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Abstract
If the result of an expensive computation is invalidated by a small
change to the input, the old result should be updated incrementally
instead of reexecuting the whole computation. We incrementalize
programs through their derivative. A derivative maps changes in
the program’s input directly to changes in the program’s output,
without reexecuting the original program. We present a program
transformation taking programs to their derivatives, which is fully
static and automatic, supports first-class functions, and produces
derivatives amenable to standard optimization.

We prove the program transformation correct in Agda for a
family of simply-typed λ-calculi, parameterized by base types
and primitives. A precise interface specifies what is required to
incrementalize the chosen primitives.

We investigate performance by a case study: We implement in
Scala the program transformation, a plugin and improve perfor-
mance of a nontrivial program by orders of magnitude.

Keywords Incremental computation, first-class functions, perfor-
mance, Agda, formalization

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.3.4 [Pro-
gramming Languages]: Processors—Optimization

1. Introduction
Incremental computation has a long-standing history in computer
science [21]. Often, a program needs to update its output efficiently
to reflect input changes [23]. Instead of rerunning such a program
from scratch on its updated input, incremental computation research
looks for alternatives that are cheaper in a common scenario: namely,
when the input change is much smaller than the input itself.

For instance, consider the grand_total program, which calcu-
lates the sum of all numbers in collections xs , ys .

grand_total = λxs. λys. fold (+) 0 (merge xs ys)

output = grand_total {{1, 1}} {{2, 3, 4}} = 11

With {{. . .}} we represent a multiset or bag, that is an un-
ordered collection (like a set) where elements are allowed to
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appear more than once (unlike a set). Now assume that the in-
put xs changes from {{1, 1}} to {{1}}, and ys changes from
{{2, 3, 4}} to {{2, 3, 4, 5}}. Instead of recomputing output
from scratch, we could also compute it incrementally. If we
have a representation for the changes to the inputs (say, dxs =
{{remove 1}}, dys = {{add 5}}), we can compute the new
result through a function grand_total ′ that takes the old inputs
xs = {{1, 1}}, ys = {{2, 3, 4}} and the changes dxs , dys to pro-
duce the output change. In this case, it would compute the change
grand_total ′ xs dxs ys dys = plus 4, which can then be used to
update the original output 11 to yield the updated result 15. We call
grand_total ′ the derivative of grand_total . It is a function in the
same language as grand_total , accepting and producing changes,
which are simple first-class values of this language. If we increase
the size of the original inputs xs and ys , the time complexity of
grand_total xs ys increases linearly, while the time complexity of
grand_total ′ xs dxs ys dys only depends on the size of dxs and
dys , which is smaller both in our example and in general.

To support automatic incrementalization, in this paper we intro-
duce the ILC (incrementalizing λ-calculi) framework. We define
an automatic program transformation Derive that differentiates pro-
grams, that is, computes their derivatives; Derive guarantees that

f (a⊕ da) ∼= (f a)⊕ (Derive(f) a da) . (1)

where ∼= is denotational equality, da is a change on a and a⊕ da
denotes a updated with change da , that is, the updated input of f .
Hence, we can optimize programs by replacing the left-hand side,
which recomputes the output from scratch, with the right-hand side,
which computes the output incrementally using derivatives.

ILC is based on a simply-typed λ-calculus parameterized by
plugins. A plugin defines (a) base types and primitive operations, and
(b) a change representation for each base type, and an incremental
version for each primitive. In other words, the plugin specifies the
primitives and their respective derivatives, and ILC can glue together
these simple derivatives in such a way that derivatives for arbitrary
simply-typed λ-calculus expressions using these primitives can be
computed. Both our implementation and our correctness proof is
parametric in the plugins, hence it is easy to support (and prove
correct) new plugins.

This paper makes the following contributions:

• We present a novel mathematical theory of changes and deriva-
tives, which is more general than other work in the field because
changes are first-class entities, they are distinct from base values
and they are defined also for functions (Sec. 2).
• We present the first approach to incremental computation for

pure λ-calculi by a source-to-source transformation, Derive, that
requires no run-time support. The transformation produces an
incremental program in the same language; all optimization
techniques for the original program are applicable to the incre-
mental program as well. We prove that our incrementalizing
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transformation Derive is correct (Eq. (1)) by a machine-checked
formalization in Agda [6]. The proof gives insight into the defi-
nition of Derive: we first construct the derivative J− K∆ of the
denotational semantics of a simply-typed λ-calculus term, that
is, its change semantics. Then, we show that Derive is produced
by erasing J− K∆ to a simply-typed program (Sec. 3).
• While we focus mainly on the theory of changes and derivatives,

we also perform a performance case study. We implement the
derivation transformation in Scala, with a plug-in architecture
that can be extended with new base types and primitives. We
define a plugin with support for different collection types and
use the plugin to incrementalize a variant of the MapReduce pro-
gramming model [16]. Benchmarks show that on this program,
incrementalization can reduce asymptotic complexity and can
turn O(n) performance into O(1), improving running time by
over 4 orders of magnitude on realistic inputs (Sec. 4).

Our Agda formalization, Scala implementation and benchmark
results are available at the URL http://inc-lc.github.io/.
All lemmas and theorems presented in this paper have been proven
in Agda. In the paper, we present an overview of the formalization
in more human-readable form, glossing over some technical details.

2. A theory of changes
This section introduces a formal concept of changes; this concept
was already used informally in Eq. (1) and is central to our approach.
We first define change structures formally, then construct change
structures for functions between change structures, and conclude
with a theorem that relates function changes to derivatives.

2.1 Change structures
Consider a set of values, for instance the set of natural numbers N.
A change dv for v ∈ N should describe the difference between v
and another natural vnew ∈ N. We do not define changes directly,
but we specify operations which must be defined on them. They are:

• We can update a base value v with a change dv to obtain an
updated or new value vnew. We write vnew = v ⊕ dv .
• We can compute a change between two arbitrary values vold and
vnew of the set we are considering. We write dv = vnew 	 vold.

For naturals, it is usual to describe changes using standard
subtraction and addition. That is, for naturals we can define v⊕dv =
v + dv and vnew 	 vold = vnew − vold. To ensure that ⊕ and 	 are
always defined, we need to define the set of changes carefully. N is
too small, because subtraction does not always produce a natural;
the set of integers Z is instead too big, since adding a natural and
an integer does not always produce a natural. In fact, we cannot
use the same set of all changes for all naturals. Hence we must
adjust the requirements: for each base value v we introduce a set
∆v of changes for v, and require vnew 	 vold to produce values in
∆vold, and v ⊕ dv to be defined for dv in ∆v. For natural v, we set
∆v = {dv | v + dv ≥ 0}; 	 and ⊕ are then always defined.

The following definition sums up the discussion so far:

Definition 2.1 (Change structures). A tuple V̂ = (V,∆,⊕,	) is a
change structure (for V ) if:

(a) V is a set, called the base set.
(b) Given v ∈ V , ∆v is a set, called the change set.
(c) Given v ∈ V and dv ∈ ∆v, v ⊕ dv ∈ V .
(d) Given u, v ∈ V , u	 v ∈ ∆v.
(e) Given u, v ∈ V , v ⊕ (u	 v) equals u.

