
Eden
Parallel Functional Programming with Haskell

Rita Loogen

Philipps-Universität Marburg, Germany

Joint work with
Yolanda Ortega Mallén, Ricardo Peña
Alberto de la Encina, Mercedes Hildalgo Herrero, Christóbal Pareja,
Fernando Rubio, Lidia Sánchez-Gil, Clara Segura, Pablo Roldan Gomez
(Universidad Complutense de Madrid)

Jost Berthold, Silvia Breitinger, Mischa Dieterle, Thomas Horstmeyer,
Ulrike Klusik, Oleg Lobachev, Bernhard Pickenbrock, Steffen Priebe, Björn Struckmeier
(Philipps-Universität Marburg)

CEFP Budapest 2011

2Rita Loogen: Eden – CEFP 2011

Marburg /Lahn

Overview

• Lectures I & II (Thursday)
– Motivation

– Basic Constructs

– Case Study: Mergesort

– Eden TV –
The Eden Trace Viewer

– Reducing communication costs

– Parallel map implementations

– Explicit Channel Management

– The Remote Data Concept

– Algorithmic Skeletons

• Nested Workpools

• Divide and Conquer

3

• Lecture III: Lab Session
(Friday Morning)

• Lecture IV: Implementation
• Layered Structure

• Primitive Operations

• The Eden Module

• The Trans class

• The PA monad

• Process Handling

• Remote Data

Materials

Materials

• Lecture Notes

• Slides

• Example Programs (Case studies)

• Exercises

are provided via the Eden web page

www.informatik.uni-marburg.de/~eden

Navigate to CEFP!

4Rita Loogen: Eden – CEFP 2011

5Rita Loogen: Eden – CEFP 2011

Motivation

6

Our Goal

Parallel programming at a high level of abstraction

functional language

(e.g. Haskell)

=> concise programs

=> high programming efficiency

automatic parallelisation

or annotations

inherent parallelism

7

Our Approach

Parallel programming at a high level of abstraction

parallelism control

» explicit processes

» implicit communication

» distributed memory

» …

Eden = Haskell + Parallelism

www.informatik.uni-marburg.de/~eden

+ functional language

(e.g. Haskell)

=> concise programs

=> high programming efficiency

8Rita Loogen: Eden – CEFP 2011

Basic Constructs

9

Eden

= Haskell + Coordination

 process definition

 process instantiation

parallel
programming

at a high level of
abstraction

process :: (Trans a, Trans b) => (a -> b) -> Process a b

gridProcess = process (\ (fromLeft,fromTop) ->
let ... in (toRight, toBottom))

(#) :: (Trans a, Trans b) => Process a b -> a -> b

(outEast, outSouth) = gridProcess # (inWest,inNorth)

process outputs

computed by

concurrent threads,

lists sent as streams

Derived operators and functions

• Parallel function application
– Often, process abstraction and instantiation are used in the following

combination

• Eager process creation
– Eager creation of a series of processes

10Rita Loogen: Eden – CEFP 2011

spawn :: (Trans a, Trans b) =>

[Process a b] -> [a] -> [b]

spawn = zipWith (#) -- ignoring demand control

spawnF :: (Trans a, Trans b) =>

[a -> b] -> [a] -> [b]

spawnF = spawn . (map process)

($#) :: (Trans a, Trans b) => (a -> b) -> a -> b

f $# x = process f # x -- ($#) = (#) . process

Evaluating f $# e

11Rita Loogen: Eden – CEFP 2011

11

graph of
process

abstraction
process f

#
graph of

argument
expression

e

will be evaluated
by new child process

on remote PE

will be evaluated
in parent process

by new concurrent thread
and sent to child process

main process

child process

creates

result of e

result of f $ e

12

Defining process nets
Example: Computing Hamming numbers

import Control.Parallel.Eden

hamming :: [Int]

hamming

= 1: sm ((uncurry sm) $#

(map (*2) $# hamming,

map (*3) $# hamming))

(map (*5) $# hamming)

sm :: [Int] -> [Int] -> [Int]

sm [] ys = ys

sm xs [] = xs

sm (x:xs) (y:ys)

| x < y = x : sm xs (y:ys)

| x == y = x : sm xs ys

| otherwise = y : sm (x:xs) ys

*3*2 *5

sm

sm

1:

hamming

13

Questions about Semantics

• simple denotational semantics

– process abstraction -> lambda abstraction

– process instantiation -> application

value/result of program, but no information about
execution, parallelism degree, speedups /slowdowns

• operational

1. When will a process be created?
When will a process instantiation be evaluated?

2. To which degree will process in-/outputs be evaluated?
Weak head normal form or normal form or ...?

3. When will process in-/outputs be communicated?

1. When will a process be created?
When will a process instantiation be evaluated?

2. To which degree will process in-/outputs be evaluated?
Weak head normal form or normal form or ...?

3. When will process in-/outputs be communicated?

14

Answers
Eden

only if and when its result

is demanded

normal form

eager (push) communication:
values are communicated
as soon as available

Lazy Evaluation (Haskell)

only if and when its result
is demanded

WHNF
(weak head normal form)

only if demanded:
request and answer
messages necessary

15

Lazy evaluation vs. Parallelism

• Problem: Lazy evaluation ==> distributed sequentiality

• Eden‘s approach:

– eager process creation with spawn

– eager communication:

•normal form evaluation of all process outputs
(by independent threads)

•push communication, i.e.
values are communicated as soon as available

– explicit demand control by sequential strategies
(Module Control.Seq):

• rnf, rwhnf ... :: Strategy a

•using :: a -> Strategy a -> a

•pseq :: a -> b -> b (Module Control.Parallel)

16Rita Loogen: Eden – CEFP 2011

Case Study: Merge Sort

Case Study: Merge Sort

Haskell Code:

mergeSort :: (Ord a, Show a) => [a] -> [a]

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs = sortMerge (mergeSort xs1) (mergeSort xs2)

where [xs1,xs2] = unshuffle 2 xs

17

Unsorted
list

Unsorted
sublist 1

Unsorted
sublist 2

Sorted
sublist 1

sorted
Sublist 2

sorted
listsplit merge

Example: Merge Sort parallel

Eden Code (simplest version):

parMergeSort :: (Ord a, Show a, Trans a) => [a] -> [a]

parMergeSort [] = []

parMergeSort [x] = [x]

parMergeSort xs = sortMerge (parMergeSort $# xs1) (parMergeSort $# xs2)

where [xs1,xs2] = unshuffle 2 xs

18

Unsorted
list

Unsorted
sublist 1

Unsorted
sublist 2

Sorted
sublist 1

sorted
Sublist 2

sorted
listsplit merge

Eden Code (simplest version):

parMergeSort :: (Ord a, Show a, Trans a) => [a] -> [a]

parMergeSort [] = []

parMergeSort [x] = [x]

parMergeSort xs = sortMerge (parMergeSort $# xs1) (parMergeSort $# xs2)

where [xs1,xs2] = unshuffle 2 xs

Example: Merge Sort
Process net

19

main
process

child
process

child
process

child
process

child
process

child
process

child
process

20Rita Loogen: Eden – CEFP 2011

EdenTV: The Eden Trace Viewer Tool

The Eden-System

21

Parallel runtime system
(Management of processes

and communication)

parallel system

Eden

EdenTV

Compiling, Running, Analysing Eden Programs

22Rita Loogen: Eden – CEFP 2011

Set up environment for Eden on Lab computers by calling
edenenv

Compile Eden programs with
ghc –parmpi --make –O2 –eventlog myprogram.hs or
ghc –parpvm --make –O2 –eventlog myprogram.hs

If you use pvm, you first have to start it.
Provide pvmhosts or mpihosts file
Run compiled programs with
myprogram <parameters> +RTS –ls -N<noPe> -RTS

View activity profile (trace file) with
edentv myprogram_..._-N4_-RTS.parevents

Eden Threads and Processes

• An Eden process comprises several threads

(one per output channel).

• Thread State Transition Diagram:

23

runnable

blockedrunning

finished

new

thread

kill thread

kill thread

kill thread

deblock

thread

block

thread
run thread

suspend

thread

EdenTV

- Diagrams:

Machines (PEs)

Processes

Threads

- Message

Overlays

Machines

Processes

- zooming

- message streams

- additional infos

- ...

EdenTV Demo

25Rita Loogen: Eden – CEFP 2011

26Rita Loogen: Eden – CEFP 2011

Case Study: Merge Sort continued

Example: Activity profile of parallel mergesort

27

Program run, length of input list: 1.000
Observation:
SLOWDOWN
Seq. runtime: 0,0037 s
Par. runtime: 0,9472 s
Reasons:
• 1999 processes, mostly blocked
• 31940 messages
• delayed process creation
• process placement

How can we improve our parallel mergesort?
Here are some rules of thumb.

1. Adapt the total number of processes to the number of
available processor elements (PEs), in Eden: noPe :: Int

2. Use eager process creation functions spawn or spawnF.

3. By default, Eden places processes round robin on the
available PEs. Try to distribute processes evenly over the PEs.

4. Avoid element-wise streaming if not necessary, e.g. by
putting the list into some „box“ or by chunking it into bigger
pieces.

28Rita Loogen: Eden – CEFP 2011

THINK PARALLEL!

Parallel Mergesort revisited

29Rita Loogen: Eden – CEFP 2011

unsorted
list

unsorted
sublist 2

unsorted
sublist noPe-1

sorted
sublist 2

sorted
sublist noPe-1

sorted
listunshuffle (noPe-1) merge many lists

unsorted
sublist 1

mergesort
sorted

sublist 1

unsorted
sublist noPe

sorted
sublist noPe

mergesort

mergesort

mergesort

14

parMap :: (Trans a, Trans b) =>

(a -> b) -> [a] -> [b]

parMap f = spawn (repeat (process f))

A Simple Parallelisation of map

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

y2 y3 y4y1

...
f f ff

...

x2 x3 x4x1
...

