
Joint efforts to dispel an approaching modularity

crisis.

Divide et impera, quo vadis?

Stephan Herrmann
Technical University Berlin,

stephan@cs.tu-berlin.de

Mira Mezini
Darmstadt University of

Technology,
mezini@informatik.tu-darmstadt.de

Klaus Ostermann
Siemens AG CT SE 2,

Klaus.Ostermann@mchp.siemens.de

Abstract

In this paper we consider two important trends in improving separa-
tion of concerns: (a) the emergence of server-side component frameworks,
and (b) the emergence of advanced approaches to software decomposi-
tion/composition. These two trends have emerged independently from
each other, the first one in an industrial setting and the second one orig-
inating mostly from the object-oriented languages research community.
Despite this independent development, both trends have quite some com-
monalities: not only do they follow the same goals, the key concepts are
also basically the same. However, an effort to put both trends into a
common reference frame, showing their commonalities, their differences,
drawing boundaries on their application areas, analyzing how they com-
plement each other and eventually profit from each other, etc., is still
missing today. This paper is a modest effort to fill this gap.

1 Introduction

In tomorrow’s software development, creating self–contained systems from scratch
will rarely be found. Common tasks will be to enhance the (re-)usability of ex-
isting components and to compose systems out of existing (reusable) building
blocks. This poses great challenges to the discipline of software engineering.
There is a central issue which is as old as the “software crisis”: the princi-
ple of separation of concerns. This is and will be our most important tool
for managing complexity. If reuse and evolution are to be chief approaches
in the component age, growing complexity calls for “Advanced Separation of
Concerns”. Approaches to separation of concerns from different areas, such
as software architecture, requirement analysis, programming languages, compo-
nent technology, etc. need to be put to work to jointly improve modularity in

1



and across all phases of software development, to do this in multiple dimensions
simultaneously, and to do this at different — especially larger — scales. If efforts
are not combined we might be just at the dawn of a new crisis: a “Modularity
Crisis”.

In this paper we consider two important trends in improving separation of
concerns: (a) the emergence of server-side component frameworks such as Enter-
prise JavaBeans (EJB) [14] and Corba Component Model (CCM) [12], and (b)
the emergence of advanced approaches to software decomposition/composition
such as AOP [5], Hyperspaces [15], Adaptive Plug-n-Play Components [10, 11],
etc. These two trends have emerged independently from each other, the first
one in an industrial setting and the second one originating mostly from the
object-oriented languages research community. Despite this independent devel-
opment, both trends have quite some commonalities: not only do they follow
the same goals, the key concepts are also basically the same. However, an effort
to put both trends into a common reference frame, showing their commonalities,
their differences, drawing boundaries on their application areas, analyzing how
they complement each other and eventually profit from each other, etc., is still
missing today. This paper is a modest effort to fill this gap.

2 Server-Side Component Frameworks and Ad-
vanced Separation of Concerns

Server-side component models such as EJBs and CCM add powerful abstractions
to the bare “distributed objects” layer, in order to support a clean separation of
server-side application logic from other concerns such as distribution, transac-
tion management, database connectivity, etc. Application logic is encapsulated
in components, which are basically objects that do not explicitly deal with dis-
tribution or persistency issues. Beside the fact that the application code has to
follow some conventions, the application logic is written as if it would run on
the local machine and without any persistent storage of data.

Concerns such as distribution, persistency, access control, resource manage-
ment, connectivity to external programs, etc. are implemented by application
servers. Thus, application servers are to components what an operating sys-
tem is for regular programs. We will use the attribute “cross-application” for
referring to this set of concerns, as opposed to “application-specific” for refer-
ring to different concerns involved with application logic. The composition of
the application-specific with cross-application concerns happens during the as-
sembly and deployment phase of the process of developing server-side software.
This is mainly a declarative process. The deployer of a component into a partic-
ular application server specifies in a separate “integration unit” – the so-called
deployment descriptor – the connection points where certain cross-application
concerns get “woven”1 into the application logic encoded by the component.

1Although it is not found in the common component vocabulary, we use this term here in
analogy with the AOP terminology

2



For instance, by specifying the attributes of the component that will be per-
sistent together with their mapping to data in the database, the deployer weaves
the application logic with that part of the application server which is respon-
sible for persistency. Similarly, deployment descriptor specifications about the
transactional features of the business objects will weave server’s implementation
of transaction management into the application logic.