One might expect a further assumption that (v ⊕ dv)	 v = dv .
While it does hold for the change structure of N, it is not needed

in general. This means that multiple changes can represent the
difference between the same two base values. Throughout our theory,
we only discuss equality of base values, not of changes.

Notation We overload operators ∆, 	 and ⊕ to refer to the
corresponding operations of different change structures; we will
subscript these symbols when needed to prevent ambiguity. For
any Ŝ, we write S for its first component, as above. We make ⊕
left-associative, that is, v⊕ dv1 ⊕ dv2 means (v ⊕ dv1)⊕ dv2. We
assign precedence to function application over ⊕ and 	, that is,
f a⊕ g a da means (f a)⊕ (g a da).

Examples We demonstrate a change structure on bags with signed
multiplicities [15]. These are unordered collections where each
element can appear an integer number of times.

(a) Let S be any set. The base set V = Bag S is the set of bags
of elements of S with signed multiplicities. The bag {{1, 1, 2̄}}
contains two positive occurrences of 1 and a negative occurrence
of 2.

(b) For each bag v ∈ V , set the change set ∆v = V . Every bag can
be a change to any other bag. The bag {{1, 1, 5̄}} represents
two insertions of 1 and one deletion of 5.

(c) The update operator is bag merge: ⊕ = merge. The merge of
two bags is the element-wise sum of multiplicities:

merge {{1̄, 2}} {{1, 1, 5̄}} = {{1, 2, 5̄}} .

(d) Let negate be the negation of multiplicities:

negate {{1, 1, 5̄}} = {{1̄, 1̄, 5}} .

To compute the difference of two bags, compute the merge with
a negated bag:

u	 v = merge u (negate v) .

(e) Given the above definition of ⊕ and 	, it is not hard to show
that v ⊕ (u	 v) for all bags u, v ∈ V .

The change structure we just described is written succinctly

B̂ag S = ( Bag S, (λv. Bag S) ,

merge, (λx y.merge x (negate y))).

This change structure is an instance of a general construction:
we can build a change structure from an arbitrary abelian group.
An abelian group is a tuple (G,�,�, e), where � is a commutative
and associative binary operation, e is its identity element, and �
produces inverses of elements g of G, such that (�g) � g =
g � (�g) = e. For instance, integers, unlike naturals, form the
abelian group (Z,+,−, 0) (where − represents the unary minus).
Each abelian group (G,�,�, e) induces a change structure, namely
(G,λg. G,�, λg h. g � (�h)), where the change set for any g ∈
G is the whole G. Change structures are more general, though, as
the example with natural numbers illustrates. If ∅ represents the
empty bag, then (Bag S,merge,negate, ∅) is an abelian group,
which induces the change structure we have just seen.

The abelian group on integers induces also a change structure on
integers, namely Ẑ = (Z, (λv. Z) ,+,−).

Nil changes and derivatives A particularly important change is
the nil change of a value:

Definition 2.2 (Nil change). Given a change structure V̂ and a
value v ∈ V , the change v 	 v is the nil change for v.

0v = v 	 v

The nil change for a value does indeed not change it.
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Lemma 2.3 (Behavior of 0). Given a change structure V̂ and a
value v ∈ V , v ⊕ 0v = v.

After defining change structures, we can restate the definition of
derivatives from Eq. (1).

Definition 2.4 (Derivatives). Given change structures Â and B̂
and a function f ∈ A → B on the change sets of these change
structures, we call a binary function f ′ the derivative of f if for all
values a ∈ A and corresponding changes da ∈ ∆Aa,

f (a⊕ da) = f a⊕ f ′ a da .

Applying a derivative to a value and its nil change gives a nil
change.

Lemma 2.5 (Behavior of derivatives on 0). Given change structures
Â and B̂, a function f ∈ A → B, an element a of A, and the
derivative f ′ of f , we have f ′ a 0a = 0(f a).

Examples Let f : Bag S → Bag S be the constant function
mapping everything to the empty bag. Its derivative f ′ : Bag S →
Bag S → Bag S has to ignore its two arguments and produce the
empty bag in all cases.

Let id : Bag S → Bag S be the identity function between
bags. Its derivative id ′ is defined by id ′ v dv = dv .

2.2 Function changes
Allowing values to change is useful, but we need to enable also
functions to change. To understand why, think about the curried
function grand_total : it takes xs to a function value (closure)
knowing the value of xs . Its derivative grand_total ′ should satisfy

grand_total (xs ⊕ dxs) =

grand_total xs ⊕ grand_total ′ xs dxs.

That is, grand_total ′ must take xs and its change to a change of a
closure; updating the closure with this change must give the same
result as grand_total (xs ⊕ dxs), that is a closure knowing the
value of xs ⊕ dxs . Similarly, since lambda-calculus functions can
also take other functions as arguments, derivatives can take function
changes as arguments.

In this section, we will demonstrate how we can construct change
structures for functions f ∈ A → B, assuming change structures
for A and B.

Definitions As seen, the derivative of f computes the change of
f a when a becomes a⊕ da . However, also f can change: As we’ll
see in Sec. 3.2, to incrementalize a function application f a we need
to compute the difference (f ⊕ df ) (a⊕ da)	 f a without rerun-
ning (f ⊕ df ) (a⊕ da). We compute this difference using func-
tion changes, and define change structures on functions precisely to
make this possible. A function change df must be a function such
that f a ⊕ df a da = (f ⊕ df ) (a⊕ da) (Theorem 2.9)! Since
however f ⊕ df can’t be defined yet, we impose a requirement
(Property 2.6b) that we’ll later show equivalent to Theorem 2.9.

Definition 2.6. Given change structures Â and B̂ and f ∈ A→ B,
the set ∆A→Bf contains all binary functions df such that

(a) df a da ∈ ∆B (f a) and
(b) f a⊕ df a da = f (a⊕ da)⊕ df (a⊕ da) 0(a⊕da)

for all values a ∈ A and corresponding changes da ∈ ∆Aa.

Examples Suppose f ∈ Bag S → Bag S and consider a mem-
ber df of the change set ∆A→Bf . Condition (a) says that df should
map a bag and a bag change to another bag change. Condition (b)
requires df to mimic the incremental behavior of f . Taken together,
they codify what we consider appropriate incremental adjustments
to f .

In particular, different functions of the same type can have
different sets of changes. Consider two functions of type Bag S →
Bag S.

f x = ∅ id x = x

The set ∆Bag S→Bag Sf contains “changes” to f , namely all binary
bag functions df satisfying (b): df a da = df (a⊕ da) 0(a⊕da) =
df (merge a da) ∅. Such binary functions include merge and all
constant functions.

The set ∆Bag S→Bag Sid contains changes to id, namely all
binary bag functions did satisfying (b): id a ⊕ did a da =
id (a⊕ da) ⊕ did (a⊕ da) 0(a⊕da), which simplifies to
merge a (did a da) = merge (merge a da) (did (merge a da) ∅).
Neither merge nor any constant function is a change to id , but the
function did a da = merge da {{1, 2}} is.

The change-structure operations on functions can now be defined
similarly to a distributive law.