1 process

per list element

Alternative Parallelisation of mergesort - 1st try

Eden Code:

par_ms :: (Ord a, Show a, Trans a) => [a] -> [a]

par_ms xs

= head $ sms $ parMap mergeSort

(unshuffle (noPe-1) xs))

sms :: (NFData a, Ord a) => [[a]] -> [[a]]

sms [] = []

sms xss@[xs] = xss

sms (xs1:xs2:xss) = sms (sortMerge xs1 xs2) (sms xss)

31

 Total number of processes = noPe

 eagerly created processes

 round robin placement leads to 1 process per PE

but maybe still too many messages

Resulting Activity Profile
(Processes/Machine View)

32Rita Loogen: Eden – CEFP 2011

• Input size 1.000
• seq. runtime: 0,0037
• par. runtime: 0,0427 s

• 8 Pes, 8 processes, 15 threads
• 2042 messages

Much better, but still

SLOWDOWN

Reason:
Indeed too many messages

Previous results for input size 1000
Seq. runtime: 0,0037 s
Par. runtime: 0,9472 s

33Rita Loogen: Eden – CEFP 2011

Reducing Communication Costs

Reducing Number of Messages
by Chunking Streams

Split a list (stream) into chunks:

chunk :: Int -> [a] -> [[a]]

chunk size [] = []

chunk size xs = ys : chunk size zs

where (ys,zs) = splitAt size xs

Combine with parallel map-implementation of mergesort:

par_ms_c :: (Ord a, Show a, Trans a) =>

Int -> -- chunk size

[a] -> [a]

par_ms_c size xs

= head $ sms $ map concat $

parMap ((chunk size) . mergeSort . concat)

(map (chunk size)(unshuffle (noPe-1) xs)))

34Rita Loogen: Eden – CEFP 2011

Resulting Activity Profile
(Processes/Machine View)

35Rita Loogen: Eden – CEFP 2011

Previous results for input size 1000
Seq. runtime: 0,0037 s
Par. runtime I: 0,9472 s
Par. runtime II: 0,0427 s

• Input size 1.000, chunk size 200
• seq. runtime: 0,0037
• par. runtime: 0,0133 s

• 8 Pes, 8 processes, 15 threads
• 56 messages

Much better, but still
SLOWDOWN

parallel runtime w/o Startup and
Finish of parallel system:

0,0125-0,009 = 0,0035
 increase input size

Activity Profile for Input Size 1.000.000

36Rita Loogen: Eden – CEFP 2011

• Input size 1.000.000
• Chunk size 1000
• seq. runtime: 7,287 s
• par. runtime: 2,795 s

• 8 Pes, 8 processes,
15 threads

• 2044 messages

 speedup of 2.6
on 8 PE

unshuffle map mergesort merge

Further improvement

Idea: Remove input list distribution by local sublist selection:

par_ms_c :: (Ord a, Show a, Trans a) =>

Int -> [a] -> [a]

par_ms_c size xs

= head $ sms $ map concat $

parMap ((chunk size) . mergeSort . concat)

(map (chunk size)(unshuffle (noPe-1) xs)))

par_ms :: (Ord a, Show a, Trans a) =>

Int -> [a] -> [a]

par_ms_b size xs

= head $ sms $ map concat $

parMap (\ i -> (chunk size (mergeSort

((unshuffle (noPe-1) xs)!!i))))

[0..noPe-2]

37Rita Loogen: Eden – CEFP 2011

Corresponding Activity Profiles

38Rita Loogen: Eden – CEFP 2011

• Input size 1.000.000
• Chunk size 1000
• seq. runtime: 7,287 s
• par. runtime: 2,795 s
• new par. runtime: 2.074 s
• 8 Pes, 8 processes,

15 threads
• 1036 messages
 speedup of 3.5 on 8 PEs

39Rita Loogen: Eden – CEFP 2011

Parallel map implementations

40

Parallel map implementations: parMap vs farm

farm

farm :: (Trans a, Trans b) =>
([a] -> [[a]]) -> ([[b]] -> [b]) ->
(a -> b) -> [a] -> [b]

farm distribute combine f xs
= combine (parMap (map f)

(distribute xs))

parMap

parMap :: (Trans a, Trans b) =>
(a -> b) -> [a] -> [b]

parMap f xs
= spawn (repeat (process f)) xs

PE PE

...

...

...

PP

T TTT

PE PE

... ...

...

PP

T TTT

PP

Process farms

farm :: (Trans a, Trans b) =>

([a] -> [[a]]) -> -- distribute

([[b]] -> [b]) -> -- combine

(a->b) -> [a] -> [b]

farm distribute combine f xs

= combine . (parMap (map f)) . distribute

Choose e.g.

• distribute = unshuffle noPe / combine = shuffle

• distribute = splitIntoN noPe / combine = concat

41Rita Loogen: Eden – CEFP 2011

1 process

per PE

with static

task distribution

1 process

per sub-tasklist

with static

task distribution

42

Idea: parallel computation of lines

image :: Double -> Complex Double -> Complex Double -> Integer -> String

image threshold ul lr dimx

= header ++ (concat $ map xy2col lines)

where

xy2col ::[Complex Double] -> String

xy2col line = concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line

(dimy, lines) = coord ul lr dimx

Example:
Functional Program for
Mandelbrot Sets

dimx
ul

lr

43

Idea: parallel computation of lines

image :: Double -> Complex Double -> Complex Double -> Integer -> String

image threshold ul lr dimx

= header ++ (concat $ map xy2col lines)

