
Towards a Generalised Runtime Environment

for Parallel Haskells?

Jost Berthold

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans-Meerwein-Straße, D-35032 Marburg, Germany

berthold@informatik.uni-marburg.de

Abstract. Implementations of parallel dialects (or: coordination lan-
guages) on a functional base (or: computation) language always have to
extend complex runtime environments by the even more complex paral-
lelism to maintain a high level of abstraction. Starting from two parallel
dialects of the purely functional language Haskell and their implementa-
tions, we generalise the characteristics of Haskell-based parallel language
implementations, abstracting over low-level details. This generalisation
is the basis for a shared runtime environment which can support dif-
ferent coordination concepts and alleviate the implementation of new
constructs by a well-defined API and a layered structure.

1 Introduction

The area of parallel functional programming exhibits a variety of approaches
with the common basis of referential transparency of functional programs and
the ability to evaluate subexpressions independently. Some approaches pursue
the target of (half-)automatic parallelisation of operations on list-like data struc-
tures (i.e. data parallelism). Other dialects are more explicit in their handling of
parallelism and allow what we call general-purpose parallelism, able to capture
schemes of parallelism which are not data-oriented. Whereas machine-specific
optimisation is easier with specialised structures and operations, these more
general approaches present a considerable advantage in language design: It is
generally accepted [1, 2] that functional languages allow a clean distinction be-
tween a computation (or “base”) language and independent coordination con-
structs for parallelism control. The more special-purpose data structures enter
the language, the more vague this important distinction will become.

Implementations of general-purpose languages often resemble each other, dif-
fering in syntactic sugar or providing special domain-specific features. Thus, in
the implementation, many concepts can be reduced to a common infrastructure
enriched with a small amount of special features depending on the concrete,
language-specific coordination concept. In this paper, we present an overview of
the two main-stream general-purpose parallel extensions to the functional lan-
guage Haskell, focusing on implementation aspects. Our aim is to bring together

? Work supported by ARC/DAAD Grant No. D/03/20257



related implementations in a generalised runtime environment (RTE), capable of
supporting different language concepts from the same configurable base system.

The paper is organised as follows: Section 2 presents the two parallel lan-
guages based on Haskell, the starting point of our work. In Section 3, we sys-
temise the functionality a common base system must provide to implement both
languages, or even a combination of their features. A short example in Section 4
indicates the potential use of such an API. Section 5 concludes.

2 General-Purpose Parallelism in Haskell

The Haskell Community Report [3] mentions two major approaches to parallel
computation based on Haskell: Glasgow parallel Haskell [4] and Eden [5]. These
two languages show major differences in their coordination concept and, in con-
sequence, in their implementation, while on the other hand, they both capture
the main idea of evaluating independent subexpressions in parallel. Another
common point is that, in contrast to other parallel Haskells [2], both GpH and
Eden are designed as general-purpose coordination languages. Neither of them
is dedicated to a certain paradigm such as task- or data-parallelism or pure
skeleton-based programming, though the respective coordination schemes can
be expressed by both. Both language extensions are implemented using GHC [6]
as a platform. The implementation is even sharing infrastructure code, e.g. for
basic communication and system setup, but diverging whenever the different
languages require specific features.

2.1 Glasgow Parallel Haskell

Glasgow Parallel Haskell (GpH) [4] is a well-known parallel dialect of Haskell
investigated since the 90’s. The overall paradigm of GpH is semi-implicit data
and task parallelism, following annotations in the source program. In every def-
inition, subexpressions can be marked as “suitable for parallel evaluation” by
a par-expression in the overall result. The coordination construct par takes 2
arguments and returns the second one after recording the first one as a “spark”,
to evaluate in parallel. An idle processor can fetch a spark and evaluate it. The
built-in seq is the sequential analogon, which forces evaluation of the first argu-
ment before returning the second one.

par,seq :: a -> b -> b

These coordination atoms can be combined in higher-order functions to con-
trol the evaluation degree and its parallelism without mixing coordination and
computation in the code. This technique of evaluation strategies described in [7]
offers sufficient evaluation control to define constructs similar to skeleton-based
programming. However, as opposed to usual skeletons, parallelism always re-
mains semi-implicit in GpH, since the runtime environment (RTE) can either
ignore any spark or eventually activate it.