Definition 2.7 (Operations on function changes). Given change
structures Â and B̂, the operations ⊕A→B and 	A→B are defined
as follows.

(f ⊕A→B df ) v = f v ⊕B df v 0v

(f2 	A→B f1) v dv = f2 (v ⊕A dv)	B f1 v

All these definitions have been carefully set up to ensure that we
have in fact lifted change structures to function spaces.

Theorem 2.8. Given change structures Â and B̂, the tuple (A→
B,∆A→B ,⊕A→B ,	A→B) is a change structure, which we denote
by Â→ B̂.

After defining this change structure, we can talk about f ⊕ df .
So we can restate Property 2.6b to show that a function change df
reacts to input changes da like the incremental version of f , that is,
df a da computes the change from f a to (f ⊕ df ) (a⊕ da):

Theorem 2.9 (Incrementalization). Given change structures Â and
B̂, a function f ∈ A→ B and a value a ∈ A with corresponding
changes df ∈ ∆A→Bf and da ∈ ∆Aa, we have that

(f ⊕ df ) (a⊕ da) = f a⊕ df a da .

For instance, incrementalizing

app = λf. λx. f x

with respect to the input changes df , dx amounts to calling df on
the original second argument xold and on the change dx . In other
words, incrementalizing app gives λf. λdf . λx. λdx . df x dx .

Understanding function changes To understand function changes,
we can decompose them into two orthogonal concepts. With a func-
tion change df , we can compute at once df aold da , the difference
between (f ⊕ df ) (a⊕ da) and f a, even though both the func-
tion and its argument change. But the effect of those two changes
can be described separately. We can account for changes to a
using f ′, the derivative of f : f (a⊕ da) 	 f a = f ′ a da .
We can account for changes to f using the pointwise difference
of two functions, ∇f = λa. (f ⊕ df ) a 	 f a; in particular,
(f ⊕ df ) (a⊕ da) 	 f (a⊕ da) = ∇f (a⊕ da). Using then
the incrementalization theorem, we can show that a function change
simply combines a derivative with a pointwise change:

fold aold ⊕ df aold da

=fold aold ⊕ f ′ aold da ⊕∇f anew

One can also compute a pointwise change from a function
change:

f a⊕ df a 0a = f a⊕∇f a



ι ::= . . . (base types)
σ, τ ::= ι | τ → τ (types)

Γ ::= ε | Γ, x : τ (typing contexts)
c ::= . . . (constants)

s, t ::= c | λx. t | t t | x (terms)

(a) Syntax.

. . .

` c : τ
CONST

Γ1, x : τ,Γ2 ` x : τ
LOOKUP

Γ ` t : τ

Γ, x : σ ` t : τ

Γ ` λx. t : σ → τ
LAM

Γ ` s : σ → τ Γ ` t : σ

Γ ` s t : τ
APP

(b) Typing.

Figure 1. Our base calculus.

ILC is based on function changes instead of pointwise changes
because a function change receives strictly more information than a
pointwise change, and is therefore more readily optimized.

2.3 Nil changes are derivatives
Theorem 2.9 tells us about the form an incremental program may
take. If df doesn’t change f at all, that is, if f ⊕ df = f , then
Theorem 2.9 becomes

f (a⊕ da) = f a⊕ df a da.

It says that df computes the change upon the output of f given a
change da upon the input a of f . In other words, the nil change to a
function is exactly its derivative (see Definition 2.4):

Theorem 2.10 (Nil changes are derivatives). Given change struc-
tures Â and B̂ and a function f ∈ A → B, the change 0f is the
derivative f ′ of f .

In this section, we developed the theory of changes to define
formally what a derivative is (Definition 2.4) and to recognize that in
order to find the derivative of a function, we only have to find its nil
change (Theorem 2.10). Next, we want to provide a fully automatic
method for finding the nil change of a given function.

3. Incrementalizing λ-calculi
In this section, we show how to incrementalize an arbitrary program
in simply-typed λ-calculus. To this end, we define the source-to-
source transformation Derive. Using the denotational semantics J− K
we define later (in Sec. 3.4), we can specify Derive’s intended
behavior: to ensure Eq. (1), J Derive(f) K must be the derivative
of J f K for any closed term f : A→ B. We will overload the word
“derivative” and say simply that Derive(f) is the derivative of f .

It is easy to define derivatives of arbitrary functions as:

f ′ x dx = f (x⊕ dx )	 f x.

We could implement Derive following the same strategy. However,
the resulting incremental programs would be no faster than recom-
putation. We cannot do better for arbitrary mathematical functions,
since they are infinite objects which we cannot fully inspect. There-
fore, we resort to a source-to-source transformation on simply-typed
λ-calculus as defined in Fig. 1. In this section, we focus on the in-
crementalization of the features that are shared among all instances
of the plugin interface, that is, function types and the associated
syntactic forms, λ-abstraction, application and variable references.

The sets of base types and primitive constants, as well as the typ-
ing rules for primitive constants, are on purpose left unspecified and
only defined by plugins — they are extensions points. Definitions
provided by the plugin are replaced, in figures, by ellipses (“. . .”).
Defining different plugins allows to experiment with sets of base
types, associated primitives and incrementalization strategies. We
summarize requirements on plugins in Sec. 3.7: Satisfying these
requirements is sufficient to ensure correct incrementalization. We
show an example plugin in our case study (Sec. 4.4).

∆ : ∗ → ∗ the type of changes
⊕ : τ → ∆τ → τ update a value with a change
	 : τ → τ → ∆τ the change between two values

Figure 2. Erased change structures on simple types.

∆ (σ → τ) = σ → ∆σ → ∆τ

	σ→τ = λg f x dx . (g (x⊕ dx ))	 (f x)

⊕σ→τ = λf df x. (f x)⊕ (df x (x	 x))

Figure 3. The erased change structures for function types.

3.1 Change types and erased change structures
We developed the theory of change structures in the previous section
to guide our implementation of Derive. By Theorem 2.10, Derive
has only to find the nil change to the program itself, because nil
changes are derivatives. However, the theory of change structures
is not directly applicable to the simply-typed λ-calculus, because
a precise implementation of change structures requires dependent
types. For instance, we cannot describe the set of changes ∆τv
precisely as a non-dependent type, because it depends on the value
we plan to update with these changes.

To work around this limitation of our object language, we use a
form of erasure of dependent types to simple types. In Fig. 2 and
Fig. 4(a), we define change types ∆τ as an approximate description
of change sets ∆τv (Fig. 4(b)). In particular, all changes in ∆τv
correspond to values of terms with type ∆τ , but not necessarily the
other way around. For instance, in the change structure for natural
numbers described in Sec. 2.1, we would have ∆Nat = Int, even
though not every integer is a change for every natural number. For
primitive types ι, ∆ι and its associated ⊕ and 	 operator must
be provided by the plugin developer. For function types, erased
change structures are given by Fig. 3. Erasing dependent types in
all components of a change structure, we obtain erased change
structures, which represent change structures as simply-typed λ-
terms where ⊕ and 	 are families of λ-terms.

Erased change structures are not change structures themselves.
However, we will show how change structures and erased changes
structures have “almost the same” behavior (Sec. 3.6). We will hence
be able to apply our theory of changes.

