
Featherweight TEX and Parser Correctness

Sebastian Thore Erdweg and Klaus Ostermann

University of Marburg, Germany

Abstract. TEX (and its LATEX incarnation) is a widely used document
preparation system for technical and scientific documents. At the same
time, TEX is also an unusual programming language with a quite powerful
macro system. Despite the wide range of TEX users (especially in the
scientific community), and despite a widely perceived considerable level
of “pain” in using TEX, there is almost no research on TEX. This paper
is an attempt to change that.

To this end, we present Featherweight TEX, a formal model of TEX which
we hope can play a similar role for TEX as Featherweight Java did for
Java. The main technical problem which we study in terms of Feath-
erweight TEX is the parsing problem. As for other dynamic languages
performing syntactic analysis at runtime, the concept of “static” parsing
and its correctness is unclear in TEX and shall be clarified in this paper.
Moreover, it is the case that parsing TEX is impossible in general, but
we present evidence that parsers for practical subsets exists.

We furthermore outline three immediate applications of our formaliza-
tion of TEX and its parsing: a macro debugger, an analysis that detects
syntactic inconsistencies, and a test framework for TEX parsers.

1 Introduction

Almost every user of TEX [7,8] or LATEX [10] is familiar with the technique of
binary error search: Since TEX error messages often give no hints about the
cause of an error (”File ended while scanning use of . . . ”, ”Something’s wrong
- perhaps a missing . . . ”), TEX users comment out one half of the code were
the cause is suspected and continue by binary search. The situation gets even
worse when macros are involved, since all errors in macro definitions – including
simple syntactic errors – only show up when the macro is invoked. Even when
the error message contains some context information it will be in terms of ex-
panded macros with no obvious relation to the cause of the error in the original
document. There is no formal grammar or parser for TEX, and consequently no
syntactic analysis which could reveal such errors in a modular way – let alone
more sophisticated analyses such as type checkers.

Errors also often arise since it is not clear to the user how the evaluation
model of TEX works: When and in which context is a piece of code evaluated?
There is no formal specification, but only rather lengthy informal descriptions
in TEX books [4,7]. The TEX reference implementation [8] is much too long and
complicated to serve as a substitute for a crisp specification.

We believe it is a shame that the programming community designs beautiful
programming languages, analyses, and tools in thousands of papers every year,
yet the language which is primarily used to produce these documents is neither
very well understood, nor amenable to modern analyses and tools.

We have developed a formal model (syntax and operational semantics) of
TEX, which we call Featherweight TEX, or FTEX for short. FTEX omits all type-
setting related properties of TEX (which are constituted mostly by a set of a few
hundred primitive commands) and concentrates on the TEX macro system. We
hope that it can have the same fertilizing effect on TEX research that Feather-
weight Java [6] had for Java.

We use FTEX to study the parsing problem. A parser for TEX would have im-
mediate applications such as “static” syntactic error checking, code highlighting
or code folding and many other conveniences of modern programming editors,
and it would enable the application of other more sophisticated analyses which
typically require an abstract syntax tree as input. It would also open the door to
migrating thousands of existing TEX libraries to other text preparation systems
or future improved versions of TEX.

To appreciate the parsing problem it is important to understand that in
many dynamic languages – general-purpose languages as well as domain-specific
languages – parsing and evaluation are deeply intertwined. In this context, it is
not clear how a static parser could operate or what a correct parser even is. Due
to the many advantages of static syntactic analyses, the parsing problem is not
only relevant to TEX but to dynamic language engineering in general.

In particular, programs of dynamic languages do not necessarily have a syntax
tree at all. For example, consider the following TEX program:

\def · \app ·#1 ·#2 · {#1 ·#2}
\def · \id ·#1 · {#1}
\app · a · b
\app · \id · c

It defines a macro \app which consumes two arguments, the “identity macro” \id ,
and two applications of \app. This program will evaluate to the text a · b · c. Now
consider the question whether the body of \app, #1 ·#2, is a macro application
or a text sequence. The example shows that it can be both, depending on the
arguments. If the first argument to \app is a macro consuming at least one
argument, then it will be a macro application, otherwise a sequence. Since TEX
is a Turing-complete language, the property whether a program has a parse tree
is even undecidable.

Our work is based on the hypothesis that most TEX documents do have a
parse tree – for example, TEX users will typically not define macros where an
argument is sometimes a macro, and sometimes a character. Hence our ultimate
goal is to solve the parsing problem for a class of documents that is large enough
for most practical usages of TEX. To this end, we identify a set of TEX features
that are particularly problematic from the perspective of parsing, and present
evidence that many TEX documents do not use these features. As additional

evidence we define a parser for a subset of TEX in which the absence of the
problematic features is syntactically guaranteed.

We will not present a working parser for unrestricted TEX documents, though.
A careful design of a parser will require a more in-depth analysis of typical TEX
libraries and documents, to come up with reasonable heuristics. But even more
importantly, we believe that the first step in developing a syntactic analysis must
be to understand exactly what it means for such an analysis to be correct. For
TEX, this is not clear at all. Most languages are designed on top of a context-
free grammar, hence the question of correctness does not arise, but since the
semantics of TEX is defined on a flat, unstructured syntax it is not clear what it
means for a parse tree to be correct. We will formulate correctness of a parse tree
as as a correct prediction of the application of reduction rules during program
evaluation.

The contributions of this work are as follows:

• We present FTEX, the first formal model of TEX. It is, compared to ex-
isting descriptions, rather simple and concise. It can help TEX users and
researchers to better understand TEX evaluation, and it can be the basis for
more research on TEX.

• We describe in detail the problem of parsing TEX and formalize a correctness
criterion for syntactic analyses. This correctness criterion can not only be
used for formal purposes, but also as a technique to test parser implemen-
tations.

• We identify those features of TEX that are particularly worrisome from the
perspective of parsing. We have also evaluated how the TEX macro system
is used in typical LATEX documents by instrumenting a LATEX compiler to
trace macro usages. This analysis shows that worst-case scenarios for parsing
(such as dynamically changing the arity of a macro) rarely occur in practice.