The implementation of GpH, GUM [4], relies essentially on the administra-
tion of a distributed shared heap and on the described two-stage task creation



mechanism where potential parallel subtasks first become local sparks before
they may get activated. The only access point to the system is the spark cre-
ation primitive; parallel computations and their administrative requirements are
completely left to the RTE and mainly concern spark retrieval and synchro-
nisation of a distributed heap. Once a spark gets activated, the data which is
evaluated in parallel could subsequently reside on a different processor and thus
must get a global address, so it can be sent back on request.

The main advantage of the implicit GpH concept is that it dynamically
adapts the parallel computation to the state and load of nodes in the parallel
system. The GpH implementation would even allow to introduce certain heuris-
tics to reconfigure the parallel machine at runtime. However, parallel evaluation
on this dynamic basis is hardly predictable and accessible only by simulation
and tracing tools like GranSim [8].

2.2 Eden

The parallel Haskell dialect Eden [5] allows to define process abstractions by a
constructing function process and to explicitly instantiate (i.e. run) them on
remote processors using the operator ( # ). Processes are distinguished from
functions by their operational property to be executed remotely, while their de-
notational meaning remains unchanged as compared to the underlying function.

process :: (Trans a, Trans b) => (a -> b) -> Process a b

( # ) :: (Trans a, Trans b) => Process a b -> a -> b

For a given function f, evaluation of the expression (process f) # arg leads
to the creation of a new (remote) process which evaluates the application of
the function f to the argument arg. The argument is evaluated locally and sent
to the new process. The implementation of Eden [9] uses implicit inter-process
connections (channels) and data transmission in two possible ways: single-value
channels and stream channels. Eden processes are encapsulated units of compu-
tation which only communicate via these channels. This concept avoids global
memory management and its costs, but it can sometimes duplicate work on the
evaluation of shared data structures.

Communication between processes is automatically managed by the system
and hidden from the programmer, but additional language constructs allow to
create and access communication channels explicitly and to create arbitrary
process networks. The task of parallel programming is further simplified by a
library of predefined skeletons [10]. Skeletons are higher-order functions defining
parallel interaction patterns which are shared in many parallel applications. The
programmer can use such known schemes from the library to achieve an instant
parallelisation of a program.

The implementation of Eden extends the runtime environment of GHC by a
small set of primitive operations for process creation and data transmission be-
tween processes (including synchronisation and special communication modes).
While the RTE shares basic communication facilities with the GpH implemen-
tation, the implementation concept is essentially different in that the needed



primitives only provide simple basic actions, while more complex operations are
encoded by a superimposed functional module. This module, which encodes pro-
cess creation and communication explicitly, can abstract over the administrative
issues, profiting from Haskell’s support in genericity and code reuse [9], moreover,
it protects the basic primitives from being misused.

3 Generalising the Parallel Runtime Environment

3.1 Layered Implementation

To systemise the common parts of parallel Haskell implementations, we follow
the approach of Eden’s layered implementation, i.e. thick layers of functionality
exploited strictly level-to-level to avoid dependencies across abstraction levels.
Apart from maintenance of only one system, the concept of layered implementa-
tion is promising for the implementation of other coordination languages based
on Haskell, since it facilitates maintenance and experimental development. With
one flexible basic layer, different language concepts can be easily implemented by
a top-layer module (making use of the underlying RTE support) where the ap-
propriate coordination constructs are defined. As shown in Fig. 1, the Evaluation