where

xy2col ::[Complex Double] -> String

xy2col line = concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line

(dimy, lines) = coord ul lr dimx

Example: Parallel
Functional Program for
Mandelbrot Sets

dimx
ul

lr

Replace map by
farm (unshuffle noPe) shuffle

or farmB (splitIntoN noPe) concat

Mandelbrot

Traces

Problem size: 2000 x 2000

Platform: Beowulf cluster

Heriot-Watt-University,

Edinburgh

(32 Intel P4-SMP nodes @ 3 GHz

512MB RAM, Fast Ethernet)

farm (unshuffle noPe) shuffle
round robin static
task distribution

farm (splitIntoN noPe) concat
round robin static
task distribution

45

Example: Ray Tracing

2D Image 3D Scene

rayTrace :: Size -> CamPos -> [Object] -> [Impact]

rayTrace size cameraPos scene = findImpacts allRays scene

where allRays = generateRays size cameraPos

findImpacts :: [Ray] -> [Object] -> [Impact]

findImpacts rays objs = map (firstImpact objs) rays

Reducing Communication Costs by Chunking

Combine chunking with parallel map-implementation:

chunkMap :: Int -> (([a] -> [b]) -> ([[a]] -> [[b]]))

-> (a -> b) -> [a] -> [b]

chunkMap size mapscheme f xs

= concat (mapscheme (map f) (chunk size xs))

46Rita Loogen: Eden – CEFP 2011

Raytracer Example:
Element-wise Streaming vs Chunking

47Rita Loogen: Eden – CEFP 2011

Input size 250

Runtime: 6,311 s

8 PEs

9 processes

17 threads

48 conversations

125048 messages

Input size 250

Chunk size 500

Runtime: 0,235 s

8 PEs

9 processes

17 threads

48 conversations

548 messages

Communication vs Parameter Passing

Process inputs
- can be communicated: f $# inp

- can be passed as parameter (\ () -> f inp) $# ()
() is dummy process input

48

Rita Loogen: Eden – CEFP 2011

graph of
process

abstraction

#
graph of

input
expression

will be packed (serialised)
and sent to remote PE

where child process is created
to evaluate this expression

will be evaluated in parent process
by concurrent thread

and then sent to child process

49

Offline Farm

Farm vs Offline Farm
Farm

offlineFarm :: (Trans a, Trans b) =>
([a] -> [[a]]) -> ([[b]] -> [b]) ->
(a -> b) -> [a] -> [b]

offlineFarm distribute combine f xs
= combine $

spawn
(map (rfi (map f)) (distribute xs))
(repeat ())

rfi :: (a -> b) -> a -> Process () b
rfi h x = process (\ () -> h x)

PE PE

...

...

...

P

TT

P

TT

PE PE

...

P
T...T

P
T...T

farm :: (Trans a, Trans b) =>
([a] -> [[a]]) -> ([[b]] -> [b]) ->
(a -> b) -> [a] -> [b]

farm distribute combine f xs
= combine (parMap (map f)

(distribute xs))

Raytracer Example: Farm vs Offline Farm

50Rita Loogen: Eden – CEFP 2011

Input size 250

Chunk size 500

Runtime: 0,235 s

8 PEs

9 processes

17 threads

48 conversations

548 messages

Input size 250

Chunk size 500

Runtime: 0,119 s

8 PEs

9 processes

17 threads

40 conversations

290 messages

51

Eden: What we have seen so far

• Eden extends Haskell with parallelism

– explicit process definitions and implicit communication

 control of process granularity, distribution of work, and communication topology

– implemented by extending the Glasgow Haskell Compiler (GHC)

– tool EdenTV to analyse parallel program behaviour

• rules of thumb for producing efficient parallel programs

– number of processes ~ noPe

– reducing communication

• chunking

• offline processes: parameter passing instead of communication

• parallel map implementations

Schemata task decomposition task distribution

parMap regular static: process per task

farm regular static: process per processor

offlineFarm regular static: task selection in processes

workpool irregular dynamic

Overview Eden Lectures

• Lectures I & II (Thursday)
– Motivation

– Basic Constructs

– Case Study: Mergesort

– Eden TV –
The Eden Trace Viewer

– Reducing communication costs

– Parallel map implementations

– Explicit Channel Management

– The Remote Data Concept

– Algorithmic Skeletons

• Nested Workpools

• Divide and Conquer

52

• Lecture III: Lab Session
(Friday Morning)

• Lecture IV: Implementation
(Friday Afternoon)

• Layered Structure

• Primitive Operations

• The Eden Module

• The Trans class

• The PA monad

• Process Handling

• Remote Data

53

Many-to-one Communication: merge

Using non-deterministic merge function: merge :: [[a]] -> [a]

Workpool or
Master/Worker
Scheme

masterWorker :: (Trans a, Trans b) => Int -> Int -> (a->b) -> [a] -> [b]

masterWorker nw prefetch f tasks = orderBy fromWs reqs

where fromWs = parMap (map f) toWs

toWs = distribute np tasks reqs

reqs = initReqs ++ newReqs

initReqs = concat (replicate prefetch [0..nw-1])

newReqs = merge [[i | r <- rs] | (i,rs) <- zip [0..nw-1] fromWs]

workpool

worker
1

worker
nw-1

worker
0

merge

Example: Mandelbrot revisited!

