
Eden — Parallel Functional Programming
with Haskell

Rita Loogen

Fachbereich Mathematik und Informatik
Philipps-Universität Marburg, Germany
loogen@informatik.uni-marburg.de

Original Version appeared in: V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011,
Springer LNCS 7241, 2012, pp. 142-206.

Abstract. Eden is a parallel functional programming language which
extends Haskell with constructs for the definition and instantiation of
parallel processes. Processes evaluate function applications remotely in
parallel. The programmer has control over process granularity, data dis-
tribution, communication topology, and evaluation site, but need not
manage synchronisation and data exchange between processes. The latter
are performed by the parallel runtime system through implicit communi-
cation channels, transparent to the programmer. Common and sophisti-
cated parallel communication patterns and topologies, so-called algorith-
mic skeletons, are provided as higher-order functions in a user-extensible
skeleton library written in Eden. Eden is geared toward distributed set-
tings, i.e. processes do not share any data, but can equally well be used
on multicore systems. This tutorial gives an up-to-date introduction into
Eden’s programming methodology based on algorithmic skeletons, its
language constructs, and its layered implementation on top of the Glas-
gow Haskell compiler.

Table of Contents

1 Introduction . 2
2 Skeleton-based Programming in Eden . 4

2.1 Map-and-Reduce . 5
2.2 Divide-and-Conquer . 12
2.3 Eden’s Skeleton Library . 16

3 Eden’s Basic Constructs . 17
3.1 Defining and Creating Processes . 17
3.2 Coping With Laziness . 21
3.3 Implementing the Divide-and-Conquer Skeleton disDC 23

4 Controlling Communication Costs . 24
4.1 Reducing Communication Costs: Chunking 25
4.2 Communication vs Parameter Passing:

Running Processes Offline . 28
4.3 Tuning the Parallel Mergesort Program . 29

5 Defining Non-Hierarchical Communication Topologies 32
5.1 The Remote Data Concept . 33
5.2 A Ring Skeleton . 34
5.3 A Torus Skeleton . 37

6 Workpool Skeletons . 40
6.1 Many-to-one Communication: Merging Communication Streams . 40
6.2 A Simple Master-Worker Skeleton . 40
6.3 Classification of Parallel Map Implementations 43
6.4 A Nested Master-Worker Skeleton . 44

7 Explicit Channel Management . 45
7.1 Dynamic Channels . 45
7.2 Implementing Remote Data with Dynamic Channels 47

8 Behind the Scenes: Eden’s Implementation . 47
8.1 Layered Parallel Runtime Environment . 48
8.2 The Type Class Trans . 50
8.3 The PA Monad: Improving Control over Parallel Activities 51
8.4 Process Handling: Defining Process Abstraction and Instantiation 53

9 Further Reading . 55
10 Other Parallel Haskells (Related Work) . 56
11 Conclusions . 57
A Compiling, Running, Analysing Eden Programs . 61

A.1 Compile Time Options . 62
A.2 Runtime Options . 62
A.3 EdenTV: The Eden Trace Viewer . 62

B Auxiliary Functions . 64
B.1 Unshuffle and Shuffle . 64
B.2 SplitIntoN and Chunk . 65
B.3 Distribute and OrderBy . 66

1 Introduction

Functional languages are promising candidates for effective parallel program-
ming, because of their high level of abstraction and, in particular, because of
their referential transparency. In principle, any subexpression could be evalu-
ated in parallel. As this implicit parallelism would lead to too much overhead,
modern parallel functional languages allow the programmers to specify paral-
lelism explicitly.

In these lecture notes we present Eden, a parallel functional programming
language which extends Haskell with constructs for the definition and instantia-
tion of parallel processes. The underlying idea of Eden is to enable programmers
to specify process networks in a declarative way. Processes evaluate function
applications in parallel. The function parameters are the process inputs and the
function result is the process output. Thus, a process maps input to output
values. Inputs and outputs are automatically transferred via unidirectional one-
to-one channels between parent and child processes. Programmers need not think

about triggering low-level send and receive actions for data transfer between par-
allel processes. Furthermore, process inputs and outputs are always completely
evaluated before being sent in order to enable parallelism in the context of a
host language with a demand-driven evaluation strategy. Algorithmic skeletons
which specify common and sophisticated parallel communication patterns and
topologies are provided as higher-order functions in a user-extensible skeleton
library written in Eden. Skeletons provide a very simple access to parallel func-
tional programming. Parallelization of a Haskell program can often simply be
achieved by selecting and instantiating an appropriate skeleton from the skeleton
library. From time to time, adaptation of a skeleton to a special situation or the
development of a new skeleton may be necessary.

Eden is tailored for distributed memory architectures, i.e. processes work
within disjoint address spaces and do not share any data. This simplifies Eden’s
implementation as there is e.g. no need for global garbage collection. There is,
however, a risk of loosing sharing, i.e. it may happen that the same expression
is redundantly evaluated by several parallel processes.

Although the automatic management of communication by the parallel run-
time system has several advantages, it also has some restrictions. This form of
communication is only provided between parent and child processes, but e.g. not
between sibling processes. I.e. only hierarchical communication topologies are
automatically supported. For this reason, Eden also provides a form of explicit
channel management. A receiver process can create a new input channel and pass
its name to another process. The latter can directly send data to the receiver
process using the received channel name. An even easier-to-use way to define
non-hierarchical process networks is the remote data concept where data can be
released by a process to be fetched by a remote process. In this case a handle is
first transferred from the owner to the receiver process (maybe via common pre-
decessor processes). Via this handle the proper data can then directly transferred
from the producer to the receiver process. Moreover, many-to-one communica-
tion can be modeled using a pre-defined (necessarily non-deterministic) merge
function. These non-functional Eden features make the language very expres-
sive. Arbitrary parallel computation schemes like sophisticated master-worker
systems or cyclic communication topologies like rings and tori can be defined in
an elegant way. Eden supports an equational programming style where recursive
process nets can simply be defined using recursive equations. Using the recently
introduced PA (parallel action) monad, it is also possible to adopt a monadic
programming style, in particular, when it is necessary to ensure that series of
parallel activities are executed in a given order.

Eden has been implemented by extending the runtime system of the Glasgow
Haskell compiler [24], a mature and efficient Haskell implementation, for parallel
and distributed execution. The parallel runtime system (PRTS) uses suitable
middleware (currently PVM [52] or MPI [43]) to manage parallel execution.
Recently, a special multicore implementation which needs no middleware has
been implemented [48]. Traces of parallel program executions can be visualised
and analysed using the Eden Trace Viewer EdenTV.