Strategy module for GpH [7] is just an example of these high-level parallelism
libraries. As well as Eden, one could implement explicit parallel coordination e.g.
for some data-parallel language by adding an appropriate module for all parallel
operations to their sequential implementation.

par Expl. Parallelism API

Eval. Strat. Data parallelism Data Structure
Module

Parallel Runtime Env. (RTE) Seq. RTE

Fig. 1. Layered implementation of parallel coordination (example)

These top-layer modules use parts of a common ParallelAPI provided by the
underlying runtime layer, which we will describe now in terms of the supported
operations. A more basic concept is the overall coordination in Haskell-based
parallel languages, which relies on parallel graph reduction with synchronisation
nodes representing remote data (not described further due to space limitations,
see [1]). In order to support implicit parallelism, a generalised RTE will also have
to support virtual shared memory and implicit, load-dependent task creation.
Concepts for implicit coordination use this basic RTE support, which is not
accessible from language level and thus not part of the API.

3.2 ParallelAPI of Primitive Operations

Functionality to coordinate a parallel computation will be implemented in a
set of primitive operations (i.e. the ParallelAPI) which exposes functionality to



Table 1. API Operations

Primitive :: Type Description

rTask :: PE -> a -> () actively spawn a process on a remote PE
fork :: a -> b -> b spawn new thread (same process)
par :: a -> () passively mark data as “potentially parallel”

createDC :: ChanMode -> Int create new channel and sync. nodes in the
-> ( ChanName a, a) local heap (type a expected)

connectC :: ChanName a -> () connect to a channel to write data
dataSend :: SMode-> a -> () send subgraph from one PE to another
conSend :: a -> ChanName b -> () send top-level constructor and reply channel

for destination of its components

noPE :: Int number of available nodes in parallel system
myPE :: PE node ID where caller is located (unsafe)

define high-level coordination, intended for language developers. It should be
complete in that it allows a variety of different coordination possibilities and
ideally orthogonal in that it provides only one way to accomplish a certain task.
Functionality exposed by the API falls into three categories: task management,
explicit communication and system information, shown in Tab.1.

Task Management. The obvious issue in task management is to start remote
computations, which requires a primitive rTask to actively transfer a subgraph
to a remote processor for evaluation. The receiver of a transferred task creates
a thread to evaluate the included subgraph, i.e. solve the task. The primitive in
itself does not imply any communication between parent and child process, it is
due to the caller and the transferred task to establish this communication. Tasks
can be explicitly placed on certain nodes of the parallel system when required,
otherwise, the RTE uses configurable placement patterns or random placement.
The conceptual entities of computation in this description follow the style of
Eden: The primitive rTask sends a subgraph (task) to a remote node, which
creates a thread for its evaluation. A task (subgraph to be evaluated) thereby
turns into a process containing initially one evaluation thread. This first thread
can then fork to create other threads, which all reside conceptually in the same
process.

An implicit variant of active task creation is the two-stage concept of GpH,
which only records subgraphs as “sparks” suitable for remote evaluation. The
API supports spark creation by an annotation primitive par, but the action of
turning a spark into a thread cannot be exposed to language level, as well as all
necessary data must be shared via global memory, since it cannot be explicitly
transferred.

Communication. The API will expose communication functionality for (com-
pletely or partially) transferring subgraphs from one process to another via Eden-
style channels, linking to placeholders in the evaluation graph. Channels are cre-
ated using the primitive createDC, and configured for 1:1 or n:1-communication
upon their creation. Once created, channels have a representation at the language
level and can be transferred to other threads just as normal data, enabling to
build arbitrary process networks. Threads in different processes can then use
connectC to connect to the channel and send data.



