, and super refers to the (possibly
dynamically assigned) parent/superclass. The implications are illustrated
by the printInfo() calls in Fig. 3.5. It is important to understand that
the value of this is not fixed but depends on the receiver of a message. For
example, in the context of a method call to cg, all this pointers refer to the
instance of ColoredGraph rather than to the WeightedGraph instance.

3For the sake of simplicity we assume that every class has only a single no-argument
constructor.

74

CHAPTER 3. COLLABORATING ENTITIES

class Graph {
private String info = "SomeInfo";
public String setInfo(String s) { info = s; }
String toString() { return "Graph, info="+info; }
void printInfo() { print(this.toString()); }

}
class ColoredGraph extends Graph {
String toString() { return "Colored"+super.toString();}

}
class WeightedGraph extends Graph {
String toString() { return "Weighted"+super.toString();}

}
// demo code
Graph g = new WeightedGraph();
g.printInfo(); // prints "WeightedGraph, info=SomeInfo"
Graph cg = new ColoredGraph();
cg.printInfo(); // prints "ColoredGraph, info=SomeInfo"
Graph wg = new WeightedGraph<cg>();
wg.printInfo(); // prints "WeightedColoredGraph, info=SomeInfo"
cg.setInfo("OtherInfo");
wg.printInfo(); // prints "WeightedColoredGraph, info=OtherInfo"
ColoredGraph cg2 =
(ColoredGraph) wg; // succeeding cast due to transparency

Figure 3.5: Code example for delegation

Delegation is more than just composing classes at runtime. An important
property of delegation is that parent objects may be shared. In Fig. 3.5,
both the cg instance variable and the parent reference of wg refer to the
same object. This is demonstrated by the cg.setInfo() call which affects
wg due to the shared ColoredGraph object.

A property of delegation that has been postulated by Büchi and Weck
[BW00] is transparency, meaning that an object is a subtype of the dynamic
type of its parent. This property is relatively straightforward in the context
of static delegation4. In our example (Fig. 3.5), transparency means that
the dynamic cast in the last line succeeds. We will see that the incorporation
of transparency supports the elimination of the polymorphism problem as
indicated in Sec. 3.2 (“better support for polymorphism”).

For further details about the integration of delegation into a statically
typed language, we refer to the existing approaches, e.g., [Kni99, BW00] as
well as Chap. 2 of this thesis.

4In models that support full dynamic delegation, transparency implies serious typing
problems, see Sec. 2.5.

75

3.4. VIRTUAL CLASSES

:WeightedGraph

this

super

:ColoredGraph

this

super

:Graph

this

wg

cg

Figure 3.6: Meaning of this and super in a delegation relationship as in
Fig. 3.5. The non-dashed lines represent the behavior if the objects are
accessed via wg and the dashed lines represent the behavior if the objects
are accessed via cg.

3.4 Virtual Classes

Virtual classes are the second important building block for delegation layers.
Virtual classes are a concept from the Beta programming language [MMP89,
MMPN93] (in Beta known as virtual pattern). The basic idea is that the
notions of overriding and late binding should also apply to nested classes,
similarly to overriding and late binding of methods.

Consider the class Graph in Fig. 3.7. The nested classes Node, Edge and
UEdge are declared as virtual classes with a virtual modifier (corresponds
to :< in Beta), meaning that these classes can be overridden by subclasses
of the enclosing class. In contrast to methods in Java, nested classes are not
virtual by default, because a virtual class has important typing implications.

The classes ColoredGraph and WeightedGraph in Fig. 3.7 override vir-
tual classes of their superclass. The meaning of an override declaration
(corresponds to ::< in Beta) such as the override class Node declara-
tion in ColoredGraph is that - in the context of ColoredGraph - the class
Graph.Node is replaced by the class ColoredGraph.Node. The latter one
is automatically a subclass of the former one, and hence has all methods
and fields of Graph.Node plus an additional color field. Since an overriding
virtual class is automatically a subclass of the overridden class, the single
inheritance link is already allocated, such that an overriding class cannot
extend another class.

As mentioned before, the rationale behind virtual classes is that overrid-
ing and late binding should uniformly apply to methods as well as virtual
classes. Late binding of methods means that the receiver object determines
the method implementation to be executed. If this principle is applied to
virtual classes, it becomes clear that virtual classes should also be properties
of objects of the enclosing class, rather than properties of the enclosing class
itself. This is in the vein of the family polymorphism approach [Ern01].

76

CHAPTER 3. COLLABORATING ENTITIES

class Graph {
virtual class Node {
void foo() { Edge e = new Edge(); }
NodeList shortestPath(Node n) { ... }

}
virtual class Edge { ... }
virtual class UEdge extends Edge { ...}

}

class ColoredGraph extends Graph {
override class Node { Color color; ... }

}

class WeightedGraph extends Graph {
override class Node {
NodeList shortestPath(Node n) {...}

}
override class Edge { float weight; ... }

}

Figure 3.7: Virtual classes

Virtual classes being properties of an object means that all references
to a virtual class are resolved via an instance of the enclosing class. In our
approach, we apply the Java scoping rules for method calls to virtual classes
as well, meaning that all references to a virtual class are implicitly resolved
via the corresponding this. Fig. 3.8 makes the implicit scoping of Fig. 3.7
explicit. For example, the type declaration Edge e in foo() is a shorthand
for Graph.this.Edge (the notation Graph.this refers to the instance of
the enclosing class). Similarly, UEdge in Graph is a subclass of this.Edge
(rather than of Graph.Edge) and ColoredGraph.Node extends super.Node
(rather than Graph.Node).

Consequently, Graph.Node is no longer a valid type annotation: The
treatment of virtual classes as properties of objects stretches out to the
client code of a class as well. For example, the family polymorphism version
of Fig. 3.4 is shown in Fig. 3.9: Type annotations and constructor calls for
virtual classes are all redirected via an instance of the enclosing class.

For type checking reasons, variables that are used inside type declara-
tions have to be final. Otherwise, the type g.Node of a variable could
change due to an update of g.

In contrast to Fig. 3.4, createTransitiveHull in Fig. 3.9 works with
arbitrary subclasses of graph and without compromising type safety. Simi-
larly, a statement like node1.shortestPath(node2) can be statically proved
type-safe, if node1 and node2 are both of type g.Node, although at run-
time g may refer to an instance of an arbitrary subclass of Graph. This

77

3.5. DELEGATION LAYERS

class Graph {
virtual class Node {
void foo() { Graph.this.Edge e = new Graph.this.Edge(); }
NodeList shortestPath(Graph.this.Node n) { ... }

}
virtual class Edge { ... }
virtual class UEdge extends this.Edge { ...}

}

class ColoredGraph extends Graph {
override class Node extends super.Node { Color color; ... }

}

class WeightedGraph extends Graph {
override class Node extends super.Node {
NodeList shortestPath(WeightedGraph.this.Node n) {...}

}
override class Edge extends super.Edge { float weight; ... }

}

Figure 3.8: Virtual classes are properties of objects of the enclosing class.

class Client {
void createTransitiveHull(final Graph graph, graph.Node n) {
... graph.Node m = currentNode.neighbor(i); ...
if (! n.isNeighbor(m)) {
graph.Edge e = new graph.Edge(n,m); ...

}
}

}

Figure 3.9: Family polymorphism version of Fig. 3.4

demonstrates that the treatment of virtual classes as properties of objects
is an alternative to other approaches for retaining type safety in the pres-
ence of virtual classes, such as final bindings [Tor98] or type-exact variables
[BOW98].

More details about virtual classes, family polymorphism, and their typ-
ing implications can be found in [Ern01] and [OCRZ03].

3.5 Delegation Layers

Delegation layers are the result of combining delegation with virtual classes.
In the following, we want to elaborate on the interplay between these two
mechanisms.

78

CHAPTER 3. COLLABORATING ENTITIES

main() {
Graph cg = new ColoredGraph();
final Graph g = new WeightedGraph<cg>();
g.Node n = ...;
new Client().createTransitiveHull(g,n);
ColoredGraph cg2 =
(ColoredGraph) g; // succeeding dynamic cast

}

Figure 3.10: Delegation layers

Reconsider the semantics of our virtual class mechanism as demonstrated
in Fig. 3.7 and 3.8. All references to virtual classes are actually resolved via
the implicit this and super pseudo variables of the enclosing object.

Our delegation mechanism implies that the denotation of this and super
can be altered at runtime. Consider the second new expression in Fig. 3.10.
It creates an instance of WeightedGraph and assigns an instance of Colored-
Graph as parent of the weighted graph object. The meaning of this and
super in the context of g has already been illustrated in Fig. 3.6.

The crucial point is that virtual classes and delegation, if combined,
interact due to their influence/dependency on the semantics of this and
super. The semantics of this interaction, which is illustrated in Fig. 3.11,
can be derived from Fig. 3.6 and 3.8. Consider, for example, the superclass
declaration “extends super.Node” in WeightedGraph.Node (Fig. 3.8). In
the context of g, super refers to an instance of ColoredGraph, therefore
the parent of WeightedGraph.Node is an instance of ColoredGraph.Node.
Similarly, the superclass declaration “extends this.Edge” in Graph.UEdge
binds the parent of UEdge to an instance of WeightedGraph.Edge. The boxes
with bold frame in Fig. 3.11 represent the composite classes g.Node, g.Edge,
and g.UEdge.

Generally speaking, the combination of virtual classes and delegation
effects the delegation relationship to spread to the nested virtual classes of
the enclosing object. This is exactly the semantics that is required to obtain
the composition behavior indicated in Fig. 3.2; cf. Fig. 3.2 and Fig. 3.11.

Let us revisit the delegation layer approach with respect to the goals
stated in the introduction (except on-the-fly extensibility, which is the sub-
ject of the next section).

• Polymorphic runtime composition: Due to the use of delegation,
the composition happens at runtime, and the composition code does
not need to know the exact classes of the layers. Note, for example,
that the static type of the parent reference cg in Fig. 3.10 is Graph, al-
though it actually refers to an instance of ColoredGraph, which might
have been passed as a method argument as well.

79

3.6. HOT STATE AND ON-THE-FLY EXTENSIONS

WeightedGraph ColoredGraph Graph

g

Node

Edge

UEdge

NodeNode

Edge

<<delegation>><<delegation>>

<<delegation>><<delegation>>

<<delegation>>

<<delegation>>

Figure 3.11: Recursive delegation

• Polymorphism: In Sec. 3.2 two different shortcomings related to
polymorphism with mixin layers have been. The first one is the re-
stricted subtyping. For example, a colored weighted graph CWG is no
subtype of a colored graph CG in Fig. 3.3. Compare this with the last
line in Fig. 3.10. Due to the introduction of transparency (see Sec. 3.3),
an instance of a compound collaboration can be dynamically casted
to the type of all participants. In general, if C = C1(C2(...(Cn)...)) is
a composed collaboration, C is a subtype of Ci for i = 1, ..., n in the
delegation layer approach. With mixin layers, on the other hand, C is
only a subtype of Ci(Ci+1(...(Cn)...)) for i = 1, ..., n.

The second flaw is that the effect of subsumption is not as expected,
exemplified by Fig. 3.4. This problem ceases to exist in our approach,
because the class which is instantiated in response to a constructor call
is determined at runtime, depending on the instance of the enclosing
class (see Fig. 3.9).

• Composition consistency: We postulated that inside a compound
collaboration, all operations should be applied to the composite col-
laboration rather than to a specific layer. With mixin layers, this
property is violated, cf. the discussion in Sec. 3.2. With delegation
layers, the class UEdge is a subclass of the compound Edge class (see
Fig. 3.11), and the new Edge() statement in foo() creates an instance
of the compound Edge (cf. Fig. 3.7 and 3.8).

3.6 Hot State and On-the-fly Extensions

So far, we have avoided to introduce state into the classes in our exam-
ples. At first sight, it seems as if this implies both a semantic and a typing

80

CHAPTER 3. COLLABORATING ENTITIES

class Graph {
Node n;
Node getNode() { return n; }
void setNode(Node n) { this.n = n; }
... // as in Fig. 7

}
// demo code
final Graph g = new Graph();
g.setNode(new g.Node());
g.Node node = g.getNode(); // OK
final ColoredGraph cg = new ColoredGraph<g>();
cg.Node cnode = cg.getNode(); // Type Error ?
cnode.color = Color.RED; // ??

Figure 3.12: Potential problems due to hot state

problem. Consider the code in Fig. 3.12. The Node n instance variable
is initialized to an instance of Graph.Node (and not ColoredGraph.Node).
However, if this graph instance was extended by an instance of Colored-
Graph, the same (identical) node would suddenly have to be a colored node.

The cause of this problem is that the type of the instance variable Node
n is non-constant. Recall that Node n is an abbreviation for this.Node n
(see Sec. 3.4). Hence this refers to an instance of Graph if n is accessed via
g, and refers to an instance of ColoredGraph if n is accessed via cg. We call
such state whose type depends on the enclosing this hot state.

We found a mechanism that turns this problem into a feature. It is based
on the idea of lifting and lowering as described in [MSL01] but adapted to
the specific needs of our model. The basic idea is that, in the context of
a colored graph, a node n can be automatically lifted to a colored node by
creating an instance of ColoredGraph.Node that delegates to n. In order
to make this approach sound, it is essential that two subsequent liftings for
the same node yield the same colored node.

Fig. 3.13 shows pseudo code indiciating the operational semantics of the
lifting and lowering operation. Please note that the programmer does not
write this code: The code is just an illustration of the language semantics
in terms of OO constructs.

Every class C maintains a map (hashtable) for every virtual class which
is overridden in that class. For example, ColoredGraph has a map nodeMap,
and WeightedGraph has the maps nodeMap and edgeMap. In addition, a class
C has a lifting and a lowering operation liftV(V v) resp. lowerV(V v) for
each virtual class V that is (a) defined or (b) overridden in C. In case (a), the
lifting and lowering operations simply return their argument. In case (b), the
lifting operation lifts an instance of the base virtual class (e.g., Graph.Node)

81

3.6. HOT STATE AND ON-THE-FLY EXTENSIONS

class Graph {
// begin internal structure pseudocode
Graph.Node liftNode(Graph.Node n) { return n; }
Graph.Node lowerNode(Graph.Node n) { return n; }
Graph.Edge liftEdge(Graph.Edge e) { return e; }
Graph.Edge lowerEdge(Graph.Edge e) { return e; }
// end internal structure pseudocode

}
class ColoredGraph extends Graph {
// begin internal structure pseudocode
private Map nodeMap = new HashMap();

ColoredGraph.Node liftNode(Graph.Node n) {
ColoredGraph.Node result =
(ColoredGraph.Node) nodeMap.get(n);

if (result == null) {
result =
new ColoredGraph.Node<super.liftNode(n)>();

nodeMap.put(n,result);
}
return result;

}
Graph.Node lowerNode(ColoredGraph.Node n) {
Graph.Node result = super.lowerNode(n.super);
nodeMap.put(result, n);
return result;

}
// end internal structure pseudocode

}

Figure 3.13: Lifting details

to an instance of the overriding virtual class (ColoredGraph.Node), and the
lowering operation lowers an instance of the overriding virtual class (e.g.,
ColoredGraph.Node) to an instance of the base virtual class (Graph.Node).

The semantics of the lifting and lowering operations is indicated in
Fig. 3.13: The lifting and lowering operations in Graph simply return their
argument. The more interesting case are the lifting and lowering operations
in ColoredGraph, which override their corresponding implementations in
Graph.

In liftNode(), a lookup in the map determines whether the same node
has ever been lifted before. In this case, the corresponding instance of
ColoredGraph.Node is directly returned. Otherwise, an instance of Colored-
Graph that delegates to the node instance is created, stored in the map, and
returned. The lookup in the map ensures that subsequent liftings for the
same node yield the same ColoredNode wrapper.

82

CHAPTER 3. COLLABORATING ENTITIES

The lowerNode() operation is the counterpart of liftNode(). It stores
the ColoredGraph part of the node in the map and recursively asks its parent
super to lower the parent of the node (n.super).

In the liftNode() operation, the parent object of the wrapper object
is super.liftNode(n) rather than n, and in lowerNode(), the method re-
turns super.lowerNode(n.super) rather than n.super. This ensures the
mechanism will work when a class C overrides a virtual class that has al-
ready been overridden in the superclass of C. The anchor of the recursions
are the liftNode() and lowerNode operations in the class that introduces
the virtual class (in this case Graph, which simply return their argument,
see Fig. 3.13).

What are the appropriate places to apply lifting and lowering opera-
tions? We think that the only reasonable solution is to apply it whenever
hot state is evaluated; that is, the r-value of a hot instance variable in an
expression node is actually liftNode(node), and the l-value of a hot vari-
able in an assignment node = anExpression is actually node = lowerN-
ode(anExpression). In our example, this means that the implementation
of getNode() returns this.liftNode(n) rather than n, and the implemen-
tation of setNode() assigns the result of lowerNode(n) to this.n.

The calls to liftNode() and lowerNode are subject to late binding,
because the respective implementations of ColoredGraph overrides the im-
plementations in Graph. For example, the call g.getNode() in Fig. 3.12
yields a call to Graph.liftNode(), while the call cg.getNode() yields a
call to ColoredGraph.liftNode().

An important invariant of lifting and lowering is that the function combi-
nation lowerV(liftV(v)) is the identity function, such that a statement like
node = node, which translates to node = lowerNode(liftNode(node)),
has the expected meaning.

This approach preserves static type safety because the lifting operation
ensures that the evaluation of a hot instance variable yields an instance
of the type which is appropriate for the respective context by dynami-
cally creating and maintaining wrappers that delegate to the base objects.
The hash table guarantees that we do not loose the state and identity of
the individual parts of a delegation chain. Finally, the lowering opera-
tion guarantees consistency in the sense that all objects will only interact
with other objects from the same family. For example, if we would execute
the statement g.setNode(new cg.Node()) with g and cg as in Fig. 3.12,
and we would not apply lowering, we would suddenly have a colored node
in a context g that does not assume color properties. A subsequent call
like g.getNode().setNeighbor(new g.Node()) would expose the incon-
sistency because the original colored node would assume that its neighbor
nodes would also be colored nodes.

However, this approach is much more than a fix to preserve type safety.
Let us look at a more interesting example. Consider the code in Fig. 3.14.

83

3.6. HOT STATE AND ON-THE-FLY EXTENSIONS

class Graph {
Node[] nodes;
void setNode(Node n, int i) {
nodes[i] = n; // efectively assigns this.lowerNode(n)

}
Node getNode(int i) {
// effectively returns this.liftNode(nodes[i])
return nodes[i];

}

virtual class Node {
Edge[] edges;
Edge getEdge(int i) {
// effectively returns this.liftEdge(edges[i])
return edges[i];

}
}
virtual class Edge {
Node n1, n2;
Node getTargetNode() {
// effectively returns this.liftNode(n2)
return n2;

}
}

}
class ColoredGraph extends Graph ... // as in Fig. 7

Figure 3.14: A graph with hot state

It shows a graph class which stores a graph as a list of nodes. A node has
a list of incident edges and an edge stores its source and target node. The
comments in the code indicate the places where the lifting and lowering
actually takes place.

Let us suppose we want to determine the chromatic number5 and/or a
corresponding coloring for a specific graph. Let us further suppose we have
an appropriate algorithm in a class GraphColoring as indicated in Fig. 3.15.
Of course, the algorithm is directly applicable to any graph which has been
instantiated as ColoredGraph. However, let us suppose that this is not the
case for our sample graph because, say, we just want to know the chromatic
number and are not interested in the coloring itself and do not want to waste
the corresponding memory. Another reason might be that we want a graph
that has different independent colorings with different meanings.

The demo code in Fig. 3.15 shows how an arbitrary graph can be ex-

5The minimum number of colors needed to color the vertices of a graph such that no
two adjacent vertices have the same color.

84

CHAPTER 3. COLLABORATING ENTITIES

class GraphColoring {
int chromaticNumber(final ColoredGraph g) {
...
g.Node node = g.getNode(i);
node.color = Color.RED; // statically safe
...

}
void randomColoring(final ColoredGraph g) {
...

}
}
// demo code
Graph g = ...;
GraphColoring coloring = new GraphColoring();
ColoredGraph cg1 = new ColoredGraph<g>();
int i = coloring.chromaticNumber(cg1);
...
ColoredGraph cg2 = new ColoredGraph<g>();
coloring.randomColoring(cg2);

Figure 3.15: Independent on-the-fly extensions of a graph

tended on-the-fly with the mechanisms of our approach. The color extension
is only visible via cg1 and cg2, respectively. The state and behavior of the
graph remains unchanged if it is accessed via g. Please note how easy it
is to create two completely independent colorings (chromatic and random
coloring) for a specific graph instance. Due to subtype polymorphism, these
extensions are also decoupled from the specific graph instance in the sense
that g may also refer to an instance of WeightedGraph or even Colored-
Graph. In the latter case, the extension would yield a coloring which is
independent from the original coloring of g.

The last example in this section does not introduce new features but em-
phasizes two important properties of our approach: The ability to extend a
collaboration which has already been extended (orthogonality), and trans-
parent simultaneous behavior extensions for all objects of a collaboration
instance.

Suppose we want to observe the progress of the coloring algorithm on the
screen in case the respective graph is currently displayed. In other words,
we want to be notified whenever the setColor() method is invoked for a
node of that graph.

Consider the code in Fig. 3.16. It introduces an appropriate interface
ColorObserver that is implemented by GraphDisplay. The class Notify-
ingGraph extends the behavior of all color nodes such that the ColorOb-
server is notified whenever the color of that node is changed. The demon-
stration code creates a Graph g and extends g to be a colored graph in the

85

3.7. RELATED WORK

interface ColorObserver {
void colorChanged(final ColoredGraph cg,

cg.Node node, Color color);
}
class GraphDisplay implements ColorObserver { ... }
class NotifyingGraph extends ColoredGraph {
ColorObserver o;
public NotifyingGraph(ColorObserver o) { this.o = o; }

override class Node {
void setColor(Color color) {
super.setColor(color);
o.colorChanged(NotifyingGraph.this, this, color);

}
}

}
// demo code
Graph g = ...; GraphDisplay display = ...;
GraphColoring coloring = new GraphColoring();
ColoredGraph cg1 = new ColoredGraph<g>();
if (screenDisplay) cg1 = new NotifyingGraph<cg1>(display);
int i = coloring.chromaticNumber(cg1);

Figure 3.16: Adding notifier functionality

context of cg1. The colored graph cg1 is again extended with the notifier
behavior if the variable screenDisplay evaluates to true.

Please note that the graph cg1 that is potentially extended with the
NotifyingGraph functionality is already an extended version of the original
graph instance g.

The type of cg1 is ColoredGraph and not NotifyingGraph. Neverthe-
less, the extensions defined by NotifyingGraph spread through all further
actions via cg1. In particular, all setColor() invocations in the coloring al-
gorithm are dispatched to the setColor() redefinition in NotifyingGraph,
although the author of the coloring algorithm does not know anything about
the existence of NotiyingGraph.