This tutorial gives an up-to-date introduction into Eden’s programming method-
ology based on algorithmic skeletons, its language constructs, and its layered
implementation on top of the Glasgow Haskell compiler. Throughout the tuto-
rial, exercises are provided which help the readers to test their understanding
of the presented material and to experiment with Eden. A basic knowledge of
programming in Haskell is assumed. The Eden compiler, the skeleton library,
EdenTV, and the program code of the case studies are freely available from the
Eden web pages, see

http://www.mathematik.uni-marburg.de/~eden/

Plan of this tutorial. The next section provides a quick start to Eden pro-
gramming with algorithmic skeletons. Section 3 introduces the basic constructs
of Eden’s coordination language, i.e. it is shown how parallelism can be expressed
and managed. The next section presents techniques for reducing the communi-
cation costs in parallel programs. Section 5 shows how non-hierarchical com-
munication topologies can be defined. In particular, a ring and a torus skeleton
are presented. Section 6 explains how master-worker systems can be specified.
An introduction to explicit channel management in Section 7 leads to Section 8
which introduces Eden’s layered implementation. Hints at more detailed mate-
rial on Eden are given in Section 9. After a short discussion of related work in
Section 10 conclusions are drawn in Section 11. Appendix A contains a short
presentation of how to compile, run, and analyse Eden programs. In particular,
it presents the Eden trace viewer tool, EdenTV, which can be used to analyse the
behaviour of parallel programs. Appendix B contains the definitions of auxiliary
functions from the Eden Auxiliary library that are used in this tutorial.

The tutorial refers to several case studies and shows example trace visuali-
sations. The corresponding traces have been produced using the Eden system,
version 6.12.3, on the following systems: an Intel 8-core machine (2× Xeon Quad-
core @2.5GHz, 16 GB RAM) machine and two Beowulf clusters at Heriot-Watt
University in Edinburgh (Beowulf I: 32 Intel P4-SMP nodes @ 3 GHz 512MB
RAM, Fast Ethernet and Beowulf II: 32 nodes, each with two Intel quad-core
processors (Xeon E5504) @ 2GHz, 4MB L3 cache, 12GB RAM, Gigabit Ether-
net).

2 Skeleton-based Programming in Eden

Before presenting the Eden programming constructs we show how a quick and
effective parallelization of Haskell programs can be achieved using pre-defined
skeletons from the Eden skeleton library. (Algorithmic) skeletons [16] define com-
mon parallel computation patterns. In Eden they are defined as higher-order
functions. In the following we look at two typical problem solving schemes for
which various parallel implementations are provided in the Eden skeleton library:
map-and-reduce and divide-and-conquer.

y2 y3 y4y1

...
f f ff

...

x2 x3 x4x1
...

Fig. 1. Basic map evaluation scheme

2.1 Map-and-Reduce

Map-and-reduce is a typical data-parallel evaluation scheme. It consists of a map

and a subsequent reduce.

Map, Parallel Map and Farm. The map function applies a function to each
element of a list. In Haskell it can simply be expressed as follows

map :: (a → b) → [a] → [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

The map function is inherently parallel because in principle all function appli-
cations (f x) can be evaluated in parallel. It presents a simple form of data
parallelism, because the same function is applied to different data elements (see
Figure 1).

Eden’s skeleton library contains several parallel implementations of map. The
simplest parallel version is parMap where a separate process is created for each
function application, i.e. as many processes as list elements will be created.
The input parameter as well as the result of each process will be transmitted
via communication channels between the generator process and the processes
created by parMap. Therefore parMap’s type is

parMap :: (Trans a, Trans b) ⇒ (a → b) → [a] → [b]

The Eden-specific type context (Trans a, Trans b) indicates that both types a

and b must belong to the Eden Trans type class of transmissible values. Most
predefined types belong to this type class. In Haskell, type classes provide a
structured way to define overloaded functions. Trans provides implicitly used
communication functions.

If the number of list elements is much higher than the number of available
processing elements, this will cause too much process creation overhead. Another
skeleton called farm takes two additional parameter functions

distribute :: [a] → [[a]] and combine :: [[b]] → [b].
It uses the distribute-function to split the input list into sublists, creates a
process for mapping f on each sublist and combines the result lists using the

y1 ... yl

yi

f

yi+1

f

yj

f

y1

f ...

...

...

...

...

... yk+1

f

yl

f
...

...

xi xi+1 xjx1 xk+1 xl
...

combine

distribute

x1 ... xl

Fig. 2. Parallel farm evaluation scheme

combine-function. Of course, a proper use of farm to implement another parallel
version of map requires that the following equation is fulfilled1:

map f = combine ◦ (map (map f)) ◦ distribute.

Replacing the outer map-application with parMap leads to the definition of the
farm skeleton in Eden:

farm :: (Trans a, Trans b) ⇒
([a] → [[a]]) -- ^ distribute

→ ([[b]] → [b]) -- ^ combine

→ (a → b) → [a] → [b] -- ^ map interface

farm distribute combine f

= combine ◦ (parMap (map f)) ◦ distribute

The farm skeleton creates as many processes as sublists are generated by the
parameter function distribute (see Figure 2, dotted lines indicate processes).
In Eden’s Auxiliary library the following functions for distributing and (re-
)combining lists are defined. For the reader’s convenience we have also put to-
gether the pure Haskell definitions of these functions in Appendix B.

– unshuffle :: Int → [a] → [[a]] distributes the input list in a round robin
manner into as many sublists as the first parameter indicates.

– shuffle :: [[a]] → [a] shuffles the given list of lists into the output list.
It works inversely to unshuffle.

1 The programmer is responsible for guaranteeing this condition.

– splitIntoN :: Int → [a] → [[a]] distributes the input list blockwise into
as many sublists as the first parameter determines. The lengths of the output
lists differ by at most one. The inverse function of splitIntoN is the Haskell
prelude function concat :: [[a]] → [a] which simply concatenates all lists
in the given list of lists.

