
A Classification Framework for Pointcut
Languages in Runtime Monitoring

Karl Klose and Klaus Ostermann

University of Aarhus, Denmark
{klose,ko}@cs.au.dk

Abstract. In runtime monitoring and aspect-oriented programming,
the execution of a program is monitored to check whether a property –
formulated in a pointcut language – holds at some point in the execution
of the program. Pointcut languages differ significantly in their expres-
siveness and the amount of information they utilize about the state of
the program’s execution, and the relation between different pointcut lan-
guages is often not clear. We propose a formal framework that provides
the common abstractions of these languages and identifies the points of
variability, such that pointcut languages can be compared and classified
with regard to their expressiveness and cost. Besides its usage as a com-
mon frame of reference for pointcut languages, our framework also gives
a precise model of the design space of pointcut languages and can hence
help to design future pointcut languages in a more principled way.

1 Introduction

There are many different languages that are used to describe conditions on the
state or structure of a running program. These conditions are used to react on
specific events or states in the software system. Examples are pointcut languages
in aspect-oriented programming [9], break-point conditions in debugging systems
[15], or specification languages in runtime verification and security enforcement
(e.g., [10]). We will use the terminology from aspect-oriented programming and
use the term pointcut languages to subsume all of these languages in the sub-
sequent. Depending on the application domain, the program may be halted or
additional functionality can be executed (so called advice) if a pointcut matches
the current point in execution.

In contrast to general purpose programming languages, pointcut languages
differ significantly in two important dimensions. First, the expressive power of
the languages ranges from simple forms of pattern matching to Turing-complete
languages. Second the model of the program execution available in the pointcut
language is quite different between systems. Examples for the different flavors of
pointcut languages range from simple line numbers used in debuggers via sophis-
ticated domain-specific languages such as the AspectJ [8] pointcut language to
the usage of various general computation models, such as regular expressions or
context-free grammars over callstacks or execution history [17], or Datalog/Pro-

2 Karl Klose and Klaus Ostermann

log/XQuery queries over some representation of the program execution [1, 14]
or the static program structure [7, 5, 4].

The aim of this work is to bring order into the huge and so far quite heteroge-
nous design space of pointcut languages. This heterogeneity is multi-dimensional,
and it includes the kinds of information the pointcut language operates on, and
the granularity and expressiveness of the language on this information. This
makes comparisons between pointcut languages and principled design of new
pointcut languages quite difficult, which is an important task, because the dif-
ferences between the expressiveness of the language and the richness of the exe-
cution model have significant impact on the performance of the resulting system.
Using a formal model we can identify groups of pointcut languages which have
similar runtime and memory performance and can make use of the same imple-
mentation and optimization techniques. Finally, a formalization allows to prove
whether or not two pointcut languages are equal, and what the differences are,
if they are not.

At the moment, the lack of a formalization makes analyses very ad-hoc and
difficult. The aim of this work is to improve the current, undesirable situation
by the following contributions:

– We give precise formal definitions of pointcut-related terminology as mathe-
matical structures based on the base language’s semantics.

– We present a multi-dimensional decomposition of the pointcut language design
space and discuss both the significance of the dimensions and classifications
of existing languages with regard to these dimensions. In particular we make
a clear distinction between the richness of the underlying data model and
the expressiveness of the pointcut language itself. This distinction is often not
made or left implicit when comparing pointcut languages, leading to confusion
about how to compare expressiveness at all.

– We give a methodology on how to compare pointcut languages, based on the
formal definitions.

– We discuss how our framework can be used a basis for the formal description
of static analysis and program transformations for aspect oriented programs.

The remainder of this paper is structured as follows: First we introduce our no-
tion of joinpoint abstractions and models (Sec. 2). We give examples for models
and present a small case study showing two different pointcut models. Next we
define pointcuts and pointcut languages (Sec. 3). Building on these prerequi-
sites, we show how pointcut languages can be compared in Sec. 4. In Sec. 5 we
discuss language implementation issues in the terms of our framework. Finally,
we discuss related work and conclude (Sec. 6 and 7).

2 Semantics and Joinpoint Models

Our first step towards a formal framework for pointcut languages is to define the
data model upon which joinpoints and pointcuts can be defined. In the following
we introduce small-step semantics as the base notation for the semantics of the

A Classification Framework For Pointcut Languages 3

underlying base language and show how properties of execution traces in this
semantics can be described.

2.1 The Semantics of the Base Language

There are several alternative formalism to model the semantics of program-
ming languages, such as denotational semantics, big-step operational semantics,
and small-step operational semantics. Of these semantics frameworks, small-step
operational semantics is the most suitable framework to talk about pointcuts,
since it has a precise and direct notion of a computation step, which allows to
talk about traces, execution order, etc. Hence in the following we assume that
the base language is defined by a small-step operational semantics.

We will model the small-step semantics of our base languages by a binary
relation −→ on a set Σ of states: −→⊂ Σ × Σ. A state σ ∈ Σ can often be
split into several parts, such as environment, expression, heap etc., but for our
purposes it is sufficient to assume that the state contains all relevant information
that is necessary to compute the respective next computation step.

In some situations it is desirable to change the usual small-step semantics in
such a way that information relevant for pointcuts can be extracted more easily.
For example, in a Featherweight Java [6] trace, it is not easy to determine the
lexical origin of an expression that is about to be reduced, or to see when a
method call ends. It is possible to extract this information from a full execution
trace, but it is easier to modify the semantics such that these kinds of information
are directly available, e.g., by adding labels to expressions in the first example or
introducing a “return” expression in the second example. We will see an example
for this situation later on.

2.2 Joinpoint Models

Pointcut languages usually do not refer to the state of evaluation directly, be-
cause it contains both too much and too little information: While, say, the exact
shape of the heap may be irrelevant for a pointcut language, it may need other
information which is not included in the current state, such as information about
states in the history of the computation. For this reason, pointcut languages are
usually based on joinpoint models, which contain the information that is nec-
essary to evaluate pointcuts. This information may be an abstraction of the
evaluation state, static program information, and even information unrelated to
the evaluation, or a mixture thereof.