54Rita Loogen: Eden – CEFP 2011

Input size 2000
Runtime: 13,91 s
8 PEs
8 processes
22 threads
42 conversations
3044 messages

offlineFarm
splitIntoN (noPe-1)

Input size 2000
Runtime: 13,09 s
8 PEs
8 processes
15 threads
35 conversations
1536 messages

masterWorker
prefetch 50

55

Parallel map implementations

• static task distribution:

• dynamic task distribution:

increasing granularity

parMap farm offlineFarm

PE PE

...

...

...

P

TT

P

TT

PE PE

... ...

...

PP

T TTT

PP

workpool

w 1 w np-1w 0

merge

T TT

PE PEPE

PE PE

...

P
T...T

P
T...T

56Rita Loogen: Eden – CEFP 2011

Explicit Channel Management

57

Explicit Channel Management in Eden

ring :: (Trans i,Trans o,Trans r) =>

((i,r) -> (o,r)) -> -- ring process fct

[i] -> [o] -- input-output fct

ring f is = os

where

(os, ringOuts)

= unzip [process f # inp |

inp <- lazyzip is ringIns]

ringIns = rightRotate ringOuts

rightRotate xs = last xs : init xs

rightrotate

Problem: only indirect ring connections via parent process

Example: Definition of a process ring

58

Explicit Channels in Eden

• Channel generation

• Channel usage

parfill :: Trans a =>

ChanName a -> a -> b -> b

new :: Trans a =>

(ChanName a -> a -> b) -> b

plink ::

(Trans i,Trans o, Trans r) =>

((i,r) -> (o,r)) ->

Process (i,ChanName r)

(o,ChanName r)

plink f = process fun_link

where

fun_link (fromP, nextChan)

= new (\ prevChan prev ->

let

(toP, next)

= f (fromP, prev)

in

parfill nextChan next

(toP, prevChan)

)

p

59

Ring Definition

ring :: (Trans i,Trans o,Trans r) =>

((i,r) -> (o,r)) -> -- ring process fct

[i] -> [o] -- input-output fct

ring f is = os

where

(os, ringOuts)

= unzip [f # inp |

inp <- lazyzip is ringIns]

ringIns = rightRotate ringOuts

rightRotate xs = last xs : init xs

with explicit channels

plinkprocess

rightrotateleftrotate

Problem: only indirect ring connections via parent process

60

Traceprofile Ring
Implicit vs explicit channels

Ring with explicit channels –

Ring processes

communicate directly.

ring with implicit channels -

All communications

go through generator

process (number 1).

61Rita Loogen: Eden – CEFP 2011

The Remote Data Concept

The „Remote Data“-Concept

• Functions:

– Release local data with release :: a -> RD a

– Fetch released data with fetch :: RD a -> a

• Replace

– (process g # (process f # inp))

with

– process (g o fetch) # (process (release o f) # inp)

62

g f

inp

g f

inp

Ring Definition with Remote Data

63

ring :: (Trans i,Trans o,Trans r) =>

((i,r) -> (o,r)) -> -- ring process fct

[i] -> [o] -- input-output fct

ring f is = os

where

(os, ringOuts)

= unzip [process f_RD # inp |

inp <- lazyzip is ringIns]

f_RD (i, ringIn) = (o, release ringOut)

where (o, ringOut) = f (i, fetch ringIn)

ringIns = rightRotate ringOuts

rightRotate xs = last xs : init xs

type [RD r]

Implementation of Remote Data with
dynamic channels

-- remote data

type RD a = ChanName (ChanName a)

-- convert local data into corresponding remote data

release :: Trans a ⇒ a → RD a

release x = new (\ cc c → parfill c x cc)

-- convert remote data into corresponding local data

fetch :: Trans a ⇒ RD a → a

fetch cc = new (\ c x → parfill cc c x)

64

65

Example: Computing Shortest Paths

Map -> Graph -> Adjacency matrix/
Distance matrix

0 200 300 ∞ ∞
200 0 150 ∞ 400
300 150 0 50 125
∞ ∞ 50 0 100
∞ 400 125 100 0

1

Main Station

Old University

Town Hall

Mensa

Elisabeth
church

400

200

300150

50

100

125

2

3

4

5

1

2

3

4

5

Compute the shortest way

from A to B für arbitrary nodes

A and B!

66

Warshall‘s algorithm
in process ring

ring_iterate :: Int -> Int -> Int ->

[Int] -> [[Int]] -> ([Int], [[Int]])

ring_iterate size k i rowk (rowi:xs)

| i > size = (rowk, []) -- End of iterations

| i == k = (rowR, rowk:restoutput) –- send own row

| otherwise = (rowR, rowi:restoutput) –- update row

where

(rowR, restoutput) = ring_iterate size k (i+1) nextrowk xs

nextrowk | i == k = rowk -- no update, if own row

| otherwise = updaterow rowk rowi (rowk!!(i-1))

Ring
rowi

rowk

Force evaluation of nextrowk

by inserting
rnf nextrowk `pseq`

before call of ring_iterate

67

Traces of parallel Warshall

With

additional

demand on

nextrowk

End of
fast
version

68Rita Loogen: Eden – CEFP 2011

(Advanced) Algorithmic Skeletons

69

Algorithmic Skeletons

• patterns of parallel computations
=> in Eden:

parallel higher-order functions

• typical patterns:
– parallel maps and master-worker systems:

parMap, farm, offline_farm, mw (workpoolSorted)

– map-reduce

– topology skeletons: pipeline, ring, torus, grid, trees ...