Eden provides a constant

noPe :: Int

which gives the number of available processing elements. Thus, suitable parallel
implementations of map using farm are e.g.

mapFarmS , mapFarmB :: (Trans a, Trans b) ⇒
(a → b) → [a] → [b]

mapFarmS = farm (unshuffle noPe) shuffle

mapFarmB = farm (splitIntoN noPe) concat

Reduce and Parallel Map-Reduce. In many applications, a reduction is
executed after the application of map, i.e. the elements of the result list of map

are combined using a binary function. In Haskell list reduction is defined by
higher-order fold-functions. Depending on whether the parameter function is
right or left associative, Haskell provides folding functions foldr and foldl. For
simplicity, we consider in the following only foldr:

foldr :: (a → b → b) → b → [a] → b

foldr g e [] = e

foldr g e (x:xs) = g x (foldr g e xs)

Accordingly, the following composition of map and foldr in Haskell defines a
simple map-reduce scheme:

mapRedr :: (b → c → c) → c → (a → b) → [a] → c

mapRedr g e f = (foldr g e) ◦ (map f)

This function could simply be implemented in parallel by replacing map with
e.g. mapFarmB, but then the reduction will completely and sequentially be per-
formed in the parent process. If the parameter function g is associative with type
b → b → b and neutral element e, the reduction could also be performed in par-
allel by pre-reducing the sublists within the farm processes. Afterwards only the
subresults from the processes have to be combined by the main process (see Fig-
ure 3). The code of this parallel map-reduce scheme is a slight variation of the
above definition of the farm-skeleton where the distribution and combination of
values is fixed and mapRedr is used instead of map as argument of parMap:

parMapRedr :: (Trans a, Trans b) ⇒
(b → b → b) → b → (a → b) → [a] → b

parMapRedr g e f

= if noPe == 1 then mapRedr g e f xs else

(foldr g e) ◦ (parMap (mapRedr g e f)) ◦ (splitIntoN noPe)

z

yi yi+1 yjy1

...

...

...

...

...

... yk+1 yl

f f ff f f...

...

xi xi+1 xj

z1

... xk+1 xl
...

reduce

distribute

x1 ... xl

x1

z2 zn

reduce reducereduce

Fig. 3. Parallel map-reduce evaluation scheme

Note that parallel processes are only created if the number of available proces-
sor elements is at least 2. On a single processor element the sequential scheme
mapRedr is executed.

With this skeleton the input lists of the processes are evaluated by the par-
ent process and then communicated via automatically created communication
channels between the parent process and the parMap processes. In Eden, lists
are transmitted as streams which means that each element is sent in a separate
message. Sometimes this causes a severe overhead, especially for very long lists.
The following variant offline_parMapRedr avoids the stream communication of
the input lists at all. Only a process identification number is communicated and
used to select the appropriate part of the input list. The whole (unevaluated)
list is incorporated in the worker function which is mapped on the identification
numbers. As each process evaluates now the (splitIntoN noPe) application, this
may cause some redundancy in the input evaluation but it substantially reduces
communication overhead. In Subsection 4.2, we discuss this technique in more
detail.

offline_parMapRedr :: (Trans a, Trans b) ⇒
(b → b → b) → b → (a → b) → [a] → b

offline_parMapRedr g e f xs

= if noPe == 1 then mapRedr g e f xs else

foldr g e (parMap worker [0..noPe -1])

where worker i = mapRedr g e f ((splitIntoN noPe xs)!!i)

module Main where

import System

import Control.Parallel.Eden

import Control.Parallel.Eden.EdenSkel.MapRedSkels

main :: IO ()

main = getArgs >>= \ (n:_) →
print (cpi (read n))

-- compute pi using integration

cpi :: Integer → Double

cpi n = offline_parMapRedr (+) 0 (f ◦ index) [1..n] /
fromInteger n

where

f :: Double → Double

f x = 4 / (1 + x∗x)
index :: Integer → Double

index i = (fromInteger i - 0.5) / fromInteger n

Fig. 4. Eden program for parallel calculation of π

Example: The number π can be calculated by approximating the integral

π =
∫ 1

0

f(x) dx where f(x) =
4

1 + x2

in the following way:

π = lim
n→∞

pi(n) with pi(n) =
1
n

n∑
i=1

f

(
i− 0.5
n

)
.

The function pi can simply be expressed in Haskell using our mapRedr function:

cpi :: Integer → Double

cpi n = mapRedr (+) 0 (f ◦ index) [1..n] / fromInteger n

where

f :: Double → Double

f x = 4 / (1 + x∗x)
index :: Integer → Double

index i = (fromInteger i - 0.5) / fromInteger n

The Haskell prelude function fromInteger converts integer numbers into double-
precision floating point numbers.

A parallel version is obtained by replacing mapRed with offline_parMapRedr.
The complete parallel program is shown in Figure 4. It is important that each
Eden program imports the Eden module Control.Parallel.Eden. In addition,
the program imports the part of the Eden skeleton library which provides par-
allel map-reduce skeletons. How to compile, run and analyse Eden programs is
explained in detail in the appendix of this tutorial. Figure 5 shows on the left

5 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:2

P1:1

input size 1000000
total runtime 1.62s
start up time 1.14s
parallel runtime 0.48s
sequential runtime 3.74s
speedup 7.79 8 machines
9 processes
17 threads
29 messages

Fig. 5. Pi trace on 8 PEs, parallel map-reduce with 8 processes

the visualisation of a trace file by EdenTV and on the right some statistical data
of this program run also provided by EdenTV. The trace has been produced for
the input 1000000 with the parallel MPI-based runtime system on the Beowulf
II. When using MPI the start-up time of the parallel runtime system is incor-
porated in the trace. The start-up time depends on the number of processor
elements which are started. In the program run underlying the trace in Figure 5
the start-up took 1.14 seconds. Thus, it dominates the overall runtime which
has been 1.62 seconds. The actual parallel runtime of the program has been 0.48
seconds. The sequential program takes 3.74 seconds with the same input on the
same machine. The fraction

sequential runtime
parallel runtime

is called the speed-up of the parallel evaluation. The speed-up is usually bounded
by the number of processor elements. In this example the speed-up has been 7.79
which is very good on 8 PEs.

The trace visualisation on the left shows the parallel program behaviour. It
consists of 9 horizontal bars, the timelines for the 9 processes that have been
executed. On the x-axis the time is shown in seconds. On the y-axis the process
numbers are given in the form P i:j where i is the number of the processor
element or machine, on which the process is executed and j is the local number
of the process per machine. Note that the timelines have been moved to the left
to omit the start-up time, i.e. the x-axis starts at 1.14 seconds.

The colours of the bars indicate the status of the corresponding process.
Green (in grayscale: grey) means that the process is running. Yellow (light grey)
shows that a process is runnable but not running which might be due to a garbage

collection or another process running on the same PE. Red (dark grey) indicates
that a process is blocked, i.e. waiting for input. Messages are shown as black
lines from the sender to the receiver process where the receiver is marked by a
dot at the end of the line. The program starts 9 processes. Process P 1:1, i.e.
Process 1 on PE 1 executes the main program. The offline_parMapRedr skeleton
starts noPe = 8 processes which are placed by default in a round-robin manner
on the available PEs, starting with PE 2. Thus, the last process has also been
allocated on PE 1 and is numbered P 1:2.