To this end, we define joinpoints to be abstractions over the current state1.
States that are of no interest to the joinpoint model (such as entering a for loop
in AspectJ) are mapped to a special value ε.

1 In terms of Masuhara et al., we use the point-in-time model for joinpoints in this
work, because it is more flexible than the region-in-time model [11]

4 Karl Klose and Klaus Ostermann

Definition 1 (Joinpoints and Joinpoint Abstraction). A joinpoint ab-
straction (JPA) J = (J, αJ) over Σ is a set J of joinpoints together with a
mapping αJ : Σ → J ∪ {ε}, from states to the corresponding abstraction.

Using a joinpoint abstraction, a concrete trace can be turned into an abstract
trace. The actual information that is available to a pointcut, however, is a kind
of summary of the abstract trace, which we call joinpoint model :

Definition 2 (Joinpoint Model). A joinpoint model M = (M,TM) over a
JPA (J, αJ) is a set M of model values together with a joinpoint transfer func-
tion: TM : M × J →M .

The joinpoint transfer function defines how the joinpoint model value for a
state σ is calculated using the previous model value and the state abstraction
α(σ), so eventually the current model value is a kind of fold over the abstract
trace. This means that an initial value has to be provided to calculate the model
value corresponding to the first state of an evaluation.

2.3 Example: A simple OO language

In this section we show how the joinpoint abstraction and the joinpoint models
of two simple pointcut languages can be expressed in terms of our framework.
The joinpoint models of these two pointcut languages we consider are similar to
the joinpoint models found in the AOP languages AspectJ and Alpha [14].

We focus on a minimal OO language in the style of Featherweight Java (FJ) [6],
a simple calculus that models a minimal core of Java and is defined in terms of
a small-step semantics. FJ features classes that may contain fields and methods,
and can inherit declarations from another class.

We give the syntax of expressions E in this language by defining its set of
redexes (R) and evaluation contexts (E[·]):

R ::=v.f | v.m(v̄) | return(v)
E ::=[·] | new C(v̄, E, ē) | E.f | E.m(ē) | v.m(v̄, E, ē) | E; e | return(E)

where v is a value, e is an expression, C is the name of a class, f the name of a
field, m the name of a method, and ē is a list of expressions.2 The basic terms are
field accesses (v.f), method calls v.m(v̄) and method returns return(v). Values
are objects of the form new C(v̄), where the arguments to the constructor are
in the same order as the fields of the class.

This definition differs from the original FJ definition in two regards: First, we
use an evaluation context [18] to conveniently identify the redex in an expression.
Second, we introduce a new return redex, which is used to identify the end of a
method call. This is an example for a modification of the operational semantics
as discussed at the end of Sec. 2.1.
2 We write x̄ for a list x1 · . . . · xn, [] for the empty list and x · x̄ for list construction.

A Classification Framework For Pointcut Languages 5

We will identify the set E of all expressions in our language with contexts from
E with a redex or a value placed in the hole [·] and write E[r] for the expression
that has context E and redex r. Following [6], the states of the semantics have
the form Σ = P × E , where P is a representation of the program that contains
the class declarations. The reduction rules are identical to that of FJ, except
that there is one new reduction rule E[return(v)] −→ E[v], which discards a
return wrapper once the wrapped expression has been reduced to a value.

An AspectJ-style Joinpoint Model. The joinpoint model in this section is meant
to capture the core of the model of AspectJ: the current joinpoint and the
callstack abstraction, as required for the cflow pointcuts. The first step is to
define a joinpoint abstraction as a basis for the joinpoint model. The states
which are of interest for a callstack-based joinpoint model are method calls, i.e.,
redexes of the form v.m(v̄), where v is a value and v̄ is a list of values, and
returning from method calls, i.e., redexes of the form return(v), where v is a
value. In AspectJ, it is also possible to react to field reads, hence we could add
redexes of the form v.f , too, but we want to illustrate the case how to deal
with redexes that are not of interest to pointcuts, hence we assume that in this
pointcut language field reads can not be addressed by pointcuts. In AspectJ, the
joinpoint model does not include receiver and argument values but only their
types3. To create the joinpoint abstraction we have thus to replace the receiver
and argument values in the method call redex by their respective types. Since
values in FJ have the form new C(v̄) we can give a simple value-type mapping by
type(new C(v̄)) = C. Similar to AspectJ we do not treat the return joinpoint
as a “joinpoint event”, i. e., as a entity directly addressable by a construct of the
pointcut language. Instead, we only need them to maintain the callstack model.
Thus we can safely ignore the return value in our joinpoint model.

Based on these considerations, joinpoint abstractions in the callstack based
model are of the form JAJ = {C.m(C̄), return}, where C ranges over class
names. The abstraction mapping αAJ simply removes the unnecessary informa-
tion from the states in the semantics:

αAJ(σ) =


type(v).m(C̄)) if σ = (p,E[v.m(v̄)]), Ci = type(vi)
return if σ = (p,E[return(v)])
ε otherwise

The joinpoint model MAJ consists of a list of joinpoint abstractions repre-
senting the callstack: MAJ = J∗AJ. The corresponding transfer function maintains
the call stack and the current joinpoint:

TAJ(j̄, j) =

{
j · j̄ if j = C.m(C̄)
k̄ if j = return and j̄ = k · k̄

3 The actual values may be needed for the execution of an advice in AspectJ, but this
work focuses on pointcuts only.

6 Karl Klose and Klaus Ostermann

An Alpha-like Joinpoint Model. In Alpha, not only the types but also the dy-
namic values of the objects involved in a state are available when formulating
pointcuts. Hence the joinpoints in Alpha are more fine-grained4:

JAlpha = {v.m(v̄), return(v)}

Furthermore, not only the callstack but the complete execution history is
available for pointcuts. Accordingly, the abstraction mapping αAJ is the projec-
tion on the current redex:

αAlpha(σ) =


v.m(v̄) if σ = (p,E[v.m(v̄)])
return(v) if σ = (p,E[return(v)])
ε otherwise

.