• We present a working parser for a subset of TEX and verify its correctness.

• We show how our formalism can be adapted to form tools relevant in practice.
Amongst others, we outline how a macro debugger can be constructed using
our TEX semantics.

• Since LATEX is just a library on top of TEX, all our results apply to LATEX as
well.

We also believe that our formal model and parsing approaches can be applied
and adopted to other languages that have similar parsing problems, such as C
with the C preprocessor, or Perl. CPP is agnostic to the grammar of C, hence the
C grammar cannot be used to parse such files. Obviously, it would be desirable
to have a parser that identifies macro calls and their corresponding arguments.
In Perl, like in TEX, parsing and evaluation are intertwined. For example, the
syntactic structure of a Perl function call (foo $arg1, $arg2) may be parsed
as either (foo($arg1), $arg2) or foo($arg1, $arg2), depending on whether
foo currently accepts one or two arguments. In this paper, we will concentrate
on TEX, though, and leave the application of our techniques to these languages
for future work.

With regard to related work, to the best of our knowledge this is the first work
investigating the macro system and parsing problem of TEX (or any aspect of
TEX for that matter). There are some tools that try to parse LATEX code, such as
pandoc1 or syntax highlighters in LATEX IDEs such as TEXnicCenter2, but these
tools only work on a fixed quite small subset of LATEX and cannot deal with user-
defined macro definitions appropriately. This is also, to our knowledge, the first
work to define a correctness criterion for syntactic analyses of languages that
mix parsing and evaluation. The main existing related work is in the domain of
parsers for subsets of C with CPP [2,5,11,12,13,14], but none of these works is
concerned with formally (or informally) defining correctness.

The rest of this paper is structured as follows. The next section describes
why parsing TEX is hard. Section 3 presents our TEX formalization, FTEX. Sec-
tion 4 defines parser correctness by means of a conformance relation between
syntax trees and parsing constraints generated during program evaluation. In
Section 5 we explain the difficulties of parsing TEX in terms of our formalization
and demonstrate that provably correct parsers exist for reasonably large subsets
of TEX. Our empirical study of TEX and LATEX macro usage is presented in Sec-
tion 6. Section 7 discusses the applicability of our techniques to everyday TEX
programming. Section 8 concludes.

2 Problem Statement

TEX has a number of properties that make parsing particularly challenging. First,
TEX macros are dynamically scoped: A macro call is resolved to the last macro
definition of that name which was encountered, which is not necessarily the one
in the lexical scope of the macro call. This means that the target of a macro call
cannot be statically determined, which is a problem for parsing since the actual
macro definition determines how the call is parsed. For example, whether a is
an argument to \foo in the macro call \foo · a depends on the current definition
of \foo.

Second, macros in TEX can be passed as arguments to other macros. This
induces the same problem as dynamic scoping: Targets of macro calls can in
general not be determined statically.

Third, TEX has a lexical [3] macro system. This means that macro bodies
or arguments to macros are not necessarily syntactically correct3 pieces of TEX
code. For example, a macro body may expand to an incomplete call of another
macro, and the code following the original macro invocation may then complete
this macro call. Similarly, macros may expand to new (potentially partial) macro
definitions.

Fourth, TEX allows a custom macro call syntax through delimited param-
eters. Macro invocations are then “pattern-matched” against these delimiters.
For example, the TEX program

1 http://johnmacfarlane.net/pandoc/
2 http://www.texniccenter.org
3 We do not know yet what syntactic correctness for TEX means anyway

http://johnmacfarlane.net/pandoc/
http://www.texniccenter.org

\def · \foo ·#1 · d ·#2 · {#1 · x · y ·#2}
\foo · a · b · c · d · e

will evaluate to a · b · c · x · y · e. Such delimiters can be used by TEX libraries
to effectively define new domain-specific syntax. For example, using the qtree4

library for drawing trees, the command

\Tree [. Delimiter syntax [.is [.a] pain]]

results in the following tree:
Delimiter

syntax is

a pain

There are two other parsing-related properties of TEX which, however, we will
not be concerned with in this paper, namely category codes and TEX primitives.
During the evaluation of a TEX program, a mapping of characters to category
codes is maintained. For example, the category code 0 describes escape charac-
ters, which is usually only the backslash \. In principle, it is possible to change
the category code mapping while evaluating a TEX program, but to our knowl-
edge this happens very rarely outside the “bootstrapping” libraries, so we do
not expect this to be a big problem in practice. It is in any case a problem that
can be dealt with separately from the problem we are dealing with here.

TEX primitives are also relevant for parsing, because they can change the
argument evaluation in a way that cannot be expressed using macros. Most no-
tably, the \expandafter and \futurelet commands affect the evaluation order of
programs. The former temporarily skips ahead of the expression following it,
while the latter constitutes a lookahead mechanism. Furthermore, with TEX’s
various kinds of variables come a multitude of special-syntax assignment primi-
tives, and alignments need their own special treatment anyway [7,4]. Still, there
seems to be no conceptual hurdle for our main goal, that is the development of
a correct syntactic analysis for a feature-rich subset of TEX, and we believe that
the formal model presented next captures the most interesting and challenging
aspects of TEX for parsing.

3 Featherweight TEX

We have formalized the core of the TEX macro system – in particular the as-
pects described in the previous section – in the form of a small-step operational
semantics. We call this language FTEX and present its syntax in Fig. 1.