The powerful expressiveness of on-the-fly extensions is due to the fact
that delegation layers allow simultaneous behavior extensions for sets of
objects. To the best knowledge of the author, delegation layers are the first
approach that enables such kind of operations.

3.7 Related Work

The relation to mixin layers [SB98], virtual classes [MMP89], family poly-
morphism [Ern01], and delegation [Lie86, Kni99, BW00, OM01] has already

86

CHAPTER 3. COLLABORATING ENTITIES

been discussed in Sec. 1–4.
Java Layers [BCML02, CL01] are a Java-based implementation of mixin

layers. Java Layers extend Java by supporting constrained parametric poly-
morphism and mixins. The authors acknowledge the composition consis-
tency problem and propose different solutions (called sibling pattern), in-
cluding a limited variant of virtual types and a naming convention approach,
to cope with this problem. An interesting approach in Java Layers, which
might also be useful for delegation layers, is their notion of deep conformance,
which extends Java’s concept of interfaces to include nested interfaces.

Jiazzi [MFH01] is a system that does also allow classes to be composed
in a mixin layer style at compile time. Jiazzi is especially related to our
work because it addresses both the composition consistency and the poly-
morphism problem (see Sec. 3.2). Their proposal for the composition con-
sistency problem is based on the open class pattern, a kind of design pattern
that mimicks the constructor semantics of virtual types. An application
that uses a particular layer (package in the terminology of [MFH01]) can be
parameterized with different variants of this layer, thereby eleminating the
polymorphism flaw of the original mixin layer idea. This is similar to the
idea of parameterizing a method with a family object, as shown in Fig. 3.9.
However, in contrast to delegation layers, composition and polymorphism in
Jiazzi are pure compile-time / link-time concepts, there is no notion of sub-
typing polymorphism and subsumption among different variants of a layer.

In comparison with delegation layers, a practical advantage of all afore-
mentioned compile-time approaches [SB98, BCML02, CL01, MFH01] is that
it is very much easier to create an efficient implementation with little or no
runtime overhead.

In general, virtual classes are an interesting alternative or complement
to parametric polymorphism. Please note that this is not the main focus
of our approach, in contrast to the approaches in [Tho97] and [BOW98].
Therefore we do not introduce additional language means to express virtual
classes defined outside the enclosing class, e.g., virtual classes like StackItem
that are later overridden with String or Point in order to create a stack of
strings or a stack of points.

Pluggable composite adapters (PCA) [MSL01] are a language construct
for on-the-fly adaptation of frameworks. A set of base objects can be dynam-
ically extended with the functionality provided by a particular framework.
The relations between base objects and framework objects are maintained
by a lifting technique that is similar to the one proposed in this chapter.
However, in PCA, objects are lifted to types that are in general unrelated to
their original type, whereas with delegation layers, objects are lifted to sub-
types that delegate to the original object. In contrast to delegation layers,
it is not possible to change the behavior of the lifted objects.

Delegation layers can also be seen as a form of aspect-oriented program-
ming [KLM+97]. A delegation layer defines functionality that affects the

87

3.8. CHAPTER SUMMARY

behavior of a set of different classes and can thus be seen as a module
for crosscutting concerns. In comparison with AOP languages like AspectJ
[Asp03], delegation layers have a very limited joinpoint model. On the other
hand, delegation layers are much more dynamic than other AOP languages.
For example, in AspectJ it would also be possible to extend the Graph class
with color functionality. However, in this case all graphs would automati-
cally be colored graphs; it would not be possible offhand to access a graph
simultaneously both as a graph and a colored graph, or create independent
colorings as in Fig. 3.15. The same argument applies to the notification
extension in Fig. 3.16. In AspectJ, the notification would automatically ap-
ply to all graphs and it would require additional measures (e.g., conditional
statements in the form of if (notifyEnabled) ...) to be able to choose
at runtime which graphs feature the notification behavior.

A number of approaches focus on the evolution of single objects or single
classes. The basic idea of the context relationship [SPL98] is that if a class C
is context-related to a base class B, then B-objects can get their functionality
dynamically altered by C-objects. A C-object may be explicitly attached to
a B-object, or it may be implicitly attached to a group of B-objects for
the duration of a method invocation. In Rondo [Mez97], the behavior of
single objects can be altered at runtime by means of so-called adjustments.
With predicate classes [Cha93], an object is automatically an instance of a
predicate class whenever it satisfies a predicate expression associated with
the predicate class. If an object is modified, the classification of an object
can change, yielding in a different behavior of the object.

There have been a number of proposals related to collaboration- or role-
based design [Ree95, BC89, HHG90, RG98, Hol92, ML98]. In contrast to
these approaches, delegation layers focus on the definition and on-the-fly
runtime combination of collaboration variants.

3.8 Chapter Summary

In this chapter we proposed delegation layers, a new mechanism to define
and combine sets of collaborating classes and objects. Since the modules to
group such sets are classes and objects themselves, the concepts that proved
so useful for single classes and objects - inheritance, delegation, late binding,
instantiation, subtype polymorphism etc. - apply to sets of collaborating
classes and objects as well.

Due to their strong runtime semantics, delegation layers are extremely
flexible. In particular, the ability for local on-the-fly extensions, with which
we can change the behavior of a set of objects (instead of a single object
with classical delegation) seems to be very promising. We think that this is
especially interesting with respect to the idea of aspect-oriented program-
ming [KLM+97] because most AOP approaches are static in the sense that

88

CHAPTER 3. COLLABORATING ENTITIES

there is no notion of applying aspects to individual runtime entities. In
Chap. 4 and 5 we will build up on the lessons learned from delegation layers
and equip them with additional means for aspect-oriented programming.

89

CHAPTER 4

Encoding Crosscutting Models

This chapter shares material with the paper ‘Integrating Independent
Components with On-Demand Remodularization’ [MO02] which has
been presented at OOPSLA 2002.

After the previous chapters of the thesis, which concentrated on improv-
ing hierarchical decomposition mechanisms, this chapter proposes language
support to encode crosscutting models, that is, it proposes means to en-
code multiple independent hierarchies in a software system. This chapter
is closely related to Chap. 5: Here we focus on encoding different models
and means to mediate between these hierarchies. Chap. 5 builds on these
results and adds means to specify more sophisticated interactions between
these models in the form of so-called pointcuts and advices as well as sup-
port for a polymorphic composition of hierarchies by a new notion of aspect
deployment.

The language described in these two chapters is called Caesar, after
Julius Caesar’s divide et impera policy.

4.1 Introduction

This chapter presents language support for separating and capturing generic
application logic that is useful in several places within one application do-
main or even across application domains. Hence the attribute ‘generic’. In
the terminology of standard component models such as CORBA, one would
probably use terms such as vertical and horizontal facilities for the kind of
generic application logic we target here.

Graph algorithms are a good match for the kind of the generic func-
tionalty we mean, since they are used in almost any application domain.

90

CHAPTER 4. ENCODING CROSSCUTTING MODELS

Teacher Course

Student

Year
Student

1

*

*

*

* 1

requiredCourses

teaches

Room

Figure 4.1: University Example

They are often even instantiated several times within the same applica-
tion, whereby each instantiation might involve different units in the modu-
lar structure of the application in playing the roles of vertices and edges in
the world of graph abstractions. For example, the university administration
software in Fig. 4.1 can be viewed as a graph whose vertices are the courses
and whose edges are gained by connecting any pair of courses that are taught
by the same teacher or required by the same student year. This view on
the module structure of the university software would be necessary on the
demand of applying graph coloring1 to compute an optimal assignment of
time slots to courses. Other - eventually completely different or overlapping
- remodularized views of the university software are needed on the demand of
adding other features by either differently applying the coloring algorithm or
by applying other graph algorithms, e.g., graph matching2. Tab. 4.1 presents
different sample representations of the university administration example as
a graph.

One can easily generalize from graph algorithms to generic application
logic in other domains such as e.g., price calculation logic in the domain
of web-based order systems, bonus calculation and administration logic in
the domain of online travel agency software, etc. Now that we have illus-
trated the meaning of the term generic functionality, the message we want
to convey is that appropriate language technology should support a software
development process in which such generic functionality as graph coloring
or price calculation (a) are provided as ‘off-the-shelf’ components whose im-
plementation is decoupled from any particular application, and (b) can be

1A graph coloring is an assignment of colors to the vertices of a graph such that no
two vertices that are connected by an edge have the same color. A minimum coloring is
a coloring with a minimum number of colors.

2A matching is a subset M ⊆ E of the graph’s edges such that every vertex is connected
to at most one edge from M . A maximum matching is matching with a maximum number
of edges in M .

91

4.1. INTRODUCTION

Graph Vertex Edge (v1,v2)
Course Collision Courses Teacher teaches both v1 and

v2 or both v1 and v2 required
by same student year

Student Contacts Students v1 and v2 visit a common
course

Student knows Teacher Students,
Teachers

Student v1 visits a course by
teacher v2

Teacher uses Room Teachers,
Rooms

Course with Teacher v1 and
assigned room v2

Table 4.1: Possible Mappings from University Example to Graph

integrated a-posteriori into a multitude of existing software.
The requirement for independent implementation of generic functionality

calls for appropriate module constructs for doing so. The requirement for a-
posteriori integration implies that we need a remodularization of the existing
software, however, without physically changing it. A physical change is not
only undesirable but also frequently impossible. There is in fact no single
physical change of the modular structure that would satisfy the needs of
all generic functionality to be integrated, since they have in general quite
different views of what the modular structure should be.

In the absence of appropriate language technology, the implementation
of different graph algorithms will be scattered around several classes, offen
duplicated, rendering the resulting software a nightmare to maintain and
evolve. To use the terminology of aspect-oriented software develeopment
comunity, graph algorithm implementations would be scattered in and tan-
gled with the modular structure of the university software. Unfortunately,
as argued in [Ber90, Höl93, MBF99], current object-oriented languages are
not very well equipped to cope with the subtle problems that occur when in-
tegrating independently developed components. Industrial component mod-
els such as EJB and CCM do not tackle this problem, either. With beans
in the EJB model one can indeed ‘write application logic once and run it
in (almost) any server platform’. However, the integration of generic in-
dependently developed application logic into existing EJB software is not
supported.

The problem does not only apply to the integration of components
from third party vendors but also to the integration of reusable modules
in general: those that capture different separated concerns of a system
in any software engineering effort. The principles of separation of con-
cerns [Dij76] and its modern incarnation as aspect-oriented programming
[KLM+97, TOHS99, AWB+93, ML98], tells us that we should try to divide

92

CHAPTER 4. ENCODING CROSSCUTTING MODELS

EdgeVertex

Graph

<<collaboration-interface>>

GraphColoring GraphMatching

Figure 4.2: Graph collaboration

our software in smaller pieces that are as independent from each other as
possible, in order to facilitate maintenance, understandability and reusabil-
ity (see also Chap. 1). However, as indicated in [Kic01], the aspect-oriented
programming community recognizes that still much has to be done for sup-
porting flexible integration of crosscutting concerns.

The work presented in this chapter aims at improving the state-of-the-
art technologies targeted at the problem domain outlined so far. To support
independent implementation of generic functionality, we introduce collabo-
ration interfaces for declaring generic component types. Collaboration in-
terfaces differ in two ways from standard interfaces as we know them, e.g.,
from Java.

First, they can be nested, thereby allowing the bundling of several ab-
stractions that together build up the concept world of a component type.
For example, a component that provides algorithms on graphs articulates
its world outlook - the structure and the requirements of a graph to which
the algorithms could be applied - in the collaboration interface. Other com-
ponents that also operate on graphs can refer to the same collaboration
interface. This is schematically illustrated in Fig. 4.2. Second, in addi-
tion to expressing what a client can expect from an implementation of the
interface - the provided contract -, collaboration interfaces also explicitly
capture what interface implementations expect from potential client con-
texts in which they might be integrated. We say, they also make explicit
the expected contract.

In order to support flexible a-posteriori integration of generic components
into existing applications, we distinguish between implementing and bind-
ing a collaboration interface. Implementing a collaboration interface means

93

4.1. INTRODUCTION

implementing its provided contract, while binding a collaboration interface
means implementing its expected contract. Binding a collaboration interface
is done with respect to a particular application into which the component
gets integrated. We assume that the world of the particular application is,
in general, very different from the component’s world. Therefore, we provide
language means to express how the abstractions of a base application should
be translated to the vocabulary of a particular collaboration interface. We
use the term on-demand remodularization for this translation process to in-
dicate two important characteristics of our remodularization concept. First,
remodularizations in our model are virtual, meaning that the base module
structure is never changed physically; a remodularization rather defines a
virtual view on top of the physical structure. Second, the remodulariza-
tion specified for binding a collaboration interface C is effective only on the
demand of executing functionality in C. In other words, the semantics of
existing programs remains unchanged as long as the remodularization is not
explicitly applied.

Please note that our use of the term is not identical to its use in the con-
text of HyperJ [OT00], where it was originally introduced. We will explain
the difference later.

An important insight that drove our approach to linguistic means to
express bindings is that simple mappings from component abstractions to
base classes (“In the collaboration C, class X plays the role R”) are not suf-
ficient. The base application does not necessarily have classes that directly
correspond to a role in a particular collaboration. For instance, there is no
abstraction in the university software that directly corresponds to the edge
abstraction in the course collision graph (Tab. 4.1). Edges are only implic-
itly represented as pairs of courses that need to be computed at runtime.
Hence, our view that mapping abstractions from the two worlds needs full
computational power, which is usually not provided by declarative mapping
constructs. One of the contributions of this model is the fact that we present
an approach which allows such flexible mappings.

In addition, our on-demand remodularization is object-based rather than
class-based. Class-based means that a remodularization which affects a class
applies to all instances of a class, whereas object-based means that the
remodularization may be created for individual objects on-demand. The
advantage of object-based remodularization is twofold. First, we have fine-
grained control over the integration process because we can choose for each
object whether it should be part of a collaboration or not. Second, the same
object (or set of objects) can participate in multiple component instances.
For example, a particular course instance can be a vertex in the course col-
lision graph and simultaneously an edge in the “Teacher uses Room” graph
(see Tab. 4.1). It can even be a vertex in another course collision graph
which is independent from the first one. Hence, object-based remodular-
ization enables us to create multiple independent remodularizations of the

94

CHAPTER 4. ENCODING CROSSCUTTING MODELS

same objects. This is indicated in Fig. 4.3, which outlines the general ar-
chitecture for using our proposal, by two different remodularizations of the
same structure. This was an important requirement on the integration of in-
dependent components (recall the different views of the university example
in Tab. 4.1).

An important feature of the model is the loose coupling of the imple-
mentation and binding modules which allows to reuse them independently.
The implementation of a component type relies on the declarations in the
required contract in order to remain oblivious of the potential contexts of
use. This renders a component implementation independent of specific ap-
plications. By having the expected contract be an integral part of its type,
any component implementation carries around a port that makes it plug-
gable into unknown worlds. Any binding of the collaboration interface can
serve as a plug. On the other side, a binding module can also rely on the
declarations in the provided contract, remaining oblivous of any potential
implementation of the component type being bound. However, by carrying
around the provided contract of their type, they can easily be plugged with
arbitrary implementations of that type.

To our best knowledge, this approach is the first one that decouples the
component implementations and remodularizations as indicated in Fig. 4.3
and thus allows us to combine arbitrary implementations with arbitrary
bindings of a collaboration interface. It is only after the composition with a
binding module that an implementation becomes operative. The gain is that
one can write code that is polymorphic with respect to either a component’s
implementations, or bindings, or both of them, depending on whether the
code is written to a certain binding type, a certain implementation type, or
to the component type, respectively. In addition, due to an appropriate gen-
eralization of common OO concepts (such as types, subtype polymorphism
and late binding) from the level of individual classes to the level of sets of
collaborating classes, reuse is very naturally supported in both dimensions,
component implementation and remodularization.

The remainder of this chapter is organized as follows. Sec. 4.2 presents
shortcomings of current language technology with respect to supporting in-
tegration of generic components. Sec. 4.3 introduces our notions of collab-
oration interfaces and on-demand remodularization, Sec. 4.4 elaborates on
the dimensions of reusbility in this approach. Sec. 4.6 discusses related work,
and Sec. 4.7 summarizes the chapter.

4.2 Problem Statement

In this section, we set up the stage for the rest of the chapter. The goal
is to identify shortcomings of current object-oriented language technology
with respect to supporting the development of generic components designed

95

4.2. PROBLEM STATEMENT

Collaboration

Interface

Component 1 Component 2

Remodularization 1

Remodularization 2

<<binds>>

Base Application

Figure 4.3: General architecture for collaboration interfaces and on-demand
remodularization

for late integration into various contexts of use. The following sections will
present our proposal for coping with these shortcomings. The target of our
criticism is the common concept of interfaces as we know it, e.g., from Java.
We argue that they lack two important features:

• Appropriate support for declaring component types as a set
of mutually recursive types. Defining generic components involves
in general several related abstractions. We claim that current technol-
ogy falls short in providing appropriate means to express the different
abstractions and their respective features and requirements that are
involved in a particular collaboration.

• Support for bidirectional communication: Interfaces provide
clients with a contract as what to expect from a server object that
implements the interface. We say, they express the provided contract.
In order to define generic components which are decoupled from their
potential contexts of use, expressing expectations that a server might
have on potential contexts of use is as important. We use the term
expected contract to denote these expectations. What is needed is sup-
port for a loose coupling of client and server, that is (a) decoupling
them to facilitate reuse, while (b) enabling them to tightly communi-
cate with each other as part of a whole.

To illustrate these shortcomings, let us have a critical look at a simple
example. Fig. 4.4 shows a simplified version of the TreeModel interface
in Swing3, Java’s GUI framework [JFC]. This interface provides a generic
description of the data model for a JTree, or other GUI tree controls. For

3Swing separates our interface into two interfaces, TreeModel and TreeCellRenderer.
However, this is irrelevant for the reasoning in this model.

96

CHAPTER 4. ENCODING CROSSCUTTING MODELS

interface TreeModel {
Object getRoot();
Object[] getChildren(Object node);
String getStringValue(Object node, boolean selected,
boolean expanded, boolean leaf, int row, boolean focus);

}
}

interface TreeGUIControl {
display();

}

class SimpleTreeDisplay implements TreeGUIControl {
TreeModel tm;
display() {

Object root = tm.getRoot();
... tm.getChildren(root) ...
...
// prepare parameters for getStringValue
... tm.getStringtValue(...);
...

}
}

Figure 4.4: Simplified version of the Java Swing TreeModel interface

illustration purposes, Fig. 4.4 also presents a pseudo interface for tree GUI
controls in TreeGUIControl, as well as a pseudo implementation of this
interface in SimpleTreeDisplay (the latter roughly corresponds to JTree).

In our terminology the code in Fig. 4.4 defines a generic component
for displaying arbitrary data structures that can be viewed as trees in a
GUI. When this component is used in a particular context, e.g., for object
structures that represent arithmetic expressions, it provides to this context
the display functionality. In turn, it expects from the context a concrete
implementation of getChildren and getStringValue. These operations
can only be implemented specifically for a concrete data type to be pre-
sented as a tree. That is, TreeGUIControl corresponds roughly to what we
called the provided contract in the type of our component, while TreeModel
corresponds roughly to what we called the expected contract. The class
SimpleTreeDisplay represents a sample implementation of the provided
contract.

The design in Fig. 4.4 does actually a good job in decoupling these two
contracts. Different implementation of GUI controls can be written to the
TreeModel interface and can therefore be reused with a variety of concrete

97

4.2. PROBLEM STATEMENT

class Expression {
Expression[] subExpressions;
String description() { ... }
Expression[] getSubExpressions() { ... }

}
class Plus extends Expression { ... }

Figure 4.5: Expression Trees

implementations of it, i.e., with a variety of data structures. The other way
around, any data structure to be displayed is decoupled from a specific tree
GUI control (e.g., JTree), such that the data structure can be displayed
with different GUI tree controls.

So, what is wrong with the approach to specifying generic components
exemplified by the design in Fig. 4.4? The first bad smell is the frequent
occurrence of the type Object. We know that a tree abstraction is defined in
terms of smaller tree node abstractions. However, this collaboration of the
tree and tree node abstrations is not made explicit in the interface. Since
the interface does not state anything about the definition of tree nodes, it
has to use the type Object for nodes.

The disadvantages of using the most general type, Object, are twofold.
First, it is conceptually questionable. If every abstraction that is involved in
the component definition is only known as Object, no messages, beside those
defined in Object, can be directly called on those abstractions. Instead, a
respective top-level interface method has to be defined, whose first param-
eter is the receiver in question. For example, the methods getChildren
and getStringValue conceptually belong to the interface of a tree node,
rather than of a tree. Since the tree definition above does not include the
declaration of a tree node, they are defined as top-level methods of the tree
abstraction whose first argument is Object node.

Second, we lose type safety. Let us have a look at Fig. 4.5 and Fig. 4.6.
Fig. 4.5 shows a simple base application for expressions, and Fig. 4.6 demon-
strates how the expression classes can be adapted (’remodularized’) to fit
in the conceptual world of a TreeModel. In our terminology, Expression-
Display in Fig. 4.6 represents an implementation of the expected contract.
Since we use Object all the time, we cannot rely on the type checker to
prove our code statically safe because type-casts are ubiquitous.

The question naturally raises here: Why didn’t the Swing designers de-
fine an explicit interface for tree nodes as in Fig. 4.7 from the very beginning?
Well, there are good reasons for this. With the explicit type NodeTree it be-
comes more difficult to decouple the two contracts, i.e., the data structures
to be displayed from the display algorithm. The idea is that the wrapper
classes around e.g., Expression would look like in Fig. 4.8. The problem

98

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class ExpressionDisplay implements TreeModel {
ExpressionDisplay(Expression r) { root = r; }
Expression root;
Object getRoot() { return root; }
Object[] getChildren(Object node) {

return ((Expression) node).getSubExpressions();
}
String getStringValue(Object node, boolean selected,
boolean expanded, boolean leaf, int row, boolean focus){
String s = ((Expression) node).description();
if (focus) s ="<"+s+">";
return s;

}
}

Figure 4.6: Using TreeModel to display expressions

interface TreeDisplay {
TreeNode getRoot();

}
interface TreeNode {
TreeNode[] getChildren();
String getStringValue(boolean selected,
boolean expanded, boolean leaf, int row, boolean focus);

}

Figure 4.7: TreeDisplay interface with explicitly reified TreeNode interface

with such kind of wrappers, as also indicated by Hölzle [Höl93], is that we
create new wrappers every time we need a wrapper for an expression. This
leads to the identity hell : we loose the state and identity of previously cre-
ated wrappers for the same node. The questionable alternative would be to
use hash tables which is not only laborious but does also involve the defini-
tion and use of additional classes for maintaining these hashtables, thereby
rendering the code more complex and less readable4.