The model values in this model are meant to keep the complete (abstracted)
trace of the execution history. We will model this again as a list of joinpoints:
MAlpha = J∗Alpha, together with a transfer function which accumulates all rele-
vant joinpoint abstractions in the list: TAlpha(j̄, j′) = j · j̄.

In contrast to the AspectJ-like model, return joinpoint abstractions are
stored and not discarded. The reason is that Alpha pointcuts frequently re-
construct former callstacks from the history, hence this information is needed to
evaluate such pointcuts.

2.4 Classification of Joinpoint Models

In the previous section, we saw two different joinpoint models for a small base
language. In order to illustrate the design space of the combination of joinpoint
abstraction and model definition, we will now look at some of typical cases of
joinpoint models.

The space dimension The first axis of the design space of joinpoint models
is concerned with how much information about the past can be stored in a
model value. The simplest such joinpoint model is the constant model, where
Tconst(m, j) = m. In this model, the initial model value is present at every
point in the program. This kind of model can be used to represent configuration
values in a system or to pass the AST of the program or parts of it around. A
constant model alone is not very useful, since the model value never changes,
but it is useful if combined with other models, see later discussion about model
constructions.

In contrast, global models are not restricted in the way they collect informa-
tion about the execution. Given a fixed JPA, the model values of a global model
are lists representing a view on the past execution and the transfer function is
of the form Tglobal(m, j) = f(j) ·m for some function f . The idea behind this
definition is that the joinpoint model accumulates information (possibly trans-
formed by f) from every state in the execution in a list. The most general global
4 Again we omit field reads to illustrate how reductions can be ignored

A Classification Framework For Pointcut Languages 7

model is the full trace model, which has f = idJ . The Alpha joinpoint model
falls in this category.

A slightly more restricted model is a bounded model, where the size of the
model (according to some size metric) is restricted by a function on the current
state. The AspectJ joinpoint model falls in this category: The length of the
stored list is bounded by the depth of the current callstack.

Finally, a local model is a joinpoint model that is restricted in the amount
of information that it can keep in one model value. The canonical example is a
model with Tlocal(m, j) = j, where the model only has access to the most recent
state. The joinpoint value can of course be transformed by any function instead
of the identity in Tlocal. The AspectJ pointcut language without the cflow-style
pointcuts could be evaluated in terms of a local joinpoint model. The same holds
for the breakpoint conditions typically found in debuggers.

Static and dynamic The other axis of the design space of joinpoint models
is the kind of information that can be accessed. Here we distinguish joinpoint
models whose only information about the current state is the lexical position
of the current redex from joinpoint models that also refer to other dynamic
information. Henceforth, a static model is one whose corresponding joinpoint
abstraction function α has the form α(σ) = loc(σ), where loc is a function that
retrieves the lexical position of the current redex. Such pointcut languages are
particularly easy to implement, since every pointcut can be directly mapped to a
set of locations in the code. An example is the pointcut language by Eichberg et
al. [4]. In contrast, dynamic models are not restricted in the way they information
about the state.

Product Models In most pointcut languages the joinpoints models are com-
binations of the classes of models described above. For example, even if a very
generic trace based model may be available, there may be static source code
information that is not part of the trace, like the subtype relation. This means
that models will usually be cartesian products of different kinds of models whose
components can be classified using the categories above.

The product model of two joinpoint models M = (M,TM) and M′ =
(M ′, TM ′) is MP = M ×M′, where the product of the transfer functions is
defined componentwise as TMP

((m,m′), j) = (TM (m, j), TM ′(m′, j)). Of course,
the product construction can easily be generalized by replacing the pair con-
structor with an arbitrary function. Such a construction can be used to model
dependencies between the joinpoint models in such a way that one model value
influences the other one.

The categorization of joinpoint models (or their components) is not only use-
ful when comparing different joinpoint models and pointcut languages but also
in design and implementation of aspect oriented systems: the kind of mapping
indicates which information must be stored or calculated in the runtime system
when augmenting or implementing a system for a pointcut language.

8 Karl Klose and Klaus Ostermann

3 Pointcuts

So far we have defined what we mean by joinpoint models and how these models
are connected to the underlying operational semantics by abstraction of states
into joinpoints. Based on these definition we will now describe what pointcuts
are in our framework and how pointcut languages can be modeled.

3.1 Pointcuts and Matching

We have already stated that pointcuts are a means to identify points in the
execution of a program that share a certain property. In our framework, the
states of the program are not directly available but through the abstraction of
joinpoint models. Thus pointcuts are modeled by stating on which joinpoint
model values they match.

Definition 3 (Pointcut). Let M = (M,TM) be a joinpoint model. A pointcut
P is a set of model values, i. e., P ⊆M. 5 Pointcut P is said to match a model
value m, if m ∈ P .

The definition of pointcut matching can be extended to execution traces, i. e.,
lists of the form t = σ1, . . . , σn of states with σi −→ σi+1. To this end we have
to define how model values are transformed over traces of states. We begin by
lifting the transfer function to a function T ∗M : M × (J ∪ {ε})∗ →M × (J ∪ {ε})
that maps the transfer function over abstract traces, that is, over lists of joinpoint
abstractions by T ∗M (m, []) = (m, ε) and

T ∗M (m, j · j̄) =


(TM (m, j), j) if j 6= ε and length(j̄) = 0
T ∗M (m, j̄) if j = ε

T ∗M (TM (m, j), j̄) if j 6= ε and length(j̄) > 0

This is a glorified fold of the transfer function over the abstract trace, which is a
little more complex than a normal fold due to the fact that abstract traces may
contain ε values, which are no valid arguments for the model transfer function
TM . However, we cannot simply ignore them; if a trace finishes on ε, then the
model value assigned to this trace is the result of an earlier state in the execution,
and a pointcut should match only at that earlier state and not on each subsequent
state, that is mapped to ε. Thus we keep track of the last joinpoint that has been
used to calculate the model value and use ε to indicate, that no pointcut should
match this trace.