The trace picture shows that the child processes are always running (green)
while the main process is blocked (red) most of the time waiting for the results
of the child processes. 17 threads have been generated: one thread runs in the
9 processes each to compute the process output. In addition, 8 (short-living)
threads have been started in the main process to evaluate and send the input
(identification numbers) to the 8 child processes. In total 29 messages have been
sent: In the beginning, 8 process creation messages and 7 acknowledgement mes-
sages are exchanged. Messages between P 1:2 and P 1:1 are not counted because
they are not really sent, as both processes are executed on the same PE. More-
over, the main process P 1:1 sends 7 input messages to the 7 remote processes.
When the remote child processes terminate, they send their result back to the
main process. Finally the main process computes the sum of the received values,
divides this by the original input value and prints the result. /

Exercise 1: The following Haskell function summePhi sums Euler’s totient or φ
function which counts for parameter value n the number of positive integers
less than n that are relatively prime to n:

summePhi :: Int → Int

summePhi n = sum (map phi [1..n])

phi :: Int → Int

phi n = length (filter (relprime n) [1..(n-1)])

relprime :: Int → Int → Bool

relprime x y = gcd x y == 1

sum and gcd are Haskell prelude function, i.e. predefined Haskell function.
sum sums all elements of a list of numbers. It is defined as an instance of the
folding function foldl’, a strict variant of foldl:

sum :: Num a ⇒ [a] → a

sum = foldl ’ (+) 0

gcd computes the greated common divisor of two integers.
1. Define summePhi as instance of a map-reduce scheme.
2. Parallelise the program using an appropriate map-reduce skeleton of the

Eden skeleton library.
3. Run your parallel program on i machines, where i ∈ {1, 2, 4, ...} (runtime

option -Ni) and use the Eden trace viewer to analyse the parallel program
behaviour.

2.2 Divide-and-Conquer

Another common computation scheme is divide-and-conquer. Eden’s skeleton
library provides several skeletons for the parallelisation of divide-and-conquer
algorithms. The skeletons are parallel variants of the following polymorphic
higher-order divide-and-conquer function dc which implements the basic scheme:
If a problem is trivial, it is solved directly. Otherwise, the problem is divided or
(splitted) into two or more subproblems, for which the same scheme is applied.
The final solution is computed by combining the solutions of the subproblems.

type DivideConquer a b

= (a → Bool) → (a → b) -- ^ trivial? / solve

→ (a → [a]) → (a → [b] → b) -- ^ split / combine

→ a → b -- ^ input / result

dc :: DivideConquer a b

dc trivial solve split combine = rec_dc

where

rec_dc x = if trivial x then solve x

else combine x (map rec_dc (split x))

The easiest way to parallelise this dc scheme in Eden is to replace map with
parMap. An additional integer parameter lv can be used to stop the parallel
unfolding at a given level and to use the sequential version afterwards:

parDC :: (Trans a, Trans b) ⇒
Int → -- level

DivideConquer a b

parDC lv trivial solve split combine

= pdc lv

where

pdc lv x

| lv == 0 = dc trivial solve split combine x

| lv > 0 = if trivial x then solve x

else combine x (parMap (pdc (lv -1)) (split x))

In this approach a dynamic tree of processes is created with each process con-
nected to its parent. With the default round robin placement of child processes,
the processes are however not evenly distributed on the available processing el-
ements (PEs). Note that each PE i places new locally created child processes in
a round-robin manner on the PEs (i mod noPe)+1, ((i+1) mod noPe)+1 etc.

Example: If 8 PEs are available and if we consider a regular divide-and-conquer
tree with branching degree 2 and three recursive unfoldings, then 14 child pro-
cesses will be created and may be allocated on PEs 2 to 8 as indicated by the
tree in Figure 6. The main process on PE 1 places its two child processes on
PEs 2 and 3. The child process on PE2 creates new processes on PEs 3 and
4, the one on PE 3 accordingly on PEs 4 and 5. The second process on PE 3
allocates its children on PE 6 and 7, where we assume that the two processes on
PE 3 create their child processes one after the other and not in an interleaved
way. In total, PEs 3, 4 and 5 would get two processes each, three processes would
be allocated on PEs 6 and 7, while only one process would be placed on PE 8.

1

32

44 53

76 65 87 76

Fig. 6. Divide-and-conquer call tree with default process placement

Thus, the default process placement leads to an unbalanced process distribution
on the available PEs. /

The Eden skeleton library provides more elaborated parallel divide-and-
conquer implementations. In the following example, we use the disDC skeleton. In
Subsection 3.3 we show the implementation of this skeleton in Eden. The disDC

skeleton implements a so-called distributed expansion scheme. This works in a
similar way like the above parallelization with parMap except for the following
differences:

1. The skeleton assumes a fixed-degree splitting scheme, i.e. the split function
always divides a problem into the same number of subproblems. This num-
ber, called the branching degree, is the first parameter of the disDC skeleton.

2. The creation of processes and their allocation is controlled via a list of PE
numbers, called ticket list. This list is the second parameter of the skeleton.
It determines on which PEs newly created processes are allocated und thus
indirectly how many processes will be created. When no more tickets are
available, all further evaluations take place sequentially. This makes the use
of a level parameter to control parallel unfolding superfluous. Moreover, it
allows to balance the process load on PEs. The ticket list [2..noPe] leads
e.g. to the allocation of exactly one process on each PE. The main process
starts on PE1 and noPe-1 processes are created on the other available PEs.
If you want to create as many processes as possible in a round-robin manner
on the available PEs, you should use the ticket list cycle ([2..noPe]++[1]).
The Haskell prelude function cycle :: [a] → [a] defines a circular infinite
list by repeating its input list infinitely.

3. Each process keeps the first subproblem for local evaluation and and creates
child processes only for the other subproblems.

Example: A typical divide-and-conquer algorithm is mergesort which can be
implemented in Haskell as follows:

mergeSort :: Ord a ⇒ [a] → [a]

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs = sortMerge (mergeSort xs1) (mergeSort xs2)

where [xs1 ,xs2] = splitIntoN 2 xs

The function mergeSort transforms an input list into a sorted output list by sub-
sequently merging sorted sublists with increasing length. Lists with at least two
elements are split into into their first half and their second half using the auxiliary
function splitIntoN from Eden’s Auxiliary library (see also Appendix B). The
sublists are sorted by recursive instantiations of mergeSort processes. The sorted
sublists are coalesced into a sorted result list using the function sortMerge which
is an ordinary Haskell function. The context Ord a ensures that an ordering is
defined on type a.

sortMerge :: Ord a ⇒ [a] → [a] → [a]

sortMerge [] ylist = ylist

sortMerge xlist [] = xlist

sortMerge xlist@(x:xs) ylist@(y:ys)

| x ≤ y = x : sortMerge xs ylist

| x > y = y : sortMerge xlist ys

In order to derive a simple skeleton-based parallelization one first has to
define mergeSort as an instance of the dc scheme, i.e. one has to extract the
parameter functions of the dc scheme from the recursive definition:

mergeSortDC :: Ord a ⇒ [a] → [a]

mergeSortDC = dc trivial solve split combine

where

trivial :: [a] → Bool

trivial xs = null xs | | null (tail xs)

solve :: [a] → [a]

solve = id

split :: [a] → [[a]]

split = splitIntoN 2

combine :: [a] → [[b]] → [b]

combine _ (xs1:xs2:_) = sortMerge xs1 xs2

A parallel implementation of mergeSort is now achieved by replacing dc in the
above code with disDC 2 [2..noPe]. Figure 7 shows the visualisation of a trace
produced by a slightly tuned version of this parallel program for an input list with
1 million integer numbers. The tuning concerns the communication of inputs and
outputs of processes. We will discuss the modifications in Subsection 4.3 after
the applied techniques have been introduced.