So far, we discussed problems resulting from the lack of appropriate sup-
port for defining multiple related abstractions in one module. Let us now
illustrate the problems resulting from the second shortcoming of standard
interfaces: missing support for bidirectional communication. Consider for
this purpose the getStringValue() method in Fig. 4.4 and Fig. 4.6. This
method has noticeable many parameters that might be of interest when

4In fact, Swing offers a TreeNode interface similar to the one in Fig. 4.7. However,
classes that define data structures to be displayed as tree nodes should anticipate this and
explicitly implement the interface.

99

4.2. PROBLEM STATEMENT

class ExprAsTreeNode
implements TreeNode {
Expression expr;
void getStringValue(...) {
// as before

}
TreeNode[] getChildren() {
Expressions[] subExpr = expr.getSubExpressions();
TreeNode[] children =

new TreeNode[subExpr.length];
for (i = 0; i<subExpr.length; i++) {

children[i] = new ExprAsTreeNode(subExpr[i]));
}
return children;

}
}

Figure 4.8: Mapping TreeNode to Expression

computing a string representation of the node. Might be. The sample im-
plementation in Fig. 4.6 uses only the selected parameter and ignores
the others. That means, the tree GUI control, which calls this method on
the TreeModel interface, has to perform expensive computations to obtain
the parameter values for this method (see implementation of SimpleTree-
Display::display() in Fig. 4.4), although they might be rarely all used.

This is a typical case where we would like to establish a bidirectional
communication between the two contracts of the tree displaying component.
Here we would like ExpressionDisplay.getStringValue to explicitly ask
the tree GUI control to compute only relevant values for it, like selected or
hasFocus, implying the GUI control interface provides respective operations.
Recall that the GUI control interface corresponds to the provided interface
of our generic component for displaying arbitrary data structures that can be
viewed as trees in a GUI. As for now, the interfaces are completely separated
(into TreeModel and TreeGUIControl), and there is nothing in the design
that would suggest their tight relation as two faces of the same abstrac-
tion. As such, there is no build-in support for bidirectional communication
between their respective implementations. Build-in means by the virtue of
implementing two faces of the same abstraction, which serves as the implicit
communication channel.

One can certainly achieve the desired communication by additional in-
frastructure (e.g., via cross-references) which has to be communicated to the
respective programmers. However, we think that bidirectional communica-
tion is such a natural and frequent concept that the overhead that is neces-
sary to enable bidirectional communication with conventional interfaces is
too high. Please note that the additional TreeNode interface would also be

100

CHAPTER 4. ENCODING CROSSCUTTING MODELS

of no help concerning the bidirectional communication problem exemplified
by the getStringValue() method.

The third point is the fact that it is difficult and awkward to associate
state with abstractions like our tree nodes. We might want to associate state
with tree nodes in both the ExpressionDisplay class in Fig. 4.6 and also
inside the tree GUI control. For example, we might want to cache the com-
puted string value or children in Fig. 4.6, because the re-computation might
be expensive. In the GUI control itself, we might want to associate state
like whether a tree node is selected or not or its position on the screen with
the respective tree node. The only means to associate state with tree nodes
is to make extensive use of hash tables, which is laborious and awkward.

4.3 Core Concepts

In this section, we will give an overview of the concepts that comprise our
model by means of the TreeDisplay example from the previous section.

4.3.1 Collaboration Interfaces, their Implementations and Bindings

In order to cope with the problems discussed in Sec. 4.2 we propose the
notion of collaboration interfaces (CI for short), which differ from standard
interfaces in two ways. First, CIs introduce the provided and required
modifiers to annotate operations belonging to the provided and the expected
contracts, respectively, hence supporting bidirectional interaction between
clients and servers. Second, CIs exploit interface nesting in order to express
the interplay between multiple abstractions participating in the definition
of a generic component.

For illustration, the CI TreeDisplay that bundles the definition of the
generic tree displaying functionality from Sec. 4.2 is shown in Fig. 4.9. As
an example for the provided and expected contract, consider the methods
TreeDisplay.display() and TreeDisplay.getRoot() in Fig. 4.9. Any
tree display object is able to display itself on the request of a client - hence
the provided modifier for TreeDisplay.display. However, in order to
do so, it expects a client specific way of how to access the root tree node.
What the root of a displayable tree will be depends on (a) which modules
in a concrete deployment context of TreeDisplay will be seen as tree nodes
and, (b) which one of them will play the role of the root node. Hence,
the declaration of getRoot with the expected modifier. TreeDisplay comes
with its own definition of a tree node: The CI TreeNode is nested into
the declaration of TreeDisplay. Please note that nesting of bidirectional
interfaces in our approach has a much deeper semantics than usual nested
classes and interfaces in Java: the nested interfaces are namely virtual types
as in [Ern01]. We will elaborate on that in Sec. 4.3.4.

101

4.3. CORE CONCEPTS

interface TreeDisplay {
provided void display();
expected TreeNode getRoot();

interface TreeNode {
expected TreeNode[] getChildren();
expected String getStringValue();
provided display();
provided boolean isSelected(),
provided boolean isExpanded();
provided boolean isLeaf();
provided int row();
provided boolean hasFocus();

}
}

Figure 4.9: Collaboration interface for TreeDisplay

The categorisation of the operations into expected and provided comes
with a new model of what it means to implement an interface. We explic-
itly distinguish between implementing an interface’s provided contract and
binding the same interface’s expected contract. Two different keywords are
used for this purpose: implements, respectively binds. In the following, we
refer to classes that are declared with the implements keyword as imple-
mentation classes. Similarly, we refer to classes that are declared with the
binds keyword as binding classes

An implementation class of a CI must (a) implement all provided meth-
ods of the CI and (b) provide an implementation class for each of the CI’s
nested interfaces. In doing so, it is free to use respective expected meth-
ods. In addition, an implementation class may or may not add additional
methods and state to the CI’s abstractions it implements. Fig. 4.10 shows a
sample tree GUI control that implements TreeDisplay. The class Simple-
TreeDisplay implements the only provided operation of TreeDisplay, dis-
play(), by forwarding to the result of calling the expected operation get-
Root(). In addition to implementing display(), SimpleTreeDisplay must
also provide a nested class that implements TreeNode - the only nested in-
terface of TreeDisplay. The correspondence between a nested implementa-
tion class and its corresponding nested interface is based on name identity
– SimpleTreeDisplay e.g., defines a class named TreeNode which is the
implementation of the nested interface with the same name in TreeDis-
play. This nested class has to implement all provided methods of the
TreeNode interface, e.g., display(). The declaration of the instance vari-
able boolean selected and the corresponding query operation isSelected
in SimpleDisplay.TreeNode are examples of new declarations added by an

102

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class SimpleTreeDisplay implements TreeDisplay {
void onSelectionChange(TreeNode n, boolean selected) {
n.setSelected(true);

}
void display() {

getRoot().display();
}

class TreeNode {
boolean selected;
...
boolean isSelected() { return selected; }
// other provided methods similar to selected
void setSelected(boolean s) { selected =s;}
void display() {
... TreeNode c = getChildren()[i];
... paint(position, c.getStringValue());
...

}
}

}

Figure 4.10: A sample implementation of TreeDisplay

implementation class. Please note that just as nested interfaces, all nested
implementation classes are virtual types (see Sec. 4.3.4).

A binding class of a CI must (a) implement all expected methods of
the CI, and (b) provide zero or more binding classes for each of the CI’s
nested interfaces (we may have multiple bindings of the same interface, see
subsequent discussion). Just as implementation classes can use their respec-
tive expected facets, the implementation of the expected methods of a CI
and its nested interfaces can also call methods declared in the respective
provided facets. The process of binding a CI instantiates its nested types
for a concrete usage scenario of the generic functionality defined by the CI.
Hence, it is natural that in addition to their provided facets, binding classes
also use the interface of abstractions from that concrete usage scenario. We
say that bindings wrap abstractions from the world of the concrete usage
scenario and map them to abstractions from the generic component world.

For illustration, the class ExpressionDisplay in Fig. 4.11 shows an ex-
ample of binding the generic TreeDisplay CI from Fig. 4.9 for the con-
crete usage scenario, in which Expression structures are to be viewed
as the trees to display. First, ExpressionDisplay binds the nested type
TreeNode as shown in the nested class ExprTreeNode. The latter imple-
ments all expected methods of TreeNode by using (a) the provided facet of
TreeNode, and (b) the interface of the class Expression (via the instance

103

4.3. CORE CONCEPTS

class ExpressionDisplay binds TreeDisplay {
Expression root;

public ExpressionDisplay(Expression rootExpr) {
root = rootExpr;

}

TreeNode getRoot() {
return ExprTreeNode(root);

}

class ExprTreeNode binds TreeNode {
Expression e;
ExprTreeNode(Expression e) { this.e=e;}
TreeNode[] getChildren() {
return ExprTreeNode[](e.getSubExpressions());

}
String getStringValue() {
String s = e.description();
if (hasFocus()) s ="<"+s+">";
return s;

}
}

Figure 4.11: Binding of TreeDisplay for expressions

variable e). Consider e.g., the implementation of the method ExprTree-
Node.getStringValue(), which calls both TreeNode.hasFocus() as well
as Expression.getDescription().

In addition to binding TreeNode, ExpressionDisplay also implements
the method getRoot() - the only method declared in the expected facet of
TreeDisplay. Here is where the reference root to the Expression object to
be seen as the root of the expression structure to display is transformed into
a TreeNode by being wrapped into an ExprTreeNode object. Please note
that this wrapping does not happen via an ordinary constructor call - new
ExprTreeNode(root) in this case -, but rather by means of the wrapper
recycling call ExprTreeNode(root). We will elaborate on the concept of
wrapper recycling in a moment.

Except for binding the interface TreeNode, ExprTreeNode is basically
a usual class that, in this case, wraps an instance of Expression. Since
wrapping of objects in these classes is a very common task, we add some
syntactic sugar for the most common case, namely by a wraps clause.

The semantics of wraps is that

class ExprTreeNode binds TreeNode wraps Expression {...}

is equivalent to

104

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class ExpressionDisplay binds TreeDisplay {
...
class ExprTreeNode binds TreeNode wraps Expression{
TreeNode[] getChildren() {
return ExprTreeNode[](wrappee.getSubExpressions());

}
String getStringValue() {
String s = wrappee.description();
if (hasFocus()) s ="<"+s+">";
return s;

}
}

Figure 4.12: Alternative encoding of ExprTreeNode using the wraps clause

class ExprTreeNode binds TreeNode {
Expression wrappee;
ExprTreeNode(Expression e) { wrappee = e;}
... }

Using wraps, the code in Fig. 4.11 can be rewritten as in Fig. 4.12. In the
following code we will make frequent use of wraps but it is important to
understand that it is just syntactic sugar and does not prevent us to create
arbitrarily complex initialization procedures by using ordinary constructors.

The careful reader should have noticed that we do not use identical
names for establishing the correspondence between a binding class and its
corresponding nested interface, as we did with implementing classes (Expr-
TreeNode in Fig. 4.11 binds TreeNode, but is itself not called TreeNode).
As indicated in Sec. 4.1, different bindings of the same interface might be
needed, if we have different abstractions in the concrete usage scenario that
have to be mapped to the same component abstraction. This was illustrated
by the “Student knows Teacher” graph from Tab. 4.1: Both, students and
teachers, play the role of vertices in this graph. To cope with such multi-
ple bindings of the same interface, the identification by name that we had
with implementation classes is not carried over to binding classes. This en-
ables multiple different bindings of the same component type to different
base types without running into conflicts, since the bindings can still be
discriminated by their names.

The careful reader might notice that expected methods in a collaboration
interface are similar to the abstract primitive operations in the template
method pattern [GHJV95]. There are two significant differences, though.
First, CIs describe the interplay between multiple abstractions whereas the
template method pattern deals only with a single abstraction. Second, while
the implementation of the template methods can be reused with different
bindings of the primitive operations, the other way around is not possible.

105

4.3. CORE CONCEPTS

Each binding of the primitive operations is bound to a single implementation
of the template methods. On the contrary, CI binding and implementations
are separated in independent modules and related to each other by being
pieces of the overall implementation of the same common CI. As such, they
can be reused independently.

In Sec. 4.1 we gave an example that illustrated why declarative map-
ping constructs as in [TOHS99, ML98, MSL01] are not sufficient to express
arbitrary on-demand remodularizations. In general, the full computational
power of an object-oriented language is needed for this purpose. For this
reason, our approach to specifying remodularizations is rather manual. In
fact, binding classes and their nested classes are almost standard classes.
Almost stands for two differences. First, nested binding classes are also vir-
tual types (see Sec. 4.3.4). Second, they make use of the notion of wrapper
recycling, which we discuss next.

4.3.2 Wrapper Recycling

Wrapper recycling is our mechanism to escape the wrapper identity hell
mentioned in Sec. 4.2. It is a concept of how to create and maintain wrapper
instances, and a way to navigate between abstractions of the component
world and abstractions of the base world - the concrete usage scenario world -
, ensuring that the same (identical) wrapper instance will always be retrieved
for a set of constructor arguments. This way the state and the identity of
the wrappers is preserved.

Syntactically, wrapper recycling refers to the fact that, instead of creat-
ing an instance of a wrapper W with a standard new W(constructorargs)
constructor call, a wrapper is retrieved with the construct outerClass-
Instance.W(constructorargs). For illustration consider once again the
expression return ExprTreeNode(root) in the method ExpressionDis-
play.getRoot() in Fig. 4.11. We already mentioned in the previous section
that the expression in the return statement is not a standard constructor
call, but rather a wrapper recycling operator. We use the usual Java scoping
rules, i.e., return ExprTreeNode(root) is just an abbreviation for return
this.ExprTreeNode(root).

The idea is that we want to avoid creating a new ExprTreeNode wrapper
each time the method getRoot() is called on an ExpressionDisplay. The
call to the wrapper recycling operation ExprTreeNode(root) is equivalent
to the corresponding constructor call, only if a wrapper for root does not
already exist, ensuring that there is a unique ExprTreeNode wrapper for each
expression within the context of the enclosing ExpressionDisplay instance.
That is, two subsequent wrapper retrievals for an expression e yield the same
wrapper instance - the identity and state of the wrapper are preserved.

This is due to the semantics of a wrapper recycling call, which is as fol-
lows: The outer class instance maintains a map mapW for each nested wrapper

106

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class W. An expression outerClassInstance.W(wrapperargs) corresponds
to the following sequence of actions:

1. Create a compound key for the constructor arguments, lookup this key
in mapW.

2. If the lookup for the key fails, create an instance of outerClass-
Instance.W with the annotated constructor arguments, store it in the
hash table mapW, and return the new instance. Otherwise return the
object already stored in mapW for the key.

The wrapper recycling call ExprTreeNode[](...) in the method Expr-
TreeNode.getChildren in Fig. 4.11 is an example for the syntactic sugar
we use to express wrapper recycling of arrays, namely an automatic retrieval
of an array of wrappers for an array of base objects.

A naive implementation of wrapper recycling in a language with garbage
collection would imply a memory hole because wrapped objects would never
be collected by the garbage collector. However, this can easily be recon-
ciled by more advanced memory management techniques such as weak ref-
erences and reference queues. Java, for example, has a standard API class
WeakHashMap that could be used instead of a usual map.

4.3.3 Composing Bindings and Implementations

Both classes defined in Fig. 4.10 and 4.11 are not operational, i.e., cannot be
instantiated, even if they are not annotated as abstract. These classes are
indeed not abstract, since they are complete implementations of their respec-
tive contracts. The point is that the respective contracts are parts of a whole
and make sense only within a whole. Operational classes that completely
implement an interface are created by composing an implementation and
a binding class, syntactically denoted as aCollabIfc <aBinding,anImpl >.
This is illustrated by the class SimpleExpressionDisplay in Fig. 4.13,
which declares itself as an extension of the composed class TreeDisplay
<SimpleTreeDisplay,ExpressionDisplay>. Only such compound classes
are allowed to be instantiated by the compiler. For instance, Fig. 4.13 also
shows sample code that instantiates and uses the compound class Simple-
ExpressionDisplay.

Combining two classes as in Fig. 4.13 means that we create a new com-
pound class within which the respective implementations of the expected
and provided methods are combined. The same combination also takes
place recursively for the nested classes: All nested classes with a binds
declaration are combined with the corresponding implementation from the
component class. The separation of the two contracts, their independent im-
plementation, and the dedicated late composition, allows us to freely reuse
implementations of the two contracts in arbitrary compositions. We could

107

4.3. CORE CONCEPTS

class SimpleExpressionDisplay extends
TreeDisplay<SimpleTreeDisplay,ExpressionDisplay> {}

...

Expression test = new Plus(new Times(5, 3), 9);
TreeDisplay t = new SimpleExpressionDisplay(test);
t.display();

Figure 4.13: Creating and using compound classes

SimpleTreeDisplay.TreeNode

isSelected() { ...}

ExprTreeNode
TreeNode[] getChilds() { ... }

getStringValue() { ... }

TreeNode
expected TreeNode[] getChilds();
expected String getStringValue();
provided boolean isSelected(),
provided boolean isExpanded(); <<binds>>

SimpleTreeDisplay
void display() {

... TreeNode n ... }

ExpressionDisplay
TreeNode getRoot() { ... }

Figure 4.14: Type rebinding in compound classes

combine SimpleTreeDisplay with any other binding of TreeDisplay. Sim-
ilarly, ExpressionDisplay could be combined with any other implemen-
tation of TreeDisplay. Sec. 4.4 will have more to say about the reuse
dimensions and the flexibility supported by our approach.

Note that the overall definition of the nested type, e.g., TreeNode, de-
pends on the concrete composition of implementation and binding types
within which the type is used. This does not only affect the external clients,
but also the internal references. For instance, references to TreeNode within
ExpressionDisplay and SimpleDisplay are rebound to the composed defi-
nition of TreeNode in SimpleExpressionDisplay, as illustrated in Fig. 4.14.
Their meaning would be different in another compound class, e.g., resulting
from composing SimpleDisplay with another binding class, or Expression-
Display with another implementation class. This is a natural consenquence
of the fact that nested types introduced by the collaboration interfaces are
virtual types, on which we will elaborate in the following.

4.3.4 Virtual Types

In Caesar approach, all types that are declared as nested interfaces of a
CI and all classes that implement or bind such interfaces (including classes

108

CHAPTER 4. ENCODING CROSSCUTTING MODELS

that extend the latter) are virtual types and virtual classes, respectively
[MMP89]. In the context of this thesis, we use the notion of virtual types
of the family polymorphism approach [Ern01]. This means: (a) similar to
fields and methods, types also become properties of objects of the class in
which they are defined, and consequently (b) their denotation can only be
determined in the context of an instance of the enclosing class. Hence, the
meaning of a virtual type is late bound depending on the receiver object
that executes when the virtual type at hand is referenced.

Consequently, all type declarations, constructor calls, and wrapper re-
cycling calls for virtual types/classes within a CI are actually always anno-
tated with an instance of the enclosing class. That is, type declarations and
constructor invocations are always of the form enclInst.MyVirtual x, re-
spectively enclInst.MyConstructor(). Similarly, wrapper recycling calls
are also always of the form outerClassInstance.W(args) and not simply
W(args). For the sake of simplification, we apply the scoping rules common
for Java nested classes also to type declarations and constructor or wrap-
per recycling calls: A call OuterClass.this.W(args) can be shortened to
W(args), and the type declaration OuterClass.this.W can be shorted to
W as long as there are no ambiguities. This scoping rule applies to all type
declarations and wrapper recycling calls that have appeared so far in this
chapter.

For instance, all references to ExprTreeNode in Fig. 4.11 should be read
as ExpressionDisplay.this.ExprTreeNode. The implication is that the
meaning of any reference to the type name ExprTreeNode within the code
of ExpressionDisplay will be bound to the compound class that combines
ExpressionDisplay.ExprTreeNode with the implementation class of Tree-
Node that is appropriate in the respective execution context. For exam-
ple, in the context of a SimpleExpressionDisplay as in Fig. 4.13, Expr-
TreeNode will be bound to the respective definition in the compound class
TreeDisplay<ExpressionDisplay,TreeNode>. The same references will be
bound differently if they occur in the execution context of an object of some
subclass of ExpressionDisplay or in the context of a different implementa-
tion class. The same also applies to nested implementation and compound
classes.

The rationale behind using virtual types lies in their power with respect
to supporting reuse and polymorphism, as argued in [Ern01]. The advan-
tages with respect to the degree of reuse we gain in our context will be
discussed in Sec. 4.4. At this point, we will rather shortly discuss how our
specific use of virtual types (borrowed from [Ern01]) does not suffer from
covariance problems usually associated with virtual types, as for example
the virtual type proposal in [Tho97], which requires runtime type checks. If
we have a virtual type in a contravariant position, as for example the ar-
gument type of setRoot in Fig. 4.15, type safety is still preserved, because
subsumption is disallowed if the enclosing instances are not identical. In or-

109

4.3. CORE CONCEPTS

Expression e = ...;
final ExpressionDisplay ed =

new SimpleExpressionDisplay(e);
...
// let FileSystemDisplay be a binding of
// TreeDisplay to the file system structure
class SimpleFileSystemDisplay extends
TreeDisplay<SimpleTreeDisplay,FileSystemDisplay> {};

FileSystem fs = ... ;
final FileSystemDisplay fsd =

new SimpleFileSystemDisplay(fs);
...
ed.TreeNode t = ed.getRoot();
fsd.setRoot(t); // Type error detected by typechecker!

// sd.TreeNode is not subtype of ed.TreeNode

Figure 4.15: Type safety due to family polymorphism

der to make the approach sound, all variables that are used as part of type
declarations have to be declared as final because otherwise the meaning
of a type declaration might change due to a field update. For illustration
consider the declaration of the variable ed in the sample code in Fig. 4.15.
It is used as part of a type declaration for the variable t and is therefore
declared as final. For more details on typing issues we refer to [Ern01].

4.3.5 Object Constructors

Having classes with splitted code, as in our division into a binding part and
an implementation part, the question of object construction and constructor
calls arises. Which site (binding or implementation) should be able to im-
plement, respectively call, constructors? An important prerequisite in the
following discussion is that we assume that – in general – constructors have
arguments.

Allowing both sites to implement and call constructors would be unsound
because every site would only call its own constructors (it does not know
about the existence of the other-side constructors), and therefore invariants
that are established in the constructors of the other site will not hold since
the constructor of the other site will never be called - implicit constructor
invocation is not possible if the constructor requires arguments.

Our point of view is that only the binding site should implement con-
structors because the binding site needs to establish links to base objects
(which are adapted to the role they play in the particular collaboration of a
generic component) in order to fulfill its purpose. If the implementation site
needs to create objects, this can easily be done by specifying correspond-

110

CHAPTER 4. ENCODING CROSSCUTTING MODELS

ing expected factory methods in the collaboration interface which can be
called from the implementation site and are implemented at the binding site.
Therefore, only the binding classes can implement constructors, and these
constructors are also the constructors that are available in the compound
classes that combine an implementation class with a binding class.