As T ∗M operates on lists of joinpoint abstractions, we need to lift traces, which
consist of states, to abstract traces, which consist of the corresponding joinpoint
abstractions. We define this operation α∗J(σ̄) = map(αJ , σ̄). Based on this we
define what it means that a pointcut matches a trace.
5 Pointcuts can be identified with predicate functions by looking at the characteristic

function χP .

A Classification Framework For Pointcut Languages 9

Definition 4 (Pointcut Matching on Traces). Let M be a joinpoint model
with joinpoint abstraction J . A pointcut P matches a trace t with initial model
value m0, if T ∗M (m0, α

∗
J(t)) = (m, j) with j ∈ J and m ∈ P .

3.2 Pointcut Languages

The means by which a pointcut is described is defined by a pointcut language.
A pointcut languages consists of syntax – a set of valid expressions – and a
semantics, mapping syntactical constructs to their meaning in terms of pointcuts.

Definition 5 (Pointcut Language). Let M = (M,TM) be a joinpoint model.
A pointcut language L over M is a set L of language expressions called pointcut
designators together with a semantics function [[·]]L : L → P(M), which maps
pointcut designators to their extension, i.e., the set of model values on which the
corresponding pointcut matches.
We define the extension of a pointcut language as [[L]] = {[[π]] | π ∈ L}.

In any non-trivial pointcut language, there will be multiple pointcut designa-
tor with the same extension – in most cases even infinitely many. For example,
in AspectJ one can find arbitrary many pointcut designators matching all possi-
ble method calls: call(*.*(..)), call(*.*(..)) && call(*.*(..)), and so
forth. It is further noteworthy that some of the extension sets will be infinitely
large, because we do not fix a program in the definition of pointcut languages.
For example, if an identifier – like a method name – is part of the model values
and a pointcut designator does not impose any restrictions on this identifier,
the extension of this pointcut designator will comprise model values for each
identifier expressible in the language at hand.

It is, however, an interesting property of a pointcut language, which exten-
sions are finite for any or some fixed program. For example, in the case of
identifiers, extensions will be finite (at least with respect to the identifier) be-
cause the set of identifiers is finite for any given program. On the other hand,
in pointcut languages over joinpoint models containing the whole execution his-
tory, many pointcut designators will have infinite extensions, because there are
infinitely many possible traces satisfying the constraints given in the pointcut
designator.

3.3 Example Pointcut Languages

We have already given the definition of the pointcut model of Alpha and AspectJ
like languages defined over a small OO base language. We will discuss how to
compare pointcut languages next and for that purpose we want to discuss briefly
the pointcut languages of these two approaches. Due to place constraints we
will not give a complete definition of the syntax and semantics in terms of our
framework.

AspectJ pointcuts are basically built from a set of primitive pointcut expres-
sions using boolean the operators && (and), || (or) and the higher-order pointcut

10 Karl Klose and Klaus Ostermann

cflow, which is true if its argument denotes a joinpoint on the callstack. For our
purpose, only the primitive pointcut call(R C.m(a)) is important. In this point-
cut R is the return type, C the class name, m the method name and a argument.
For each of these parameters, wildcards can be used.

Alpha pointcuts are basically Prolog queries over a representation of the exe-
cution trace. This representation contains facts for each joinpoint that occurred
in the execution, paired with a time stamp. These time stamps can be used to
relate the joinpoints and to define abstractions like cflow. Since the programmer
can also provide his/her own predicates, Alpha pointcuts can compute arbitrary
functions over the trace representation.

Both of these approaches make the quantification over the joinpoint model
implicit. In order to come up with a semantics in the form of Def. 5, we would
have to make this relation explicit by presenting the semantics as predicate
functions over the joinpoint model and then use these predicate functions as
characteristic functions for the pointcut extension.

4 Comparing Pointcut Languages

In this section we will develop a methodology to systematically compare pointcut
languages. Since we introduced three dependent layers – joinpoint abstractions,
joinpoint models and pointcut languages – we have to define comparison on
the lower layers first, to make constructs on the higher layers comparable. Thus
we start by describing, what it means that one of two joinpoint abstractions is
more abstract. Then we talk about the relation between joinpoint models over
the same joinpoint abstraction. Finally we show how pointcut languages can
be compared and how constructive proofs can be constructed for one language
being more/less expressive than an other.

4.1 Comparison of Joinpoint Abstractions

We begin by describing how joinpoint abstractions can be compared. We assume
the same base language semantics for both abstractions, because we want to
talk about the way that the abstractions act on the same states. We define a
joinpoint abstraction to be more abstract than another (more detailed) joinpoint
abstraction, if it identifies joinpoints of the more detailed model.

Definition 6 (Abstractness of Join Point Abstraction). Let J1 = (J1, αJ1)
and J2 = (J2, αJ2) be joinpoint abstractions over Σ. Then J2 is more abstract
than J1 if there exists a surjective mapping δ : J1 → J2, such that δ ◦αJ1 = αJ2 .

Consider the joinpoint abstractions JAJ and JAlpha from Sec. 2.3. According
to Def. 6, the joinpoint abstraction JAJ is obviously more abstract than JAlpha,
because its elements contain only type names, while the elements of JAlpha con-
tain values. We show this formally by constructing δ : JAlpha → JAJ as follows:

A Classification Framework For Pointcut Languages 11

δ(j) =


type(v).m(type(C̄)) if j = v.m(v̄) and Ci = type(vi)
return if j = return (v)
ε otherwise

and showing that δ satisfies the condition given in Def. 6:

δ ◦ αAlpha(E[v.m(v̄)]) = δ(v.m(v̄)) = type(v).m(type(v̄))
= αAJ(E[v.m(v̄)])

δ ◦ αAlpha(E[return(v)]) = δ(return(v)) = return

= αAJ(E[return(v)]).