3.2 Differentiation
When f is a closed term of function type, Derive(f) should be its
derivative, that is its nil change. Since Derive recurses on open terms,
we need a more general specification. We require that if Γ ` t : τ ,
then Derive(t) represents the change in t (of type ∆τ ) in terms of
changes to the values of its free variables. As a special case, when
t is a closed term, there is no free variable to change; hence, the
change to t will be, as desired, the nil change of t.



The following typing rule shows the static semantics of Derive:

Γ ` t : τ

Γ,∆Γ ` Derive(t) : ∆τ
DERIVE

We see that Derive(t) has access both to the free variables in t
(from Γ) and to their changes (from ∆Γ, defined in Fig. 4(d)). For
example, if a well-typed term t contains x free, then Γ contains an
assumption x : τ for some τ and ∆Γ contains the corresponding
assumption dx : ∆τ . Hence, Derive(t) can access the change of x
by using dx . For simplicity, we assume that the original program
contains no variable names that start with d .The definition of Derive
will ensure that the dx variables are bound if the original term is
closed.

Let us analyzes each case of the definition of Derive(u) (Fig. 4(g)):

• If u = x, Derive(x) must be the change of x, that is dx .
• If u = λx. t, Derive(t) is the change of u given the change in

its free variables. The change of u is then the change of t as a
function of the base input x and its change dx , with respect to
changes in other open variables. Hence, we simply need to bind
dx by defining Derive(λx. t) = λx. λdx . Derive(t).
• If u = s t, Derive(s) is the change of s as a function of its

base input and change. Hence, we simply apply Derive(s) to the
actual base input t and change Derive(t), giving Derive(s t) =
Derive(s) t Derive(t).
• If t = c: since c is a closed term, its change is a nil change,

hence (by Theorem 2.10) c’s derivative. We can obtain a correct
derivative for constants by setting:

Derive(c) = c	 c = 0c = c′

This definition is inefficient for functional constants; hence
plugins must provide derivatives of the primitives they define.

This might seem deceptively simple. But λ-calculus only imple-
ments binding of values, leaving “real work” to primitives; likewise,
differentiation for λ-calculus only implement binding of changes,
leaving “real work” to derivatives of primitives. However, our sup-
port for λ-calculus allows to glue the primitives together.

Examples Let us apply the transformation on the program
grand_total defined in Sec. 1.

grand_total = λxs. λys. fold (+) 0 (merge xs ys)

Derive(grand_total) =

λxs. λdxs. λys. λdys.

fold ′ (+) (+′) 0 0′

(merge xs ys)

(merge ′ xs dxs ys dys)

The names fold ′, merge ′, +′, 0′ stand for the derivatives of the cor-
responding primitives. The variables dxs and dys are systematically
named after xs and ys to stand for their changes. As we shall see in
Sec. 3.7,

merge ′ = λu. λdu. λv. λdv .merge du dv ,

so the derivative of grand_total is β-equivalent to

λxs. λdxs. λys. λdys.

fold ′ (+) (+′) 0 0′

(merge xs ys) (merge dxs dys).

This derivative is inefficient because it needlessly recomputes
merge xs ys . But we still need to inline the derivatives of fold
and other primitives to complete derivation. We’ll complete the
derivation process and see how to avoid this waste in Sec. 4.3.

We have now informally derived the definition of Derive
(Fig. 4(g)) from its specification (Eq. (1)) and its typing. But for-
mally speaking, Derive is instead a definition. So in the rest of this
section, we’ll have to prove that Derive satisfies Eq. (1).

3.3 Architecture of the proof
Derive(t) is defined using change types. As discussed in Sec. 3.1,
change types impose on their members less restrictions than cor-
responding change structures – they contain “junk” (such as the
change −5 for the natural number 3). We cannot constrain the be-
havior of Derive(t) on such junk; a direct correctness proof fails. To
avoid this problem, our proof defines a version of Derive which uses
change structures instead.

To this end, we first present a standard denotational semantics
J− K for simply-typed λ-calculus. Using our theory of changes,
we associate change structures to our domains. We define a non-
standard denotational semantics J− K∆, which is analogous to
Derive but operates on elements of change structures, so that it
needn’t deal with junk. As a consequence, we can prove that J t K∆

is the derivative of J t K: this is our key result.
Finally, we define a correspondence between change sets and

domains associated with change types, and show that whenever
J t K∆ has a certain behavior on an input, J Derive(t) K has the
corresponding behavior on the corresponding input. Our correctness
property follows as a corollary.

3.4 Denotational semantics
In order to prove that incrementalization preserves the meaning of
terms, we define a denotational semantics of the object language.
We first associate a domain with every type, given the domains of
base types provided by the plugin. Since our calculus is strongly
normalizing and all functions are total, we can avoid using domain
theory to model partiality: our domains are simply sets. Likewise,
we can use functions as the domain of function types.

Definition 3.1 (Domains). The domain J τ K of a type τ is defined
as in Fig. 4(c).

Given this domain construction, we can now define an evaluation
function for terms. The plugin has to provide the evaluation function
for constants. In general, the evaluation function J t K computes the
value of a well-typed term t given the values of all free variables in
t. The values of the free variables are provided in an environment.

Definition 3.2 (Environments). An environment ρ assigns values
to the names of free variables.

ρ ::= ε | ρ, x = v

We write J Γ K for the set of environments that assign values to
the names bound in Γ (see Fig. 4(f)).

Definition 3.3 (Evaluation). Given Γ ` t : τ , the meaning of t is
defined by the function J t K of type J Γ K→ J τ K in Fig. 4(i).

This is the standard semantics of the simply-typed λ-calculus.
We can now specify what it means to incrementalize the simply-
typed λ calculus with respect to this semantics.

3.5 Change semantics
The informal specification of differentiation is to map changes in
a program’s input to changes in the program’s output. In order to
formalize this specification in terms of change structures and the
denotational semantics of the object language, we now define a
non-standard denotational semantics of the object language that
computes changes. The evaluation function J t K∆ computes how
the value of a well-typed term t changes given both the values and



∆τ dv , df ∈ ∆τv v, f ∈ J τ K

∆ι = . . .

∆ (σ → τ) = σ → ∆σ → ∆τ

∆ιv = . . . ⊆ J ∆ι K

∆(σ→τ)f = {df ∈ (x : Jσ K)→ ∆σx→ ∆τ (f x) |
(f ⊕A→B df ) (a⊕A da) = f a⊕B df a da}

J ι K = . . .

Jσ → τ K = Jσ K→ J τ K

(a) Change types. (b) Change values. (c) Standard values.

∆Γ dρ ∈ ∆Γρ ρ ∈ J Γ K

∆ε = ε

∆ (Γ, x : τ) = ∆Γ, dx : ∆τ

∆ε∅ = {∅}
∆(Γ,x:τ) (ρ, x = v) = {(dρ, dx = dv) | dρ ∈ ∆Γρ ∧ dv ∈ ∆τv}

J ε K = {∅}
J Γ, x : τ K = {(ρ, x = v) | ρ ∈ J Γ K ∧ v ∈ J τ K}

(d) Change contexts. (e) Change environments. (f) Standard environments.