In FTEX, a program s consists of five primitive forms, namely characters c,
macro identifiers m, macro parameters x, groups {s}, and the macro definition
command \def . We call these forms expressions. In addition, let ♦ represent the
empty expression, which is not allowed to occur in user programs. Expressions are
composed by sequentialization only, i.e. there is no syntactic distinction between

4 http://www.ling.upenn.edu/advice/latex/qtree/

http://www.ling.upenn.edu/advice/latex/qtree/

c ∈ character characters
m ∈ M macro variables
x ::= #1 | . . . | #9 | #x macro parameters
e ::= c | m | x | {s} | \def | ♦ expressions
s ::= e FTEX programs

σ ::= {x 7→ s} substitutions
r ::= c | x | m | ♦ parameter tokens

dM ::= \def ·M · r · {s} macro values
v ::= ε | c · v | dM · v | ♦ · v values

RM ::= [] | c ·RM | dM ·RM reduction contexts
| ♦ ·RM | {RM} | RM · e

Fig. 1. FTEX syntax

macro calls and the concatenation of text, see definition of s. Since this syntax
does not identify the structure of macro applications, we call s the flat syntax.
We do not restrict the use of the macro definition command to syntactically
valid macro definitions (such as md ::= \def · m · x · {s}) since in TEX macro
definitions may be computed dynamically by the expansion of other macros. For
example, one could define a macro \def ′ which behaves exactly like \def but, say,
adds an additional dummy argument to the macro.

The operational semantics of FTEX, Fig. 2 is defined in a variant of the
evaluation context style from Wright and Felleisen [16]. This means that, instead
of introducing environments and similar entities, every relevant runtime entity
is encoded within the language’s syntax. The necessary additional (runtime)
syntax and evaluation contexts are defined below the FTEX syntax in Fig. 1. It
is important to note that the forms d and R are parametrized over the set of
macro variables M ⊆M that may occur in definitions.

dropDefs : v → v
dropDefs(ε) = ε
dropDefs(c · v) = c · dropDefs(v)
dropDefs(d · v) = ♦ · dropDefs(v)
dropDefs(♦ · v) = ♦ · dropDefs(v)

σ̂ : s→ s
σ̂(x) = σ(x)
σ̂({s}) = {σ̂(s)}
σ̂(e) = e
σ̂(ε) = ε
σ̂(e · e) = σ̂(e) · σ̂(e)

s→ s′

RM[s]→ RM[s′]
(R-RStep)

{v} → dropDefs(v)
(R-GVal)

match(r, s′) = σ

\def ·m · r · {s} ·RM\{m}[m · s′]
→ \def ·m · r · {s} ·RM\{m}[σ̂(s)]

(R-Macro)

Fig. 2. FTEX reduction semantics

The reduction system has only three rules: A congruence rule (R-RStep) which
allows the reduction inside a context, a reduction rule (R-GVal) to eliminate groups
that are already fully evaluated, and a rule (R-Macro) for evaluating macro ap-
plications.

(R-RStep) is standard for every evaluation-context based semantics. For (R-GVal),
it is important to understand that macro definitions inside a group are not visible
outside the group, hence there is actually a mix of static and dynamic scoping.
Within a fixed nesting level, scoping is dynamic, i.e., the rightmost definition of
the macro wins, as long as it is on the same or a lower nesting level, but defini-
tions in deeper nesting levels are ignored. For this reason it is safe to discard all
macro definitions in fully evaluated groups and just retain the text contained in
it - which is exactly what dropDefs does.

Not surprisingly, the (R-Macro) rule for evaluating macro calls is the most
sophisticated one. The evaluation context RM\{m} is used to make sure that the
macro definition of m is indeed the right-most one on the same or lower nesting
level by prohibiting further definitions of m. (R-Macro) uses the parameter text r
and the macro arguments s′ to compute a substitution σ, which is then applied
to the macro body s.5 Substitution application σ̂ is not hygienic [9], capture-
avoiding or the like; rather, it just replaces every occurrence of a variable by its
substitute.

The match function is used for matching actual macro arguments with the
parameter text, i.e., the part between the macro name and the macro body,
which may potentially contain delimiters of the form c or m in addition to the
macro parameters; see the syntax of r. match expects the parameter text as
its first argument and the argument text as its second one. It then generates a
substitution σ, mapping macro parameters x to FTEX terms s.

Due to space limitations we cannot display the full definition of match here,
but instead present a few examples in Fig. 3. The first two calls of match accord
to usual parameter instantiation, where in the first one the argument’s group
is unpacked. Delimiter matching is illustrated by the subsequent three calls. In
particular, the fifth example shows that delimited variables may instantiate to
the empty expression. The last example fails because only delimited parameters
can consume sequences of arguments; the second character is not matched by
the parameter.

match(x, {c1 · c2}) = {x 7→ c1 · c2}
match(x1 · x2, c1 · c2) = {x1 7→ c1, x2 7→ c2}
match(c1 · c2, c1 · c2) = {}
match(x · c4, c1 · c2 · c3 · c4) = {x 7→ c1 · c2 · c3}
match(x · c, c) = {x 7→ ♦}
match(x, c1 · c2) = undefined

Fig. 3. Examples of Matching

5 Here and in the remainder of this paper, we use a = a1 · · · an to denote a sequence
of a’s and ε to denote the empty sequence.

In summary, macros are expanded by first determining their active definition
using parametrized reduction contexts, then matching the parameter text against
the supplied argument text, and finally applying the resulting substitution to the
macro body, which replaces the macro call.

4 Correctness of Syntactic Analyses

Given an unstructured representation of a program, syntactic analyses try to
infer its structured representation, that is a syntax tree. A syntax tree is a pro-
gram representation in which program fragments are composed according to the
syntactic forms they inhabit. In FTEX, there are three compositional syntac-
tic forms, namely macro application, macro definition and sequentialization, see
Fig. 4. Macro applications t@ t consist of a macro representation and the pos-
sibly empty list of arguments. The definition of a macro is represented by the
sequence of program fragments forming the definition 〈t〉. The sequentialization
of two trees t ; t is used to denote sequential execution and result concatenation.

f ::= c | m | x | {t} | \def tree expressions
t ::= ∅ | f | t ; t | t@ t | 〈 t 〉 syntax trees
t⊥ ::= ⊥ | t parse result

Fig. 4. Tree syntax

An FTEX parser thus is a total function p : s→ t⊥ assigning either a syntax
tree or ⊥ to each program in s (see Fig. 1 for the definition of s). However, not
each such function is a valid parser; the resulting syntax trees must represent the
original code and its structure correctly. But what characterizes a correct struc-
tural representation? Looking at syntax trees from another angle helps answer
this question.