All other expressions are mapped to ε by both joinpoint abstraction mappings, so
these are the only two cases to consider. Thus we have shown that δ ◦ αAlpha =
αAJ, and therefore that the call stack based model is more abstract than the
trace model.

4.2 Comparison of Joinpoint Models

When comparing joinpoint models, one important problem is that the underly-
ing joinpoint abstractions may be different. In order to find a common joinpoint
abstraction to compare both models, we can use the joinpoint abstraction trans-
lation δ to compare both models on the more abstract joinpoints. Given this
common joinpoint abstraction, the key idea is that values of the more expressive
(richer) joinpoint model contain enough data to reconstruct values of the less
expressive model. This means that there exists a mapping between the model
values which is “compatible” with the model transfer function.

Definition 7 (Sub-Model). A joinpoint model M1 = (M1, T1) is a sub-model
of M2 = (M2, T2), if both have the same joinpoint abstraction J and there exists
a surjective function β : M2 →M1, such that

∀j ∈ J,m ∈M2. β(T2(j,m)) = T1(j, β(m)).

The mapping β identifies all elements of M2 that can not be distinguished
in M1 by mapping them to the same element. The condition on β requires the
mapping to be consistent with the model transfer function. If β is a bijection then
both models are equal (up to renaming), otherwise M1 is a proper sub-model of
M2.

For example, consider again the call stack and trace based models from
Sec. 2.3. We define β : MAlpha →MAJ as follows:

β([]) = [], β(j · j̄) =

{
δ(j) · β(j̄) if j = v.m(v̄)
k̄ if j = return(v) and β(j̄) = k · k̄

It is easy to prove that the result of β is indeed the corresponding call stack.
That β is correct with respect to the definition can be seen from the fact, that
δ is correct and by simulating the semantics for one step.

12 Karl Klose and Klaus Ostermann

4.3 Criteria for the Comparison of Pointcut Languages

In the following we compare pointcut languages, and similar to the joinpoint
model comparisons, we assume that both languages are defined over the same
joinpoint model, since we can translate the richer joinpoint model into the less
expressive and compare the translated languages over the less expressive model.

Since pointcut languages consist of both a syntax and a semantics we can
compare pointcut languages with respect to both. First, we ignore syntax and
concentrate on the extensions of the languages, that is, the sets of model val-
ues that are extensions of pointcuts in the languages. Later we describe how
languages can be compared with respect to syntax and finally we give a third
formulation based on the the ability of a language to distinguish program exe-
cutions.

Using the definition of the extension of a pointcut language (Def. 5), we can
formalize our first comparison criterion. The idea is that a language L1 is a
sub-language of L2, if the extension of L2 contains every pointcut that is in the
extension of L1:

Definition 8 (Expressiveness of Pointcut Languages). Let L1 and L2 be
two pointcut languages over the same model M . Then, L1 is less expressive, if
[[L1]] ⊆ [[L2]] and L1 is proper less expressive than L2, if [[L1]] ⊂ [[L2]].

This definition means that if there is a pointcut designator π1 ∈ L1 (i. e. [[π1]] ∈
[[L1]]) then there exists a pointcut designator π2 ∈ L2 such that [[π1]] = [[π2]]. Con-
sider, for example, the Alpha pointcut calls(R, ’m’, V), typeof(R, ’C’),
odd(V) 6, which matches all traces ending on a call of a method m on instances of
class C, where the argument is an odd integer. To compare the extension of this
pointcut to AspectJ pointcuts, we need to embed the AspectJ pointcut language
into the Alpha pointcut model. To this end we identify a pointcut P ⊆MAJ with
the Alpha pointcut β−1(P) = {m ∈ MAlpha | β(m) ∈ P}. Since we cannot rea-
son about values in AspectJ, β−1(P) contains traces ending in calls with every
possible argument value. Hence, there is no AspectJ pointcut that corresponds to
our Alpha pointcut and thus AspectJ is not equally expressive as Alpha. How-
ever, since it is possible to reason about types of values in Alpha, every AspectJ
pointcut can be expressed in Alpha. This means that AspectJ is a proper less
expressive language than Alpha.

The expressiveness of a pointcut language can also be expressed on the level
of syntax. On this level, a less expressive or sub-language is characterized by a
mapping between the pointcut designators of the two languages. This mapping
maps each pointcut designator of the less expressive language to one of the more
expressive language:

Definition 9 (Sub-Language). Let L1 and L2 be two pointcut languages over
the same model M . L1 is a sub-language of L2, if there exists a mapping of
pointcut designators ι : L1 ↪→ L2 with: ∀π ∈ L1. [[π]] = [[ι(π)]].
6 We assume that some representation of integers is available and write them as num-

bers to keep the examples short.

A Classification Framework For Pointcut Languages 13

Of course, the extension of the pointcuts must be invariant under the syntac-
tic mapping, which is what the condition imposed on ι ensures. In a sense, this
comparison criterion is more useful, because it requires to construct a concrete
syntactical mapping. In practice, this mapping can be used for the emulation of
the sub-language in an implementation of the super-language.

We have already mentioned that there is an Alpha pointcut for every
possible AspectJ pointcut, which means that we can construct a mapping
ι : LAspectJ → LAlpha by translating the primitive and cflow AspectJ point-
cuts into the corresponding Prolog terms and translate the boolean operators
into logical connectives in Prolog.

On the other hand it is often desirable to have a constructive proof that a
language is not a sub-language of another language. With the above criteria,
this can only be established by proving the non-existence of such a mapping.
The definition of pointcut matching over traces (Def. 4) allows for another char-
acterization of pointcut languages. A pointcut can be identified with the set of
traces on which it matches for a given initial model value. Thus we can classify
pointcut languages with the traces that are separable by any pointcut designator
belonging to the language.