∆t J t K∆ρ dρ J t K ρ

Derive(c) = . . .

Derive(λx. t) = λx dx . Derive(t)

Derive(s t) = Derive(s) t Derive(t)

Derive(x) = dx

J c K∆ρ dρ = . . .

Jλx. t K∆ρ dρ = λv dv . J t K∆(ρ, x = v) (dρ, dx = dv)

J s t K∆ρ dρ = (J s K∆ρ dρ) (J t K ρ) (J t K∆ρ dρ)

Jx K∆ρ dρ = lookup dx in dρ

J c K ρ = . . .

Jλx. t K ρ = λv. J t K (ρ, x = v)

J s t K ρ = (J s K ρ) (J t K ρ)

Jx K ρ = lookup x in ρ

(g) Differentiation. (h) Differential evaluation. (i) Standard evaluation.

Figure 4. Standard and differential behavior of the simply-typed λ-calculus. The left column defines differentiation as a source-to-source
transformation. The right column defines the standard semantics of the simply-typed lambda calculus. The middle column connects these
artifacts via a differential semantics that maps λ-terms to the derivative of their standard semantics.

the changes of all free variables in t. In the special case that none
of the free variables change, J t K∆ computes the nil change. By
Theorem 2.10, this is the derivative of J t K which maps changes to
the input of J t K to changes of the output of J t K, as required.

First, we define a change structure on J τ K for all τ . The carrier
∆τ of these change structures will serve as non-standard domain for
the change semantics. The plugin provides a change structure Ĉι on
base type ι such that ∀v.∆ιv ⊆ J ∆ι K.

Definition 3.4 (Changes). Given a type τ , we define a change
structure Ĉτ for J τ K by induction on the structure of τ . If τ is a
base type ι, then the result Ĉι is supplied by the plugin. Otherwise
we use the construction from Theorem 2.8 and define

Ĉσ→τ = Ĉσ → Ĉτ .

To talk about the derivative of J t K, we need a change structure
on its domain, the set of environments. Since environments are
(heterogeneous) lists of values, we can lift operations on change
structures to change structures on environments acting pointwise.

Definition 3.5 (Change environments). Given a context Γ, we
define a change structure ĈΓ on the corresponding environments
J Γ K and change environments ∆Γρ in Fig. 4(e).

The operations ⊕ρ and 	ρ are defined as follows.

ε⊕ ε = ε

(ρ, x = v)⊕ (dρ, dx = dv) = (ρ⊕ dρ) , x = (v ⊕ dv)

ε	 ε = ε

(ρ2, x = v2)	 (ρ1, x = v1) = (ρ2 	 ρ1) , x = (v2 	 v1)

The properties in Definition 2.1 follow directly from the same
properties for the underlying change structures Ĉτ .

At this point, we can define the change semantics of terms and
prove that J t K∆ it is the derivative of J t K. For each constant c, the
plugin provides J c K∆, the derivative of J c K.

Definition 3.6 (Change semantics). The function J t K∆ is defined
in Fig. 4(h).

Lemma 3.7. Given Γ ` t : τ , J t K∆ is the derivative of J t K.

3.6 Correctness of differentiation
We can now prove that the behavior of J Derive(t) K is consistent with
the behavior of J t K∆. This leads us to the proof of the correctness
theorem mentioned in the introduction.

The logical relation [19, Chapter 8] of erasure captures the idea
that an element of a change structure stays almost the same after we
erase all traces of dependent types from it.

Definition 3.8 (Erasure). Let dv ∈ ∆τv and dv ′ ∈ J ∆τ K. We say
dv erases to dv ′, or dv ∼vτ dv ′, if one of the following holds:

(a) τ is a base type and dv = dv ′.
(b) τ = σ0 → σ1 and for all w, dw , dw ′ such that dw ∼wσ0 dw ′,

we have (dv w dw) ∼(v w)
σ1 (dv ′ w dw ′).



Sometimes we shall also say that dv ∈ ∆τv erases to a closed
term dt : ∆t, in which case we mean dv erases to (J dt K ∅).1

The following lemma makes precise what we meant by “almost
the same”.

Lemma 3.9. Suppose dv ∼vτ dv ′. If⊕′ is the erased version of the
update operator ⊕ of the change structure of τ (Sec. 3.1), then

v ⊕ dv = v ⊕′ dv ′.
It turns out that J t K∆ and Derive(t) are “almost the same”. For

closed terms, we make this precise by:

Lemma 3.10. If (t : τ) is closed, then (J t K∆∅ ∅) erases to
Derive(t).

We omit for lack of space a more general version of Lemma 3.10,
which holds also for open terms, but requires defining erasure
on environments. The main correctness theorem is a corollary of
Lemmas 3.7, 3.9 and 3.10.

Theorem 3.11 (Correctness of differentiation). Let f : σ → τ be
a closed term of function type. For every closed base term s : σ
and for every closed change term ds : ∆σ such that some change
dv ∈ ∆σ J s K erases to ds , we have

f (s⊕ ds) ∼= (f s)⊕ (Derive(f) s ds) ,

where ∼= is denotational equality (a ∼= b iff J a K = J b K).

Theorem 3.11 is a more precise restatement of Eq. (1). Requiring
the existence of dv ensures that ds evaluates to a change, and not to
junk in J ∆σ K.

3.7 Plugins
Both our correctness proof and the differentiation framework (which
is the basis for our implementation) are parametric in the plugin.
Instantiating the differentiation framework requires a differentiation
plugin; instantiating the correctness proof for it requires a proof
plugin, containing additional definitions and lemmas.

To allow executing and differentiating λ-terms, a differentiation
plugin must provide:

• base types, and for each base type ι, the erased change structure
of ι as specified in Fig. 2,
• primitives, and for each primitive c, the term Derive(c).

Examples With bags of numbers as a primitive type, and a change
structure erased from B̂ag S (defined in Sec. 2.1), the derivative of
merge is easy to write down:

Derive(merge) = λu. λdu. λv. λdv .merge du dv

In other words, the change to the merge of two bags is the merge of
changes to each bag.

For each base type ι, a proof plugin must provide:

• a semantic domain J ι K,

• a change structure Ĉι such that ∀v.∆ιv ⊆ J ∆ι K,

• a proof that Ĉι erases to the corresponding erased change
structure in the differentiation plugin.

For each primitive c : τ , the proof plugin must provide:

• its value J c K in the domain J τ K,

• its derivative (J c K∆∅ ∅)1 in the change set of τ ,

1 To evaluate a closed term t, we need no environment entries, so the empty
environment ∅ suffices: (J t K ∅) is the value of t in the empty environment,
and (J t K∆∅ ∅) is the value of t using the change semantics, the empty
environment and the empty change environment.

• a proof that (J c K∆∅ ∅) erases to the term Derive(c).

To show that the interface for proof plugins can be implemented,
we wrote a small proof plugin with integers and bags of integers.
To show that differentiation plugins are practicable, we have imple-
mented the transformation and a differentiation plugin which allows
the incrementalization of non-trivial programs. This is presented in
the next section.