Syntax trees can also be understood to predict a program’s run in that the
evaluation needs to follow the structure specified by the tree. More precisely,
if we assume the language’s semantics to be syntax-directed, the syntax tree’s
inner nodes restrict the set of applicable rules to those matching the respective
syntactic form. By inversion, the reduction rules used to evaluate a program
constrain the set of valid syntax trees. For instance, in a program which is
reduced by macro expansion, the macro and its arguments must be related by
a macro application node in the syntax tree. A value, on the other hand, must
correspond to a sequence of macro definitions and characters.

Accordingly, a correct FTEX parser is a total function p : s → t⊥ such that
(i) each syntax tree represents the original code and (ii) each tree is compatible
with the reduction rules chosen in the program’s run.

In the present section, we formalize these requirements, i.e. we give a formal
specification of correct syntax trees and parsers. Often, however, one wants a
syntax tree to be compatible not only with the specific program run generated

by evaluating the represented program; rather, syntax trees should be modular,
i.e. reusable in all contexts the represented programs may be used in. We refer
the specification of modular syntax trees and analyses to future work, though.

4.1 Structure Constraints

Essentially, FTEX programs are syntactically underspecified. The operator · is
used to compose expressions, but its syntactic meaning is ambiguous; it may
correspond to any of the following structural forms of the stronger tree syntax:

• Expression sequences: for example, c1 · c1 corresponds to the character se-
quence c1 ; c2.

• Macro application: for example, \foo·c corresponds to the application \foo @ c
if \foo represents a unary macro.

• Macro argument sequence: for example, in \bar · c1 · c2 the second use of ·
forms a sequence of arguments to \bar if the macro takes two arguments.
The call then corresponds to the syntax tree \bar @ c1 · c2.

• Macro definition constituent sequence: for example, all occurrences of · in
\def · \id ·#1 · {#1} contribute to composing the constituents of the macro
definition 〈\def · \id ·#1 · {#1}〉.

While evaluating an FTEX program, the syntactic meaning of uses of · be-
come apparent successively, as illustrated in the above examples. In order to
reason about a program’s syntactic runtime behavior, we introduce a constraint
system which relates the syntactic meaning of occurrences of · to their use during
reduction. A syntax tree then has to satisfy all generated constraints, i.e. it has
to predict the syntactic meaning of each occurrence of · correctly.

In order to distinguish different uses of · and relate them to their incarnations
in syntax trees, we introduce labels ` ∈ L for expression concatenation and
tree composition as shown in Fig. 5.6 Similar to sequences a, we write ã =
a1 ·`1 · · · ·`n−1 an to denote sequences of a’s where the composing operator · is
labeled by labels `i ∈ L. All labels in non-reduced FTEX programs and syntax
trees are required to be unique. The reduction semantics from the previous
section is refined such that labels are preserved through reduction. This, however,
violates label-uniqueness as the following example shows.

` ∈ L
s ::= ẽ

t ::= ∅ | f | t ;` t | t@
` t̃ | 〈 t̃ 〉

k ::= SEQ(`) | APP(`) | DEF (`)

Fig. 5. Label-extended Syntax and Structure Constraints

6 Though the set of labels L is left abstract, we will use natural numbers as labels in
examples.

Example 1.

\def ·1 \seq ·2 #1 ·3 #2 ·4 {#1 ·5 #2} ·6 \seq ·7 c1 ·8 c2
→ \def ·1 \seq ·2 #1 ·3 #2 ·4 {#1 ·5 #2} ·6 c1 ·5 c2

In this example, a macro \seq taking two arguments is defined. In the macro
body the two arguments are composed by the operator labeled 5. Since labels
are preserved through reduction, label 5 occurs outside the macro body after
expanding \seq , namely in the body’s instantiation c1 ·5 c2.

When only regarding the uninstantiated macro body of \seq there is no way
of telling how the macro arguments are combined, i.e. which syntactic meaning
the operator labeled 5 inhabits. Depending on the actual first argument the op-
erator could, for instance, denote a macro application or the construction of a
macro definition. In the above example, however, the macro expands into a com-
position of characters, hence the operator has to represent the sequentialization
of expressions.

More generally, labels fulfill two purposes. First, they enable the identification
of conflicts: if, for instance, a macro is called several times and expands into
conflicting syntactical forms, such as sequentialization and application, there
will be conflicting requirements on the involved labels. The respective operators
thus have to have several syntactic meanings during runtime, which rules out a
static syntactic model. Second, by using the same labels in FTEX programs and
syntax trees, the structural prediction made by a parser can be easily related to
the program’s structure during runtime.

Our formulation of syntax tree correctness relies on the notion of structure
constraints k, Fig. 5, which restrict the syntactic meaning of labeled composition
operators. SEQ(`) requires that ·` represents an expression sequentialization,
APP(`1 · · · `n) denotes that ·`1 is a macro application composition and ·`2 · · · ·`n
forms a sequence of macro argument. Since, macro argument sequentialization
always is accompanied by a macro application, only one form of constraint is
needed. Lastly, constraints of the form DEF (`1 · · · `n) demand that the labeled
operators ·`1 · · · ·`n represent the composition of macro definition constituents.

To see these constraints in action, reconsider Ex. 1. As we will show in the
subsequent subsection, all of the following constraints can be derived by evalu-
ation:

DEF (1 · 2 · 3 · 4), SEQ(5), SEQ(6) APP(7 · 8)

4.2 Constraint Generation

The syntactic relations between different parts of a program emerge during eval-
uation. To this end, we instrument the previously presented reduction semantics
to generate structure constraints as the syntactic meanings of compositions ·
become apparent.