First note that this set of traces is restricted by the joinpoint abstraction: each
abstract trace can be the abstraction of several traces. The set of traces that cor-
respond to an abstract trace tα is: (α∗J)−1(tα) = {t | α∗J(t) = tα}. Thus pointcuts
can only be compared by the abstract traces that they are able to distinguish. We
will call two traces t1 and t2 separable by a pointcut π, if there is a model value
m on which T ∗M (α∗J(t1),m) matches π iff T ∗M (α∗J(t2),m) does not match π. This
notion of separability can be used to define an equivalence relation on traces that
identifies all traces which can be separated by a given pointcut language:

Definition 10 (Separability Equivalence). Let L be a pointcut languages
over a model M = (M,TM). The separability equivalence relation ≡L for the
language L is defined as follows t1 ≡L t2 :⇔

∀π ∈ L,m ∈M. T ∗M (m,α∗J(t1)) ∈ ([[π]]× J)⇔ T ∗M (m,α∗J(t2)) ∈ ([[π]]× J).

Thus we can give an alternative definition for pointcut language expressive-
ness based on the pointcut languages’ ability to separate sets of model values:

Definition 11 (Precision of Pointcut Language). Let L1 and L2 be two
pointcut languages over the same model M . L1 is less precise than L2, if
≡L2⊆≡L1 . L1 is proper less precise than L2, if ≡L2 is a proper subset of ≡L1 .

From the previous examples we see that Alpha is much more precise than
AspectJ, because it is possible to refer to runtime values in the pointcut. This
is, however, not due to the lack of values in our modeling of AspectJ: Even if
we had values instead of types, AspectJ cannot distinguish traces that differ in
arbitrary computable properties, like the sum of all arguments, the structure of
the heap (reachability) and so forth.

14 Karl Klose and Klaus Ostermann

4.4 A Methodology for Language Comparison

Using the criteria above we propose the following methodology for comparing
pointcut languages: First, we have to ensure, that the two pointcut languages
we want to compare are defined over the same joinpoint model and thus over
the same joinpoint abstraction. The latter can be achieved by using δ to trans-
late detailed joinpoints into abstracted ones. Then we construct the β mapping
from the more expressive model to the less expressive and use it perform the
comparison either on the less expressive model or on the more expressive model
using β−1 as in the examples.

To show that one language is a sub-language of/less-expressive than another
language, we construct a mapping from pointcut designators of the sub-language
to pointcut designators of the richer language. To prove that a language L1 is
not a sub-language of another language L2, two traces have to be provided that
the language L1 can separate, but L2 can not.

In our example comparison we have seen that there are two different reasons,
why AspectJ is less expressive than Alpha: The lack of values in the joinpoint
model and the simpler computational expressiveness. Care must be taken not
to confuse these different sources of expressiveness by comparing the languages
with respect to both the more expressive and the less expressive model.

5 Discussion

Finally we will give an outlook on how our formalization of pointcuts and mod-
els is connected to typical issues found in the implementation of programming
languages and runtime monitoring systems.

5.1 Shadows and Optimization

We have identified pointcuts with sets of joinpoint model values. By the joinpoint
abstraction, each of these model values can be identified with one or more traces
in the program execution. To be precise, we can identify each model value m ∈M
with the set Tm of pairs of traces and initial values that produce m given by:
Tm = {(t,m0) | (∃j ∈ J) T ∗M (m0, α

∗
J(t)) = (m, j)}. For a pointcut π, the set

Sπ =
⋃
m∈[[π]]{t | (∃m0) (t,m0) ∈ Tm} is the set of traces that may lead to a

model state that the pointcut matches.
This set is of particular interest, if there is a function loc mapping states

to elements of the program representation. For example, when using labeled
expressions, the labels can be used to identify the source code (or, program)
element that is currently evaluated. These source code locations are typically
called shadows of the pointcut and the set of residues

Resπ(l) = {(σ0, . . . , σn) ∈ Sπ | loc(σn) = l},

can be thought of as defining the dynamic test to be performed at the labeled
element to decide if the pointcut matches.

A Classification Framework For Pointcut Languages 15

Shadows and the corresponding dynamic checks are important concepts in
the implementation and optimization of pointcut languages. However, without
further information about the structure of states (and, therefore, of traces),
the elements of Resπ(l) are not a very good descriptions of the dynamic checks,
because they simply enumerate all matching traces. But if it is possible to exploit
the semantics of the base language and knowledge about the joinpoint model to
compute a set Tl of approximated traces for the location l, we can eliminate
all traces from Resπ(l) which are no approximations, possibly yielding a much
smaller set of traces. In the extreme case the remaining set could be empty. In
this case we know that the pointcut can never match an execution trace reaching
this location and we do not have to check for matching at runtime. But even in
the case of a non-empty result, an optimization is possible if we are able to find
a “more efficient” pointcut expression π′ with Resπ(l) ∩ Tl = Resπ′(l) ∩ Tl.

These optimizations are too dependent on the exact details of the base lan-
guage, joinpoint model and pointcut language to be described in this work, but
a specialization of our framework for a particular language is likely to yield
concrete and useful optimization strategies.

5.2 Observational Equivalence

Two expressions are observationally equal, if they cannot be distinguished by
any context in which they are inserted. Observational equivalence is obviously
important both in terms of program understanding and optimization.

If we consider a runtime monitoring system over a fixed language, the ob-
servational equivalence relation will in general become smaller, because a point-
cut observing the program execution can suddenly distinguish expressions that
would otherwise be observationally equivalent. For example, a call to a method
that returns a constant cannot be replaced with this constant, because a trace
model could distinguish these terms.