4. Differentiation in practice
In practice, successful incrementalization requires both correctness
and performance of the derivatives. Correctness of derivatives is
guaranteed by the theoretical development the previous sections,
together with the interface for differentiation and proof plugins,
whereas performance of derivatives has to come from careful design
and implementation of differentiation plugins.

4.1 The role of differentiation plugins
Users of our approach need to (1) choose which base types and
primitives they need, (2) implement suitable differentiation plugins
for these base types and primitives, (3) rewrite (relevant parts of)
their programs in terms of these primitives and (4) arrange for their
program to be called on changes instead of updated inputs.

As discussed in Sec. 3.2, differentiation supports abstraction,
application and variables, but since computation on base types is
performed by primitives for those types, efficient derivatives for
primitives are essential for good performance.

To make such derivatives efficient, change types must also have
efficient implementations, and allow describing precisely what
changed. The efficient derivative of sum in Sec. 1 is possible only
if bag changes can describe deletions and insertions, and integer
changes can describe additive differences.

For many conceivable base types, we do not have to design
the differentiation plugins from scratch. Instead, we can reuse
the large body of existing research on incrementalization in first-
order and domain-specific settings. For instance, we reuse the
approach from Gluche et al. [12] to support incremental bags and
maps. By wrapping a domain-specific incrementalization result in
a differentiation plugin, we adapt it to be usable in the context of
a higher-order and general-purpose programming language, and in
interaction with other differentiation plugins for the other base types
of that language.

For base types with no known incrementalization strategy, the
precise interfaces for differentiation and proof plugins can guide the
implementation effort. These interfaces could also from the basis
for a library of differentiation plugins that work well together.

Rewriting whole programs in our language would be an excessive
requirements. Instead, we embed our object language as an EDSL
in some more expressive meta-language (Scala in our case study),
so that embedded programs are reified. The embedded language can
be made to resemble the metalanguage [22]. To incrementalize a
part of a computation, we write it in our embedded object language,
invoke Derive on the embedded program, optionally optimize the
resulting programs and finally invoke them. The metalanguage also
acts as a macro system for the object language, as usual. This allows
us to simulate polymorphic collections such as (Bag ι) even though
the object language is simply-typed; technically, our plugin exposes
a family of base types to the object language.

4.2 Predicting nil changes
Handling changes to all inputs can induce excessive overhead in
incremental programs [2]. It is also often unnecessary; for instance,
the function argument of fold in Sec. 1 does not change since it is
a closed subterm of the program, so fold will receive a nil change
for it. A (conservative) static analysis can detect changes that are



histogram :: Map Int (Bag word)→ Map word Int
histogram = mapReduce groupOnBags additiveGroupOnIntegers histogramMap histogramReduce

where additiveGroupOnIntegers = Group (+) (λn → −n) 0
histogramMap = foldBag groupOnBags (λn → singletonBag (n, 1))
histogramReduce = foldBag additiveGroupOnIntegers id

-- Precondition:
-- For every key1 :: k1 and key2 :: k2, the terms mapper key1 and reducer key2 are homomorphisms.
mapReduce :: Group v1 → Group v3 → (k1 → v1 → Bag (k2, v2))→ (k2 → Bag v2 → v3)→ Map k1 v1 → Map k2 v3
mapReduce group1 group3 mapper reducer = reducePerKey ◦ groupByKey ◦mapPerKey

where mapPerKey = foldMap group1 groupOnBags mapper
groupByKey = foldBag (groupOnMaps groupOnBags) (λ(key, val)→ singletonMap key (singletonBag val))
reducePerKey = foldMap groupOnBags (groupOnMaps group3) (λkey bag → singletonMap key (reducer key bag))

Figure 5. The λ-term histogram with Haskell-like syntactic sugar. additiveGroupOnIntegers is the group on integers described in Sec. 2.1.

guaranteed to be nil at runtime. We can then specialize derivatives
that receive this change, so that they need not inspect the change at
runtime.

For our case study, we have implemented a simple static analysis
which detects and propagates information about closed terms. The
analysis is not interesting and we omit details for lack of space.

4.3 Self-maintainability
In databases, a self-maintainable view [13] is a function that can
update its result from input changes alone, without looking at the
actual input. By analogy, we call a derivative self-maintainable if
it uses no base parameters, only their changes. Self-maintainable
derivatives describe efficient incremental computations: since they
do not use their base input, their running time does not have to
depend on the input size.

Examples Derive(merge) = λx dx y dy . merge dx dy is self-
maintainable with the change structure B̂ag S described in Sec. 2.1,
because it does not use the base inputs x and y. Other derivatives are
self-maintainable only in certain contexts. The derivative of element-
wise function application (map f xs) ignores the original value of
the bag xs if the changes to f are always nil, because the underlying
primitive foldBag is self-maintainable in this case (as discussed
in next section). We take advantage of this by implementing a
specialized derivative for foldBag .

We have seen in Sec. 3.2 that grand_total ′ needlessly recom-
putes merge xs ys . However, the result is a base input to fold ′. In
next section, we’ll replace fold ′ by a self-maintainable derivative
(based again on foldBag) and will avoid this recomputation.

To conservatively predict whether a derivative is going to be
self-maintainable (and thus efficient), one can inspect whether
the program restricts itself to (conditionally) self-maintainable
primitives, like merge (always) or map f (only if df is nil, which
is guaranteed when f is a closed term).

To avoid recomputing base arguments for self-maintainable
derivatives (which never need them), we currently employ lazy
evaluation. Since we could use standard techniques for dead-code
elimination [7] instead, laziness is not central to our approach.

A significant restriction is that not-self-maintainable derivatives
can require expensive computations to supply their base arguments,
which can be expensive to compute. Since they are also computed
while running the base program, one could reuse the previously com-
puted value through memoization or extensions of static caching
(as discussed in Sec. 5.2.2). We leave implementing these optimiza-
tions for future work. As a consequence, our current implementation
delivers good results only if most derivatives are self-maintainable.

4.4 Case study
We perform a case study on a nontrivial realistic program to demon-
strate that ILC can speed it up. We take the MapReduce-based
skeleton of the word-count example [16]. We define a suitable dif-

ferentiation plugin, adapt the program to use it and show that incre-
mental computation is faster than recomputation. We designed and
implemented the differentiation plugin following the requirements
of the corresponding proof plugin, even though we did not formalize
the proof plugin (e.g. in Agda). For lack of space, we focus on base
types which are crucial for our example and its performance, that
is, collections. The plugin also implements tuples, tagged unions,
Booleans and integers with the usual introduction and elimination
forms, with few optimizations for their derivatives.

wordcount takes a map from document IDs to documents and
produces a map from words appearing in the input to the count of
their appearances, that is, a histogram:

wordcount : Map ID Document→ Map Word Int

For simplicity, instead of modeling strings, we model documents
as bags of words and document IDs as integers. Hence, what we
implement is:

histogram : Map Int (Bag a)→ Map a Int

We model words by integers (a = Int), but treat them paramet-
rically. Other than that, we adapt directly Lämmel’s code to our
language. Figure 5 shows the λ-term histogram .