The deployment descriptor specifications influence the process of executing
code “around” the component by the server. However, the main control as
when and how these two categories of concerns are melted together remains in
the responsibility of an application server. Different servers e.g., apply different
strategies as whether the synchronization of application-logic attributes with
corresponding data in the database will take place after any method call on the
component or only when data is changed.

So far, we have considered only separation and late composition of cross-
application concerns with application logic and nothing has been said about
decomposing the application logic itself into smaller units. This is an impor-
tant issue, though. The application logic of web-based software e.g., in domains
such as order processing, warehouse management, etc. has its own complexity
apart from the the complexity added due to distribution, security, database,
etc. issues. Managing this complexity, also calls for an approach to software
development as a process of assembling reusable components encoding some
functionality within an application domain, which are possibly developed inde-
pendently and by different providers.

Of the two component frameworks considered so far, the CCM model is more
advanced, in supporting component-based development of application logic. A
CCM component provides several facets and specifies a set of receptables (what
it expects to be provided by the “external world”). In addition, a component
has event sources, event sinks, and a set of customizable attributes. During the
component assembly stage, receptables of a component A are connected to facets
provided by some other component B. Similarly, event sources are connected to
appropriate event sinks.

Regarding object oriented systems in general, the connections between the
different parts of a software system are hidden deep in the implementation.
The advantage of separating the inter-component connectivity from the source
code is that independent components from different vendors can be combined
by connecting their “plugs” once a common interface exists that one component
provides and the other requires.

3 Object–Oriented Design Techniques and Lan-
guage Models for Advanced Separation of Con-
cerns

Prior and parallel to the emergence of component frameworks, the last decade
of research in object-oriented programming has brought about advanced mod-

3



ularization techniques of object-oriented systems based on design patterns [4]
and frameworks [3] as well as various advanced language models for software
composition beyond classes, inheritance and object composition. These models
approach the danger for a potential “modularity crisis” from an architectural,
respectively, programming language perspective. The key in this development
has been the observation that the basic object–oriented mechanisms for sepa-
ration of concerns, inheritance and object composition, alone without at least
obeying to certain architectural infrastructures in the design (which is basically
what patterns and frameworks are about) are not enough to achieve an effective
separation of concerns.

Not only it is hard in an object-oriented design to encapsulate concerns such
as distribution, persistency, or error handling, which in fact desperately cut
across the class structure of applications. When it comes to the implementation
level, it is also hard to capture high-level functionality realizing use-cases from
the analysis and design phases into encapsulated units [10, 15]: a class generally
contains code realizing part of the functionality from several use cases, while the
code that realizes a use case is spread around several classes. Code tangling and
scattering are the result. Let alone being able to buy the implementation for
certain use-cases in the form of components that are reusable within or across
an application domain.

Design patterns and frameworks approach the “modularity crisis” within the
object-oriented setting, rather than beyond it. They improve the reusability of
object-oriented software by making variation points in the software explicit.
However, these variation points have in general to be anticipated. With most of
the design patterns, you have to plan today for tomorrows flexibility, although
you (a) have only a vague understanding of tomorrow’s requirements, and (b)
you are not even sure that all the flexibility you built in the software will ever
be needed.

Frameworks are partial systems which — within certain conditions — pro-
vide great flexibility by means of “upfront” design. By this, frameworks are
reusable for a family of systems. Using frameworks as reusable components in
the intended meaning is, however, hard because of the problems of combining
independently developed frameworks [7, 16, 11].

In contrast to patterns and frameworks, the language models mentioned
above (from now on referred to as ASOC models) approach the problem by
extending the object-oriented model with new composition mechanisms. The
key message of the ASOC models is (a) the principle of separation of concerns
becomes really effective in managing complexity when it is supported by dedi-
cated linguistic means of modularization along several dimensions of concerns,
e.g., data, features (functions), cross-application concerns, etc., and (b) todays
languages do not provide such linguistic means. Very broadly speaking, we
have basically seen two different approaches to decomposing software so far:
function-driven versus data-driven decomposition. Both support decomposition
along a single dimension, while the structure of the systems we built is at least
two dimensional [16, 10, 15].