Let us assume that the expressions M and N are observationally equivalent in
the unobserved program. We can now look at the modified observational equality
relation on different levels. If we allow arbitrary models, we have to consider all
traces that the evaluation of the terms may produce. If the traces in all contexts
are equal for both expressions, then the expressions are also observationally equal
with respect to the runtime monitoring system. If we fix the model, we have
more observationally equal expressions, but we still have to check all possible
traces in all contexts. Finally, with a fixed pointcut language, we have to check
if the terms have separable traces in at least one context, otherwise they are
observationally equivalent. This means that we can find better approximations
for observational equivalence, if we have a compact description of separability
for the given pointcut language.

A typical application of identifying observationally equivalent expressions is
in program optimization. Like with shadows, in this generality we cannot give
concrete optimizations. However, for a fixed base and pointcut language, the
separability relation may have a simple approximation that allows to derive
simple static analyses to approximate observational equivalence.

16 Karl Klose and Klaus Ostermann

5.3 Advice and Context Binding

Using pointcuts to trigger additional functionality is only one possible applica-
tion of pointcuts, but it is useful in many contexts, like debugging and tracing,
enforcements of trace and security properties, and aspect-oriented modulariza-
tion. In this section we show how a “aspect-aware” semantics can be defined on
top of a base semantics and a pointcut language over this semantics. To make
this elaboration a bit less abstract, we use the convention from our former ex-
amples and and define the states of the base semantics as pairs (p,E[e]) of the
program representation and a context E with a redex e.

We give a semantics which augments the original semantics by adding the
required context, a syntactical element for proceeding with the evaluation of the
original state of execution, and derivation rules for pointcut matching and advice
evaluation to the semantics of the underlying language. These extensions describe
when and how pointcuts are evaluated and how they trigger the evaluation of
advice functionality.

The additional functionality is specified in aspects, which bind a piece of code
to the pointcut which describes when to execute that code. There are different
ways to introduce the additional functionality: before, after or instead (often
called around) the original expression. In our model we use the around strategy,
because both other strategies can be expressed in terms of around.

It is not sufficient, however, to simply use a pair of a pointcut and an expres-
sion to model aspects, because aspects may bind information from the model
value and they may choose to proceed with a modified expression instead of the
original one. Taking this possibilities into account we model aspects as the set

A = L× (M → E)︸ ︷︷ ︸
bind

× (M → E → E)︸ ︷︷ ︸
target

.

The bind function describes how the context is used to define the additional
functionality. For example, the bind function C.m(C̄) 7→ print(m); proceed
prints the method name of the intercepted method before proceeding with the
call. The target is used to modify how to proceed with the evaluation. It takes
the model value at the point proceed is about to be evaluated and the origi-
nal expression and produces the expression that has to be evaluated instead of
proceed.

To model this augmented semantics, we fix a pointcut language P with ex-
ecution model M and joinpoint abstraction J. The syntax of the base language
(E) is extended by the expression proceed, which can be used in advice to re-
sume the evaluation of the expression that lead to the advice activation. Since
the definition of the base language’s syntax will in most cases be a recursive
constructor, the definition of the extended syntax depends on the base syntax
and can not be defined in a general way. We assume that such a syntax E ′ can
be constructed from E and that this set contains all the base expressions and
additionally – at least – the expression proceed.

We define the lifted semantics as follows: the new states are of the form

A Classification Framework For Pointcut Languages 17

a = (π, b, t) m′ = TM (αJ(σ),m) m′ ∈ [[π]]

(m,a · ā, ē, (p,E[e])) −→′ (m,a · ā, e · ē, (p,E[b(m′)]))
(Advice App)

(m, ā, ē, σ) −→′ σ′ e 6= proceed

(m,a · ā, ē, σ) −→′ σ′ (Cong)

∀(π, b, t) ∈ ā. TM (αJ(σ),m) /∈ [[π]]

(m, ā, e · ē, (p,E[proceed])) −→′ (m, ā, ē, (p,E[t(m, e)]))
(Proceed)

σ −→ σ′ σ = (p,E[e]) e 6= proceed ∀(π, b, t) ∈ ā. TM (αJ(σ),m) /∈ [[π]]

(m, ā, c̄, σ) −→ (TM (σ,m), ā, c̄, σ′)
(Base)

Fig. 1. Evaluation Rules for the Lifted Semantics

Σ′ = M × [A]× [e]×Σ.

An element (m, ā, ē, σ) ∈ Σ′ consists of the current model value m, a list ā
of aspects, a list ē of expressions whose evaluation has been “shadowed” by
invocation of an aspect, and the original state σ.

The evaluation relation −→′⊂ Σ′ × Σ′ is defined by the rules in Figure 1.
The (Advice App) rule explains how matching advice is applied. Rule (Cong)
allows to use other aspects than the head of the list. This rules introduces a non-
determism for advice application. Note that we did not model multiple aspects
to match at the same state. The third rule describes the semantics of the new
expression proceed, and the final rule embeds the base semantics.

6 Related Work

Many formal definitions of the semantics of aspect oriented languages have been
proposed to clarify the semantics concepts like advice application, aspect prece-
dence, and proceed. For example, Masuhara et al. [13] present a model that
explains compilation and optimization of an AspectJ-like language. The model
is based on an interpreter which is partially evaluated to explain issues like
shadow finding and removal of runtime checks which are unnecessary. The re-
sulting model is not as general as our formalization, because it is tailored to
AspectJ. This model (and similar ones for other pointcut languages) can be
used to describe the semantic of AspectJ-pointcuts in our formal model, be-
cause it defines the characteristic functions for pointcut extension. This and
similar approaches use fixed base and pointcut languages; a general exploration
and organization of the pointcut language design space is not in the scope of
these works.

Another branch of related work is the development of meta-models and on-
tologies for pointcut-advice (PA) languages [2, 3]. These models are used to
identify the parts in PA-languages in a very general way that can be used as

18 Karl Klose and Klaus Ostermann

a basis for implementations of aspect-oriented systems. Although these mod-
els contain informal representations of pointcuts, pointcut context (similar to
our joinpoint models), as well as a distinction between static and dynamic con-
text, these entities do not have a formally specified meaning and are hence not
amenable to constructive comparisons between pointcut languages.