The trace picture shows that all processes have been busy, i.e. in mode run-
ning (green / grey), during all of their life time. Processes are numbered P i:1

where i is the number of the PE on which the process is evaluated and the 1 is
the local process number on each PE. As exactly one process has been allocated
on each PE, each process has the local process number 1. The whole evaluation
starts with the main process on PE 1 whose activity profile is shown by the
lowest bar. The recursive calls are evaluated on the PEs shown in the call tree
on the left in Figure 8. With ticket list [2..noPe] seven child processes will be
created. The main process is allocated on PE 1 and executes the skeleton call. It

1.0 1.5 2.0 2.5 3.0 3.5 4.0

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:1

input size 1000000
runtime 3 s
8 machines
8 processes
22 threads
32 conversations
258 messages

Fig. 7. Parallel mergeSort trace on 8 PEs, disDC skeleton

1

21

23 41

51 73 62 84

1

2 3 5

4 6 7

8

Fig. 8. Call tree (left) and process generation tree (right) of parallel mergesort execu-
tion

splits the input list into two halves, keeps the first half for local evaluation and
creates a child process on PE 2 for sorting the second half. The remaining ticket
list [3..noPe] is unshuffled into the two lists [3,5,7] and [4,6,8]. The first sub-
list is kept locally while the child process gets the second one. The main process
and the child process on PE 2 proceed in parallel creating further subprocesses
on PE 3 and PE 4, respectively, and unshuffling their remaining ticket lists into
two sublists etc. The process generation tree on the right hand side in Figure 8
shows which process creates which other processes. As there is a one-to-one cor-
respondence between processes and PEs processes are simply marked with the
PE number.

In Figure 7 single messages are shown as black lines with a big dot at the
receiver side while the communication of streams is shown as a shaded area. A
stream communication consists of a series of messages. Only the last message of a
stream is shown as a black line. The other messages are only indicated by a very
short black line on the receiver side. In the statistics, messages and conversations

are counted. A stream communication is counted as a single conversation and as
many messages as have been needed to communicate the stream. Thus in this
example, we have only 32 conversations but 258 messages.

After about half of their runtime the upper half of processes (i.e. the leaf
processes of the process generation tree in Figure 8) start to return their results
in streams to their generator processes which merge the received lists with their
own results using sortMerge. The whole merge phase occurs level-wise. Each
process performs as many merge phases as its number of direct child processes.
This can clearly be observed when relating the process generation tree and the
message flow in the trace picture. Moreover, the trace clearly shows that after
half of the overall runtime, the upper half of the processes finish already. In total,
the PEs are badly utilised. This is the reason for the rather poor speedup which
is only about 3 with 8 PEs, the runtime of the original sequential mergeSort with
input size 1000000 being 9 sec in the same setting. /

Exercise 2: 1. Implement the following alternative parallelisation of the func-
tion mergeSort: Decompose the input list into as many sublists as pro-
cessor elements are available. Create for each sublist a parallel process
which sorts the sublist using the original mergeSort function. Merge the
sorted sublists. Which skeleton(s) can be used for this parallelisation?

2. Run your parallel program on different numbers of processor elements,
analyse the runtime behaviour using EdenTV, and compare your re-
sults with those achieved with the parallel divide-and-conquer version
described before.

2.3 Eden’s Skeleton Library

The functions parMap, farm, mapFarmS, mapFarmB, parMapRedr, and parDC defined
above are simple examples for skeleton definitions in Eden. As we have seen,
there may be many different parallel implementations of a single computation
scheme. Implementations may differ in the process topology created, in the gran-
ularity of tasks, in the load balancing strategy, or in the communication policy.
It is possible to predict the efficiency of skeleton instantiations by providing a
cost model for skeleton implementations [38]. This aspect will however not be
considered in this tutorial.

While many skeleton systems provide pre-defined, specially supported sets of
skeletons, the application programmer has usually not the possibility of creating
new ones. In Eden, skeletons can be used, modified and newly implemented,
because (like in other parallel functional languages) skeletons are no more than
polymorphic higher-order functions which can be applied with different types
and parameters. Thus, programming with skeletons in Eden follows the same
principle as programming with higher-order functions. Moreover, describing both
the functional specification and the parallel implementation of a skeleton in
the same language context constitutes a good basis for formal reasoning and
correctness proofs, and provides greater flexibility.

In a way similar to the rich set of higher-order functions provided in Haskell’s
prelude and libraries, Eden provides a well assorted skeleton library

Control.Parallel.Eden.EdenSkel:

– Control.Parallel.Eden.EdenSkel.Auxiliary provides useful auxiliary func-
tions like unshuffle and shuffle (see also Appendix B).

– Control.Parallel.Eden.EdenSkel.DCSkels comprises various divide and con-
quer skeletons like parDC or disDC.

– Control.Parallel.Eden.EdenSkel.MapSkels provides parallel map-like skele-
tons like parMap, farm or offline_farm.

– Control.Parallel.Eden.EdenSkel.MapRedSkels supplies parallel implementa-
tions of the map-reduce scheme like parMapRedr or a parallel implementation
of Google map-reduce [6].

– Control.Parallel.Eden.EdenSkel.TopoSkels collects topology skeletons like
pipelines or rings.

– Control.Parallel.Eden.EdenSkel.WPSkels puts together workpool skeletons
like the master worker skeleton defined in Section 6.2.

3 Eden’s Basic Constructs

Although many applications can be parallelised using pre-defined skeletons, it
may be necessary to adjust skeletons to special cases or to define new skeletons.
In these cases it is important to know the basic Eden coordination constructs
for

– for defining and creating processes
– for generating non-hierarchical process topologies
– for modeling many-to-one communication.

Eden’s basic constructs are defined in the Eden module Control.Parallel.Eden

which must be imported by each Eden program.