Values (i.e. subgraphs) are sent through the created channels using a primi-
tive dataSend, which can have several modes: Either a single value is sent, which
implies that the channel becomes invalid (since the receiver replaces the respec-
tive placeholder by received data), or the data is an element in a stream and leaves
the channel open for further elements, recomposed to a list in the receiver’s heap.
As a general rule, data transmitted by dataSend should be in normal form, i.e.
sent only after complete evaluation by the sender. Fully evaluated data can be
duplicated without risk, whereas data shared via global memory synchronisation
inside the RTE can have any state of evaluation, and unevaluated data should
be moved instead of copied to keep global references synchronised.

Another, more complex, variant of data transmission is to send only the top-
level constructor using conSend, which requires the receiver to open and send
back new channels for the arguments of this constructor. This rather complex
implementation is the way to overrule the principle of normal form evaluation
prior to channel communication, and we can imagine useful applications.

System Information. In order to profit from explicit process placement, the
runtime setup must be accessible by the API to determine how many nodes
are available and, for every process, on which node it is executed. While the
primitive for the former, noPE, is at least constant during the whole runtime, the
latter information, determined by myPE, ultimately destroys referential trans-
parency (unsafe). On the other hand, this feature is useful to place processes on
appropriate nodes; it should be used only for coordination purposes.

3.3 Functionality of the Basic System Layer

As mentioned, implicit, load-driven task creation and synchronisation must en-
able all threads to share data, and use a two-stage task creation in order to allow
decent evaluation control by the programmer. The global memory management,
as well as other system tasks such as basic communication and system manage-
ment, reside in the RTE alone and are not exposed to the programmer. We will
briefly outline these parts as well.

Heap (Memory) Management. Our approach inherently needs a virtual
shared heap for transferred data, since implicit parallel evaluation is not within
reach of the API, but managed by the RTE. However, not all data must be
globalised, but only the parts which are required for remote evaluation and not
addressed by explicit channel communication.

This distinction becomes manifest in the placeholder nodes in the graph heap.
Nodes for globalised data, which the RTE fetches actively from other nodes when
a thread needs it, are opposed to nodes for channel communication, which pas-
sively wait for data to arrive via the connected channel. For the latter, the RTE
only needs a table for the respective channels, whereas management of the for-
mer needs more attention: besides the mapping from nodes to global addresses
and vice-versa, the RTE must prevent duplication of data in one node’s local
heap. Furthermore, data fetching can be implemented with different strategies



(bulk or incremental fetching), which yields platform-dependant results, accord-
ing to [11]. Fetching strategy and data size, as well as rescheduling and spark
retrieval strategy, are good examples for configuration options of the RTE.

Communication and System Management. Communication inside the RTE
is needed to synchronise the global heap and to exchange data between threads.
We do not need a particular standard or product; any middleware capable of
exchanging raw data between nodes in a network can be used (even raw sock-
ets). However, targeting a standard such as MPI [12] makes the system far more
portable, since implementations for various platforms are freely available. We
intend to build a modular communication subsystem and exchangeable adapters
to common message passing middleware. Necessary startup actions and node
synchronisation are another reason why existing middleware is used instead of
a customised solution.

4 Prospected Coordination Languages

The variety of possible coordination languages using the described API would fill
a considerable amount of pages, so we set it aside and only give a small example.
The Eden implementation described in [9] is a more complex instance.

Example: We define rFork as an explicit variant of the par-construct: It spawns
a process for a task on the indicated node and continues with the cont. The
RTE assigns a global address to task before sending, and it is evaluated by a
new thread on node. If results are needed somewhere else, data will be fetched
from there. This construct can be used in Haskell code to define higher-level
constructs, e.g. a parallel fold-like operation shown here:1

rFork :: PE -> a -> b -> b

rFork node task cont = (rTask# node task) ‘seq‘ cont

foldSpread :: ( [a] -> b ) -> [a] -> [b]

foldSpread f xs = let size = ..--arbitrarily fixed, or by input length

tasks = [ f sublist | sublist <- splitList size xs ]

peList= drop (toInt myPE#) (cycle [ 1..noPE# ])

in zipWith rFork peList tasks

The effect of foldSpread is to distribute its input list (in portions of a certain
size) over several nodes, which, in turn, evaluate a sub-result for each sublist.
Sublists and results will definitely reside on the nodes we indicated: we can do
further processing on these same nodes explicitly. /