Figure 6 shows a simplified Scala implementation of the primi-
tives used in Fig. 5. As bag primitives, we provide constructors and
a fold operation, following Gluche et al. [12]. The constructors for
bags are ∅ (constructing the empty bag), singleton (constructing a
bag with one element), merge (constructing the merge of two bags)
and negate (negate b constructs a bag with the same elements as b
but negated multiplicities); all but singleton represent abelian group
operations. Unlike for usual ADT constructors, the same bag can be
constructed in different ways, which are equivalent by the equations
defining abelian groups; for instance, since merge is commutative,
merge x y = merge y x. Folding on a bag will represent the bag
through constructors in an arbitrary way, and then replace construc-
tors with arguments; to ensure a well-defined result, the arguments
of fold should respect the same equations, that is, they should form
an abelian group; for instance, the binary operator should be com-
mutative. Hence, the fold operator foldBag can be defined to take a
function (corresponding to singleton) and an abelian group (for the
other constructors). foldBag is then defined by equations:

foldBag : Group τ → (σ → τ)→ Bag σ → τ

foldBag g@(_,�,�, e) f ∅ = e

foldBag g@(_,�,�, e) f (merge b1 b2) = foldBag g f b1

� foldBag g f b1

foldBag g@(_,�,�, e) f (negate b) = � (foldBag g f b)

foldBag g@(_,�,�, e) f (singleton v) = f v

If g is a group, these equations specify foldBag g precisely [12].
Moreover, the first three equations mean that foldBag g f is abelian



// Abelian groups
abstract class Group[A] {
def merge(value1: A, value2: A): A
def inverse(value: A): A
def zero: A

}

// Bags
type Bag[A] = collection.immutable.HashMap[A, Int]

def groupOnBags[A] = new Group[Bag[A]] {
def merge(bag1: Bag[A], bag2: Bag[A]) = . . .
def inverse(bag: Bag[A]) = bag.map({
case (value, count) ⇒ (value, -count)

})
def zero = collection.immutable.HashMap()

}

def foldBag[A, B](group: Group[B], f: A ⇒ B, bag: Bag[A]): B =
bag.flatMap({
case (x, c) if c ≥ 0 ⇒ Seq.fill(c)(f(x))
case (x, c) if c < 0 ⇒ Seq.fill(-c)(group.inverse(f(x)))

}).fold(group.zero)(group.merge)

// Maps
type Map[K, A] = collection.immutable.HashMap[K, A]

def groupOnMaps[K, A](group: Group[A]) = new Group[Map[K, A]] {
def merge(dict1: Map[K, A], dict2: Map[K, A]): Map[K, A] =
dict1.merged(dict2)({

case ((k, v1), (_, v2)) ⇒ (k, group.merge(v1, v2))
}).filter({
case (k, v) ⇒ v 6= group.zero

})

def inverse(dict: Map[K, A]): Map[K, A] = dict.map({
case (k, v) ⇒ (k, group.inverse(v))

})

def zero = collection.immutable.HashMap()
}

// The general map fold
def foldMapGen[K, A, B](zero: B, merge: (B, B) ⇒ B)
(f: (K, A) ⇒ B, dict: Map[K, A]): B =
dict.map(Function.tupled(f)).fold(zero)(merge)

// By using foldMap instead of foldMapGen, the user promises that
// f k is a homomorphism from groupA to groupB for each k : K.
def foldMap[K, A, B](groupA: Group[A], groupB: Group[B])
(f: (K, A) ⇒ B, dict: Map[K, A]): B =
foldMapGen(groupB.zero, groupB.merge)(f, dict)

Figure 6. A Scala implementation of primitives for bags and maps.
In the code, we call �, � and e respectively merge, inverse, and
zero. We also omit the relatively standard primitives.

group homomorphism between the abelian group on bags and the
group g (because those equations coincide with the definition).
Figure 6 shows an implementation of foldBag as specified above.
Moreover, all functions which deconstruct a bag can be expressed
in terms of foldBag with suitable arguments. For instance, we can
sum the elements of a bag of integers with foldBag gZ (λx. x),
where gZ is the abelian group on integers defined in Sec. 2.1. Users
of foldBag can define different abelian groups to specify different
operations (for instance, to multiply floating-point numbers).

If g and f do not change, foldBag g f has a self-maintainable
derivative. By the equations above,

foldBag g f (b⊕ db)

= foldBag g f(merge b db)

= foldBag g f b� foldBag g f db

= foldBag g f b⊕GroupChange g (foldBag g f db)

We will describe the GroupChange change constructor in a mo-
ment. Before that, we note that as a consequence, the derivative of
foldBag g f is

λb db. GroupChange g (foldBag g f db) ,

and we can see it does not use b: as desired, it is self-maintainable.
Additional restrictions are require to make foldMap’s derivative
self-maintainable. Those restrictions require the precondition on
mapReduce in Fig. 5. foldMapGen has the same implementation
but without those restrictions; as a consequence, its derivative is not
self-maintainable, but it is more generally applicable. Lack of space
prevents us from giving more details.

To define GroupChange, we need a suitable erased change
structure on τ , such that ⊕ will be equivalent to �. Since there
might be multiple groups on τ , we allow the changes to specify a
group, and have ⊕ delegate to �:

∆τ = Replace τ | GroupChange (AbelianGroup τ) τ

v ⊕ (Replace u) = u

v ⊕ (GroupChange (•, inverse, zero) dv) = v • dv
v 	 u = Replace v

That is, a change between two values is either simply the new value
(which replaces the old one, triggering recomputation), or their
difference (computed with abelian group operations, like in the
changes structures for groups from Sec. 2.1. The operator 	 does
not know which group to use, so it does not take advantage of the
group structure. However, foldBag is now able to generate a group
change.

We rewrite grand_total in terms of foldBag to take advantage
of group-based changes.

id = λx. x

G+ = (Z,+,−, 0)

grand_total = λxs. λys. foldBag G+ id (merge xs ys)

Derive(grand_total) =

λxs. λdxs. λys. λdys.

foldBag ′ G+ G′+ id id ′

(merge xs ys)

(merge ′ xs dxs ys dys)

It is now possible to write down the derivative of foldBag .

(if static analysis detects that dG and df are nil changes)

foldBag ′ = Derive(foldBag) =

λG. λdG. λf. λdf . λzs. λdzs.

GroupChange G (foldBag G f dzs)

We know from Sec. 3.7 that

merge ′ = λu. λdu. λv. λdv .merge du dv .

Inlining foldBag ′ and merge ′ gives us a more readable term β-
equivalent to the derivative of grand_total :

Derive(grand_total) =

λxs. λdxs. λys. λdys. foldBag G+ id (merge dxs dys).

4.5 Benchmark results
Our results show (Fig. 7) that our program reacts to input changes
in essentially constant time, as expected, hence orders of magnitude
faster than recomputation. Constant factors are small enough that
the speedup is apparent on realistic input sizes.

For lack of space, details on benchmarking results and inputs are
available in the extended version of our paper (Appendix A).
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Figure 7. Performance results in log-log scale, with input size on
the x-axis and runtime in ms on the y-axis. Confidence intervals are
shown by the whiskers; most whiskers are too small to be visible.

Two important lessons from the evaluations are:

• As anticipated in Sec. 4.3, to achieve good performance our
current implementation requires some form of dead code elimi-
nation, such as laziness.
• Incrementalization increases code size significantly. Analyzing

and addressing this increase is left for future work.