3.1 Defining and Creating Processes

The central coordination constructs for the definition of processes are process
abstractions and instantiations:

process :: (Trans a, Trans b) ⇒ (a → b) → Process a b

(#) :: (Trans a, Trans b) ⇒ Process a b → a → b

The purpose of function process is to convert functions of type a → b into pro-
cess abstractions of type Process a b where the type context (Trans a, Trans b)

indicates that both types a and b must belong to the Trans class of transmissible
values. Process abstractions are instantiated by using the infix operator (#).
An expression (process funct) # arg leads to the creation of a remote process
for evaluating the application of the function funct to the argument arg. The
argument expression arg will be evaluated concurrently by a new thread in the

parent process

child process

creates

result of arg

result of
funct $ arg

Fig. 9. Process topology after evaluating (process funct) # arg

parent process and will then be sent to the new child process. The child pro-
cess will evaluate the function application funct arg in a demand driven way,
using the standard lazy evaluation scheme of Haskell. If the argument value is
necessary to complete its evaluation, the child process will suspend, until the
parent thread has sent it. The child process sends back the result of the function
application to its parent process. Communication is performed through implicit
1:1 channels that are established between child and parent process on process
instantiation (see Figure 9). Process synchronisation is achieved by exchanging
data through the communication channels, as these have non-blocking sending,
but blocking reception. In order to increase the parallelism degree and to speed
up the distribution of the computation, process in- and outputs will be evaluated
to normal form before being sent (except for expressions with a function type,
which are evaluated to weak head normal form). This implements a pushing
approach for communication instead of a pulling approach where remote data
would have to be requested explicitly.

Because of the normal form evaluation of communicated data, the type class
Trans is a subclass of the class NFData (Normal Form Data) which provides a
function rnf to force the normal form evaluation of data. Trans provides com-
munication functions overloaded for lists, which are transmitted as streams,
element by element, and for tuples, which are evaluated component-wise by
concurrent threads in the same process. An Eden process can thus comprise a
number of threads, which may vary during its lifetime. The type class Trans will
be explained in more detail in Section 8. A channel is closed when the output
value has been completely transmitted to the receiver. An Eden process will end
its execution as soon as all its output channels are closed or are detected to be
unnecessary (during garbage collection). Termination of a process implies the
immediate closure of its input channels, i.e., the closure of the output channels
in the corresponding producer processes, thus leading to a termination cascade
through the process network.

The coordination functions process and (#) are usually used in combina-
tion as in the definition of the following operator for parallel function application:

($#) :: (Trans a, Trans b) ⇒ (a → b) → a → b

f $# x = process f # x -- ($#) = (#) ◦ process

The operator ($#) induces that the input parameter x, as well as the result value,
will be transmitted via channels. The types a and b must therefore belong to the
class Trans.

In fact, this simple operator would be enough for extending Haskell with
parallelism. The distinction of process abstraction and process instantiation may
however be useful from a didactic point of view. A process abstraction defines
process creation on the side of the child process while a process instantiation
defines it on the side of the parent process. This is also reflected by the imple-
mentation of these constructs, shown in Section 8.

It is tempting to parallelise functional programs simply by using this parallel
application operator at suitable places in programs. Unfortunately, in most cases
this easy approach does not work. The reasons are manyfold as shown in the
following simple example.

Example: In principle, a simple parallelisation of mergeSort could be achieved by
using the parallel application operator ($#) in the recursive calls of the original
definition of mergeSort (see above):

mergeSort xs = sortMerge (mergeSort $# xs1)

(mergeSort $# xs2)

where [xs1 ,xs2] = unshuffle 2 xs

In this definition, two processes are created for each recursive call as long as
the input list has at least two elements. In Figure 10 the activity profile of the
8 processor elements (machines view of EdenTV, see Appendix B) is shown
for the execution of this simple parallel mergesort for an input list of length
1000. The processor elements are either idle (small blue bar), i.e. they have no
processes to evaluate, busy with system activity (yellow/light grey bar), i.e. there
are runnable processes but no process is being executed or blocked (red/dark
grey bar), i.e. all processes are waiting for input. The statistics show that 1999
processes have been created and that 31940 messages have been sent. The parallel
runtime is 0.95 seconds, while the sequential runtime is only 0.004 seconds, i.e.
the parallel program is much slower than the original sequential program. This is
due to the excessive creation of processes and the enourmous number of messages
that has been exchanged. Moreover, this simple approach has a demand problem,
as the processes are only created when their result is already necessary for the
overall evaluation. In the following sections, we will present techniques to cope
with these problems. /

Eden processes exchange data via unidirectional one-to-one communication
channels. The type class Trans provides implicitly used functions for this purpose.
As laziness enables infinite data structures and the handling of partially available
data, communication streams are modeled as lazy lists, and circular topologies
of processes can be created and connected by such streams.

Example: The sequence of all multiples of two arbitrary integer values n and m

〈nimj | i, j ≥ 0〉

can easily be computed using the following cyclic process network:

input size 1000
par. time 0.95s
seq. time 0,004s
8 machines
1999 processes
31940 messages

Fig. 10. Trace visualisation of simple parallel mergesort, machines view

multiples n m �

�
�

�
�1:
�

�
�

�
�sm

�
�
�	

@
@
@I

�
�

�
�∗n

�
�

�
�∗m

@
@
@I

?

�
�
�	

This network can be expressed in Eden as follows:

multiples :: Integer → Integer → [Integer]

multiples n m = ms

where ms = 1: sm (map (∗n) $# ms) (map (∗m) $# ms)

The ordinary Haskell function sm works in a similar way as the sortMerge

function used in the mergesort example but it eliminates duplicates when merg-
ing its sorted input lists:

sm :: [Int] → [Int] → [Int]

sm [] ys = ys

sm xs [] = xs

sm xl@(x:xs) yl@(y:ys)

| x < y = x : sm xs yl

| x == y = x : sm xs ys

| otherwise = y : sm xl ys

In this example two child processes will be created corresponding to the two
applications of ($#). Each of these processes receives the stream of multiples
from the parent process, multiplies each element with n or m, respectively, and
sends each result back to the parent process. The parent process will evaluate the
application of sm to the two result streams received from the two child processes.
It uses two concurrent threads to supply the child processes with their input.
Streaming is essential in this example to avoid a deadlock. The parallelism is

rather fine-grained with a low ratio of computation versus communication. Thus,
speedups cannot be expected when this program is executed on two processors.

/

Exercise 3: Define a cyclic process network to compute the sorted sequence
of Hamming numbers 〈2i3j5k | i, j, k ≥ 0〉. Implement the network in Eden
and analyse its behaviour with EdenTV.