Störzer and Hanenberg [16] give a categorizations of pointcut language con-
structs with respect to a fixed set of three different model classes: specification
based pointcut languages, which are similar to our constant models, state-based
constructs, which are similar to our local models, and so-called progress-based
pointcut constructs, which are a subset of our global (trace-based) models. In
contrast to our work, there is no notion of joinpoint abstraction or pointcut
language expressiveness, and no methodology to compare pointcut languages.

Masuhara and Kiczales [12] present a comparison framework in which they
evaluate four different AOP languages. The focus of that work is to characterizing
and comparing the weaving process that these languages use. This is in contrast
to our framework, which focuses only on the language part and ignores advice
and weaving, thus making the framework applicable in “non-AOP” systems.

7 Conclusions

We have presented a formal framework for the classification and comparison
of pointcut languages. This model gives precise meaning to joinpoints, point-
cuts and pointcut languages. The most important usage of this framework is a
methodology for the comparison of pointcut languages, which is based on giv-
ing constructive proofs for sub-language relations. These proofs can be used to
construct embeddings of pointcut languages into more expressive ones, or to
characterize the reason why one language is less expressive than another. Fur-
thermore, our framework illustrates the design dimensions and corner cases of
pointcut language design and implementation, and hence we hope that it can be
used as guidance in both the design of new pointcut languages and the develop-
ment of efficient compilation techniques for pointcut languages.

We consider our framework both as a starting point to improve the modeling,
design and implementation of pointcut languages and as way to combine the
existing approaches to give semantics to particular pointcut languages.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace match-
ing with free variables to AspectJ. In R. E. Johnson and R. P. Gabriel, editors,
OOPSLA ’05: Proceedings of the Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 345–364, New York, NY, USA, 2005.
ACM Press.

A Classification Framework For Pointcut Languages 19

2. C. Bockisch and M. Mezini. A flexible architecture for pointcut-advice language
implementations. In VMIL ’07: Proceedings of the workshop on Virtual machines
and intermediate languages for emerging modularization mechanisms, New York,
NY, USA, 2007. ACM Press.

3. C. Bockisch, M. Mezini, K. Gybels, and J. Fabry. Initial definition of the aspect
language reference model and prototype implementation adhering to the language
implementation toolkit architecture. Technical report, AOSD Europe Deliverable,
Technische Universität Darmstadt, 2007.

4. M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional queries. In
W.-N. Chin, editor, APLAS ’04: Proceedings of the 2nd Asian Symposium on Pro-
gramming Languages and Systems, Lecture Notes in Computer Science, pages 366–
382, Taipei, Taiwan, November 2004. Springer-Verlag.

5. E. Hajiyev, M. Verbaere, and O. de Moor. codeQuest: Scalable source code queries
with datalog. In D. Thomas, editor, ECOOP ’06: Proceedings of the European
Conference on Object-Oriented Programming, pages 2–27. Springer-Verlag, 2006.

6. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In A. M. Berman, editor, OOPSLA ’99: Proceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages and Applications,
pages 132–146, N. Y., 1999.

7. D. Janzen and K. De Volder. Navigating and querying code without getting lost.
In M. Aksit, editor, AOSD ’03: Proceedings of the International Conference on
Aspect-Oriented Software Development, pages 178–187, New York, NY, USA, 2003.
ACM Press.

8. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, ECOOP ’01: Proceedings of
the European Conference on Object-Oriented Programming, volume 2072 of LNCS,
pages 327–353, 2001.

9. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
ECOOP’97: Proceedings of the European Conference on Object-Oriented Program-
ming, volume 1241 of Lecture Notes in Computer Science, pages 220–242, Berlin,
Heidelberg, and New York, 1997. Springer-Verlag.

10. M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
flaws using PQL: a program query language. In R. P. G. Ralph E. Johnson,
editor, OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications, volume 40,
pages 365–383, New York, NY, USA, 2005. ACM.

11. H. Masuhara, Y. Endoh, and A. Yonezawa. A fine-grained join point model for
more reusable aspects. In N. Kobayashi, editor, APLAS ’06: Proceedings of the
4th Asian Symposium on Programming Languages and Systems, volume 4279 of
Lecture Notes in Computer Science, pages 131–147. Springer, 2006.

12. H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-oriented mecha-
nisms. In L. Cardelli, editor, ECOOP’03: Proceedings of the European Conference
on Object-Oriented Programming, volume 2743 of Lecture Notes in Computer Sci-
ence, pages 219–233. Springer-Verlag, 2003.

13. H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimization model
for aspect-oriented programs. In G. Hedin, editor, CC ’03: Proceedings of 12th
International Conference on Compiler Construction, Lecture Notes in Computer
Science, pages 46–60. Springer-Verlag, 2003.

20 Karl Klose and Klaus Ostermann

14. K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. In A. P. Black, editor, ECOOP’05: Proceedings of the European Con-
ference on Object-Oriented Programming, volume 3586 of Lecture Notes in Com-
puter Science, pages 214–240. Springer-Verlag, 2005.

15. G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient debugging. In D. F. Ba-
con, editor, OOPLSA’07: Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages and Applications, pages 535–552.
ACM, 2007.

16. M. Stoerzer and S. Hanenberg. A classification of pointcut language constructs.
In SPLAT’05: Proceedings of the workshop on Software-Engineering Properties of
Languages and Aspect Technologies, 2005.

17. R. J. Walker and K. Viggers. Implementing protocols via declarative event pat-
terns. In R. N. Taylor and M. B. Dwyer, editors, FSE ’04: Proceedings of the
International Symposium on Foundations of Software Engineering, pages 159–169,
New York, NY, USA, 2004. ACM.

18. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115:38–94, 1994.