Already Meyer in its well-known book on object-oriented software construc-

4



tion [8] defines the linguistic modular units principle, as one of the modularity
criteria, according to which “the language should be capable of expressing the
structure by dedicated linguistic means for modularization”. Unfortunately, the
problem with this principle is that it is actually hard to use it as a judgment for
the quality of a language, or of a language model regarding modularity, since
one can have quite different perceptions of what “the structure” is. By pos-
tulating that the structure of any complex system can be expressed by means
of two hierarchies expressing has-a respectively is-a relations, Booch [2] argued
that object-oriented programming is the approach in coping with complexity.

In [9], Mezini argued that there are other context-dependent relations in
the structure of a complex system which are not explicitly taken into account
by Booch’s structure. If these variations are to be expressed explicitly, the
structure of complex systems has at least three rather than two dimensions.
The object-oriented model which provides linguistic means for two dimensions
only - (a) data types and (b) kind-of variations of a data type - would not
fulfill Meyer’s criteria anymore. The core idea of AOP [5] can be reformulated
as follows: There are concerns in the structure of systems we build such as,
distribution, tracing, etc. which cannot be expressed by dedicated linguistic
means in object-oriented languages. Ossher and Tarr [15] postulate that, in
general, the structure of software is N-dimensional; by supporting only two of
these dimensions with linguistic means, existing object-oriented languages badly
fail Meyer’s modularity criteria mentioned above.

4 Putting it All Together

In this section, we put these two worlds into a common frame of reference. We
point out that both worlds are needed in that they address similar problems at
different scopes, and discuss how they complement (or otherwise profit from)
each other. Note that the discussion is at a very high level of abstraction, aiming
at establishing the “big picture” while leaving out of discussion technical details.

The question we consider is the following: “Do we still need new language
models for advanced separation of concerns, or are they rendered obsolete by the
emergence of component frameworks?” We try to falsify a position that might
claim, that the complexity of multi–tier distributed applications can be managed
simply be standard object–oriented concepts and a component framework for
integration. We strongly believe that we need ASOC language models and
component frameworks and that they can nicely complement each other. In the
following we give some arguments that support our belief.

First, the areas addressed by component frameworks and language models
are different. The primary focus of component frameworks is not on composing
application logic out of pre-existing building blocks. The main focus is rather
on the separation of application logic from cross-application concerns. Indeed,
component frameworks also provide a fairly elaborated concept for specifying
and connecting components. As pointed out previously, CCM components, e.g.,
explicitly declare their input (receptables) and output interfaces (facets). In the

5



context of a “component assembly” receptables of one component are mapped
to facets of another component, if there is one that matches.

However, the connection at the level of CCM components will generally be
at a (very) large-scale. CCM components will in general be distributed over
a network. Using the model as a substitute for respective language constructs
for expressing and composing modules that encode different application-specific
concerns is a very heavy-weight approach, which might damage the performance
and scalability of applications built using a component framework.

The idea of explicit required and provided interfaces has been at the core
of Adaptive Plug-n-Play Components ASOC model [10] even prior to the emer-
gence of CCM. In this model, there is also an equivalent of the assembly process.
Given two independent modules, that encode different application-specific con-
cerns, an extra connector construct specifies how to map their interfaces. The
model is even more elaborated than the corresponding CCM assembly model so
far, in that it does not require conformance of the interfaces being mapped and
provides linguistic means to fill the potential interface gap in a succinct way.
In the Hyperspace model [15, 13] we also find a sort of “assembly” process in
the form of a hypermodule definition, where you define the modules to be com-
posed (called hyperslices) together with composition rules for combining them.
Because of these features, the two models and derivates thereof provide a seam-
less decomposition/composition paradigm outside and inside the boundaries of
components. The similarity of AOP “weaving” and CCM assembly has already
been indicated in section 2. There remains a need for method support regarding
the choice between ASOC and component technology during the design process.
This question opens a quite interesting empirical research area.

Second, the view of the world supported by component frameworks is mostly
a “closed” one. Component frameworks fail short when flexibility is required
for cross-application concerns. Design decisions related to these concerns are
locked into the application server - a monolithic block with no support whatso-
ever for application specific adaptability. Neither do applications have a say
on the mechanism to be used for realizing individual cross-application con-
cerns, although they know their needs better than anything else. Nor can the
cross-application functionality layer be composed at will out of a set of cross-
application concerns realized as off-the-shelf components in order to get the
desired behavior.