3.2 Coping With Laziness

The laziness of Haskell has many advantages when considering recursive process
networks and stream-based communication as shown above. Even though, it is
also an obstacle to parallelism, because pure demand-driven (lazy) evaluation
will activate a parallel evaluation only when its result is already needed to con-
tinue the overall computation, i.e. the main evaluation will immediately wait
for the result of a parallel subcomputation. Thus, sometimes it is necessary to
produce additional demand in order to unfold certain process systems. Other-
wise, the programmer may experience distributed sequentialism. This situation
is illustrated by the following attempt to define parMap using Eden’s parallel
application operator ($#):

Example: Simply replacing the applications of the parameter function in the map

definition with parallel applications leads to the following definition:

parMap_distrSeq :: (Trans a, Trans b) ⇒
(a → b) → [a] → [b]

parMap_distrSeq f [] = []

parMap_distrSeq f (x:xs) = (f $# x) : parMap_distrSeq f xs

The problem with this definition is that for instance the expression
sum (parMap_distrSeq square [1..10])

will create 10 processes, but only one after the other as demanded by the sum

function which sums up the elements of a list of numbers. Consequently, the com-
putation will not speed up due to “parallel” evaluation, but slow down because
of the process creation overhead added to the distributed, but sequential eval-
uation. Figure 11 shows the trace of the program for the parallel computation
of π in which parMap has been replaced with parMap_distrSeq in the definition
of the skeleton offline_parMapRedr. The input parameter has been 1000000 as
in Figure 5. The distributed sequentialism is clearly revealed. The next process
is always only created after the previous one has terminated. Note that the 8th
process is allocated on PE 1. Its activity bar is the second one from the bottom.

/

To avoid this problem the (predefined) Eden function spawn can be used to
eagerly and immediately instantiate a complete list of process abstractions with
their corresponding inputs. Neglecting demand control, spawn can be denotation-
ally specified as follows:

1.0 1.5 2.0 2.5 3.0 3.5

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:2

P1:1

Fig. 11. Trace visualisation of pi program with parMap_distrSeq

spawn :: (Trans a, Trans b) ⇒ [Process a b] → [a] → [b]

spawn = zipWith (#) -- definition without demand control

The actual definition is shown in Section 8. The variant spawnAt additionally
locates the created processes on given processor elements (identified by their
number).

spawnAt :: (Trans a, Trans b) ⇒
[Int] → [Process a b] → [a] → [b]

In fact, spawn is defined as spawnAt [0]. The parameter [0] leads to the default
round-robin process placement.

The counter part spawnF with a purely functional interface can be defined as
follows:

spawnF :: (Trans a, Trans b) ⇒ (a → b) → [a] → [b]

spawnF = spawn ◦ (map process)

The actual definition of parMap uses spawn:

parMap :: (Trans a, Trans b) ⇒ (a→ b) → [a] → [b]

parMap f = spawn (repeat (process f))

The Haskell prelude function repeat :: a → [a] yields an infinite list by re-
peating its parameter.

Although spawn helps to eagerly create a series of processes, it may some-
times be necessary to add even more additional demand to support parallelism.
For that purpose one can use the evaluation strategies provided by the library
Control.Parallel.Strategies [41]. The next subsection and Section 5.2 contain
examples.

Fig. 12. Distributed expansion divide and conquer skeleton for a binary task tree

3.3 Implementing the Divide-and-Conquer Skeleton disDC

The skeleton disDC which we have used in Section 2 to parallelise the mergeSort

algorithm implements a distributed expansion scheme, i.e. the process tree ex-
pands in a distributed fashion: One of the tree branches is processed locally, while
the others are instantiated as new processes, as long as processor elements (PEs)
are available. These branches will recursively produce new parallel subtasks. Fig-
ure 12 shows the binary tree of task nodes produced by a divide-and-conquer
strategy splitting each non-trivial task into two subtasks, in a context with 8
PEs. The boxes indicate which task nodes will be evaluated by each PE. This
tree corresponds with the call tree of the parallel mergeSort execution shown in
Figure 8.

For the distributed expansion scheme explicit placement of processes is es-
sential to avoid that too many processes are placed on the same PE while leaving
others unused. Therefore spawnAt is used for process creation in the Eden imple-
mentation of the disDC skeleton shown in Figure 13.

Two additional parameters are used: the branching degree k and a tickets

list with PE numbers to place newly created processes. As explained above, the
left-most branch of the task tree is solved locally (myIn), other branches (theirIn)
are instantiated using the Eden function spawnAt.

The ticket list is used to control the placement of newly created processes:
First, the PE numbers for placing the immediate child processes are taken from
the ticket list; then, the remaining tickets are distributed to the children in a
round-robin manner using the unshuffle function. Computations corresponding
to children will be performed locally (localIns) when no more tickets are avail-
able. The explicit process placement via ticket lists is a simple and flexible way
to control the distribution of processes as well as the recursive unfolding of the
task tree. If too few tickets are available, computations are performed locally.
Duplicate tickets can be used to allocate several child processes on the same PE.

The parallel creation of processes is explicitly supported using the explicit
demand control function

childRes ‘pseq‘ rdeepseq myRes ‘pseq‘

The function pseq :: a → b → b evaluates its first argument to weak head
normal form before returning its second argument. Note that ‘pseq‘ denotes the
infix variant of this function. The strategy function rdeepseq forces the complete

disDC :: (Trans a, Trans b) ⇒
Int → [Int] → -- ^ branch degree / tickets

DivideConquer a b

disDC k tickets trivial solve split combine x

= if null tickets then seqDC x

else recDC tickets x

where

seqDC = dc trivial solve split combine

recDC tickets x =
if trivial x then solve x

else childRes ‘pseq ‘ -- explicit demand

rdeepseq myRes ‘pseq ‘ -- control

combine x (myRes:childRes ++ localRess)

where

-- child process generation

childRes = spawnAt childTickets childProcs procIns

childProcs = map (process ◦ recDC) theirTs

-- ticket distribution

(childTickets , restTickets) = splitAt (k-1) tickets

(myTs: theirTs) = unshuffle k restTickets

-- input splitting

(myIn:theirIn) = split x

(procIns , localIns)

= splitAt (length childTickets) theirIn

-- local computations

myRes = recDC myTs myIn

localRess = map seqDC localIns

Fig. 13. Definition of distributed-expansion divide-and-conquer skeleton

evaluation of its argument (to normal form) [41]. Both functions are originally
provided in the library Control.Deepseq but re-exported from the Eden mod-
ule. The above construct has the effect that first the child processes are created
because the expression childRes is an application of spawnAt. As soon as all pro-
cesses have been created, the strategy rdeepseq forces the evaluation of myRes,
i.e. the recursive unfolding and generation of further processes. Using pseq the
evaluation order of subexpressions is explicitly determined. Only then, the stan-
dard Haskell evaluation strategy is used to evaluate the overall result expression
combine x (myRes:childRes ++ localRess).