Although this point (object creation) seems to be only marginal, it has
an important conceptual implication that is related to symmetry. At first,
collaboration interface implementation and binding seem to be rather sym-
metric, but object creation creates an important asymmetry. A consequence
of this asymmetry is that we can have only one implementation of a bidi-
rectional interface, but we may have multiple different bindings of a bidirec-
tional interface; we can select among these bindings by means of different
constructors.

4.3.6 Most Specific Wrappers

Another interesting feature of Caesar is its notion of most specific wrap-
pers, that is, a mechanism that determines the most specific wrapper for
an object based on the object’s runtime type. The basic idea is that we
allow multiple nested classes with the same name that can be differenti-
ated by their constructors. Consider, e.g., the code in Fig. 4.16. The class
ExpressionDisplay contains three different classes with the name Expr-
TreeNode but each of these classes has a different constructor (recall that
the wraps clause is just syntactic sugar for a corresponding constructor).
If we now make a constructor- or wrapper recycling call, the runtime type
of the constructor argument determines the actual implementation which is
instantiated/recycled.

For example, in class Test in Fig. 4.16, the method printStrinvValue()
has a parameter of type Expression. If this method would be called with
an instance of Plus, the wrapper recycling call ed.ExprTreeNode(e) would
yield an instance of the ExprTreeNode implementation that wraps Plus,
hence “+” would be printed.

This mechanism is very similar to method dispatch in multiple dispatch
languages such as CLOS, Cecil [Cha92], or MultiJava [CLCM00]. More pre-
cisely, if one thinks of the constructors of nested classes as factory methods
of the enclosing instance, then our mechanism for most specific wrappers is
an application of multiple dispatch at these factory methods.

4.3.7 Interim Evaluation of the Model

As an interim result, let us compare the way the generic tree display func-
tionality and its instantiation for expressions was modeled with our model
to the conventional solution discussed in Sec. 4.2.

111

4.4. DIMENSIONS OF REUSE

class ExpressionDisplay binds TreeDisplay {
...
class ExprTreeNode binds TreeNode wraps Expression{
String getStringValue() { return null; }

class ExprTreeNode binds TreeNode wraps Plus {
String getStringValue() { return "+"; }

}

class ExprTreeNode binds TreeNode wraps Num {
String getStringValue() {
return Integer.toString(wrappee.getValue());

}
...

}
class Test {
ExpressionDisplay ed = ...;
void printStringValue(Expression e) {
System.out.println(
ed.ExprTreeNode(e).getStringValue());

}
}

Figure 4.16: Using most specific wrappers

• Other than the Swing interface in Fig. 4.4, we do not need to use
Object; every item is well-typed and we do not need type casts. The
methods that are conceptually part of the interface of tree nodes, are
expressed as methods of a dedicated nested interface.

• Due to bidirectional interfaces, we do not have the problem related
to the getStringValue() parameters: The implementation of this
method, as in Fig. 4.11, causes the computation of only those values
about the state of displaying that are really needed by means of calling
appropriate methods in the provided interface.

• It is easy to associate additional state with tree nodes. For example,
the TreeNode implementation in Fig. 4.10 adds a selected field, and
the TreeNode binding in Fig. 4.11 could as well have added extra state
to ExprTreeNode.

4.4 Dimensions of Reuse

In this section we want to elaborate on the degrees of reuse and polymor-
phism supported by our proposal. For this purpose, we will use the graph

112

CHAPTER 4. ENCODING CROSSCUTTING MODELS

example from Sec. 4.1, since it is better suited to demonstrate the advantages
of our approach.

4.4.1 Component Type Hierarchies

The first kind of reuse supported by our model is along the dimension of
component types. The key object-oriented notion of subtyping between
individual interfaces extends very naturally to our nested collaboration in-
terfaces. New CIs can be defined as extensions of already existing CIs via
the extends clause. The new CI inherits all nested type definitions and pro-
vided/expected methods of its parent CI. The inheriting CI can than add
new nested type definitions and expected/provided method declarations. In
addition, the inherited nested types can be refined by defining interfaces
with the same name annotated by the modifier override. An “overriding”
nested type inherits all declarations of the nested type being overridden and
can add new declarations.

For illustration, Fig. 4.17 shows three sample collaboration interfaces for
graphs. The top interface Graph defines the general graph abstractions and
properties of these abstractions. The other two interfaces, ColoredGraph
and MatchedGraph, refine Graph by adding methods or refining inherited
nested interfaces of Graph5.

The refinement of nested types has pretty much the semantics of stan-
dard inheritance on types. So, why the new syntax - the keyword override
rather than the familiar extends? The reason becomes clear once you recall
that our nested types are virtual types, rather than standard types as e.g.,
Java interfaces. Other than an ordinary extends declaration, an override
declaration does not create a new type with a new name but overrides the
definition of the inherited type. The typing implications of these virtual
types were explained in the previous section.

4.4.2 Implementation Hierarchies

Fig. 4.18 shows two implementation classes for the ColoredGraph interface
from Fig. 4.17, SuccessiveAugmentationColoring and SimmulatedAnneal-
ingColoring, each employing a different algorithm for graph coloring. By
being implementation classes, each of them provides implementations for the
provided methods of ColoredGraph, using the declared expected methods.
In addition, they may add new declarations. For example, SuccessiveAug-
mentationColoring adds a field temp_color to Vertex. The association of

5The purpose of the ColoredGraph.Edge.getBadness() method is to have a measure
of how troublesome a particular edge is with respect to minimum coloring, meaning that
if an edge with a high badness would be removed, it is likely that we can color the graph
with less colors.

113

4.4. DIMENSIONS OF REUSE

interface Graph {
interface Vertex {
expected Edge[] getEdges();

}
interface Edge {
expected Vertex getV1();
expected Vertex getV2();

}
}

interface ColoredGraph extends Graph {
provided computeMinimumColoring(Vertex v[]);
override interface Vertex {
expected void setColor(int c);
expected int getColor();

}
override interface Edge {
provided float getBadness();

}

interface MatchedGraph extends Graph {
provided computeMaximumMatching(Vertex v[]);
override interface Edge {
expected void setMatched(boolean b);
expected boolean isMatched();

}
}

Figure 4.17: Graph collaboration interfaces

the nested classes with the corresponding nested interface in ColoredGraph
happens by common names, as already explained in Sec. 4.3.1

Similar to interface refinement as in Fig. 4.17, it is also possible to refine
implementation classes, whereby the definitions of the nested classes can
again be refined with the override modifier. In other words, the subclass-
ing and subtyping relations between individual classes in standard OO are
naturally carried over to the implementation classes of CIs; again with the
important difference that our nested classes are virtual types as explained
in the previous section. For example, the commonalities between the two
different coloring algorithms could be factored out into a common superclass
as in Fig. 4.19.

4.4.3 Binding Hierarchies

In the following we elaborate on some advanced issues related to CI bindings
that could not be appropriately demonstrated by the simple example of

114

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class SuccessiveAugmentationColoring
implements ColoredGraph {
// successive augmentation coloring algorithm
void computeMinimumColoring(Vertex v[]) {
// successive augmentation coloring algorithm
... Edge e[] = v[i].getEdges(); ...
... Vertex w = e[j].getV2();
... if (w.isLegalColor(color)) w.temp_color = color;
... e[n].setBadness(badness); ...
// commit final coloring
for (int k=0; k<v.length;k++)
v[k].setColor(v[k].temp_color);

}
class Vertex {
int temp_color;
boolean isLegalColor(int color) {
Vertex neighbor[] = ...;
for (int i=0;i<neighbor.length;i++)
if (neighbor[i].getColor() == color) return false;

return true;
}

}
class Edge {
float badness;
float getBadness() { return badness; }
void setBadness(float b) { badness = b; }

}
}

class SimulatedAnnealingColoring
implements ColoredGraph {
// Simulated Annealing coloring algorithm
void computeMinimumColoring(Vertex v[]) {
...

}
...

}

Figure 4.18: Different Coloring Algorithms

115

4.4. DIMENSIONS OF REUSE

abstract class AbstractColoring
implements ColoredGraph {
class Vertex { ... }
class Edge { float badness; ... }

}

class SuccessiveAugmentationColoring
extends AbstractColoring {

// Successive augmentation coloring algorithm
void computeMinimumColoring(Vertex v[]) { ... }
override class Vertex { ... }

}

class SimulatedAnnealingColoring
extends AbstractColoring {

// Simulated Annealing coloring algorithm
void computeMinimumColoring(Vertex v[]) { ... }
override class Vertex { ... }

}

Figure 4.19: Factoring out the commonalities between the coloring algo-
rithms

the previous section. Furthermore, we discuss the extent to which reuse is
enabled along the dimension of binding classes.

Recall our claim that binding a CI to a concrete application implies an
on-demand remodularization of the application for which simple declara-
tive mappings are insufficient. With the more sophisticated graph example,
we are now able to illustrate, how our proposal copes with this require-
ment. For this purpose, Fig. 4.20 shows a binding class that transforms the
scheduling graph structure hidden within the university class structure to
the class structure that is required by our graph algorithms. The nested
classes CourseCollision and CourseVertex are remodularization wrap-
pers around base objects. The class CourseCollision implements the ex-
pected interface of ColoredGraph.Vertex by wrapping an object c of type
Course, while CourseVertex implements the expected interface of Colored-
Graph.Edge by wrapping two objects of type Course, c1 and c2.

Please note that the class CourseCollision wraps two courses because
there is no dedicated abstraction for course collisions in the base application.
This scenario illustrates one part of our claim that simple declarative role
mappings are not sufficient. Binding a CI type is, in general, not a simple
equation of it with a type in the base application. It rather might imply the
collaboration of several instances of the same or of different base types.

116

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class SchedulingGraph binds ColoredGraph {
class CourseVertex binds Vertex wraps Course{
Edge[] cachedEdges;
Edge[] getEdges() {
if (cachedEdges == null) {

Vector tc = wrappee.getTeacher().getCourses();
tc.append(wrappee.getStudentYear().getCourses());
cachedEdges = new Edge[tc.length];
for (int i=0;i<tc.length;i++) {
Course x = (Course) tc[i];
cachedEdges[i] = CourseCollision(wrappee,x);

}
}
return cachedEdges;

}
void setColor(int color) {
wrappee.timeSlot = TimeSlots.getSlot(color);

}
}
class CourseCollision binds Edge {
Course c1,c2;
CourseCollision(Course c1, Course c2) {
this.c1=c1; this.c2 = c2;

}
Vertex getV1() { return CourseVertex(c1); }
Vertex getV2() { return CourseVertex(c2); }

}
}

Figure 4.20: Binding for scheduling graph

The example at hand also allows us to illustrate how our proposal deals
with the requirement for multiple bindings of the same interface to differ-
ent abstractions in the base application - the other part of our claim that
simple declarative role mappings are not sufficient. This was exemplified
by the “Student knows Teacher” graph in Tab. 4.1, where both, students
and teachers, play the role of vertices in this graph. In the previous sec-
tion, we indicated that in our model, this can be expressed by implementing
different bindings of the same interface with different names, which is now
illustrated in Fig. 4.21. Here we have multiple bindings of the interface Ver-
tex without, however, introducing ambiguity, because the bindings can still
be discriminated by the different names, StudVertex and TeacherVertex,
respectively.

Finally, we would like to use the more sophisticated example to discuss
more advanced issues of wrapper recycling. Consider the wrapper recy-
cling calls CourseCollision(c,x) in CourseVertex.getEdges in Fig. 4.20,

117

4.4. DIMENSIONS OF REUSE

class StudentKnowsTeacherGraph binds Graph {

class StudVertex binds Vertex wraps Student {
...

}

class TeacherVertex binds Vertex wraps Teacher {
...

}

... Vertex v1 = StudVertex(aStudent); ...

... Vertex v2 = TeacherVertex(aTeacher); ...
}

Figure 4.21: Multiple bindings of the same interface

which ensure that there is only one unique instance of CourseCollision
for each pair (c1,c2) of courses. In this example, an undirected edge in
the course collision graph is represented by two directed edges, therefore a
wrapper recycling call CourseCollision(c1,c2) will in general yield a dif-
ferent wrapper than CourseCollision(c2,c1) – In other words: wrapper
recycling takes the order of the constructor arguments into account. If we
want to disregard the order of the arguments, this can be done with an ap-
propriate data structure. For example, a direct representation of undirected
edges would also be possible if we would pass a set with the two courses as
elements in the CourseCollision constructor calls instead of the ordered
pair of courses.

Now, that we have illustrated advanced issues of bindings, let us focus on
the reuse supported by our proposal along this dimension. For this purpose,
Fig. 4.22 shows a completely different view of the university application as
a graph. The classes defined in Fig. 4.22 remodularize the university appli-
cation to present the student contacts graph. In this graph, students play
the role of vertices and two vertices are connected if the students visit a
joint course. The class StudContactsGraph represents the general remod-
ularization to the Graph collaboration, while StudContactsColoredGraph
and StudContactsMatchedGraph refine this class in order to specialize the
collaboration to ColoredGraph and MatchedGraph6, respectively. A min-
imum coloring in the student contacts graph would represent maximum
groups of students that do not know each other and would therefore be
good candidates for joint exams with little cheating opportunities. A maxi-
mum matching, on the other hand, would be helpful to assign the students
to two person apartments, such that most students are pooled together with

6The code for the MatchedGraph CI and its implementation are not shown but are
analogous to the coloring example

118

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class StudContactsGraph binds Graph {
class StudVertex binds Vertex wraps Student {
Edge[] getEdges() {
... Student t = ... ;
... e[i] = StudContact(wrappee,t);
return e;

}
}
class StudContact binds Edge {
Student s,t;
StudContact(Student s, Student t) {
this.s = s; this.t = t;

}
}

}
class StudContactsColoredGraph extends StudContactsGraph

binds ColoredGraph {
override StudVertex {
void setColor(int c) {
Exam.joinGroup(s,c);

}
}

}
class StudContactsMatchedGraph extends StudContactsGraph

binds MatchedGraph {
override StudContact {
void setMatched(boolean b) {
Rooms.getFreeApartment().assignStudents(s,t);

}
}

}

Figure 4.22: Alternative bindings of ColoredGraph and MatchedGraph

a person they know.

The sample code in Fig. 4.22 is presented for illustrating two nice features
of our model. First, together with the code in Fig. 4.20, it demonstrates how
two worlds of types can be multiply mapped to each other without ever be-
ing changed. The second feature is again due to the seamless integration
of our new concepts into the standard object-oriented concepts of classes,
inheritance and subtype polymorphism. Inheritance allows us to reuse Stud-
ContactsGraph in the definition of both StudContactsColoredGraph and
StudContactsMatchedGraph. Similar to the refinements of nested inter-
faces in Fig. 4.17, and the refinements of nested implementation classes
in Fig. 4.19, the nested bindings StudVertex and StudContact of Stud-
ContactsGraph can be refined with an override declaration, as illustrated

119

4.4. DIMENSIONS OF REUSE

class SucAugSched extends ColoredGraph<
SuccessiveAugmentationColoring,SchedulingGraph> {}

class SimAnSched extends ColoredGraph<
SimulatedAnnealingColoring,SchedulingGraph> {};

...
final SchedulingGraph sg =
wantSucAug ? new SucAugSched() : new SimAnSched();

sg.computeMinimumColoring(sg.CourseVertex[](courses));

Figure 4.23: Demo code

by StudContactsColoredGraph.StudVertex and StudContactsMatched-
Graph.StudContact.

4.4.4 Polymorphism

As introduced in Sec. 4.3.3, implementations and bindings of a CI can
be freely combined. In terms of the graph example, this is illustrated in
Fig. 4.23, where two different complete realizations of ColoredGraph (cf.
Fig. 4.17) are defined by combining the same binding class, Scheduling-
Graph, with two different implementation classes, SuccessiveAugmenta-
tionColoring and SimulatedAnnealingColoring.

Both combinations, SucAugSched and SimAnSched, are subtypes of their
common binding part, SchedulingGraph, and can therefore uniformly be
used whenever an object of type SchedulingGraph is expected. SucAugSched
and SimAnSched are two instantiations of SchedulingGraph that differ from
each other on the coloring algorithm. This allows us to write code like the
computeMinimumColoring() call in Fig. 4.23 polymorphically with respect
to the coloring algorithm used.

Other examples of this kind, i.e., the same binding classes being com-
bined with different implementation classes can be found in Fig. 4.24. Just as
SchedulingGraph, StudContactsColoredGraph binding from Fig. 4.22 can
be combined with any of the ColoredGraph implementations presented in
Fig. 4.18. Similarly, StudContactsMatchedGraph can be combined with an
arbitrary matching algorithm that implements MatchedGraph (adumbrated
in Fig. 4.24). Both SucAugStudContacts and SimAnStudContacts are sub-
types of StudContactsColoredGraph and can be used everywhere it is ex-
pected. Similarly, Matching1StudContacts and Matching2StudContacts
are subtypes of StudContactsMatchedGraph.

On the reverse side, one could think of coloring algorithms, i.e., of im-
plementation types, as being parameterized with the expected facet of their
CI. Hence, any operation written to an implementation type, is naturally
polymorphic with respect to all bindings of that implementation type’s CI.
For instance, SucAugStudContacts from Fig. 4.24 and SucAugSched from

120

CHAPTER 4. ENCODING CROSSCUTTING MODELS

class SucAugStudContacts extends ColoredGraph<
SuccessiveAugmentationColoring,StudContactsColoredGraph>{}

class SimAnStudContacts extends ColoredGraph<
SimulatedAnnealingColoring,StudContactsColoredGraph> {}

class Matching1StudContacts extends MatchedGraph<
MatchingAlgorithm1,StudContactsMatchedGraph> {}

class Matching2StudContacts extends MatchedGraph<
MatchingAlgorithm2,StudContactsMatchedGraph> {}

Figure 4.24: Free combination of components and connectors

Fig. 4.23 represent two instantiations of SuccessiveAugmentationColor-
ing, i.e., both are subtypes of the latter.

To summarize the typing relationships: If we have a class C extends
CI<A,B> with implementation class A and binding class B which communi-
cate over a common collaboration interface CI, then C is a subtype of both
A and B, which are subsequently both subtypes of CI.

Since A and B are independent classes, we have to deal with conflicts
which are caused by accidental name clashes of methods in A and B. We
resolve these possible conflicts by hiding all methods of A and B, which are
not already in the collaboration interface CI, in the context of a reference of
type C. For example, if both A and B would introduce a method m(), then C
c = ...; c.m(); would be an illegal call, whereas A a = c; a.m(); would
be legal, thereby eleminating all possible ambiguities and conflicts.

To recap, we can create completely different and independent mappings
of a base structure (e.g., university administration) to a particular compo-
nent structure (e.g., graph) and combine them with yet a range of different
implementations of the component (e.g., different coloring algorithms). In
general, the role or task that base objects play in a particular collaboration
is not static but depends on the context within which the collaboration is
used, e.g., a course is a vertex in the course collision graph, and the same
course is an edge in the “teacher uses room” graph (see Tab. 4.1). This is
also an advantage of our model over previous more static approaches.

4.4.5 Section Summary

To summarize the section, we want to recall the different dimensions of
polymorphism and reuse that are possible in our approach:

• Collaboration interface dimension: A hierarchy of collaboration
interfaces can be defined, such as the Graph interface which is refined
by ColoredGraph and MatchedGraph (see Fig. 4.17).

• Component dimension: Multiple independent implementations of
a collaboration interface are possible, such as the different coloring

121

4.5. FUTURE WORK: LAYERED BINDINGS AND IMPLEMENTATIONS

implementations in Fig. 4.18. Component implementations can reuse
other component implementations to implement more specialized col-
laboration interfaces via inheritance. For example, the communalities
of the two coloring algorithms in Fig. 4.18 can be outsourced into a
common superclass (Fig. 4.19).

• Connector dimension: Multiple independent bindings of a collabo-
ration interface to the same or different applications can co-exist, such
as the course collision and the student contacts remodularizations in
Fig. 4.20 and 4.22, respectively. Inheritance among connectors, such
as in Fig. 4.22, allows to reuse existing remodularization specifications
when binding more specialized collaboration interfaces.

• Bound component dimension: The bound component is a subtype
of both the component and the connector type. Therefore, client code,
such as in Fig. 4.23, can be reused with any implementation.

4.5 Future Work: Layered Bindings and Implementations

With the inheritance mechanisms introduced in the last section, it is possible
to specify different variants of bindings and CI implementations incremen-
tally. Furthermore, it is possible to combine any variant of a binding with
any variant of a CI implementation. However, it is not yet possible to create
different variants of a binding or different variants of an implementation by
combining existing variants by layering them on top of each other.

Suppose we have a CI implementation and binding of colored graphs and
a CI implementation and binding of matched graphs, but our graph should
be both colored and matched. We could create two independent graphs, one
for matching and one for coloring, but we may want these graphs to share
the same common graph state or interact via method overriding.

This is basically the same problem that was already the topic of Chap. 3
on delegation layers. Indeed, we think that it would be useful to augment
Caesar with means for layering on both the binding side and the imple-
mentation side.

The incorporation of delegation layers into Caesar would have the fol-
lowing consequences:

• Reusability: We can combine different variants of CI bindings and
implementations, thereby increasing the reusability of individual ‘lay-
ers’.

• Polymorphism: We get more dimensions of polymorphism, namely
in the combination of layers (the ‘parent’ layer is only known by upper
bound) and also in the usage of a combination when combining CI
binding and implementation (both are only known by upper bound).

122

CHAPTER 4. ENCODING CROSSCUTTING MODELS

• Dynamics: The composition happens at runtime, hence the shape of
the compound object can depend on runtime values

• Sharing: The same layer instance can be shared among many ‘child’
layers (e.g., we could have a binding B3 that is also instantiated with
parent layer b1. Furthermore, any (possibly composed) CI binding
or implementation object can participate in an arbitrary number of
compositions because every particular composition is represented by
its own object.

The reason why this section is marked as ‘future work’ is that the integration
of delegation layers with the notions of CIs, bindings, and implementations,
entails two problems.:

• Some more work on the type system in order to retain static type-
safety is required. Delegation layers are composed at runtime and this
is not possible offhand with bindings and implementations because -
in the presence of subsumption - it is not easy to ensure statically that
the parts to be combined expect and provide the same set of methods,
respectively.

Suppose we have a collaboration interface CI with a provided method
prov1() and an expected method exp1(). Now let SubCI be a subin-
terface of CI which adds the methods prov2() (provided) and exp2()
(expected). If a SubCI implementation x is now polymorphically as-
signed to a variable of type CI, the information that x needs to be com-
bined with a binding that implements exp2() is statically no longer
available.