– divide and conquer

• in the following:
– nested master-worker systems

– divide and conquer schemes

See Eden‘s

Skeleton Library

70

Nesting
Workpools

workpool

worker
1

worker
np-1

worker
0

merge

resultstasks

sub-wp

w1 w{np-1}w0

merge

sub-wp

w1 w{np-1}w0

merge

sub-wpsub-wp

w1 w{np-1}w0

merge

sub-wp sub-wp

sub-wp

sub-wp

w1 w{np-1}w0

merge

sub-wp

71

Nesting
Workpools

workpool

worker
1

worker
np-1

worker
0

merge

resultstasks

sub-wp

w1 w{np-1}w0

merge

sub-wp

w1 w{np-1}w0

merge

sub-wpsub-wp

w1 w{np-1}w0

merge

sub-wp sub-wp

sub-wp

sub-wp

w1 w{np-1}w0

merge

sub-wp

wpNested :: (Trans a, Trans b) =>

[Int] -> [Int] -> -- branching degrees/prefetches

-- per level

([a] -> [b]) -> -- worker function

[a] -> [b] -- tasks, results

wpNested ns pfs wf = foldr fld wf (zip ns pfs)

where

fld :: (Trans a, Trans b) =>

(Int,Int) -> ([a] -> [b]) -> ([a] -> [b])

fld (n,pf) wf = workpool' n pf wf

wpnested [4,5] [64,8] yields

72

Hierarchical Workpool

1 master

4 submasters

20 workers

faster result collection

via hierarchy

-> better overall runtime

Mandelbrot Trace

Problem size: 2000 x 2000

Platform: Beowulf cluster Heriot-Watt-University, Edinburgh

(32 Intel P4-SMP nodes @ 3 GHz, 512MB RAM, Fast Ethernet)

73

Experimental Results

• Mandelbrot set visualisation

• . . . for 5000 5000 pixels, calculated line-wise (5000 tasks)

• Platform: Beowulf cluster Heriot-Watt-University
(32 Intel P4-SMP nodes @ 3 GHz, 512MB RAM, Fast Ethernet)

[31] [2,15] [4,7] [6,5] [2,2,4]

logical PEs 32 33 33 37 35

74

1-Level-Nesting Trace

prefetch 40

branching

[4,7]

=> 33 log.PEs

7W 7W 7W 7W

75

4W 4W 4W 4W 4W 4W

3-Level-Nesting Trace

prefetch 60

branching

[3,2,4]

=> 34 log.PEs

76

Divide-and-conquer

dc :: (a->Bool) -> (a->b) -> (a->[a]) -> ([b]->b) -> a->b

dc trivial solve split combine task

= if trivial task then solve task

else combine (map rec_dc (split task))

where rec_dc = dc trivial solve split combine

1

1 2

2

1 4 5 8

1

41

3

63

5

8572

3 6 2 7

regular binary scheme

with default placing:
1

1 2

2

1 4 3 5

1

41

3

43

3

5342

3 4 2 4

77

Explicit Placement via Ticket List

1

1 2

2

1 4 5 8

1

41

3

63

5

8572

3 6 2 7

1 2

2

1 5 4 8

1

51

3

73

4

8462

3 7 2 6

2, 3, 4, 5, 6, 7, 8

4,3,

unshuffle

5, 7 6, 8

5 7 6 8

1

78

Regular DC-Skeleton with Ticket Placement

dcNTickets :: (Trans a, Trans b) =>

Int -> [Int] -> ... -- branch degree / tickets / ...

dcNTickets k [] trivial solve split combine

= dc trivial solve split combine

dcNTickets k tickets trivial solve split combine x

= if trivial x then solve x

else childRes `pseq` rnf myRes `pseq` -- demand control

combine (myRes:childRes ++ localRess)

where childRes = spawnAt childTickets childProcs procIns

childProcs = map (process . rec_dcN) theirTs

rec_dcN ts = dcNTickets k ts trivial solve split combine

-- ticket distribution

(childTickets, restTickets) = splitAt (k-1) tickets

(myTs: theirTs) = unshuffle k restTickets

-- input splitting

(myIn:theirIn) = split x

(procIns, localIns) = splitAt (length childTickets) theirIn

-- local computations

myRes = dcNTickets k myTs trivial solve split combine myIn

localRess = map (dc trivial solve split combine) localIns

79

Regular DC-Skeleton with Ticket Placement

dcNTickets :: (Trans a, Trans b) =>

Int -> [Int] -> ... -- branch degree / tickets / ...