The adapted reduction semantics is shown in Fig. 6. For a reduction step

s
K−→ s′, K denotes the set of generated constraints. Accordingly, the reduction

rule (R-RStep) simply forwards the constraints generated for the reduction of the

subexpression s. When applying (R-GVal), it is exploited that the group contains
a value only, i.e. that it contains a sequence of macro definitions and characters.
The corresponding structure constraints are generated by applying valcons to
that value.

valcons : v → {k}
valcons(ε) = ∅
valcons(c) = ∅
valcons(d) = {DEF (`1 · · · `n)},

where d = e1 ·`1 · · · ·`n en+1

valcons(c ·` v) = {SEQ(`)} ∪ valcons(v)

valcons(d ·` v) = valcons(d) ∪ {SEQ(`)} ∪ valcons(v)

valcons(♦ ·` v) = {SEQ(`)} ∪ valcons(v)

s
K−→s′

RM[s]
K−→RM[s′]

(R-RStep)

{v} valcons(v)−−−−−−→dropDefs(v)
(R-GVal)

\def ·`1 m ·`2 {s} ·`3 RM\{m}[m]
∅−→\def ·`1 m ·`2 {s} ·`3 RM\{m}[σ̂(s)]

(R-MacroEps)

match(r̃, ẽ) = σ

ẽ = e1 ·`
′
1 · · · ·`

′
n en+1

k = APP(`′ · `′1 · · · `′n)

\def ·`1 m ·`2 r̃ ·`3 {s} ·`4 RM\{m}[m ·`
′
ẽ]

{k}−−→\def ·`1 m ·`2 r̃ ·`3 {s} ·`4 RM\{m}[σ̂(s)]

(R-Macro)

Fig. 6. Constraint Generation

Macro expansion is split into two rules. The first one, (R-MacroEps), covers
the expansion of macros that have no parameters (note the lack of r̃ in the
macro definition). In this case no syntactical structure is exploited and thus no
constraints are generated. The second macro expansion rule, (R-Macro), generates
a single constraint which denotes the applicative structure of the expanded macro
call.

Constraint generation now can be summarized as follows.

Definition 1. The set of constraints Ω(s →∗ s′) associated to the reduction
sequence s→∗ s′ of the program s is defined by:

Ω(v) = valcons(v)
Ω(s) = ∅, if s 6= v for all v

Ω(s
K−→s′ →∗ s′′) = K ∪Ω(s′ →∗ s′′)

In the definition of Ω, the first two cases cover reduction sequences of length
zero, i.e. the constraints for the final state of the particular run of the program
is defined. The third case collects all constraint sets generated during reduction
and is recursively defined on the given reduction sequence.

Let us once again consider Ex. 1, where s is the initial program and s′ its
reduct. Then Ω(s →∗ s′) = {DEF (1 · 2 · 3 · 4),SEQ(5),SEQ(6)APP(7 · 8)}.
The constraint APP(7, 8) is generated because of the expansion of the macro
\seq with arguments c1 and c2. The remaining constraints follow from applying
valcons to s′, which is a value and therefore is handled by the first case of Ω.

4.3 Parser Correctness

We are finally back to formulating a correctness criterion for FTEX parsers.
First of all, a correct parser needs to produce a syntax tree which represents
the analyzed program. In order to be able to relate syntax trees to flat pro-
gram representations and structure constraints, we introduced labeled trees in
Fig. 5. Labeled trees can be easily flattened and compared to weakly structured
programs since composition operators are uniquely identified by their label. Ac-
cordingly, dropping all of a syntax tree’s structural information while retaining
the labels reveals the underlying FTEX program:

π : t→ s
π(∅) = ε
π(t1 ;` t2) = π(t1) ·` π(t2)

π(t@` t1 ·`1 · · · ·`n−1 tn) = π(t) ·` π(t1) ·`1 · · · ·`n−1 π(tn)

π(〈t1 ·`1 · · · ·`n−1 tn〉) = π(t1) ·`1 · · · ·`n−1 π(tn)
π({t}) = {π(t)}
π(f) = f, if f 6= {t} for all t

Nevertheless, not only need syntax trees to represent the code correctly, but also
its structure. In the previous subsection, we were able to derive the set of con-
straints representing all syntactic structure a program exhibits during and after
evaluation. According to our viewpoint of syntax trees as structural predictions,
correct parsers must foresee a program’s dynamic structures, i.e. syntax trees
have to satisfy all constraints associated with the evaluation of the program.

A constraint is satisfied by a syntax tree if the constrained composition op-
erators are represented within the tree as required. To this end, we first define
what it means for a syntax tree to match a constraint, in symbols ` t : k, Fig. 7.
Note that we require the labels in the constraints to equal the ones in the syntax
tree, thus assuring that appropriate composition operators are matched only.
Constraint satisfaction then is defined as follows.

Definition 2. A syntax tree t satisfies a constraint k, in symbols t |= k, if t
contains a subtree t′ such that ` t′ : k. A parse tree t satisfies a set of constraints
K, in symbols t |= K, iff t satisfies all constraints k ∈ K.

We are now able to specify correctness of FTEX parsers.

` t1 ;` t2 : SEQ(`)
(K-Seq)

` t@
` t1 ·`1 · · · ·`n tn+1 : APP(` · `1 · · · `n)

(K-App)

` 〈t1 ·`1 · · · ·`n tn+1〉 : DEF (`1 · · · `n)
(K-Def)

Fig. 7. Constraint matching

Definition 3. A total function p : s→ t⊥ is a correct FTEX parser if and only
if for all FTEX programs s with p(s) 6= ⊥

1. π(p(s)) = s, and
2. for all programs s′ with s→∗ s′, p(s) |= Ω(s→∗ s′).

A syntactic analysis for FTEX thus is correct if the resulting syntax trees are
proper representations and structural predictions of original programs.

5 Towards Parsing TEX

In the previous section, we presented a formal specification of correct FTEX
parsers. Accordingly, syntax trees computed by correct parsers must satisfy all
structure constraints emerging during the evaluation of the analyzed program.
For some programs, however, the set of generated structure constraints is in-
herently unsatisfiable, that is, inconsistent: the constraints place contradicting
requirements on syntax trees.

In the present section we show that these inconsistencies arise from the prob-
lematic language features of TEX we discussed in Section 2. We furthermore
demonstrate that by restricting the language such that the problematic features
are excluded, we are able to define a provably correct parser for that subset.

5.1 Parsing-contrary Language Features

When language features allow syntactic ambiguities they actually hinder syntac-
tic analyses. For TEX, these ambiguities translate into the generation of incon-
sistent structure constraints, because ambiguous expression can be used incon-
sistently. Here we present an example for each such language feature and show
that it entails inconsistent constraints. For brevity, we only denote those labels
in the examples that are used for discussion.