The described ParallelAPI allows to express parallel coordination in easy, declar-
ative terms and gives much expressive power to language designers. The most
ambitious and interesting area to explore with it is to combine both explicit co-
ordination and implicit parallelism, with freedom for load-balancing by the RTE.
This can be applied when computations are big enough for wide-area distribu-
tion, but in a heterogeneous setup where dynamic load-balancing is required;
found e.g. in scientific Grid-Computing with high communication latency and a
rapidly changing environment.

1 The symbol # indicates primitive operations and data types.



5 Conclusions

We have described a future implementation for parallel Haskells, which is based
on a generalised runtime environment (RTE) and a layered implementation
concept. The described API and RTE can express general-purpose parallelism
declaratively and is based on experiences with two existing parallel Haskell sys-
tems. Since the approach only refers to runtime support, it can be freely com-
bined with static analysis techniques for automatic parallelisation, and skeleton
programming. Hence, the outcome of the prospected work is a standardised im-
plementation for Haskell-based coordination concepts, for which this paper gives
the guideline and points at similarities in existing parallel Haskells.

The concepts described in this paper are work in progress, i.e. details of the
generalised RTE may change with further research. Our prospects for future work
are to implement and use the described API for an integration of Eden and GpH
in a common language, to express high-level coordination for large-scale parallel
computations with the possibility of dynamic load-balancing and coordination
control by the programmer. For this purpose, the RTE will be extended with
more task placement policies, adaptive behaviour and runtime reconfiguration.

References

1. Hammond, K., Michaelson, G., eds.: Research Directions in Parallel Functional
Programming. Springer (1999)

2. Trinder, P., Loidl, H.W., Pointon, R.: Parallel and Distributed Haskells. J. of
Functional Programming 12 (2002)

3. Claus Reinke (ed.): Haskell Communities and Activities Report. Fifth Edition
(2003) www.haskell.org/communities.

4. Trinder, P., Hammond, K., Mattson Jr., J., Partridge, A., Peyton Jones, S.: GUM:
a Portable Parallel Implementation of Haskell. In: PLDI’96, ACM Press (1996)

5. Breitinger, S., Loogen, R., Ortega-Mallén, Y., Peña, R.: The Eden Coordination
Model for Distributed Memory Systems. In: HIPS. LNCS 1123, IEEE Press (1997)

6. Peyton Jones, S., Hall, C., Hammond, K., Partain, W., Wadler, P.: The Glasgow
Haskell Compiler: a Technical Overview. In: JFIT’93. (1993)

7. Trinder, P., Hammond, K., Loidl, H.W., Peyton Jones, S.: Algorithm + Strategy
= Parallelism. J. of Functional Programming 8 (1998)

8. Loidl, H.W.: Granularity in Large-Scale Parallel Functional Programming. PhD
thesis, Department of Computing Science, University of Glasgow (1998)

9. Berthold, J., Klusik, U., Loogen, R., Priebe, S., Weskamp, N.: High-level Process
Control in Eden. In: EuroPar 2003 – Parallel Processing. LNCS 2790, Klagenfurt,
Austria, Springer (2003)

10. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Parallelism Ab-
stractions in Eden. In Rabhi, F.A., Gorlatch, S., eds.: Patterns and Skeletons for
Parallel and Distr. Computing. LNCS 2011, Springer (2002)

11. Loidl, H.W., Hammond, K.: Making a Packet: Cost-Effective Comm. for a Parallel
Graph Reducer. In: IFL’96. LNCS 1268, Springer (1996)

12. MPI Forum: MPI 2: Extensions to the Message-Passing Interface. Technical report,
University of Tennessee, Knoxville (1997)