5. Related work
Existing work on incremental computation can be divided into two
groups: Static incrementalization and dynamic incrementalization.
Static approaches analyze a program statically and generate an
incremental version of it. Dynamic approaches create dynamic
dependency graphs while the program runs and propagate changes
along these graphs.

The trade-off between the two is that static approaches have the
potential to be faster because no dependency tracking at runtime is
needed, whereas dynamic approaches can support more expressive
programming languages. ILC is a static approach, but compared to
the other static approaches it supports more expressive languages.

In the remainder of this section, we analyze the relation to the
most closely related prior works. Ramalingam and Reps [21], Gupta
and Mumick [13] and Acar et al. [3] discuss further related work.

5.1 Dynamic approaches
One of the most advanced dynamic approach to incrementalization is
self-adjusting computation, which has been applied to Standard ML
and large subsets of C [2, 14]. In this approach, programs execute
on the original input in an enhanced runtime environment that
tracks the dependencies between values in a dynamic dependence
graph [3]; intermediate results are memoized. Later, changes to the
input propagate through dependency graphs from changed inputs to
results, updating both intermediate and final results; this processing
is often more efficient than recomputation.

However, creating dynamic dependence graphs imposes a large
constant-factor overhead during runtime, ranging from 2 to 30 in
reported experiments [4, 5], and affecting the initial run of the
program on its base input. Acar et al. [5] show how to support
high-level data types in the context of self-adjusting computation;
however, the approach still requires expensive runtime bookkeeping

during the initial run. Our approach, like other static ones, uses
a standard runtime environment and has no overhead during base
computation, but may be less efficient when processing changes.
This pays off if the initial input is big compared to its changes.

Chen et al. [9] have developed a static transformation for purely
functional programs, but this transformation just provides a superior
interface to use the runtime support with less boilerplate, and does
not reduce this performance overhead. Hence, it is still a dynamic
approach, unlike the transformation this work presents.

Another property of self-adjusting computation is that incremen-
talization is only efficient if the program has a suitable computation
structure. For instance, a program folding the elements of a bag
with a left or right fold will not have efficient incremental behavior;
instead, it’s necessary that the fold be shaped like a balanced tree. In
general, incremental computations become efficient only if they are
stable [1]. Hence one may need to massage the program to make
it efficient. Our methodology is different: Since we do not aim to
incrementalize arbitrary programs written in standard programming
languages, we can select primitives that have efficient derivatives
and thereby require the programmer to use them.

Functional reactive programming [10] can also be seen as a
dynamic approach to incremental computation; recent work by
Maier and Odersky [18] has focused on speeding up reactions to
input changes by making them incremental on collections. Willis
et al. [24] use dynamic techniques to incrementalize JQL queries.

5.2 Static approaches
Static approaches analyze a program at compile-time and produce
an incremental version that efficiently updates the output of the
original program according to changing inputs.

Static approaches have the potential to be more efficient than
dynamic approaches, because no bookkeeping at runtime is required.
Also, the computed incremental versions can often be optimized
using standard compiler techniques such as constant folding or
inlining. However, none of them support first-class functions; some
approaches have further restrictions.

Our aim is to apply static incrementalization to more expressive
languages; in particular, ILC supports first-class functions and an
open set of base types with associated primitive operations.

5.2.1 Finite differencing
Paige and Koenig [20] present derivatives for a first-order language
with a fixed set of primitives. Blakeley et al. [8] apply these ideas
to a class of relational queries. The database community extended
this work to queries on relational data, such as in algebraic differ-
encing [13], which inspired our work and terminology. However,
most of this work does not apply to nested collections or algebraic
data types, but only to relational (flat) data, and no previous ap-
proach handles first-class functions. Incremental support is typically
designed monolithically for a whole language, rather than piece-
wise. Improving on algebraic differencing, Koch [15] guarantees
asymptotic speedups with a compositional query transformation and
delivers huge speedup in realistic benchmarks, though still for a
first-order database language.

More general (non-relational) data types are considered in the
work by Gluche et al. [12]; our support for bags and the use
of groups is inspired by their work, but their architecture is still
rather restrictive: they lack support for function changes and restrict
incrementalization to self-maintainable views, without hinting at a
possible solution.

5.2.2 Static memoization
Liu’s work [17] allows to incrementalize a first-order base program
f(xold) to compute f(xnew), knowing how xnew is related to xold.
To this end, they transform f(xnew) into an incremental program



which reuses the intermediate results produced while computing
f(xold), the base program. To this end, (i) first the base program
is transformed to save all its intermediate results, then (ii) the
incremental program is transformed to reuse those intermediate
results, and finally (iii) intermediate results which are not needed
are pruned from the base program. However, to reuse intermediate
results, the incremental program must often be rearranged, using
some form of equational reasoning, into some equivalent program
where partial results appear literally. For instance, if the base
program f uses a left fold to sum the elements of a list of integers
xold, accessing them from the head onwards, and xnew prepends a
new element h to the list, at no point does f(xnew) recompute the
same results. But since addition is commutative on integers, we can
rewrite f(xnew) as f(xold) + h. The author’s CACHET system will
try to perform such rewritings automatically, but it is not guaranteed
to succeed. Similarly, CACHET will try to synthesize any additional
results which can be computed cheaply by the base program to help
make the incremental program more efficient.

Since it is hard to fully automate such reasoning, we move
equational reasoning to the plugin design phase. A plugin provides
general-purpose higher-order primitives for which the plugin authors
have devised efficient derivatives (by using equational reasoning
in the design phase). Then, the differentiation algorithm computes
incremental versions of user programs without requiring further user
intervention. It would be useful to combine ILC with some form of
static caching to make the computation of derivatives which are not
self-maintainable more efficient. We plan to do so in future work.

6. Conclusions and future work
We have presented ILC, an approach to lifting incremental com-
putations on first-order programs to incremental computations on
higher-order programs. We have presented a machine-checked cor-
rectness proof of a formalization of ILC and an initial experimental
evaluation in the form of an implementation, a sample plugin for
maps and bags, and a non-trivial example that was incrementalized
successfully and efficiently.

Our work opens several avenues of future work. Our current
implementation is not efficient on derivatives that are not self-
maintainable. However, as discussed (Sec. 4.3), we will study how
to memoize intermediate results to address this limitation. Our next
step will be to develop language plugins which have efficient non-
self-maintainable primitives.

Another area of future work is adding support for algebraic
data types (including recursive types), polymorphism, subtyping,
general recursion and other collection types. While support for
algebraic data types could subsume support for specific collections,
many collections have additional algebraic properties that enable
faster incrementalization (like bags). Even lists (which have fewer
algebraic properties) can benefit from special support [18].

Moreover, we intend to apply ILC to optimize queries on
collections in the context of the SQUOPT project [11], which was a
motivation for this work; in particular, SQUOPT can automatically
rewrite queries to use database-style indexes, and ILC enables
updating those indexes when input data changes.

Finally, we intend to perform a full and thorough experimental
evaluation to demonstrate that ILC can incrementalize large-scale
practical programs.
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