• If bindings and implementations are represented as objects that are
combined at runtime, special care must be taken such that no messages
are sent to objects that are not yet operational, e.g., a binding that is
not yet connected to an implementation. This is similar to the problem
of instantiating abstract classes in Sec. 2.6.

The easiest solution for the first problem is to drop the subtyping rela-
tion between a CI and its extensions. With respect to the example above,
this means that the assignment of x to a variable of type CI is rejected by the
compiler because SubCI is not a subtype of CI. Other, more sophisticated
type systems that try to preserve the subtyping relation would also be pos-
sible, but the importance of the aforementioned subtyping relation would
have to be elaborated more clearly in order to justify such an extension.

In order to cope with incomplete objects that are not yet ready to re-
ceive messages, we introduce markers that stacically mark an object as in-
complete. In more detail, we introduce the binding type #CI and the im-
plementation type @CI of a collaboration interface CI. CI is a subtype of

123

4.6. RELATED WORK

both #CI and @CI but not vice versa. No messages can be send to an object
whose static type is a binding type or an implementation type (including
constructor calls of nested classes). Every incomplete instance of a binding
B of CI has type #B, which is a subtype of #CI, whereby the # marker means
that no messages can be send to this object, again. Similarly, the type of
an incomplete instance of a CI implementation I is @I.

Suppose we have a collaboration interface CI, a CI binding B and a
CI implementation I. The type of an expression new B() is #B, which is a
subtype of #CI. Similarly, the type of new I() is @I, which is a subtype of
@CI.

With this mechanism we can be sure that an incomplete object will never
receive a method call or a constructor invocation. Hence, we can safely apply
dynamic layering via delegation on both bindings and implementations, with
the same semantics as described in Chap. 3.

The open point is now: How are a binding and an implementation object
combined and hence made operational? One solution would be to make
this combination just an ordinary layer combination, i.e., one object, say,
the binding object b would be the ‘parent’ layer and one would be the
‘child’ layer whose parent is assigned at creation time. In this case, the
child layer would be the implementation object i = new I(). However,
this would destroy the symmetry of the combination (the decision whether
CI implementation or binding plays the child and parent role, respectively,
is arbitrary) and would prevent the ‘child’ layer i from being shared (in
delegation, a child can only have one unique parent).

We think it makes more sense to represent a particular combination of a
binding with an implementation by a dedicated object, thereby preserving
the symmetry. Syntactically, this could be expressed as follows:

Suppose we have a collaboration interface CI, bindings B, B1, B2 and
implementations I, I1, I2 as in Fig. 4.25. Fig. 4.26 shows how these classes
could be used as delegation layers, using the same delegation syntax as in
Chap. 3. Of particular interest is the expression CI<b2,i2>, which creates
a new object that represents the particular combination of b2 with i2 (note
that both b2 and i2 are already composed objects).

To summarize, the incorporation of layering for CI bindings and imple-
mentations seems to be an interesting new possibility. However, how useful
these new features really are has not yet been sufficiently explored. In addi-
tion, although the extended type system preserves type safety, it makes the
language more complicated. A more lightweigth solution would be desirable.

4.6 Related Work

Pluggable Composite Adapters (PCAs) [MSL01] and their predecessor, Adap-
tive Plug and Play Components (APPCs) [ML98], have been important

124

CHAPTER 4. ENCODING CROSSCUTTING MODELS

interface CI {
provided void foo();
expected void bar();
interface Nested { ... }

}

class B binds CI {
void bar() { ... }
class BNested binds Nested {...}

}
class B1 extends B {
void bar() {...super.bar();...}
override class BNested { ... }

}
class B2 extends B {
void bar() { ...super.bar();...}
override class BNested { ... }

}

class I implements CI {
void foo() { ... }
class Nested {...}

}
class I1 extends I {
void foo() {...super.foo();...}
override class Nested { ... }

}
class I2 extends I {
void foo() { ...super.foo();...}
override class Nested { ... }

}

Figure 4.25: Classes to be used as delegation layers

// B1 b1 = new B1(); rejected by compiler
#B1 b1 = new B1();
// b1.bar(); rejected by compiler
#B2 b2 = new B2<b1>(); // combine
@I1 i1 = new I1();
@I2 i2 = new I2<i2>(); // combine
CI<B2,I2> ci = CI<b2,i2>;
B2 b2 = ci; // OK
I2 i2 = ci; // OK
CI ci2 = ci; // OK

Figure 4.26: Layer combination of CI bindings and implementations

starting points for this work. Both approaches offer different means for
on-demand remodularization. The APPC model had a vague definition of
required and provided interfaces. However, this feature was rather ad-hoc
and not well integrated with the type system. Recognizing that the spec-
ification of the required and expected interfaces of components was rather
ad-hoc in APPCs, PCAs even dropped this notion and reduced the dec-
laration of the expected interface to a set of standard abstract methods.
With the notion of collaboration interfaces, the approach presented here
represents a qualitative improvement over PCA and APPC.

Due to the lack of decoupling of the component implementations from
their bindings, the connectors and adapters in APPC and PCA models are
bound to a fixed component. Furthermore, the lack of the notion of virtual
types is another drawback of these approaches as compared to the work

125

4.6. RELATED WORK

presented here. In addition, both approaches rely on a dedicated mapping
sublanguage that is less powerful than our notion of object-oriented wrap-
pers with wrapper recycling. Among these approaches, the APPC model of
remodularization is a class-based one, and only PCAs share the object-based
on-demand remodularization with our approach.

In [HM00], a variant of the PCA construct, called dynamic view connec-
tors (DVCs) is used in the architecture of an integrated software engineer-
ing environment to support the late integration of independently developed
software engineering tools. This work demonstrates the power of on-demand
remodularization in a real-world, fairly large system. By being basically a
realization of the PCA concept, DVCs also share their shortcomings men-
tioned above.

The Hyperspaces model and its instantiation in Hyper/J [TOHS99] also
support on-demand remodularization - this notion was actually first intro-
duced by the Hyperspaces model. Both, on-demand remodularization in
Hyper/J and in our approach, have a common goal: “On-demand remodu-
larization allows a developer to choose at any time the best modularization,
based on any or all of their concerns, for the development task at hand”
[OT00]. Hence the same name.

However, despite the common goal, there are some important differences
between these two approaches. In a nutshell, the functionality offered by
Hyper/J can be summarized as extracting concerns and composing concerns.

Extracting concerns means that one can take a piece of existing software
and tag parts of the software, e.g., method a() in class A and method b() in
class B, by means of a so-called concern mapping. Later, this mapping can
be used to extract a particular concern from this software and reuse it in a
different context. This is similar to the old idea of retroactive generalization
in inheritance hierarchies [Ped89]. An important concept for extracting
concerns is the notion of declarative completeness. Basically, this means
that all methods that are used inside the tagged methods but are not tagged
themselves are declared as abstract in the context of the extracted concern.
Our model does not have any dedicated means for feature extraction.

However, we think that with respect to composing concerns our approach
is in some important ways superior to Hyper/J. Composition in Hyper/J
happens by means of a so-called hypermodule specification, which describes
in a declarative sublanguage, how different concerns should be composed. In
terms of our model, a hypermodule performs both the functionality of our
binding classes and the actual composition with a specific concern imple-
mentation. Due to this mixing and due to the absense of an interface con-
cept similar to our collaboration interface, Hyper/J has no polymorphism
and reuse as in our approach, e.g., one cannot switch between different
implementations and bindings, and one cannot use them polymorphically.
Since the mapping sublanguage is declarative, it relies on similar signatures
that can be mapped to each other, and transformations other than name

126

CHAPTER 4. ENCODING CROSSCUTTING MODELS

transformations (e.g., type transformations), are very difficult. In addition,
Hyper/J’s sublanguage for mapping specifications from different hyperslices
is fairly complex and not well integrated into the common OO framework.

The last important difference is that Hyper/J’s approach is class-based:
it is not possible to add the functionality defined in a hyperslice to in-
dividual objects, instead the objects have to be created as objects of the
compound hypermodule from the very beginning. Therefore, multiple inde-
pendent bindings that are added to individual objects at runtime are not
possible.

At this point, the question rises of how to position the work presented
here with respect to previously published works on collaboration-based de-
composition (CBD). CBD approaches aim at providing modules that encap-
sulate a whole collaboration of classes. With CBD classes are decomposed
into the roles they play in the different collaborations. The idea is nicely vi-
sualized by a two dimensional matrix with the classes as the column indexes
and collaborations in which these classes are involved as the row indexes.

Mixin Layers [SB98] and delegation layers [Ost02, see also Chap. 3] are
two representatives of approaches to CBD. Both approaches provide con-
cepts for composing and decomposing a collaboration into layers, such that
a particular collaboration variant can be obtained by composing the re-
quired layers. Mixin layers use a nested variant of mixin-inheritance [BC90],
whereas delegation layers combine delegation and virtual classes in order to
defer the layer combination until runtime. None of these approaches sup-
port on-demand remodularization. The definition of a collaboration layer in
these approaches also encodes how the collaboration will be integrated. The
vocabulary of abstractions that are involved in an application is defined a-
priori to the definition of any collaboration layer and is consequently shared
by all layer definitions.

VanHilst and Notkin propose an approach for modelling collaborations
based on templates and mixins as an alternative to using frameworks [VN96].
However, this approach may result in complex parameterizations and scal-
ability problems. A contract [Hol92] allows multiple potentially conflicting
component customizations to exist in a single application. However, con-
tracts do not allow conflicting customizations to be simultaneously active.
Thus it is not possible to allow different instances of a class to follow different
collaboration schemes.

Lasagne [TVJ+01] is a runtime architecture that features aspect-oriented
concepts. An aspect is implemented as a layer of wrappers. Aspects can
be composed at run-time, enabling dynamic customization of systems, and
context-sensitive selection of aspects is realized, enabling client-specific cus-
tomization of systems.

Hölzle [Höl93] analyses some problems that occur when combining inde-
pendent components. Our proposal can be seen as an answer to the problems
and challenges discussed in [Höl93]. Mattson et al [MBF99] also indicate the

127

4.7. CHAPTER SUMMARY

problems with framework composition, analyze reasons for these problems
and investigate the state of the art of available solutions. In [Bos98], Bosch
proposes a language construct for specifying a class as the adapter of an-
other class, that is, for explicit expression of the adapter pattern. The
adapter construct as proposed in [Bos98] has two main restrictions: First,
it does not support adaptation of entire collaborative functionality. Second,
as indicated in [Bos98], it does not allow interface incompatibility.

Our work is also related to architecture description languages (ADL)
[SG96], for example Rapide [LKA+95], Darwin [MK96], C2 [MOT97], and
Jiazzi [MFH01]. The building blocks of an architectural description are
components, connectors, and architectural configurations. A component is
a unit of computation or data store, a connector is an architectural building
block used to model interactions among components and rules that govern
those interactions, and an architectural configuration is a connected graph
of components and connectors that describe architectural structure. In com-
parison with our approach, ADLs are less integrated into the common OO
framework, and do not have a dedicated notion of on-demand remodular-
ization in order to provide a new virtual interface to a system.

We think that collaboration interfaces might also prove very useful in
the context of ADL. In ADL, components also describe their functionality
and dependencies in the form of required and provided methods (so-called
ports). The goal of these ports is to render the components reusable and in-
dependent from other components. However, although the components are
syntactically independent, there is a very subtle semantic coupling between
the components, because a component A that is to be connected with a com-
ponent B has to provide the exact counterpart interface of B. The situation
becomes even worse if we consider multiple components that refer to the
same protocol. The problem is that there is no central specification of the
communication protocol to which all components that use this protocol can
refer to – in other words: we have no notion of a collaboration interface.

4.7 Chapter Summary

This chapter proposed language concepts that facilitate the separation of an
application into independent reusable building blocks and the integration
of pre-build generic software components into applications that have been
developed by third party vendors.

A key element of our approach is the notion of collaboration interfaces,
used to declare the type of generic components. Collaboration interfaces are
nested interfaces, bundling several abstractions that together build up the
concept world of a component type into a family of virtual types [Ern01].
In addition to the ‘client-from-server contract’, expressed by standard inter-
faces, collaboration interfaces also capture what servers expect from poten-

128

CHAPTER 4. ENCODING CROSSCUTTING MODELS

tial client contexts in which they might be integrated, i.e., the server-from-
client contract. The implementations of these two contracts are completely
decoupled from each other.

The implementation of the second contract translates the abstractions
and vocabulary of an existing code base into the vocabulary understood by a
set of components that are connected by a common collaboration interface.
This translation is called on-demand remodularization, since the translation
is virtual and effective only during the execution of functionality in the
collaboration interface, whose server-from-client contract is implemented by
the remodularization. Our approach to remodularization is object-based
and uses the full computational power of an object-oriented language. The
concept of wrapper recycling was additionally introduced to support the
specification of the remodularization.

The decoupling of component implementation from bindings via remod-
ularizations, allows to mix-and-match remodularizations and components
on demand. This decoupling combined with the lean integration of col-
laboration interfaces with generalized notions of inheritance and subtype
polymorphism, provide for a high degree of reuse in our model.

129

CHAPTER 5

Combining Crosscutting Models

This chapter shares material with the paper ‘Conquering Aspects With
Caesar’ [MO03] which has been presented at AOSD 2003.

The language which has been presented in the previous chapter shows
how different models can be represented and translated to each other. How-
ever, so far the combination of two models is purely additive. Being additive
means that the creation of a model combination has no effect on existing
code. This is similar to subclassing: Creating a subclass of a class does not
change the semantics of existing code because the existing code will still
create instances of the superclass. Usual subtype polymorphism is the only
means to change the behavior of existing code.

We will see that this is insufficient for an important class of concerns,
namely those that interact with other concerns in a crosscutting way. For
this purpose, we will add pointcuts, advices and aspect deployment to Cae-
sar. Pointcuts describe points in the call-graph of a program, and advices
describe actions to be executed at these pointcuts. Pointcuts and advices are
new language concepts that are frequently seen as the hallmark of aspect-
oriented programming. In this chapter we will argue that they should be
combined with our notions of model translation in order to realize mod-
ules for crosscutting models. Aspect deployment is a new concept for the
polymorphic composition of crosscutting models and for fine-grained control
over the effects of pointcuts and advices.

In order to set the scene, we start with a very different yet enlighten-
ing problem statement. In the previous chapter, we motivated our model
from the perspective of integrating independent components, whereas in
this chapter we begin by examining problems with existing aspect-oriented
languages that have pointcuts and advices only.

130

CHAPTER 5. COMBINING CROSSCUTTING MODELS

5.1 Introduction

A popular view of aspects is one of modules that define (i) which points in
the execution of a base program to intercept and (ii) how to react at these
points. This is roughly speaking the definition of aspects in AspectJ - the
best-known AO-language. Without questioning the power of join point in-
terception (JPI), we believe, however, that more powerful means for struc-
turing aspect code are needed on top of it. Especially, better support is
needed (a) for expressing an aspect as a set of collaborating abstractions,
comprising the modular structure of the world as seen by the aspect, and
(b) for structuring the interaction between two parts of an aspect: aspect
implementation, and aspect binding (integration) into a particular code base.

To clarify the terminology, let us consider a simple and well-known ex-
ample: the subject-observer pattern [GHJV95]. The world as seen by this
aspect consists of two abstractions, subject and observer, which are mutu-
ally recursive in that the definition of each of them refers to the other one.
The definition of an aspect should clearly define these two abstractions as
two modules that interact with each other via well defined interfaces. This
is basically what we refer to in point (a) above.

Now, let us consider the distinction that we make between aspect im-
plementation and aspect binding in point (b) above by the example of the
subject-observer protocol. The implementation part comprises in this case
the implementation of methods such as addObserver(), removeObserver()
and changed(), say by means of a LinkedList1. The binding part, on the
other hand, comprises details about how to integrate the observer protocol
into a particular context mapping the roles “Subject” and “Observer” to
particular application classes, e.g., JButton and MyActionListener. An
example for such binding details would be the extraction of the part of the
subject state (e.g., JButton) to be passed over to the observers along a
change notification, as well as how the notification is performed in terms of
the method to call on the observer site.

The advantage of supporting the definition of an aspect as a set of mu-
tually recursive abstractions that interact via well-defined interfaces is more
or less a direct derivate of the advantages of the object-oriented approach
to modeling a world of discourse; for this reason it does not require par-
ticular justification at this stage of the discussion. A short discussion is
needed, though, to justify the requirement for decoupling aspect implemen-
tation from aspect binding, which we proceed with in the following two
paragraphs.

An aspect implementation that is tightly coupled with a particular as-
pect binding, by the virtue of being defined within the same module, cannot

1Of course, other implementations are possible, e.g., one that executes the observer
notifications asynchronously, or one that employs buffering to eliminate duplicated notifi-
cations.

131

5.1. INTRODUCTION

be reused with other possible bindings. Hence, this particular aspect im-
plementation must be rewritten for every meaningful binding, thereby ren-
dering the application tangled because the aspect implementation becomes
itself crosscutting (due to code copying). Especially for non-trivial aspects
with complex implementations, rewriting of the aspect implementation is
tedious and error-prone.

On the other hand, an aspect binding that is tightly coupled to a spe-
cific aspect implementation is also undesirable. An aspect binding can be
seen as a translator which translates the concepts, terms, and abstractions
of the application’s world into the world of the particular aspect domain,
whose usage is not limited to a specific aspect implementation. Consider for
example an aspect binding that transforms a particular business application
data model to the domain of graphs with nodes and edges. Such a graph
representation is useful in many places, not just for one particular aspect
implementation.

Without dedicated language support it is rather difficult to separate
aspect implementation and binding properly. We will elaborate on this
claim in Sec. 5.2, where we investigate the AspectJ approach to separation of
aspect implementation and binding by means of abstract aspects/pointcuts
and inheritance. In addition, the discussion in Sec. 5.2 will also reveal
the deficiencies of AspectJ’s JPI-based approach with respect to modeling
multiple mutually recursive abstractions.

As a response to the problems we identify, we propose the Caesar
model, which is based on the notion of collaboration interfaces (CI) as pre-
sented in Chap. 4 as a means to better support a-posteriori integration of
independent components into existing applications. In this chapter we show
that CIs and the related notions of separated CI implementations and CI
bindings, once properly adopted to the needs of aspect-orientation, can also
be applied to support a more modular structuring of aspect code and bet-
ter aspect reuse. This is because in Caesar object-oriented concepts for
flexible composition, such as subtyping and polymorphism, which proved so
useful for classes and objects, naturally apply to aspects, too.

We have picked up an AspectJ example as the object of our investigation
for the simple reason that AspectJ is the most prominent approach that em-
phasizes the structuring of aspects around join points and advices. There
are other approaches, including HyperJ, [TOHS99], that have some similar-
ity to ours in their goals, but that have a very different technical realization.
We will discuss these approaches in their relation to Caesar in the related
work section.

The reminder of this chapter is organized as follows. Sec. 5.2 sets the
scene by discussing problems with existing aspect-oriented languages. After
being presented in Sec. 5.3, the Caesar model will be evaluated in Sec. 5.4
with respect to the problems identified in Sec. 5.2. Sec. 5.5 discusses related
work. Finally, Sec. 5.6 summarizes the chapter and outlines future work.

132

CHAPTER 5. COMBINING CROSSCUTTING MODELS

public abstract aspect ObserverProtocol {
protected interface Subject { }
protected interface Observer { }
private WeakHashMap perSubjectObservers;
protected List getObservers(Subject s) {
if (perSubjectObservers == null)

perSubjectObservers = new WeakHashMap();
List observers =
(List) perSubjectObservers.get(s);

if (observers == null) {
observers = new LinkedList();
perSubjectObservers.put(s, observers);

}
return observers;

}
public void addObserver(Subject s,Observer o){
getObservers(s).add(o);

}
public void removeObserver(Subject s,Observer o){
getObservers(s).remove(o);

}
abstract protected void
updateObserver(Subject s, Observer o);

abstract protected pointcut subjectChange(Subject s);

after(Subject s): subjectChange(s) {
Iterator iter = getObservers(s).iterator();
while (iter.hasNext())

updateObserver(s, ((Observer)iter.next()));
}
}

Figure 5.1: Reusable observer protocol in AspectJ

5.2 Problem statement

In this section we discuss the deficiencies of a JPI-based approach to aspect
structuring. Please note that the discussion in this section is by no way a
critique on the notions of JPIs and advices. On the contrary, recognizing
them as pivotal concepts of aspect-oriented languages, we emphasize the
need for higher-level module concepts on top of them.

For illustrating the problems, we use as an example the implementation
of the observer pattern in AspectJ proposed in [HK02] by Hannemann and
Kiczales , as shown in Fig. 5.1 and Fig. 5.2, whereby Fig. 5.1 shows a reusable
implementation of the observer protocol in AspectJ, while Fig. 5.2 binds it
to particular classes.

133

5.2. PROBLEM STATEMENT

public aspect ColorObserver extends ObserverProtocol
declare parents: Point implements Subject;
declare parents: Line implements Subject;
declare parents: Screen implements Observer;

protected pointcut subjectChange(Subject s):
(call(void Point.setColor(Color)) ||
call(void Line.setColor(Color))) && target(s);

protected void updateObserver(Subject s, Observer o) {
((Screen)o).display("Color change.");

}
}

Figure 5.2: Binding of observer protocol in AspectJ

The basic idea in Fig. 5.1 is that the aspect ObserverProtocol declares
an abstract pointcut that represents change events in the Subject classes.
The empty interfaces Subject and Observer are marker interfaces that
are used in the binding to map the application classes to their roles. The
observers for each subject are stored in a global WeakHashMap (the weak
references are required in order to prevent a memory leak) that maps a
subject to a list of observers. In case of a subject change all observers
are notified by means of the abstract method updateObserver(), which is
overridden in the binding aspect in order to fill in the appropriate update
logic.

This proposal has two main advantages. First, Fig. 5.1 is indeed a
reusable implementation of the observer protocol: Nothing in the imple-
mentation is specific to a particular binding of this functionality. This is
because the authors [HK02] recognize the need to separate aspect imple-
mentation and aspect binding. Second, the same role, e.g., Subject, can be
mapped to multiple different classes, e.g., Point and Line as in Fig. 5.2. It
would also be no problem to assign two roles, e.g., Subject and Observer,
to the same class, or assign the same role twice to the same class in two
different bindings. For example, a Point can be simultaneously a subject
concerning coordinate changes ias well as color changes. In terms of [Szy96],
the observer “component” in Fig. 5.1 is independently extensible.