In the beginning of the paper, we made the analogy between an application
server and an operating system. Research on open implementations [1] has
shown the problems with monolithic “closed” operating systems, TP monitors,
etc. and has indicated the need and the power of more flexible systems, providing
client applications control over their own implementation strategy via a well-
designed auxiliary interface (e.g., [6, 17]). This allows the client to tailor the
system’s implementation strategy to better suit their needs, effectively making
the module more reusable, and the client code simpler.

Component frameworks lack this kind of tailorability. The attribute “frame-
work” is actually not justified when cross-application concerns are considered.
There might be well the case that certain applications require some special se-

6



mantics for the cross-application frameworks. Todays component frameworks
provide no support for this kind of late, application-specific binding of mech-
anisms to cross-application policies. Once bean managed persistency, transac-
tion, etc., or some cross-application functionality is required that is not imple-
mented by the application server, e.g., some sort of tracing is needed, - that is,
the application wants to control cross-application aspects - the programmer is
basically left on his/her own with the separation of concerns. ASOC models
could help to have aspects like persistence, distribution and transaction, be just
“usual” off-the-shelf components that can be composed with other components
in order to get the desired behavior

5 Summary

The aim of component and ASOC models is the same: Separation of concerns.
Nevertheless, their scope is currently different: Component models focus on
large scale distributed components, while ASOC models enable a more fine-
grained separation on the programming language level. We have sketched some
examples that show how both paradigms complement each other and could
profit from each other.

However, we think that we have to take a step further. Our vision is that
both worlds, components and ASOC, have to converge in order to let the dream
of off-the-shelf components become true. In this ideal world, aspects like per-
sistence, distribution and transaction, would be just “usual” off-the-shelf com-
ponents that can be composed (woven) with other components in order to get
the desired behavior.

To achieve this convergence, ASOC approaches need to be improved towards
better applicability both to the full range of cross-application and application
specific concerns and even more important larger scales. Components on the
other hand need to become more flexible with respect to unanticipated behav-
ioral adaptations.

References

[1] R. Barga and C. Pu. Reflection on a legacy transaction processing monitor.
In Reflection ’96, San Francisco, California, 1996.

[2] G. Booch. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1991.

[3] M. Fayad, D. Schmidt, and R. Johnson. Building Application Frameworks.
Wiley, 1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Ad-
dison Wesley, 1995.

7



[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, Proceedings ECOOP’97, LNCS 1241, pages 220–242,
Jyvaskyla, Finland, 1997. Springer-Verlag.

[6] V. P. Lortz and K. G. Shin. Combining contracts and exemplar-based pro-
gramming for class hiding and customization. In Proceedings OOPSLA ’94,
ACM SIGPLAN Notices, Oct. 1994. Published as Proceedings OOPSLA
’94, ACM SIGPLAN Notices, volume 27, number 10.

[7] M. Mattson, J. Bosch, and M. E. Fayad. Framework integration problems,
causes, solutions. Communications of the ACM, 42(10), October 1999.

[8] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second
edition, 1997.

[9] M. Mezini. Variational Object-Oriented Programming Beyond Classes and
Inheritance. Kluwer Academic Publishers, 1998.

[10] M. Mezini and K. Lieberherr. Adaptive plug-and-play components for evo-
lutionary software development. In Proceedings OOPSLA ’98, ACM SIG-
PLAN Notices, 1998.

[11] M. Mezini, L. Seiter, and K. Lieberherr. Component integration with plug-
gable composite adapters. In M. Aksit, editor, Software Architectures and
Component Technology: The State of the Art in Research and Practice.
Kluwer, 2000. University of Twente, The Netherlands.

[12] Object Management Group. CORBA Components Final Submission. OMG
TC Document orbos/99-02-05, 1999.

[13] H. Ossher and P. Tarr. Multi-dimensional separation of concerns in hy-
perspace. Technical Report RC 21452(96717), IBM Thomas J. Watson
Research Center, 1999.

[14] Sun Microsystems. Enterprise JavaBeans 2.0 Specification. 2000.

[15] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees of sepa-
ration: Multi-dimensional separation of concerns. In Proc. International
Conference on Software Engineering (ICSE 99), 1999.

[16] M. VanHilst and D. Notkin. Using role components to implement
collaboration-based design. In Proceedings OOPSLA 96, 1996.

[17] Y. Yokote, F. Teraoka, A. Mitsuzawa, N. Fujinami, and M. Tokoro. The
Muse object architecture: A new operating system structuring concept. In
Operating Systems Review 25(2), April 1991, 1991.

8