Dynamic scoping. In TEX, parsing a macro application depends on the applied
macro’s actual definition. It matters whether the macro expects one or two argu-
ments, for example, because then either the following one or two characters, say,
are matched. With dynamic scoping the meaning of a macro variable depends

on the dynamic scope it is expanded in. Therefore, one and the same macro
variable can exhibit different syntactic properties:

\def · \foo · {c}
\def · \bar · {\foo ·1 c}
\bar
\def · \foo ·#1 · {c}
\bar

Here, each of the calls to \bar reduces to \foo ·1c. In the former call, however, \foo
is defined as a constant, i.e. it does not expect any argument. Therefore, the for-
mer expansion of \bar implies the structure constraint SEQ(1). Contrarily, when
expanding the second call to \bar , \foo is bound to expect one argument. There-
fore, the expansion of \bar corresponds to a macro call of \foo with argument c,
and hence the constraint APP(1) is generated.

In a lexically scoped language, the expansion of \bar would consist of a closure
that binds all free variables in the macro body. The macro identifier \foo thus
would refer to the definition \def · \foo · {c} in both expansions of \bar .

Higher-order arguments. Similarly to macro identifiers in dynamic scoping, higher-
order arguments lead to syntactically ambiguous interpretations of macro param-
eters. Depending on the actual argument, a parameter may represent a constant
expression or in turn a macro.

In the following we define two macros, both of which take two arguments.
The former one builds the sequence of its parameters while the second applies
the first parameter to the second parameter.

\def · \seq ·#1 ·#2 · {#1 ·1 #2}
\def · \app ·#1 ·#2 · {#1 ·#2}

Evidently, the only difference between the definitions of \seq and \app are their
names. The macro body’s syntactic structure thus only depends on whether or
not the first argument is a constant or expects further input. When calling \seq
with two characters, say, the call expands to a sequence of these characters and
the constraint SEQ(1) is generated. In contrast, when calling \seq with a unary
macro and a character, it will expand into yet another macro call. In this case
the conflicting constraint APP(1) is generated.

Lexical macro system. In contrast to syntactical macro systems [15], macros in
TEX are lexical, that is, macro arguments and bodies do not necessarily corre-
spond to complete syntax trees.

\def · \foo · {\def ·1 \baz}
\def · \bar ·#1 · {\foo ·2 #1 ·3 {c}}

In this example neither dynamic scoping nor higher-order macros is relevant.
Still, the structure of \bar ’s body is ambiguous and depends on the argument
#1. The call \bar · c′, for example, expands to \def ·1 \baz ·2 c′ ·3 {c} in two steps.
Correspondingly, the structure constraint DEF (1, 2, 3) is generated. On the other
hand, if \bar is called as in \bar · {{c′}}, it expands to \def ·1 \baz ·2 {c′} ·3 {c},
thus the constraints DEF (1, 2) and SEQ(3) are generated.

Furthermore, the body of \foo cannot be correctly represented by any syntax
tree, because it does not inhibit a valid syntactical form. This is the intrinsic
difficulty in performing syntax analyses on top of a lexical transformation system
such as TEX.

Custom macro call syntax. TEX users are allowed to define their own macro
call syntax as desired. For instance, the following macro needs to be called with
parentheses.

\def · \foo · (·#1 ·) ·{c}
This, however, easily leads to ambiguities when the call syntax depends on macro
parameters, i.e. when a macro argument is matched against the call pattern.

\def · \bar ·#1 · {\foo ·1 (·2#1 ·3)}
\bar · c
\bar ·)

Here, the call to \foo in the body of \bar depends on the macro parameter #1.
While the first call to \bar entails the constraint APP(1, 2, 3) as expected, the
second call expands to \foo ·1 (·2) ·3). Consequently, the constraints APP(1 · 2)
and SEQ(3) are generated, and establish an inconsistency with the first expan-
sion of \bar .

5.2 Parsing FTEX Correctly

We just identified some sources of syntactic ambiguities in FTEX, and can now
focus on finding an actually parsable subset of the language. To this end, we
present a non-trivial FTEX parser and prove it correct with respect to Def. 3.

First, let us fix the set of programs our parser p will be able to parse, i.e. for
which p results in an actual syntax tree. These programs are subject to the
following restrictions:

1. All macro definitions are complete, unary, top-level and prohibit custom call
syntax, that is, they strictly follow the syntactic description \def ·`m ·` #1 ·`
{s} and occur non-nestedly.

2. All uses of macro variables (except in macro definitions) are directly followed
by a grouped expression, as in m ·` {s}. Since all macros are unary, the
grouped expression will correspond to the macro’s argument which thus can
be statically identified.

3. All macros are first-order, i.e. their argument is not a macro itself. To this
end, we require all occurrences of macro parameters in macro bodies to be
wrapped in groups. A higher-order argument would thus always be captured
by a group, as in {\foo}. This would lead to a runtime error since the content
of a group must normalize to a value.

The complete parser pi is defined in Fig. 8. p0 accounts for the top-level pro-
grams which may contain definitions. Nested program fragments are parsed by
p1 where definitions are prohibited but wrapped macro parameters are allowed.

pi(ε) = ∅
pi(c ·` s) = c ;` pi(s)

pi(m ·`1 {s} ·`2 s′) = (m@
`1{p1(s)}) ;`2 pi(s

′)

pi({s} ·` s′) = {p1(s)} ;` pi(s
′)

pi(♦ ·` s) = ∅ ;` pi(s)

p0(\def ·`1 m ·`2 #1 ·`3 {s} ·`4 s′) = 〈\def ·`1 m ·`2 x ·`3 {p1(s)}〉 ;`4 p0(s′)

p1({#1} ·` s) = {x} ;` p1(s)
pi(s) = ⊥

Fig. 8. A provably correct FTEX parser

The definition of pi is to be read such that in each case the parser also returns
⊥ if any nested call returns ⊥.