These features are probably the rationale for the author’s decision against
an alternative (simpler) implementation of the observer protocol in AspectJ.
The alternative solution of which we speak is to declare addObserver() and
removeObserver() in the interface Subject and then (in the binding) inject
these methods into the corresponding classes by means of a so-called intro-
duction, - AspectJ’s open class mechanism. Similarly, a LinkedList could
be introduced into every Subject class, thereby rendering the perSubjec-

134

CHAPTER 5. COMBINING CROSSCUTTING MODELS

tObservers map unnecessary. However, with this solution, a class could
not have two different instantiations of the Subject role, because then the
class would have multiple implementations of the same method (e.g., ad-
dObserver()), hence resulting in a compiler error. In other words, we would
loose independent extensibility.

Now, let us take a critical look on this solution. We identify the following
problems.

Lacking support for multi-abstraction aspects

Note that all methods in Fig. 5.1 and 5.2 are top-level methods of the en-
closing aspect class. For example, addObserver(), which is conceptually a
method of the subject role, is a top-level method whose first parameter is
the respective Subject object. This design decision is conceptually ques-
tionable because the methods of all aspect roles are forced into a flat list
of methods. In a way, this is a rather procedural style of programming,
contradictory to one of the fundamentals of object-oriented programming,
according to which a type definition contains all methods that belong to its
interface. It is also contradictory to the aspect-oriented vision of defining
crosscutting modules in terms of their own modular structure. The struc-
ture of the aspect in Fig. 5.1 is one of empty abstractions and unstructured
method definitions, and as such not particularly modular.

The implications of this design decision are not only of a conceptual,
but also of a practical nature. First, we cannot pass objects that play a
role R to other classes that expect an instance of that role. Envisage, for
illustration, a role Comparable with a method compareTo(). If we want to
pass an object as a Comparable to another class, e.g., a sorting class, then
the approach in Fig. 5.1 and 5.2 based on introducing an empty interface and
encoding all methods as top-level methods of the enclosing class, does not
work. The alternative would be to use AspectJ’s introduction mechanism
to introduce the interface and its methods directly into the respective class
but then again we would loose independent extensibility, as discussed above.
For example, a Point could be compared to another Point by means of their
geometrical distance

√
x2 + y2 as well as their Manhattan distance ‖x‖+‖y‖

to the origin, which would require two independent implementations of the
Comparable abstraction.

A similar problem shows up, if some interaction between the abstractions
that build up the aspect’s model of the world - Subject and Observer
in our example - is needed. The interaction in Fig. 5.1 is very simple: a
subject passes itself on calling the notify method on each observer, but
the parameter gets never used in the binding of the aspect in Fig. 5.2. It is
more realistic that observers would want more detailed information of what
state change actually happened on the subject’s site. This would require
some query methods in the interface of the subject. Using the AspectJ

135

5.2. PROBLEM STATEMENT

design ”pattern” exemplified in Fig.5.1 and Fig. 5.2, where abstractions are
typeless, we would have to declare such query methods also at the top level,
e.g., getState(Subject s). The query methods would have to be declared
abstract in Fig. 5.1 since their implementation is binding specific and should
be implemented by the concrete binding subaspect in Fig. 5.2. However, it
is not possible to implement different query methods for Point and Line,
i.e., it is not possible to dynamically dispatch with regard to the type of the
base objects being decorated with the subject functionality.

Another practical issue related to having only top-level methods and
empty abstraction is that the late binding dispatch happens only with re-
gard to the instance of the enclosing class (since the methods are methods
of the enclosing class). This means that it is not possible to assign different
implementations of these methods for different subroles of the aspect. Con-
sider for example the case that we have a specialization SpecialSubject of
Subject that requires a different implementation of addObserver(), e.g.,
one that checks for double registration of observers. We would then intro-
duce an additional addObserver() method whose first parameter has type
SpecialSubject, but since the dispatch is only based on the class of the re-
ceiver object (and not of the argument classes) subsumption for instances of
SpecialSubject does not work as expected, i.e., if a SpecialSubject would
be polymorphically assigned to a variable of type Subject, a subsequent call
to addObserver() would execute the wrong method.

With the solution in Fig. 5.1 and 5.2 it is also pretty awkward to asso-
ciate state with the individual abstractions in the definition of the aspect.
For example, the observers of all subjects are stored in a global hash map
perSubjectObservers. Besides the dangers of such a global bottleneck,
the access and management of state becomes pretty clumsy. The example
in Fig. 5.1 is relatively simple because state is associated with only one of the
abstractions (Subject) and this state consists of only one field. However,
the general case is that multiple abstractions in the module structure of the
aspect may declare multiple fields. A simple example would be an imple-
mentation where observers maintain a history of the observed state change,
e.g., when they need to react on change bundles rather than on individual
changes. If we consider the case that all roles need many different fields then
the code might very easily become a mess, if all these fields are hosted by
the outer aspect.

The problem with modeling state becomes even worse, once we consider
the case of role inheritance, e.g., SpecialSubject inheriting from Subject.
In this case, we would end up simulating shared data fields manually. This
problem with modeling state applies to the aspect binding as well. There
we might also want to associate state with the objects that are mapped to
the aspect roles, e.g., in order to cache computed values.

Summarizing the problems so far, what we would like to have is a nested
class structure of aspect implementation and aspect binding within which

136

CHAPTER 5. COMBINING CROSSCUTTING MODELS

we can assign methods and state to every aspect role in isolation.

Lacking support for sophisticated mapping

The second kind of problem with the solution in Fig. 5.1 and 5.2 is that
the mapping from aspect abstractions to base classes by means of the de-
clare parents construct works only when each aspect abstraction has a
corresponding base class to which it is mapped directly. However, this is
not always the case. Consider e.g., a scenario in which there is no class Line
and every Point object has a collection of neighbor points. If we want to
map this data structure to a graph aspect defined in terms of Node and Edge
abstractions, then an edge would be represented by two adjacent points, but
there is no abstraction in the base application to which we can map the Edge
abstraction. The latter is only implicitly and indirectly represented by the
collections of adjacent points.

Lacking support for reusable aspect bindings

Third, every aspect binding is coupled to one particular implementation.
For example, the ColorObserver binding in Fig. 5.2 is hardwired to the
observer pattern implementation in Fig. 5.1, although the binding itself is
not dependent on the implementation details of the observer pattern. The
observer pattern is not a very good example to illustrate the usefulness of
a binding that can be used with many different implementations; a better
example is that of an aspect binding that maps an arbitrary data structure,
e.g., the classes of an abstract syntax tree, to a general tree representation.
Many different implementations of a tree make sense in conjunction with
such a binding, e.g., one that displays trees on the screen or one that per-
forms algorithms on trees. That is, one might want to be able to write
some functionality that is parameterized with a particular binding type, but
is polymorphic with respect to the implementation. This is, however, not
possible, if the binding is coupled to the implementation.

Lacking support for aspectual polymorphism

The fourth deficiency concerns aspect deployment. We say that the Col-
orObserver aspect in Fig. 5.2 is statically deployed. By this we mean that
once compiled together with the package containing the figure classes, the
changes in the particular points in the execution of point and line objects
implied by ColorObserver aspect are effective. Which is to say that it is
not possible to determine at runtime, whether to apply the aspect at all, or
which implementation of the aspect to apply, e.g., a LinkedList version, or
one with asynchronous notifications. We say that aspectual polymorphism
is missing, in the sense that the code is not polymorphic with respect to the
types and implementations of the aspects affecting it after compilation.

137

5.3. DEPLOYING ASPECTS WITH CAESAR

As an analogy, let us consider how subclass polymorphism is used to
separate concerns that relate to different kinds of a data abstraction in
object-oriented languages. Given e.g., a class Order (think: aspect) and a
class OrderProcessing that operates on orders (think: base code2), and the
requirement to introduce a special kind of order, say, ExpressOrder, we do
not need to ”weave” OrderProcessing either with Order or ExpressOrder.
Due to subtype polymorphism of object-oriented languages, any abstraction
that we write – also our OrderProcessing class – has the built-in potential
of being incrementally extended with future variations of the objects on
which it operates. We can use the functionality offered by OrderProcessing
polymorphically with both orders and express orders, based on which of
these variants we decided to create at runtime. This is not true for the
observer base application in our example and potential aspects to be defined
in the future, which is why we say that this application lacks aspectual
polymorphism.

5.3 Deploying Aspects With Caesar

The basic notions of Caesar have already been introduced in the previous
chapter. In order to model the observer example, we need an appropriate
collaboration interface (Fig. 5.3), a sample implementation of the interface
(Fig. 5.4), and a binding that maps the observer abstractions to the respec-
tive application classes (Fig. 5.5). In the context of this chapter, we will
refer to the functionality described by a CI as an aspect, to implementations
of a CI as aspect implementations and to bindings of a CI as aspect bindings.

The observer CI in Fig. 5.3 specifies that any implementation of Ob-
serverProtocol must provide an implementation of the three provided
methods of Subject3. On the other side, the expected facet of an aspect
makes explicit what the aspect expects from the context in which it will be
applied, in order to be able to supply what the provided facet promises.
Hence, the expected facet declares methods that are part of the aspect
functionality, but whose implementation is binding specific. Consider for
instance, the part of the observer protocol concerned with communicating
relevant state from the subject to observers, when a change is notified. What
part of subject’s state is relevant, and how this state should be extracted for
being passed to observers is highly dependent on what classes in a particular
context play the roles of the subject and observer respectively. Furthermore,

2The analogy may look strange at first because OrderProcessing knows about Order

whereas an aspect is not necessarily not known to the base code, but on the other hand
this inversion of knowledge is one of the key properties that accounts for the improvement
over pure OO

3In this example, the Observer abstraction does not happen to have any provided meth-
ods. However, one can easily think of other examples where multiple or all abstractions
declare a non-empty provided facet.

138

CHAPTER 5. COMBINING CROSSCUTTING MODELS

interface ObserverProtocol {
interface Subject {
provided void addObserver(Observer o);
provided void removeObserver(Observer o);
provided void changed();
expected String getState();

}
interface Observer {
expected void notify(Subject s);

}
}

Figure 5.3: CI for observer protocol

class ObserverProtocolImpl implements ObserverProtocol {
class Subject {
List observers = new LinkedList();
void addObserver(Observer o) { observers.add(o);}
void removeObserver(Observer o) {

observers.remove(o);
}
void changed() {
Iterator it = observers.iterator();
while (iter.hasNext())
((Observer)iter.next()).notify(this);

}
}

}

Figure 5.4: Sample impl. of observer protocol

the operation to be called on the observer as part of the notification is also
binding-specific. This is why notify() and getState() are declared with
the modifier expected in Fig. 5.3.

Recall that an implementation of a CI must implement all methods in
the provided facet of the CI, i.e., all aspect level provided methods, as well
as provided facets of all nested CIs. Fig. 5.4 shows a simple implementation
of the ObserverProtocol CI. Similarly, we could write another implementa-
tion of ObserverProtocol, say, a class AsyncObserverImpl that implements
ObserverProtocol and realizes a notification strategy with asynchronous
updates.

The responsibility of an aspect binding is to implement all expected
methods in the aspect’s CI and in its nested interfaces. Fig. 5.5 shows
a binding of ObserverProtocol which maps the subject role to the base
classes Point and Line and the observer role to Screen. Every binding has

139

5.3. DEPLOYING ASPECTS WITH CAESAR

class ColorObserver binds ObserverProtocol {
class PointSubject binds Subject wraps Point {
String getState() {
return "Point colored "+wrappee.getColor();

}
}
class LineSubject binds Subject wraps Line {
String getState() {
return "Line colored "+wrappee.getColor();

}
}
class ScreenObserver binds Observer wraps Screen {
void notify(Subject s) {
wrappee.display("Color changed: "+s.getState());

}
}

}

Figure 5.5: (Incomplete) sample binding of observer protocol

class CO extends
ObserverProtocol<ColorObserver,ObserverProtocolImpl> {};

Figure 5.6: Weavelet composition

to provide implementations of all expected methods in the corresponding
interface, e.g., ScreenObserver implements the notify() method.

In order to gain a complete realization of a CI, an implementation-
binding pair needs to be composed. In the context of this chapter, we call
a particular pair of implementation and binding a weavelet. An example of
a weavelet is the class CO which is defined as in Fig. 5.6. This class rep-
resents a realization of the ObserverProtocol interface that combines the
implementation ObserverProtocolImpl with the binding ColorObserver,
as described in Sec. 4.3.3.

5.3.1 Pointcuts and Advices

So far, we have only used the language means already introduced in the
previous chapter. However, the code in Fig. 5.3), 5.4), and 5.5 does not
specify, how the observer component should be deployed. With deployment
we mean: The creation of instances of the observer component, the definition
which instances should be active in which part of the program, and the
specification of events that should trigger change notifications.

The last point (specification of events) is done via advices and pointcuts,
similar to those already used in the AspectJ example (Sec. 5.2). The other

140

CHAPTER 5. COMBINING CROSSCUTTING MODELS

class ColorObserver binds ObserverProtocol {
class PointSubject binds Subject wraps Point {
String getState() {
return "Point colored "+wrappee.getColor();

}
}
class LineSubject binds Subject wraps Line {
String getState() {
return "Line colored "+wrappee.getColor();

}
}
class ScreenObserver binds Observer wraps Screen {
void notify(Subject s) {
wrappee.display("Color changed: "+s.getState());

}
}
after(Point p): (call(void p.setColor(Color)))
{
PointSubject(p).changed();
}

after(Line l): (call(void l.setColor(Color)))
{
LineSubject(l).changed();
}

}

Figure 5.7: Binding of observer protocol using pointcuts and advices

deployment-related language means will be discussed in Sec. 5.3.2.
In Caesar, we apply pointcuts and advices primarily in bindings, al-

though they could be applied in any class. Fig. 5.7 shows an ObserverPro-
tocol binding that uses pointcuts and advices in order to specify the events
that should result in a change notification.

Advices and pointcuts in our model differ from the AspectJ model in
two points: One difference concerns the decoration of target objects of a join
point with aspect types. This decoration happens implicitly in AspectJ, as
shown in the pointcut subjectChange in Fig. 5.2, where the base object,
s, brought into the scope of the aspect ColorObserver by the join point
target, which in this case is either Line or Point, is automatically seen as
being of type Subject (see the parameter type of the pointcut).

On the contrary, the conversion happens explicitly in Caesar, via wrap-
per recycling calls. In Fig. 5.5, we avoided type conversions in a pointcut,
by defining different pointcuts for Point and Line. This was in order to
avoid mingling the discussion on wrapper recycling with that on pointcuts
and advices. A shorter variant of the same binding in given in Fig. 5.8. Note
the explicit call to wrapper recycling operators, in order to decorate basis

141

5.3. DEPLOYING ASPECTS WITH CAESAR

class ColorObserver binds ObserverProtocol {
... as before ...

after(Subject s):
(call(void Point.setColor(Color))

with s = PointSubject(target)) ||
(call(void Line.setColor(Color))

with s = LineSubject(target)) {
s.changed();

}
}

Figure 5.8: Alternative binding of observer

objects with the aspect facets by means of a with clauses, which allows us
to bind variables of the pointcut differently in each case of the pointcut. We
prefer the explicit variant because it increases programmer’s expressiveness,
in that he/she can choose among several constructors of the binding classes,
if more than one is available.

However, for the common case that the pointcuts refer to the wrapped
objects themselves, we add some syntactic sugar in the form of embedded
advices (Fig. 5.9). An embedded advice is only possible if the nested class
wraps exactly one application object and can be denoted with wrappee.m ethodSig.
We deliberately made the syntax similar to the object-oriented notion of
method overriding because we see embedded advices as an extended variant
of method overriding. The around invocations of the original method are
similar to a super call in usual overriding methods. With usual method
overriding, overriding is only active if the object that is the receiver of the
respective method call has been explicitly created as an instance of the sub-
class that overrides the method. With embedded advices, we relax this
restriction by allowing to override methods of any object without changing
the respective constructor invocations to refer to a subclass of the original
class.

The second and more important difference between Caesar and AspectJ
pointcuts and advices is at the semantic level. Compiling a binding class that
contains advice definitions does not have any effect on the base application’s
semantics. This is because an aspect (its implementation and binding) must
be explicitly deployed in Caesar. Only the advice definitions of explicitly
deployed aspects are executed, as elaborated in the following.

5.3.2 Static and Dynamic Deployment

A weavelet has to be deployed in order to activate the pointcuts and advices
in its binding (recall that pointcuts and advices have no computational ef-
fect until they are activated by a deployment). A weavelet deployment is

142

CHAPTER 5. COMBINING CROSSCUTTING MODELS

class ColorObserver binds ObserverProtocol {
class PointSubject binds Subject wraps Point {
String getState() {
return "Point colored "+wrappee.getColor();

}
void wrappee.setColor(Color c) {
proceed(c); changed(); }

}
// embedded advice is equivalent to the
// following code:
// around(Point p): (call(void p.setColor(Color))) {
// proceed(); PointSubject(p).changed();
// }
}

Figure 5.9: Embedded advices

syntactically denoted by the modifier deploy and comprises basically two
steps: (a) create an instance of the weavelet at hand and (b) call the deploy
operation on it. One can choose between static (load-time) and dynamic
deployment.

Static deployment

Syntactically, static deployment is expressed by having the deploy keyword
be a modifier of a final static field declaration. Semantically, it means
that the advices and pointcuts in the instance that has been assigned to the
field become active. For example, the declaration

class Test ... {
deploy public static final CO co = new CO();
...

}

in an arbitrary class Test deploys the instance new CO() at load-time. Of
course, the object assigned to co could also be computed in a static method
such that the weavelet that is actually deployed might also be a subtype of
CO, thereby enabling static aspectual polymorphism. The deploy keyword
can also be used as a class modifier. This variant should be regarded syn-
tactic sugar in the sense that the declaration

deploy class CO ... { ... }

is equivalent to

class CO ... {

143

5.3. DEPLOYING ASPECTS WITH CAESAR

deploy class CO extends
ObserverProtocol<ColorObserver,ObserverProtocolImpl>{};

...
void register(Point p, Screen s) {
CO.THIS.PointSubject(p).addObserver(
CO.THIS.ScreenObserver(s));

}

Figure 5.10: Static Aspect Deployment

deploy public static final CO THIS = new CO();
...

}

that is, it is equivalent to declaring a deployed field with name THIS as above.
Fig. 5.10 shows the full declaration of a statically deployed color observer
protocol together with sample code inside register() which shows how the
deployed weavelet instance can be accessed. Since the instance CO.THIS is
deployed, the pointcuts inside the aspect declaration are active, i.e., color
changes in points and lines will be propagated to CO.THIS.

Using deploy as a class modifier is appropriate if we need only one in-
stance of the aspect and if aspectual polymorphism is not required. By
means of deploy as a field modifier we can create and deploy multiple in-
stances of the same weavelet and select from different weavelets using as-
pectual polymorphism. Having two instances of, say, the CO weavelet in the
observer example would mean that every Point and Line would have two
independent facets as subject with independent lists of observers. An exam-
ple that makes more sense is the association of a color or weight to elements
of a data structure which can be seen as nodes of a graph. Multiple inde-
pendent instances of the corresponding weavelet would represent multiple
independent colorings of the graph. Other examples can be derived from
role modeling, where frequently one object has to play the same role twice,
for example, a person is employee in two independent companies. Static
aspectual polymorphism is useful if we want to select a particular weavelet
based on conditions that are known at load-time. For example, based on
the number of processors or the multi-threading support, one might either
choose a usual observer pattern implementation or one with asynchronous
updates.

Dynamic Deployment

Dynamic deployment is syntactically denoted by the keyword deploy be
used of as a block statement. The rationale behind dynamic deployment is
that frequently we cannot determine which variant of an aspect should be

144

CHAPTER 5. COMBINING CROSSCUTTING MODELS

class Logging {
after(): (call(void Point.setX(int)) ||
call(void Point.setY(int))) {
System.out.println("Coordinates changed");

}
}
class VerboseLogging extends Logging {
after(): (call(void Point.setColor(Color)) {

System.out.println("Color changed");
}

}
class Main {
public static void main(String args[]) {
Logging l = null;
Point p[] = createSamplePoints();
if (args[0].equals("-log"))
l = new Logging();

else if (args[0].equals("-verbose"))
l = new VerboseLogging();

deploy (l) {
modify(p);

}
}
public static void modify(Point p[]) {
p[3].setX(5);
p[2].setColor(Color.RED);

}
}

Figure 5.11: Polymorphic aspect deployment

applied (or whether we need the aspect at all) until runtime.
Consider for example that we have a program with different logging op-

tions, i.e., without logging, with standard logging, and with verbose logging.
In Caesar, this can be implemented as in Fig. 5.11: We have two different
logging aspects (Logging and VerBoseLogging) that are related by inher-
itance, and we choose among one of these at runtime, depending on the
command line arguments with which the program has been started.

The interesting point now is the deploy block statement in the main
method of Main. The meaning of the deploy clause is that the advices that
are defined in the annotated object l become active in the control flow of the
deploy block, in this case, during the execution of modify(f). In particular,
other independent threads that execute the same code would not be affected
by the deploy clause.

Please note that the advices and pointcuts that will be activated in the
deploy block are not statically known - for example, l is only known by its

145

5.3. DEPLOYING ASPECTS WITH CAESAR

deploy class LoggingDeployment {
around(final String s[]): cflow(Main.main(String[])

&& args(s) && (call(void Main.modify(Point[])) {
Logging l = null;
if (args[0].equals("-log"))
l = new Logging();

else if (args[0].equals("-verbose"))
l = new VerboseLogging();

deploy (l) in { proceed(args); }
}

}

class Main {
public static void main(String args[]) {
Point p[] = createSamplePoints();
modify(p);

}
public static void mofify(Point p[]) {...}

}

Figure 5.12: Aspect deployment aspects

upper bound Logging (l could have also been passed as a parameter). In
other words, the advices are late bound, similarly to late method binding,
hence our term aspectual polymorphism. In case l is null the deploy clause
has no effects at all.

The usefulness of dynamic deployment becomes clear if we consider a
simulation of this functionality by means of static deployment. With static
deployment, we would have to encode the different variants by if and case
statements that depend on the current value of switch variables, e.g., state-
ments of the form if (verboseLogging) {...}. The structure of the as-
pect itself would get awkward very quickly because all variants of the aspect
are tangled inside the aspect code. In a way, this is similar to simulat-
ing late binding in a non-OO language, hence we see dynamic aspectual
polymorphism as an imperative consequence of integrating aspects into the
OO concept world. Also, such programs would be very fragile with respect
to concurrent programs and additional synchronization measures would be
required.

An interesting question is whether the aspect deployment code should
also be separated from the rest of the code. If desired this can easily be done
with another aspect whose responsibility is the deployment of the logging
aspect, as indicated in Fig. 5.12. In this figure, the aspect LoggingDeploy-
ment (which is itself deployed statically) computes and deploys an appropri-
ate logging aspect by means of an around advice, i.e., the proceed() call is
executed in the context of the logging aspect.