dcNTickets k [] trivial solve split combine

= dc trivial solve split combine

dcNTickets k tickets trivial solve split combine x

= if trivial x then solve x

else childRes `pseq` rnf myRes `pseq` -- demand control

combine (myRes:childRes ++ localRess)

where childRes = spawnAt childTickets childProcs procIns

childProcs = map (process . rec_dcN) theirTs

rec_dcN ts = dcNTickets k ts trivial solve split combine

-- ticket distribution

(childTickets, restTickets) = splitAt (k-1) tickets

(myTs: theirTs) = unshuffle k restTickets

-- input splitting

(myIn:theirIn) = split x

(procIns, localIns) = splitAt (length childTickets) theirIn

-- local computations

myRes = dcNTickets k myTs trivial solve split combine myIn

localRess = map (dc trivial solve split combine) localIns

• arbitrary, but fixed branching degree

• flexible, works with

• too few tickets

• double tickets

• parallel unfolding controlled by ticket list

80

Case Study: Karatsuba

• multiplication of large integers

• fixed branching degree 3

• complexity O(nlog2 3),
combine complexity O(n)

• Platform: LAN (Fast Ethernet),
7 dual-core linux workstations,
2 GB RAM

• input size: 2 integers with 32768
digits each

Divide-and-Conquer Schemes

• Distributed expansion

• Flat expansion

81

Divide-and-Conquer Using Master-Worker

divConFlat :: (Trans a,Trans b, Show b, Show a, NFData b) =>

((a->b) -> [a] -> [b])

-> Int -> (a->Bool) -> (a->b) -> (a->[a]) -> ([b]->b) -> a -> b

divConFlat parallelMapSkel depth trivial solve split combine x

= combineTopMaster (_ -> combine) levels results

where

(tasks,levels) = generateTasks depth trivial split x

results = parallelMapSkel dcSeq tasks

dcSeq = dc trivial solve split combine

82

83

Case Study: Parallel FFT

• frequency distribution in a signal, decimation in time

• 4-radix FFT, input size: 410 complex numbers

• Platform: Beowulf Cluster Edinburgh

Problem:
Communicating

huge data amounts

84

Using Master-Worker-DC

Intermediate Conclusions

85Rita Loogen: Eden – CEFP 2011

• Eden enables high-level parallel programming

• Use predefined or design own skeletons

• Eden‘s skeleton library provides a large collection of
sophisticated skeletons:
– parallel maps: parMap, farm, offlineFarm …

– master-worker: flat, hierarchical, distributed …

– divide-and-conquer: ticket placement, via master-worker …

– topological skeletons: ring, torus, all-to-all, parallel transpose …

Eden Lab Session

• Download the exercise sheet from
http://www.mathematik.uni-marburg.de/~eden/?content=cefp

• Choose one of the three assignments and download the corresponding
sequential program:
sumEuler.hs (easy) - juliaSets.hs (medium) - gentleman.hs (advanced)

• Download the sample mpihosts file and modify it to randomly chosen
lab computers nylxy with xy chosen from 01 up to 64

• Call edenenv to set up the environment for Eden

• Compile Eden programs with
ghc –parmpi --make –O2 –eventlog myprogram.hs

• Run compiled programs with
myprogram <parameters> +RTS –ls -Nx -RTS with x=noPe

• View activity profile (trace file) with
edentv myprogram_..._-N…_-RTS.parevents

Rita Loogen: Eden – CEFP 2011

87Rita Loogen: Eden – CEFP 2011

Eden‘s Implementation

88

Glasgow Haskell Compiler
& Eden Extensions

Haskell Eden

Lex/Yacc parser

prefix form

reader

abs. syntax

renamer

abs. syntax

type checker

abs. syntax

desugarer

core to STG

STG

code generation

(parallel Eden

runtime system)

abstract C

flattening

C

C compiler

core syntax simplify

simplify

Front end

Message

Passing

Library

MPI or PVM

89

Eden‘s parallel runtime system (PRTS)

Modification of GUM, the PRTS of GpH (Glasgow Parallel Haskell):

• Recycled

– Thread management: heap objects, thread scheduler

– Memory management: local garbage collection

– Communication: graph packing and unpacking routines

• Newly developed

– Process management: runtime tables, generation and termination

– Channel management: channel representation, connection, etc.

• Simplifications

– no „virtual shared memory“ (global address space) necessary

– no globalisation of unevaluated data

– no global garbage collection of data

DREAM: DistRibuted Eden Abstract Machine

• abstract view of Eden‘s parallel runtime system

• abstract view of process:

90Rita Loogen: Eden – CEFP 2011

BH black hole closure, on access threads are suspended until this
closure is overwritten

in-
ports

BH

.

.

.
.
.
.

.

.

.

BH

BH

Thread represented by TSO (thread state object) in the heap

out-
ports

HEAP

Garbage Collection and Termination

• no global address space

• local heap

• inports/outports

• no need for global garbage collection

• local garbage collection

• outports as additional roots

 inports can be recognised as
garbage

BH

.

.

.

in-
ports

.

.

.
.
.
.

.

.

.

out-
ports

close

BH

BH

BH

BH

BH

92

• Parallel programming on a high level of
abstraction
– explicit process definitions

– implicit communication

• Automatic process and channel
management
– Distributed graph reduction

– Management of processes and their
interconnecting channels

– Message passing

Eden

Eden
Runtime

System (RTS)

Implementation of Eden

?