In order to verify the correctness of p0 with respect to Def. 3, we need to
show that the resulting syntax trees represent the input programs and satisfy
all structure constraints associated to runs of the programs.

Theorem 1. For all programs s with pi(s) 6= ⊥, π(pi(s)) = s for i ∈ {0, 1}.

Lemma 1. For all values v, pi(v) |= valcons(v) for i ∈ {0, 1}.

Lemma 2. For i ∈ {0, 1} and all programs s and s′ with s
K−→s′ and pi(s) 6= ⊥

(i) pi(s) |= K,

(ii) pi(s
′) 6= ⊥, and

(iii) {k | pi(s) |= k} ⊇ {k | pi(s′) |= k}.

Proof. By case distinction on the applied reduction rule.

(i) By Lem. 1 and inversion on p0 and p1.

(ii) For (R-Macro) this holds since macro bodies are p1-parsable and p1-parsability
is closed under substitution. The other cases are simple.

(iii) For (R-Macro) let R = \def ·`1m·`2#1·`3{sb}·`4RM\{m}[] with R[m·`′{sa}] =

s, R[σ(sb)] = s′ and σ = {#1 7→ sa}. Then {k | p(R[m ·`′ {sa}]) |= k} ⊇
{k | p(R[]) |= k ∨ p(sa) |= k} ⊇ {k | p(R[σ(sb)]) |= k}. The other cases
are simple.

Theorem 2. For i ∈ {0, 1} and all FTEX programs s and s′ with s →∗ s′, if
pi(s) 6= ⊥ then pi(s) |= Ω(s→∗ s′).

Proof. By induction on the reduction sequence s →∗ s′. For s = v by Lem. 1.

For s in normal form and s 6= v, Ω(s) = ∅. For s
K−→s′ →∗ s′′ by Lem. 2 and the

induction hypothesis.

Corollary 1. p0 is a correct FTEX parser.

6 Macro Usage in TEX and LATEX

In the previous section, we demonstrated how our formal specification of FTEX
parsers can be instantiated to give a provably correct parser. The subset of
FTEX the parser supports was designed to avoid all of the pitfalls described in
Section 5.1. Parsers which support larger subsets of FTEX do exist, though, and
in the present section we set out to justify their relevance in practice.

Identifying a sublanguage of TEX which is broad enough to include a wide
range of programs used in practice and, at the same time, is precise enough to
include a considerably large parsable subset, is a task involving a detailed study
of existing TEX and LATEX libraries as well as conflict-resolving heuristics, which
exclude some programs in favor of others. Nonetheless, we believe that signifi-
cantly large portions of the existing TEX and LATEX libraries in fact are parsable,
i.e. not exposed to the issues associated with dynamic scoping, delimiter syntax
and macro arguments consuming further input. This claim is supported by a
study of macro usage in existing TEX and LATEX libraries, Fig. 9, which we have
been carrying out.

Macro definitions

total 345823 ∼ 100.0%

constant 320357 ∼ 92.6%

recursive 56553 ∼ 16.4%

delimiter syntax 12427 ∼ 3.6%

redefinitions 160697 ∼ 46.5%

redef. arity changes 16289 ∼ 4.7%

– ignoring macros “*temp*” 7175 ∼ 2.1%

redef. delimiter syntax changes 16927 ∼ 4.9%

– ignoring macros “*temp*” 5827 ∼ 1.7%

Macro expansions

total 2649553 ∼ 100.0%

constant 746889 ∼ 28.2%

recursive 524320 ∼ 19.8%

delimiter syntax 95512 ∼ 3.6%

higher-order arguments 70579 ∼ 2.7%

Fig. 9. Macro usage in TEX and LATEX libraries

To collect various statistics about macro definitions and applications, we
adapted a Java implementation of TEX, called the New Typesetting System [1].7

Our adaption is available at http://www.informatik.uni-marburg.de/~seba/
texstats. We analyzed 15 LATEX documents originating from our research group

7 This implementation is incomplete with respect to the typesetting of documents,
but complete regarding TEX’s macro facilities.

http://www.informatik.uni-marburg.de/~seba/texstats
http://www.informatik.uni-marburg.de/~seba/texstats

and ranging from research papers to master’s theses. These documents amount
to 301 pages of scientific writing and contain more than 300,000 macro definitions
and 2,500,000 macro expansions. The high number of macro definitions, which
might be surprising, is mainly caused by the use of libraries, e.g. amsmath.

Our analysis observes facts about the sample documents’ uses of macro defi-
nitions and macro applications. To this end, a macro is considered constant if its
definition has no declared parameter. A macro is called recursive if the transitive
hull of macro identifiers used in its body contains the macro’s own identifier.8

Since the assumed recursive call not necessarily is executed, a macro may be
considered recursive without actually being so. A macro has a delimited syntax
if the parameter text in its definition contains characters or macro identifiers.
A macro is redefined if a definition for the same macro identifier has previously
been executed. A redefinition changes the arity of a macro, if the number of
parameters in the previously executed definition differs. Similarly, the delimiter
syntax of a macro is changed by its redefinition if the previously executed def-
inition’s parameter text contains different characters or macro identifiers, or a
different order thereof. Additionally, arity and delimiter syntax changes have
been recorded for macro identifiers not containing the string “temp”. Lastly, a
macro is said to be applied with higher-order arguments if at least on argument
is a non-constant macro.

In the tables of Fig. 9, we state the absolute number of occurrences of the
observed effects and their percentage relative to the respective category’s total
number of effects.

Our study shows that only 3.6% of all macro definitions and expansions use
delimiter syntax. Furthermore, only 4.7% of all macro definitions correspond to
redefinitions changing the redefined macro’s arity, and 4.9% correspond to re-
definitions changing its delimiter syntax. Nonetheless, most of these definitions
redefine a macro with the string “temp” in its name. This gives reason to be-
lieve that the different versions of these macros are used in unrelated parts of
the program, and do not entail conflicting constraints. Moreover, higher-order
arguments are used only in 2.7% of all analyzed expansions.