146

CHAPTER 5. COMBINING CROSSCUTTING MODELS

5.3.3 Dynamic Deployment and Concurrency

Most other approaches to a more dynamic form of aspects, for example,
HandiWrap [BH02], JAC [PSDF01], PROSE [PGA02] or Lämmels formal
model [Läm02] enable and disable aspects globally, that is, the aspect is
simultaneously enabled for all executing threads. At first, our approach of
deploying aspects in the context of a particular branch of control flow may
seem more complicated, hence we feel that some justification is in place.

One of the motivations for not using global modifications is the fact
that it is very hard or even impossible to reconcile global modifications
with multithreading. Any thread that is in the middle of something while
a new aspect is globally enabled or disabled may become inconsistent. For
example, suppose that an aspect inserts an ‘open door’ advice at a pointcut
A and a ‘close door’ advice at a pointcut B. If a thread is executing the code
that should be guarded by the ‘open/close door’ mechanism while the aspect
is enabled in another concurrently running thread, the door will be closed
before it was opened. Until now, no general solution to cope with such
problems automatically has been proposed (a lot of partly solutions have
been proposed, however, see [MPG+00] for an overview), and we believe
that a general solution might even be impossible.

Hence, our solution does not rely on global modification. In contrast,
our solution is thread-safe by construction because only the current thread
is affected. If the modification should be visible in other threads, too, the
programmer can choose the places where it is safe for a thread to add a
particular aspect instance to his list of active aspects and add the aspects
at these places by means of a deploy statement.

5.4 Evaluation

This section evaluates Caesar with respect to how it copes with the prob-
lems outlined in Sec. 5.2. In addition, we will also elaborate on how Cae-
sar’s explicit aspect instantiation and deployment relate to AspectJ-like
languages, where aspects are only implicitly created and which do not have
a notion of aspect deployment.

Problems Revisited

This discussion is organized around the five problems identified in Sec. 5.2,
as summarized below:

1. Lacking support for multi-abstraction aspects.

2. Lacking support for defining state for individual abstractions pertain-
ing in the definition of an aspect.

147

5.4. EVALUATION

3. Lacking support for sophisticated mapping of aspect abstractions to
base classes.

4. Lacking support for reuse of aspect bindings with different aspect im-
plementations

5. Lacking support for aspectual polymorphism.

In the following we will explain how each of these problems is solved in
Caesar.

Ad 1: As shown in the code in Fig. 5.3, 5.4, and 5.5, each abstraction in
the vocabulary of the world as it is decomposed from the point of view of
an aspect, is defined in its own full-fledged module with a well-defined inter-
face. Methods in the interface of one abstraction can be called by methods
of other abstractions within the same aspect, or from the outside. Consider
e.g., the call of Subject.notify(...) in the implementation of Observer-
ProtocolImpl in Fig. 5.4, or the invocation of CO.THIS.addObserver(...)
in Fig. 5.10.

Due to this finer-grained modularization of the aspect itself, the runtime
system is able to dispatch methods not only based on the instance of the
aspect, but also based on the particular abstraction in execution. Consider,
for example, the getState() method in the definition of Subject, which
was implemented differently for point-subjects and for line-subjects, while
being uniformly used in the update logic (cf. Fig. 5.5). As pointed out
in Sec. 5.2, the same polymorphism would not be possible, if there were
only aspect-level methods. Furthermore, due to the incorporation of virtual
classes, it is easy to encode different variants of a multi-abstraction aspect,
as exemplified in Fig. 5.13, which shows a variant of the ColorObserver
binding. Uniformly, we could encode different variants of CI bindings.

Ad 2: Let us now consider the issue of defining state for the individual
abstractions pertaining to an aspect. As it is shown by examples in the pre-
vious section, each abstraction in the modular structure can declare its own
state, e.g., observers in Subject. Hence, there is no need for defining data
structures that ”globally” maintain aspect-related state of all base objects
in a single place, as e.g., perSubjectObservers in Fig. 5.1. Similarly, state
can be added to the abstractions at the binding side, such as e.g., the count
field in Fig. 5.13. Furthermore, if inheritance among the participating ab-
stractions is involved, the implied data structure sharing works as expected
and is taken care by the runtime system. As pointed out in Sec 5.2, with
an approach, where all state is defined globally at the aspect level, the same
data structure sharing between inheriting classes would have to be manually
simulated in the implementation of the aspect.

148

CHAPTER 5. COMBINING CROSSCUTTING MODELS

public class CountingColorObserver extends ColorObserver {
override class ScreenObserver {
int count = 0;
void notify(Subject s) {
count++;
wrappee.display("Color changed "+count+"times");

}
}

Figure 5.13: Encoding of counting observer using inheritance

Ad 3: In our model bindings are Java classes with some additional fea-
tures. As such, the definition of mappings from aspect abstractions to the
classes of a base application can make use of the full expressiveness of an
general purpose object-oriented language. There is nothing to prevent a
Caesar programmer in coding any mapping no matter how sophisticated.
A more detailed discussion on this issue supported also by better examples
has already been presented in the previous chapter.

Ad 4: Different weavelets can combine an aspect binding with different as-
pect implementations. On the other hand, different weavelets can combine
(and reuse) a particular aspect implementation with multiple different bind-
ings. For example, we can combine the observer protocol binding to JButton
and MyActionListener with the LinkedList or the AsynchronousUpdate
observer implementation, and on the other hand combine the same observer
implementation, say AsynchronousUpdate, with multiple different bindings,
e.g., to JButton/MyActionListener and ListModel/JList. As a conse-
quence, one can define functionality that is polymorphic with respect to (a)
aspect implementations by being written to a certain aspect binding type,
(b) aspect bindings by being written to a certain aspect implementation
type, or (c) both of them, by being written to a common CI.

Ad 5: As already discussed in Sec. 5.3.2, our approach does support as-
pectual polymorphism. For example, the modify(Point p[]) method in
Fig. 5.11 is polymorphic with respect to aspects that might be defined in
the future. It is even possible to run the same method concurrently within
two different threads with and without the logging aspect.

Explicit vs. Implicit Aspect Instantiation/Deployment

Recall that the question we pose here is: How does our notion of explicit as-
pect instantiation and deployment relate to AspectJ-like languages, within

149

5.4. EVALUATION

aspect A isSingleton {
State s;

}

deploy class A {
State s;

}

aspect A perThis(pointChanges) {
pointcut pointChanges():
calls (Point.setX(int));

State s;
after(Point p):
pointChanges() && this(p) {
...s...

}
}

deploy class A {
class PointWrapper wraps Point {
State s;

}
after(Point p): calls(
Point.setX(int)) && this(p) {
...PointWrapper(p).s;...

}
}

aspect A percflow(pointChanges) {
pointcut pointChanges():
calls (Point.setX(int));

State s;
after(): somePointCut() { ... }

}

class A {
State s;
after(): somePointCut {}

}
deploy class ADepl {

around():
calls (Point.setX(int)) {
deploy (new A()) {
proceed(); }

}
}

Table 5.1: Aspect Instantiation in AspectJ (left) and Caesar (right)

which aspects are only implicitly created and which do not have a no-
tion of aspect deployment? In AspectJ, aspect instantiation can be con-
trolled by means of the aspect modifiers isSingleton (this is the default),
perThis/perTarget, and percflow/percflowbelow. In Caesar, these as-
pect instantiation strategies turn out to be special cases or patterns of the
more general model in Caesar.

Tab. 5.1 describes how the AspectJ instantiation strategies can be simu-
lated in Caesar. The isSingleton case is obvious. The perThis modifier
can be simulated by creating a wrapper class and using wrapper recycling
in order to refer to the state that is associated with each point. Simulating
perTarget is identical to perThis, except that we would have to exchange
this(p) by target(p). More interesting is AspectJ’s percflow modifier,
which means that an instance of the aspect is created for each flow of control
of the join points picked out by the annotated pointcut. The semantics of
percflow can be simulated by using a deployment aspect ADepl that uses
dynamic deployment at the respective starts of control flow.

150

CHAPTER 5. COMBINING CROSSCUTTING MODELS

What do we gain if all the cases in Tab. 5.1 can already be handled very
well by AspectJ? To answer this question recall that AspectJ instantiation
strategies are just special cases of a more general model in Caesar. This has
two implications. First, we do not need special new keywords to express the
semantics of AspectJ instantiation, thereby rendering the conceptual model
more slender. Second and more importantly, our model allows us to express
instantiation and deployment semantics that cannot easily be expressed in
AspectJ.

When using AspectJ’s perThis of perTarget modifiers, state can be only
associated with objects that are caller or callee, respectively, in a pointcut.
In Caesar, state can be associated with arbitrary objects and arbitrary
relations between objects. For example, we could associate state with every
pair of this and target, or with any argument of a method call. In the
percflow case we can either simulate the AspectJ semantics but we could
also do something more sophisticated, e.g., deploy an instance of an opti-
mization aspect only if the number of calls to the method to be optimized
is executed more than a certain threshold.

5.5 Related Work

Open classes: An open class is a class to which new fields or methods can
be added without editing the class directly. For example, in MultiJava
[CLCM00] additional methods can be attached to a class. In AspectJ, meth-
ods as well as fields can be added to a class by means of introductions. As
already discussed in Sec. 5.2, open classes are in contrast to the concept of
independent extensibility [Szy96], an essential prerequisite for reusable and
extensible software. We think that Caesar combines both the advantages
of open classes and independent extensibility.

Adaptive Plug and Play Components (APPCs) [ML98] and their aspect-
oriented variant of Aspectual Components [LLM99] are related to our work
in that both approaches support the definition of multi-abstraction com-
ponents / aspects and have a vague definition of required and provided
interfaces. However, the latter feature was not well integrated with the type
system. Recognizing this deficiency, the successor model of Pluggable Com-
posite Adapters (PCAs) [MSL01] even dropped this notion and reduced the
declaration of the expected interface to a set of standard abstract methods.
With the notion of collaboration interfaces, Caesar represents a qualitative
improvement over all three models, as far as support for multi-abstraction
aspects is concerned.

Due to the lack of a notion similar to collaboration interfaces, compo-
nent implementations and their bindings are coupled. Hence, connectors and
adapters in APPC, Aspectual Components, and PCA models are bound to
a fixed implementation of an aspect and cannot be reused. In addition,

151

5.5. RELATED WORK

these approaches rely on a dedicated mapping sublanguage that is less pow-
erful than our notion of object-oriented wrappers with wrapper recycling.
Among these approaches, the APPC and Aspectual Component model have
no notion of aspect instantiation and deployment. Base and aspect code are
statically merged at compile-time, which corresponds to the open class style
of AspectJ. As already discussed in Sec. 5.2 and in the first paragraph of
this section, open classes do not properly support independent extensibility
[Szy96].

There are two more consequences of the open-class-like approach taken
by APPCs and Aspectual Components: (a) it is not possible to instan-
tiate several instances of the same aspect type for the same set of basis
objects, and (b) aspectual polymorphism is not supported. From the three
approaches discussed in this and the previous paragraph, only PCAs share
with Caesar the notion of explicit instantiation of aspects and some kind
of deployment concept. However, only a restricted form of dynamic deploy-
ment is supported. Furthermore, the PCA model, as well as APPCs, have
no support for poincuts and advices. Finally, the lack of the notion of vir-
tual types is another drawback of these approaches as compared to the work
presented here.

Lasagne [TVJ+01] is a runtime architecture that features aspect-oriented
concepts. An aspect is implemented as a layer of wrappers. Aspects can
be composed at run-time, enabling dynamic customization of systems, and
context-sensitive selection of aspects is realized, enabling client-specific cus-
tomization of systems. Although Lasagne is an architectural approach fo-
cusing on middleware (instead of a general purpose language extension as
Caesar), it has some similarity with Caesar. In particular, Lasagne also
features extensions that are created and deployed at runtime, and it also
provides means to restrict the visibility of an extension to a particular scope
(as our deploy block statement).

In [BA01] an extension of the composition filter model [ABV92] geared
more towards aspect-oriented programming is discussed. With composition
filters, it is possible to define various filters for incoming and outgoing mes-
sages of an object. By means of superimposition [BA01], it is possible to
apply these filters to objects that are specified via a join point declaration
similar to AspectJ pointcuts. Composition filters have no dedicated means
to separate aspect implementation and binding, and there is notion of de-
ployment or aspectual polymorphism. In comparison with Caesar, where
almost everything is specified as usual OO code, composition filters are more
declarative. On one hand, this makes it easier to express kinds of concerns
that are easily expressible with the declarative sublanguage, but on the other
hand it restricts is applicability to arbitrary kinds of concerns.

152

CHAPTER 5. COMBINING CROSSCUTTING MODELS

5.6 Chapter Summary

In this chapter, we argued that join point interception (JPI), that is, inter-
cepting and eventually modifying the execution of running code at certain
points, alone does not suffice for a modular structuring of aspects, resulting
in tangled aspect code. We discussed several problems resulting from the
lack of an appropriate higher-level module construct on top of join points
and advices. Our solution is based on Caesar as introduced in the previ-
ous chapter. With the additional language means introduced in this chap-
ter, Caesar is a model for aspect-oriented programming with a higher-level
module concept on top of JPI, which enables reuse and componentization
of aspects, allows us to use aspects polymorphically, and introduces a novel
concept for dynamic aspect deployment.

153

The end always passes
judgement on what has gone
before.

Publilius Syrus (∼100 BC)

CHAPTER 6

Conclusions

In Chap. 1, this thesis has been motivated from a purely conceptual point of
view: It should be easier to reason about models of reality in terms of pro-
graming language constructs. In order to do this, we need constructs that
enable a smooth transition from conceptual hierarchies to module hierar-
chies. This thesis is concluded by a more abstract reflection on the different
technical ideas underlying the models proposed in Chap. 2–5.

Indeed, there are some ‘red threads’, some recurring problems and ideas,
that pervade the models proposed in Chap. 2–5. The identification of these
red threads has the following purposes:

• The proposed models can be viewed from a new technical, but never-
theless abstract, perspective, thereby yielding new insights and possi-
bly generating new ideas.

• Identify important areas of future research in programming language
design.

In the following, each of these key ideas will be presented, together with
a discussion why these key ideas are of pivotal importance in the context of
this thesis and why they may be of interest for future programming language
research.

6.1 Transparent Redirection

The term ‘transparent redirection’ has already been used in Chap. 2 to
denote a particular property of our refined inheritance mechanism, namely
to let B’s this refer to M(B) if the two modules M and B are combined. In

154

CHAPTER 6. CONCLUSIONS

this section, we generalize this term to mean any mechanism that improves
the decoupling of a name from its denotation.

In object-oriented programming, this idea manifests itself as late bind-
ing of method calls. In Chap. 2, we isolated the redirection property of
late binding from its other implications. With delegation layers and its in-
corporation of family polymorphism, the idea of transparent redirection is
also applied to types - modules that use type variables are not aware of the
concrete type that will be used at runtime. Similarly, aspect bindings and
implementations in Caesar are not aware of the concrete realizations of
their counterpart.

Due to the incorporation of join points and advice, Caesar also offers
yet another interesting interpretation of transparent redirection, which is
similar to traditional late binding – the difference between these two forms
of transparent redirection is in the scope of the redirection.

With traditional late binding, only method calls to objects that have ex-
plicitly been created as instances of a subclass S of a class C are redirected to
the definitions in S, whereas with advices, all adviced method calls that are
in the scope of a deployed aspect are redirected to their extended definitions
in the aspect, regardless of the class that was used to create these objects.
On a syntactic level, the similarity becomes most striking if one considers
embedded advices as introduced in Fig. 5.9 on page 143.

Transparent redirection can also be regarded as a form of polymorphism
– the same name may denote different things if it is evaluated in different
places or at different points in time. The pivotal importance of transpar-
ent redirection to aspect-oriented programming has also been documented
by Filman and Friedman [FF00, Fil01], who identify what they call “obliv-
iousness” or “implicit invocation” as a defining property of aspect-oriented
programming.

6.2 Incremental Specification, Increment Combination, and
Subsumption

The ability to specify a module B in terms of the difference ∆(B, A) to another
module A, incremental specification, is one of the most important ideas in
programming languages. Its main benefits are:

• Reuse: We do not have to repeat specifications of B that are already
defined in A.

• Sharing: Changes and improvements to A are automatically reflected
in B.

A related, though less known idea is that of increment combination, that is,
the ability to combine the increments in modules B1 and B2 in a module C,

155

6.2. INCREMENTAL SPECIFICATION

such that C corresponds to A+ ∆1(B, A) + ∆2(B, A), whereby the meaning of
+ depends on the specific combination mechanism at hand.

Incremental specification can also be seen as a tool to conveniently spec-
ify variants of a module, e.g., module B as above adds or refines features of
module A. Increment combination can hence be seen as variant combination,
that is, the additions and refinements of the variants are combined.

Although incremental specification and increment combination are al-
ready useful in their own, their real power unfolds if these mechanisms are
combined with subsumption. Subsumption comes in two different flavors: in-
ternal subsumption and external subsumption. External subsumption means
that a variant of a module can be used in places where the original module
is expected. Internal subsumption means that subsumption is also avail-
able when combining different increments in the sense that the code that
combines the increments is not necessarily aware of the exact shape of the
increments it combines and can thus be used polymorphically with respect
to the increments to be combined.

In all parts of this thesis the principles of incremental specification, incre-
ment combination, and subsumption played a leading role. The best-known
mechanism for incremental specification is inheritance in object-oriented lan-
guages. Sample mechanisms for increment combination are multiple inher-
itance and mixin-inheritance. External subsumption is usually realized in
the form of subtype polymorphism. Internal subsumption is not available in
any of these mechanisms because all modules that are composed are known
statically.

In Chap. 2, we refined the usual object-oriented inheritance mechanism
in two ways. First, by giving the programmer fine-grained control over the
semantics of the desired composition, hence widening the range of mecha-
nisms for expressing the ∆. Second, by combining inheritance with object
composition, thereby enabling increment composition, as well, through the
presence of subtype polymorphism. Since both the individual objects that
are combined and the compound objects are only known by upper bound
(subtype polymorphism), both internal and external subsumption are sup-
ported.

One of the problems with inheritance is that only single classes can be
specified incrementally. With delegation layers (Chap. 3), a generalized no-
tion of inheritance has been proposed that allows to specify a set of classes
incrementally as the ∆ to another set of classes. Due to an appropriate
generalization of subtype polymorphism to such sets of classes, both incre-
ment combination (due to polymorphic assignment of ‘parent’ layers) and
subsumption (both internal and external due to subtype polymorphism) is
supported.

In Caesar, incremental specification is supported on various levels (cf.
Sec. 4.4): collaboration interfaces, bindings, and implementations can all
be specified relative to an ‘inherited‘ CI, binding, and implementation, re-

156

CHAPTER 6. CONCLUSIONS

spectively. Due to appropriate subtyping relations on bindings and imple-
mentations, external subsumption is supported on all these levels, too. The
composition of a binding and a CI implementation can be seen as a form
of static increment composition. In Sec. 4.5, we indicated how dynamic
increment combination and internal subsumption can be supported as well.

With respect to the introduction of pointcuts as in Chap. 5, an interest-
ing topic for future research will be how joinpoints can be better structured
by means of incremental specification. Currently, incremental specification
as well as increment composition is supported by means of logical (and, or,
not) pointcut composition operators. However, in the authors opinion, this
is just the beginning of better structuring mechanisms for the specification
of join points. For example, it is currently not possible to reason about
sets of related pointcuts in an incremental way: If p1, p2, and p3 are three
related pointcuts such that p2 and p3 are specified incrementally in terms
of p1, it is not possible to refine the whole ‘hierarchy’ of pointcuts by just
‘overriding’ the definition of p1: There is no ‘late binding’ of p1 inside the
definitions of p2 and p31.

6.3 More Powerful Interfaces

The idea of separating the interface and the implementation of a module
in order to foster information hiding dates back to the 70’s [Par72b] and
was pioneered by languages such as Modula [Wir82] and ADA [DoD83]. In
these early days of modules an interface to a module was basically a list of
functions or procedures. Object-oriented languages improved this concept
by the concept of a class that can be instantiated multiple times and may
be related to another class via subtyping.

Indeed, subtyping is the primary tool for information hiding in object-
oriented languages. For example, Java has a dedicated language notion of
object-oriented interfaces, such that any class can declare itself as a subtype
of these interfaces. In C++, fully abstract classes are used for the same pur-
pose. However, the usual notion of interfaces has proved to be not powerful
enough in several places in the course of this thesis. Their shortcomings can
be summarized in two points:

• Lacking support for “Hollywood-style” communication: The
degree to which a module is reusable depends on the ability of the
module to be parameterized with respect to the parts of the module
that are specific to the context of usage. The simplest form of param-
eterization is procedural/functional/lambda abstraction, whereby the
parameters are the respective arguments. This is also the only kind of

1AspectJ has the notion of abstract pointcuts that can be used for ‘late binding’ of
pointcuts. However, this would require p1 to be empty.

157

6.4. RUNTIME COMPOSITION AND STATIC TYPING

parameterization that is available if one wants to communicate with a
module via an interface.

The ability to parameterize a module by overriding parts of its defi-
nition, as exemplified by method overriding in OO languages, is one
of the most important improvements over pure functional abstraction.
This can also be called Hollywood-style communication (‘don’t call us,
we call you’) because client-specific definitions are called during the
evaluation of a module-specific definition. However, conventional in-
terfaces offer no support whatsoever to support such Hollywood-style
communication. This proved to be a problem in several places. All
delegation-based approaches suffer from the problem that conventional
interfaces cannot describe requirements, e.g., abstract methods, of a
parent to a child object. In Sec. 2.6 an explicit notion of a specializa-
tion interface with its own subtyping relation, that may be different
from the usual subtype relation, has been proposed. In the context
of Caesar, dedication notions of provided and expected methods in
interfaces have been proposed in order to foster better bidirectional,
Hollywood-style communication.

• Lacking support to describe multi-abstraction modules: If a
module consists of multiple collaborating abstractions, these abstrac-
tions can be described by a corresponding set of interfaces, but if there
is no representation of their togetherness, it is hard to reason about the
group of interfaces as a whole, e.g., in order to use a multi-abstraction
module polymorphically. Since both delegation layers and Caesar
are about multi-abstraction modules, more sophisticated mechanisms
were necessary. The primary idea used in these approaches to de-
scribe the interface of a multi-abstraction module was to introduce
types as first class properties of other, higher-order types, technically
realized by means of virtual classes, dependent types, and family poly-
morphism. However, dependent types and family polymorphism are
a very new concept and their possibilities, enhancements, limitations
and semantic implications are just beginning to be explored [OCRZ03].