Eden
Runtime

System (RTS)

93

Eden

Eden Module

• Parallel programming on a high level of
abstraction
– explicit process definitions

– implicit communication

• Automatic process and channel
management
– Distributed graph reduction

– Management of processes and their
interconnecting channels

– Message passing

Implementation of Eden

94

Layer Structure

Parallel GHC Runtime System

Eden programs

Skeleton Library

Eden Module

Primitive Operations

95

Parprim – The Interface to the Parallel RTS

Primitive operations provide the basic functionality :

• channel administration

 primitive channels (= inports) data ChanName' a = Chan Int# Int# Int#

 create communication channel(s) createC :: IO (ChanName' a, a)

 connect communication channel connectToPort :: ChanName' a -> IO ()

• communication

 send data sendData :: Mode -> a -> IO ()

 modi data Mode = Connect | Stream | Data |
Instantiate Int

• thread creation fork :: IO () -> IO ()

• general noPE, selfPE :: Int

PE Process Inport

96

The Eden Module

process :: (Trans a, Trans b) => (a -> b)-> Process a b

(#) :: (Trans a, Trans b) => Process a b -> a -> b

spawn :: (Trans a, Trans b) => [Process a b] -> [a]->[b]

Type class Trans
• transmissible data types
• overloaded communication functions

for lists (-> streams): write :: a -> IO ()
and tuples (-> concurrency): createComm :: IO (ChanName a, a)

explicit definitions
of process, (#) and Process
as well as spawn

explicit channels
• newtype ChanName a

= Comm (a -> IO ())

97

Type class Trans

class NFData a => Trans a where

write :: a -> IO ()

write x = rnf x `pseq` sendData Data x

createComm :: (ChanName a, a)

createComm = do (cx, x) <- createC

return (Comm (sendVia cx), x)

sendVia :: ChanName’ a -> a -> IO ()

sendVia ch d = do connectToPort ch

write d

Tuple transmission by concurrent threads

98Rita Loogen: Eden – CEFP 2011

instance (Trans a, Trans b) => Trans (a,b) where
createComm = do (cx,x) <- createC

(cy,y) <- createC
return (Comm (write2 (cx,cy)),

(x,y))

write2 :: (Trans a, Trans b) =>
(ChanName' a, ChanName' b) -> (a,b) -> IO ()

write2 (c1,c2) (x1,x2) = do fork (sendVia c1 x1)
sendVia c2 x2

Stream Transmission of Lists

99Rita Loogen: Eden – CEFP 2011

instance Trans a => Trans [a] where
write l@[] = sendData Data l
write (x:xs) = do (rnf x `pseq` sendData Stream x)

write xs

The PA Monad

Improving control over parallel activities:

newtype PA a = PA { fromPA :: IO a }

instance Monad PA where

return b = PA $ return b

(PA ioX) >>= f = PA $ do x <- ioX

fromPA $ f x

runPA :: PA a -> a

runPA = unsafeperformIO . fromPA

100Rita Loogen: Eden – CEFP 2011

101

data (Trans a, Trans b) =>

Process a b

= Proc (ChanName b -> ChanName‘(ChanName a) -> IO ())

process :: (a -> b) -> Process a b

process f = Proc f_remote

where f_remote (Comm sendResult) inCC

= do (sendInput, invals) = createComm

connectToPort inCC

sendData Data sendInput

sendResult (f invals)

Remote Process Creation

channel for

returning input

channel handle(s)

output channel(s)

Process Output

102

Process Instantiation

(#) :: (Trans a, Trans b) => Process a b -> a -> b

pabs # inps

= unsafePerformIO $ instantiateAt 0 pabs inps

instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> IO b

instantiateAt pe (Proc f_remote) inps

= do (sendresult, result) <- createComm

(inCC, Comm sendInput) <- createC

sendData (Instantiate pe)

(f_remote sendresult inCC)

fork (sendInput inps)

return result

output channel(s)

channel for

returning input

channel handle(s)

103

PE 1 PE 2
Parent Process

create input channels (inports)
for child process‘ results

create input channels
for receiving child process‘
input channels

send instantiate message
with created input channels

System Child Process

create input channels

send input channels
to parent process

create outports and fork threads
for sending inputs to child process

continue
evaluation

H

E

A

P

evaluate input
components to NF

create outports and fork threads
for evaluating output components

evaluate output component n
evaluate output component 2

evaluate input
components to NF

evaluate input
component n to NF

send results to parent
and terminate thread

send results to parent
and terminate thread

send results to parent
and terminate thread

evaluate output component 1

H

E

A

Psend results to child
and terminate thread

send results to child
and terminate thread

send results to child
and terminate thread

terminate process and
close inports

104

Conclusions of Lecture 3

Layered implementation of Eden

More flexibility

Complexity hidden

Better Maintainability

 Lean interface to GHC RTS

Parallel GHC Runtime System

Eden programs

Skeleton Library

Eden Module
Primitive Operations

Conclusions

• Eden = Haskell + Coordination

• Explicit Process Definitions

• Implicit Communication (Message Transfer)

• Explicit Channel Management
-> arbitrary process topologies

• Nondeterministic Merge
-> master worker systems with dynamic load balancing

• Remote Data
-> pass data directly from producer to consumer processes

• Programming Methodology: Use Algorithmic Skeletons

• EdenTV to analyse parallel program behaviour

• Available on several platforms

105Rita Loogen: Eden – CEFP 2011

More on Eden

PhD Workshop tomorrow 16:40-17:00

Bernhard Pickenbrock:
Development of a multi-core implementation of Eden

106Rita Loogen: Eden – CEFP 2011