The high number of redefinitions and constant macro definitions, 46.5% and
92.6%, is also interesting. This is in contrast to the number of expansions of
parameterless macros, which is only 28.2%. We believe that this effect can be
explained by the frequent usage of constant macros as variables, as opposed to
behavioral abstractions. Accordingly, a redefinition of a constant macro occurs
whenever the stored value has to change. This technique is often used for con-
figuring libraries. For example, the LLNCS document class for this conference
contains the macro redefinition

\renewcommand\labelitemi {\ normalfont\bfseries --}

which is used in the environment itemize and controls the label of items in top-
level lists. Any change of this parameter is a macro redefinition. Such macro re-

8 For parsing, it is unimportant whether a macro is recursive. We included this prop-
erty anyway because we found it an interesting figure nonetheless.

definitions cause no problems for parsing, since the protocol and parsing-related
behavior of the macro does not change.

The presented data suggests that despite dynamic scoping, delimiter syn-
tax and higher-order arguments, the syntactical behavior of macros often can
be statically determined, because these language features, which are particu-
larly troublesome for parsing, are rarely used. Therefore, we believe that the
development of a practical syntactic analysis for TEX and LATEX is possible.

7 Applications

Besides giving a precise formulation of parser correctness, our formal model has
valuable, immediate applications in practice. In the following we propose three
tools easing the everyday development with TEX and LATEX.

Macro debugging. Our formal FTEX semantics is defined in form of a small-
step operational reduction semantics. Consequently, it allows single stepping of
macro expansions and FTEX processing. This support is of high potential benefit
for TEX users since it enables comprehending and debugging even complicated
macro libraries.

In order to apply macro stepping meaningfully to only part of a TEX docu-
ment, the context in which the code is evaluated has to be fixed. One promising
possibility is to scan the document for top-level library imports and macro defini-
tions, and reduce the code in the context of those definitions. Similar techniques
are already applied in some TEX editors, however not for the purpose of debug-
ging.

Syntactic inconsistency detection. In Section 4.2, we introduced constraint gen-
eration which denotes the dynamic syntactical structure of FTEX code. Con-
straint generation cannot be used in static analyses, though, because it implies
evaluating the program. In a programming tool, however, gathering structural
information by running the program is a valid approach. Therefore, the in-
strumented FTEX semantics can be used to generate and identify conflicting
structure constraints, which indicate accidental syntactic inconsistencies in the
analyzed program and should be reported to the programmer.

Parser testing. Almost all TEX editors contain a rudimentary parser for TEX
documents, so that syntax highlighting, for example, is possible. Often enough,
however, these simplistic parsers produce erroneous syntax trees, essentially dis-
abling all tool support. By taking advantage of constraint generation again, the
parser can actually be tested. As stated in the definition of parser correctness,
all generated constraints need to be satisfied by resulting syntax trees. The TEX
editor can thus check whether its parser is correctly predicting the document’s
structure, and deliberately handle cases where it is not.

More generally, all generated constraints can be understood as test cases
for user defined FTEX parsers. To this end, the constraint generator and the
constraint satisfaction relation comprise a framework for testing FTEX parsers.

8 Conclusion

We have defined a formal model of TEX and have clarified formally what it
means for a static parser to be correct. We have identified language features that
are hindering syntactic analyses and have shown that provably correct parsers
exist for subsets of TEX that exclude such features. Furthermore, we have given
empirical evidence that this class of practical interest. We have also demonstrated
how TEX programmers may benefit from our formal model in their everyday
work, for instance by using a macro debugger.

We hope that this work will trigger a new line of research that will result in
a broad range of tools for TEX users and, eventually, in a new design of TEX and
LATEX according to modern programming language design principles which will
remove the idiosyncrasies that today’s TEX users have to suffer.

Acknowledgments. This work was supported in part by the European Re-
search Council, grant #203099.

References

1. NTS: A New Typesetting System. http://nts.tug.org/. Visited on 20.03.2010.
2. G. J. Badros and D. Notkin. A Framework for Preprocessor-Aware C Source Code

Analyses. Software: Practice and Experience, 30(8):907–924, 2000.
3. C. Brabrand and M. I. Schwartzbach. Growing Languages with Metamorphic

Syntax Macros. In Partial Evaluation and Semantics-Based Program Manipulation,
pages 31–40. ACM, 2002.

4. V. Eijkhout. TEX by Topic, A TEXnicans Reference. Addison-Wesley, 1992.
5. A. Garrido and R. Johnson. Refactoring C with Conditional Compilation. In

Automated Software Engineering, pages 323–326. IEEE Computer Society, 2003.
6. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java - A Minimal Core

Calculus for Java and GJ. In ACM Transactions on Programming Languages and
Systems, pages 132–146, 1999.

7. D. E. Knuth. The TEXbook. Addison-Wesley, 1984.
8. D. E. Knuth. TEX: The Program. Addison-Wesley, 1986.
9. E. E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. F. Duba. Hygienic Macro

Expansion. In LISP and Functional Programming, pages 151–161. ACM, 1986.
10. L. Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1986.
11. M. Latendresse. Rewrite Systems for Symbolic Evaluation of C-like Preprocessing.

In European Conference on Software Maintenance and Reengineering, pages 165–
173. IEEE Computer Society, 2004.

12. P. E. Livadas and D. T. Small. Understanding Code Containing Preprocessor
Constructs. In Program Comprehension, pages 89–97. IEEE Comp. Society, 1994.

13. Y. Padioleau. Parsing C/C++ Code without Pre-processing. In O. de Moor
and M. I. Schwartzbach, editors, Compiler Construction, LNCS, pages 109–125.
Springer, 2009.

14. A. Saebjoernsen, L. Jiang, D. J. Quinlan, and Z. Su. Static Validation of C Pre-
processor Macros. In Automated Software Engineering, pages 149–160. IEEE Com-
puter Society, 2009.

15. D. Weise and R. Crew. Programmable Syntax Macros. In Programming Language
Design and Implementation, pages 156–165. ACM, 1993.

16. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Infor-
mation and Computation, 115(1):38–94, 1994.

http://nts.tug.org/

	Featherweight TeX and Parser Correctness