6.4 Runtime Composition and Static Typing

The last important recurring theme in this thesis has been the tension be-
tween composing modules at runtime on one hand and static typing on the
other hand. This tension is due to the fact that, from a computational point
of view, it is desirable to defer the composition of modules until runtime,
thereby enabling to choose the ‘ingredients’ of the composition dynamically.
However, from a typing point of view, we want to know as much proper-
ties about the composed modules at compile time in order to maximize the

158

CHAPTER 6. CONCLUSIONS

number of type-safe programs that can be proved type-safe statically.
Indeed, retaining static type safety has been one of the hardest issues

recurring in this work. In Sec. 2.5 we proposed a mechanism to reconcile
dynamic specialization and static typing. In Sec. 2.6 we demonstrated that
abstract classes and method header specializations need special considera-
tion in the presence of dynamic specialization, too. With delegation layers
and Caesar, the introduction of dependent types and family polymorphism
was necessary in order to use sets of classes polymorphically in a statically
safe way.

6.5 Summary and Future Work

This goal of this thesis has been to improve the state-of-the-art with respect
to both hierarchical and crosscutting decomposition mechanisms. Based on
the most successfull paradigm for separation of concerns, object-oriented
programming, a three chord of proposals that refine, generalize and extend
the object-oriented composition concepts with respect to both hierarchical
and crosscutting decomposition have been proposed.

With compound references a new abstraction for object references that
unifies aggregation, inheritance and delegation has been presented. It pro-
vides explicit linguistic means for expressing and combining individual com-
position properties on-demand, thereby enriching the spectrum of compo-
sition semantics that can be expressed seamlessly in the programming lan-
guage.

In the delegation layer approach, it has been explored how the means
for hierarchical decomposition can be generalized to work on sets of col-
laborating classes, motivated by the observation that a slice of behaviour
affecting a set of collaborating classes is a better unit of organization and
reuse than single classes. Delegation layers scale the OO mechanisms for
single objects, such as delegation, late binding, and subtype polymorphism,
to sets of collaborating objects.

With Caesar, ideas for hierarchical decomposition from the first two
parts of the thesis have been extended and applied in order to provide means
for composing crosscutting hierarchies. Caesar’s strengths are in the reuse
and componentization of aspects, allowing to use aspects polymorphically.
The notion of aspectual polymorphism as a generalization of subtype poly-
morphism to crosscutting models has been introduced and a novel concept
for dynamic aspect deployment has been proposed.

Some concrete areas of future research have already been indicated in
the course of this chapter. The language means to specify pointcuts can be
improved in various ways. Means to specify pointcuts incrementally and to
combine these increments are desirable. Once a proper notion of late bind-
ing for pointcuts has been explored, the well-known concepts for incremental

159

6.5. SUMMARY AND FUTURE WORK

specification and increment combination known for late-bound methods can
potentially be transferred to pointcut definitions. For example, if pointcuts
could be overridden in subclasses, such that the definitions of all other point-
cuts and advices that refer to the overridden pointcut are late bound to the
current definition, different increments could be combined similar to method
combination with multiple inheritance or mixin inheritance. Another inter-
esting area of future research is the design of more abstract, intentional
pointcuts, that are less coupled to the syntax tree of a program. The ability
to specify pointcuts that refer to individual runtime entities such as objects
will also be an important issue that brings us back to the ‘runtime versus
static typing’ conflict outlined in the previous section.

A more formal treatment of the ideas presented in this thesis will be
beneficial to understand their respective implications in more detail. All
language extensions in the different chapters have been presented as ex-
tensions to the Java programming language. This is useful for concrete
implementations and for their evaluation in practice. However, the usage
of a very simple formal language like Featherweight Java [IPW99] will be
helpful to demonstrate the core ideas more concisely and precisely.

160

Bibliography

[AB92] M. Aksit and L. Bergmans. Obstacles in object-oriented soft-
ware development. In Proceedings OOPSLA ’92. ACM SIG-
PLAN Notices 27(10), pages 341–358. ACM, 1992.

[ABV92] M. Aksit, L. Bergmans, and S. Vural. An object-oriented
language-database integration model: The composition-filters
approach. In Proceedings ECOOP ’92. LNCS 615, pages 372–
395. Springer, 1992.

[AG96] K. Arnold and J. Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[ALZ00] D. Ancona, G. Lagorio, and E. Zucca. Jam - a smooth extension
of Java with mixins. In Proceedings ECOOP 2000. LNCS 1850,
pages 154–178. Springer, 2000.

[Asp03] AspectJ homepage, 2003. http://aspectj.org.

[AWB+93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa.
Abstracting object interactions using composition filters. In
R. Guerraoui, O. Nierstrasz, and M. Riveill, editors, Object-
Based Distributed Programming. Springer, 1993.

[BA01] L. Bergmans and M. Aksit. Composing multiple con-
cerns using composition filters, 2001. Available at
trese.cs.utwente.nl/composition filters/.

[BC89] K. Beck and W. Cunningham. A laboratory for teaching object-
oriented thinking. In Proceedings OOPSLA ’89. ACM SIG-
PLAN Notices 24(10), pages 1–6, 1989.

161

BIBLIOGRAPHY

[BC90] G. Bracha and W. Cook. Mixin-based inheritance. In Proceed-
ings OOPSLA/ECOOP’90. ACM SIGPLAN Notices 25(10),
pages 303–311. ACM, 1990.

[BCML02] A. Brown, R. Cardone, S. McDirmid, and C. Lin. Using mixins
to build flexible widgets. In Proceedings AOSD ’02, pages 76–85.
ACM, 2002.

[Ber90] L. M. Berlin. When objects collide: Experiences with reusing
multiple class hierarchies. In Proceedings of ECOOP/OOPSLA
’90, ACM SIGPLAN Notices 25(10), pages 181–193, 1990.

[BFK00] K. Beck, M. Fowler, and J. Kohnke. Planning Extreme Pro-
gramming. Addison-Wesley, 2000.

[BH02] J. Baker and W. C. Hsieh. Runtime aspect weaving through
metaprogramming. In Proceedings AOSD ’02, pages 86–95.
ACM, 2002.

[BI94] K. Baclawski and B. Indurkhya. The notion of inheritance in
object-oriented programming. Communications of the ACM,
37(9):118–119, 1994.

[BL92] G. Bracha and G. Lindstrom. Modularity meets inheritance. In
Proceedings International Conference on Computer Languages,
pages 282–290. IEEE Computer Society, 1992.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applica-
tions. Macmillan, 1976.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture. Wiley, 1996.

[Bos98] J. Bosch. Design patterns as language constructs. Journal of
Object-Oriented Programming, 11(2):18–32, 1998.

[BOW98] K. B. Bruce, M. Odersky, and P. Wadler. A statically safe
alternative to virtual types. In Proceedings ECOOP ’98. LNCS
1445, pages 523–549. Springer, 1998.

[Box97] D. Box. Essential COM. Addison-Wesley, 1997.

[Bra83] R. J. Brachman. What IS-A is and isn’t: An analysis of taxo-
nomic link in semantic networks. Computer, 16(10):30–36, 1983.

[Bro75] F. P. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

[Bro87] F. P. Brooks. No silver bullet: Essence and accidents of software
engineering. Computer, 20(4):10–19, 1987.

162

BIBLIOGRAPHY

[BW00] M. Büchi and W. Weck. Generic wrappers. In Proceedings
ECOOP ’00. LNCS 1850, pages 201–225. Springer, 2000.

[CCH+89] P. S. Canning, W. Cook, W. L. Hill, J. C. Mitchell, and W. G.
Olthoff. F-bounded polymorphism for object-oriented program-
ming. In Proceedings of the ACM Conference on Functional
Programming and Computer Architecture (FCPA) ’89, pages
273–280, 1989.

[CG90] B. Carré and J. Geib. The point of view notion for multiple
inheritance. In Proceedings OOPSLA/ECOOP ’90. ACM SIG-
PLAN Notices 25(10), pages 312–321. ACM, 1990.

[CH88] R. Chaffin and D. J. Herrmann. The nature of semantic rela-
tions: A comparison of two approaches. In Relational Models
of the Lexicon: Representing Knowledge in semantic networks,
pages 289–334. Cambridge University Press, 1988.

[Cha92] C. Chambers. Object-oriented multi-methods in Cecil. In Pro-
ceedings ECOOP ’92, LNCS 615, pages 33–56. Springer, 1992.

[Cha93] C. Chambers. Predicate classes. In Proceedings ECOOP ’93,
LNCS 707, pages 268–297. Springer, 1993.

[CHP99] K. Crary, R. Harper, and S. Puri. What is a recursive module?
In Proceedings Conference on Programming Language Design
and Implementation (PLDI) ’99, pages 50–63. ACM, 1999.

[CL01] R. Cardone and C. Lin. Comparing frameworks and layered
refinement. In Proceedings of International Conference on Soft-
ware Engineering (ICSE) ’01, pages 285–294. IEEE Computer
Society, 2001.

[CLCM00] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. Mul-
tiJava: Modular open classes and symmetric multiple dispatch
for Java. In Proceedings OOSPLA ’00, ACM SIGPLAN Notices
35(10), pages 130–145, 2000.

[DDH72] O.-J. Dahl, E. W. Dijkstra, and C. Hoare. Structured Program-
ming. Academic Press, 1972.

[Dij68] E. W. Dijkstra. The structure of the “THE”-multiprogramming
system. Communications of the ACM, 11(5):341–346, 1968.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall,
1976.

[DoD83] US Department of Defense. Reference Manual for the Ada Pro-
gramming Language, 1983. ANSI/MIL-STD1815 A.

163

BIBLIOGRAPHY

[Ern99] E. Ernst. gbeta - a language with virtual attributes, Block Struc-
ture, and Propagating, Dynamic Inheritance. PhD thesis, De-
partment of Computer Science, University of Aarhus, Denmark,
1999.

[Ern01] E. Ernst. Family polymorphism. In Proceedings ECOOP ’01,
LNCS 2072, pages 303–326. Springer, 2001.

[ES95] M. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, 1995.

[FF00] R. E. Filman and D. P. Friedman. Aspect-oriented programming
is quantification and obliviousness. In Workshop on Advanced
Separation of Concerns at OOPSLA ’00, 2000.

[Fil01] R. E. Filman. What is aspect-oriented programming, revisited.
In Workshop on Advanced Separation of Concerns at ECOOP
’01, 2001.

[FKF98] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mix-
ins. In ACM Symposium on Principles of Programming Lan-
guages (POPL) ’98, pages 171–183. ACM, 1998.

[Fow99] M. Fowler. Refactoring - Improving the Desing of Existing Code.
Addison-Wesley, 1999.

[Gam98] E. Gamma. Extension object. In R. Martin, D. Riehle, and
F. Buschmann, editors, Pattern Languages of Program Design,
pages 79–88. Addison-Wesley, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, 1995.

[GKN92] D. Garlan, G. E. Kaiser, and D. Notkin. Using tool abstraction
to compose systems. Computer, 25(6):30–38, 1992.

[Hau93] F. J. Hauck. Inheritance modeled with explicit bindings: An
approach to typed inheritance. In Proceedings OOPSLA ’93.
ACM SIGPLAN Notices 28(10), pages 231–239. ACM, 1993.

[HHG90] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented systems.
In Proceedings OOPSLA/ECOOP’90. ACM SIGPLAN Notices
25(10), pages 169–180. ACM, 1990.

[HK02] J. Hannemann and G. Kiczales. Design pattern implementa-
tion in Java and AspectJ. In Proceedings OOPSLA ’02. ACM
SIGPLAN Notices 37(11), pages 161–173. ACM, 2002.

164

BIBLIOGRAPHY

[Höl93] U. Hölzle. Integrating independently-developed components in
object-oriented languages. In Proceedings ECOOP ’93, LNCS
707, pages 36–56. Springer, 1993.

[HM00] S. Herrmann and M. Mezini. PIROL: A case study for multi-
dimensional separation of concerns in software engineering en-
vironments. In Proceedings of OOPSLA 2000. ACM SIGPLAN
Notices 35(10), pages 188–207. ACM, 2000.

[HO93] W. Harrison and H. Ossher. Subject-oriented programming (A
critique of pure objects). In Proceedings OOPSLA ’93. ACM
SIGPLAN Notices 28(10), pages 411–428, 1993.

[Hol92] I. M. Holland. Specifying reusable components using contracts.
In Proceedings ECOOP ’93. LNCS 615, pages 287–308, 1992.

[HOT97] W. Harrison, H. Ossher, and P. Tarr. Using delegation
for software and subject composition. Technical Report RC
20946(92722), IBM Research Division T.J. Watson Research
Center, Aug 1997.

[IPW99] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. ACM Transactions on
Programming Languages and Systems, 23(3):396–450, 1999.

[JFC] Java Foundation Classes. http://java.sun.com/products/jfc/.

[Kic01] G. Kiczales. Aspect-oriented programming - the fun has just
begun. In Workshop on New Visions for Software Design and
Productivity: Research and Applications, Vanderbilt University,
Nashville, Tennessee, December 13-14, 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings ECOOP’97, LNCS 1241, pages 220–242. Springer,
1997.

[Kni99] G. Kniesel. Type-safe delegation for run-time component adap-
tation. In Proceedings ECOOP ’99, LNCS 1628, pages 351–366.
Springer, 1999.

[Kni00] G. Kniesel. Dynamic Object-Based Inheritance with Subtyping.
PhD thesis, University of Bonn, Institute for Computer Science
III, 2000.

[Lak90] G. Lakoff. Women, Fire, and Dangerous Things - What cate-
gories reveal about the mind. University of Chicago Press, 1990.

165

BIBLIOGRAPHY

[Lar01] C. Larman. Applying UML and Patterns. Prentice Hall, 2001.

[Lie86] H. Liebermann. Using prototypical objects to implement shared
behavior in object-oriented systems. In Proceedings OOPSLA
’86. ACM SIGPLAN Notices 21(11), pages 214–223, 1986.

[LKA+95] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of sys-
tem architecture using Rapide. IEEE Transactions on Software
Engineering, 21(4):336–355, 1995.

[LLM99] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with as-
pectual components. Technical Report NU-CCS-99-01, North-
eastern University, March 1999.

[LLP+88] R. Lampert, D. Littman, J. Pinto, E. Soloway, and S. Letovsky.
Designing documentation to compensate for delocalized plans.
Communications of the ACM, 31(11), 1988.

[Läm02] R. Lämmel. A semantical approach to method-call intercep-
tion. In Proceedings Conference on Aspect-Oriented Software
Development (AOSD) ’02, pages 41–55. ACM, 2002.

[Mar96] R. C. Martin. Granularity. C++ Report, 8(11), 1996.
www.objectmentor.com/publications/granularity.pdf.

[MBF99] M. Mattson, J. Bosch, and M. E. Fayad. Framework integra-
tion problems, causes, solutions. Communications of the ACM,
42(10):80–87, October 1999.

[McI68] M. McIlroy. Mass produced software components. In P. Naur
and B. Randell, Software Engineering - Report on a conference
sponsored by the NATO Science Committee, 1968. Garmisch,
Germany.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, second edition, 1997.

[Mez97] M. Mezini. Dynamic object evolution without name colli-
sions. In Proceedings ECOOP ’97. LNCS 1241, pages 190–219.
Springer, 1997.

[Mez98] M. Mezini. Variational Object-Oriented Programming Beyond
Classes and Inheritance. Kluwer Academic Publisher, 1998.

[MFH01] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New age compo-
nents for old fashioned Java. In Proceedings of OOPSLA ’01,
ACM SIGPLAN Notices 36(11), pages 211–222, 2001.

166

BIBLIOGRAPHY

[MK96] J. Magee and J. Kramer. Dynamic structure in software archi-
tecture. In Proceedings of the ACM SIGSOFT ’96 Symposium
on Foundations of Software Engineering (FSE), 1996.

[MK03] H. Masuhara and G. Kiczales. Modular crosscutting in aspect-
oriented mechanisms. In To be published in Proceedings ECOOP
’03, Springer LNCS, 2003.

[ML98] M. Mezini and K. Lieberherr. Adaptive plug-and-play com-
ponents for evolutionary software development. In Proceedings
OOPSLA ’98. ACM SIGPLAN Notices 33(10), pages 97–116,
1998.

[MMP89] O. L. Madsen and B. Møller-Pedersen. Virtual classes: A power-
ful mechanism in object-oriented programming. In Proceedings
of OOPSLA ’89. ACM SIGPLAN Notices 24(10), pages 397–
406, 1989.

[MMPN93] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Ob-
ject Oriented Programming in the Beta Programming Language.
Addison-Wesley, 1993.

[MO02] M. Mezini and K. Ostermann. Integrating independent compo-
nents with on-demand remodularization. In Proceedings OOP-
SLA ’02, ACM SIGPLAN Notices 37(11), pages 52–67, 2002.

[MO03] M. Mezini and K. Ostermann. Conquering aspects with Caesar.
In Proceedings Conference on Aspect-Oriented Software Devel-
opment (AOSD) ’03, pages 90–99. ACM, 2003.

[MOT97] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-the-
shelf components in C2-style architectures. In Proceedings of
International Conference on Software Engineering (ICSE) ’97,
pages 692–700. IEEE Computer Society, 1997.

[MPG+00] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes.
Runtime support for type-safe dynamic Java classes. In Proceed-
ings ECOOP ’00, LNCS 1850, pages 337–361. Springer, 2000.

[MSL01] M. Mezini, L. Seiter, and K. Lieberherr. Component integra-
tion with pluggable composite adapters. In M. Aksit, editor,
Software Architectures and Component Technology: The State
of the Art in Research and Practice. Kluwer, 2001.

[OCRZ03] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nomi-
nal theory of objects with dependent types. In To appear in
Proceedings ECOOP ’03. Springer LNCS, 2003.

167

BIBLIOGRAPHY

[OM01] K. Ostermann and M. Mezini. Object-oriented composition un-
tangled. In Proceedings OOPSLA ’01, ACM SIGPLAN Notices
36(11), pages 283–299, 2001.

[OMG99] Object Management Group. CORBA Components Final Sub-
mission, 1999.

[Ost02] K. Ostermann. Dynamically composable collaborations with
delegation layers. In Proceedings of ECOOP ’02. LNCS 2374,
pages 89–110. Springer, 2002.

[OT00] H. Ossher and P. Tarr. On the need for on-demand remodular-
ization. In ECOOP’2000 workshop on Aspects and Separation
of Concerns, 2000.

[Par72a] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058,
1972.

[Par72b] D. L. Parnas. A technique for software module specification
with examples. Communications of the ACM, 15(5):330–336,
1972.

[Ped89] C. H. Pedersen. Extending ordinary inheritance schemes to in-
clude generalization. In Proceedings OOPSLA ’89, ACM SIG-
PLAN Notices 24(10), pages 407–417, 1989.

[PGA02] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. In Proceedings AOSD ’02, pages
141–147. ACM, 2002.

[PSDF01] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A
flexible solution for aspect-oriented programming in Java. In
Proceedings REFLECTION ’01, LNCS 2192, pages 1–24, 2001.

[Ree95] T. Reenskaug. Working with Objects: The OOram software
Engineering Method. Manning, 1995.

[RG98] D. Riehle and T. Gross. Role model based framework design
and integration. In Proceedings OOPSLA ’98, ACM SIGPLAN
Notices 33(10), pages 117–133, 1998.

[Ros28] W. D. Ross. The Works of Aristotle, Volume 1: Logic. Oxford
University Press, 1928.

[Sak89] M. Sakkinen. Disciplined inheritance. In Proceedings ECOOP
’89, pages 39–56. Cambridge University Press, 1989.

168

BIBLIOGRAPHY

[SB98] Y. Smaragdakis and D. Batory. Implementing layered designs
with mixin-layers. In Proceedings of ECOOP ’98, LNCS 1445,
pages 550–570, 1998.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on
an Emerging Discipline. PrenticeHall, 1996.

[SL86] E. Soloway and S. Letovsky. Delocalized plans and program
comprehension. IEEE Software, 3(3):41–49, 1986.

[SM95] P. Steyaert and W. D. Meuter. A marriage of class- and object-
based inheritance without unwanted children. In Proceedings of
ECOOP ’95. LNCS 952, pages 127–144. Springer, 1995.

[SPL98] L. M. Seiter, J. Palsberg, and K. Lieberherr. Evolution of ob-
ject behavior using context relations. IEEE Transactions on
Software Engineering, 24:79–92, 1998.

[SSRB00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-
Oriented Software Architecture Vol. 2. Wiley, 2000.

[Sto93] V. C. Storey. Understanding semantic relationships. Very Large
Databases Journal, 2(4):455–488, 1993.

[Sun] Sun Microsystems. Java 2 SDK Documentation.
http://java.sun.com/j2se/1.4/docs/index.html.

[Syn87] A. Synder. Panel on inheritance. In Addendum to the Proceed-
ings of OOPSLA ’87. ACM SIGPLAN Notices 23(5), 1987.

[Szy96] C. Szyperski. Independently extensible systems – software en-
gineering potential and challenges. In Proceedings 19th Aus-
tralian Computer Science Conference. Australian Computer Sci-
ence Communications, 1996.

[Szy98] C. Szyperski. Component Software – Beyond Object-Oriented
Programming. Addison-Wesley, 1998.

[Tai96] A. Taivalsaari. On the notion of inheritance. ACM Computing
Surveys, 28(3):439–479, 1996.

[Tho97] K. K. Thorup. Genericity in Java with virtual types. In Pro-
ceedings ECOOP ’97. LNCS 1241, pages 444–471, 1997.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N de-
grees of separation: Multi-dimensional separation of concerns.
In Proceedings International Conference on Software Engineer-
ing (ICSE) ’99, pages 107–119. ACM Press, 1999.

169

BIBLIOGRAPHY

[Tor98] M. Torgersen. Virtual types are statically safe. In 5th Workshop
on Foundations of Object-Oriented Languages, 1998.

[TVJ+01] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N.
Joergensen. Dynamic and selective combination of extensions
in component-based applications. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE) ’01, pages
233–242. IEEE Computer Society, 2001.

[US87] D. Ungar and R. Smith. Self: The power of simplicity. In
Proceedings of OOPSLA ’87. ACM SIGPLAN Notices 22(12),
pages 227–242, 1987.

[VN96] M. VanHilst and D. Notkin. Using role components to imple-
ment collaboration-based design. In Proceedings OOPSLA ’96,
ACM SIGPLAN Notices 31(10), pages 359–369, 1996.

[Weg90] P. Wegner. Concepts and paradigms of object-oriented pro-
gramming. OOPS Messenger, 1:7–87, August 1990.

[Wel95] C. Welty. An Integrated Representation for Software Develop-
ment and Discovery. PhD thesis, RPI Computer Science Dept,
July 1995.

[Wik] Wikipedia, the free encyclopedia. www.wikipedia.org.

[Win92] J. Winkler. Objectivism: “class” considered harmful. Commu-
nications of the ACM, 35(8):128–130, 1992.

[Wir71] N. Wirth. Program development by stepwise refinement. Com-
munications of the ACM, 14(4), 1971.

[Wir82] N. Wirth. Programming in Modula-2. Springer Verlag, 1982.

[Wol97] D. Wolber. Reviving functional decomposition in object-
oriented design. Journal of Object-Oriented Programming,
10(6):31–38, 1997.

170