4 Controlling Communication Costs

In many cases, it is not sufficient to simply instantiate a skeleton like parMap,
parMapRedr, farm or disDC to parallelise a program. Often it is necessary to ap-
ply some techniques to reduce the communication costs of parallel programs,
especially, when big data structures have to be transmitted between processes.
In the following subsections, we explain two such techniques. We use a simple
case study, raytracer, to show the effectiveness of these techniques. Details on

2D image 3D scene

Fig. 14. Raytracing

the case study, especially the complete programs, can be found on the Eden web
pages.

4.1 Reducing Communication Costs: Chunking

The default stream communication in Eden produces a single message for each
stream element. This may lead to high communication costs and severely delimit
the performance of the parallel program, as we have already mentioned in the
examples discussed in Section 2.

Case Study (Raytracer): Ray tracing is a technique in computer graphics for
generating a two-dimensional image from a scene consisting of three-dimensional
objects. As the name indicates rays are traced through pixels of the image plane
calculating their impacts when they encounter the objects (see Figure 14). The
following central part of a simple raytracer program can easily be parallelised
using the farm skeleton.

raytrace :: [Object] → CameraPos → [Impact]

rayTrace scene viewpoint

= map impact rays

where rays = generateRays viewPoint

impact ray = fold earlier (map (hit ray) scene)

By replacing the outer map with mapFarmS (defined in Section 2, see page 7)
we achieve a parallel ray tracer which creates as many processes as processing
elements are available. Each process computes the impacts of a couple of rays.
The rays will be computed by the parent process and communicated to the
remote processes. Each process receives the scene via its process abstraction.
If the scene has not been evaluated before process creation, each process will
evaluate it.

Figure 15 shows the trace visualisation (processes’ activity over time) and
some statistics produced by our trace viewer EdenTV (see Section A.3). The
trace has been generated by a program run of the raytracer program with input
size 250, i.e. 2502 rays on an Intel 8-core machine (2 × Xeon Quadcore @2.5GHz,
16 GB RAM) machine using the PVM-based runtime system. As PVM works

input size 250
runtime 6.311s
8 machines
9 processes
17 threads
48 conversations
125 048 messages

Fig. 15. Raytracer trace on 8 PEs, farm with 8 processes

with a demon which must be started before any program execution the startup
time of the parallel program is neglectable. The result is disappointing, because
most processes are almost always blocked (red/dark grey) and show only short
periods of activity (green/grey). 9 processes (the main process and 8 farm pro-
cesses) and 17 threads (one thread per farm process and 9 threads in the main
process, i.e. the main thread and 8 threads which evaluate and send the input
for the farm processes) have been created. Two processes have been allocated
on machine 1 (see the two bottom bars with process numbers P 1:1 and P 1:2) .
Alarming is the enormous number of 125048 messages that has been exchanged
between the processes. When messages are added to the trace visualisation, the
graphic becomes almost black. It is obvious that the extreme number of mes-
sages is one of the reasons for the bad behaviour of the program. Most messages
are stream messages. A stream is counted as a single conversation. The number
of conversations, i.e. communications over a single channel, is 48 and thus much
less than the number of messages. �

In such cases it is advantageous to communicate a stream in larger seg-
ments. Note that this so-called chunking is not always advisable. In the simple
cyclic network shown before it is e.g. important that elements are transferred
one-by-one — at least at the beginning — because the output of the network
depends on the previously produced elements. If there is no such dependency,
the decomposition of a stream into chunks reduces the number of messages to
be sent and in turn the communication overhead. The following definition shows
how chunking can be defined for parallel map skeletons like parMap and farm. It
can equally well be used in other skeletons like e.g. disDC as shown in Subsec-
tion 4.3. The auxiliary function chunk decomposes a list into chunks of the size
determined by its first parameter. See Appendix B for its definition which can
be imported from the Auxiliary library. The function chunkMap applies chunk

on the input list, applies a map skeleton mapscheme with parameter function

input size 250
chunk size 250
runtime 0.235s
8 machines
9 processes
17 threads
48 conversations
548 messages

Fig. 16. Raytracer trace on 8 PEs, farm with 8 processes and chunking

(map f) and finally concatenates the result chunks using the Haskell prelude
function concat :: [[a]] → [a].

chunkMap :: Int

→ (([a] → [b]) → ([[a]] → [[b]]))

→ (a → b) → [a] → [b]

chunkMap size mapscheme f xs

= concat (mapscheme (map f) (chunk size xs))

Case Study (Raytracer continued): In our raytracer case study, we replace the
mapFarmS skeleton with chunkMap chunksize mapFarmS where chunksize is an extra
parameter of the program. Chunking substantially reduces communication costs,
as the number of messages drops drastically when chunking is used. With input
size 250, which means that 2502 stream elements have to be sent to the farm
processes and to be returned to the main process, and chunk size 250 the number
of messages drops from 125048(= 125000 + 48) downto 548(= 500 + 48). This
leads to much better results (see Figure 16). It becomes clear that processes
are more active, but still are blocked a lot of time waiting for input from the
main process. Only the main process (see bottom bar) is busy most of the time
sending input to the farm processes. The number of messages has drastically
been reduced, thereby improving the communication overhead and consequently
the runtime a lot. A speedup of 26,86 in comparison to the previous version
could be achieved. Nevertheless, the program behaviour can still be improved.

�

Exercise 4: Give an alternative definition of the mapFarmB skeleton using
chunkMap size parMap

with a suitable size parameter. Assume that the length of the input list is
a multiple of the number of processor elements.

We can even act more radically and reduce communication costs further for
data transfers from parent to child processes.

4.2 Communication vs Parameter Passing:
Running Processes Offline

Eden processes have disjoint address spaces. Consequently, on process instantia-
tion, the process abstraction will be transferred to the remote processing element
including its whole environment, i.e. the whole heap reachable from the process
abstraction will be copied. This is done even if the heap includes non-evaluated
parts which may cause the duplication of work. A programmer is able to avoid
work duplication by forcing the evaluation of unevaluated subexpressions of a
process abstraction before it is used for process instantiation.

There exist two different approaches for transferring data to a remote child
process. Either the data is passed as a parameter or subexpression (without prior
evaluation unless explicitly forced) or data is communicated via a communication
channel. In the latter case the data will be evaluated by the parent process before
sending.

Example: Consider the function fun2proc defined by

fun2proc :: (Trans b, Trans c) ⇒
(a → b → c) → a → Process b c

fun2proc f x = process (\ y → f x y)

and the following process instantiation:

fun2proc fexpr xarg # yarg︸ ︷︷ ︸
evaluated by child process

︸︷︷︸
evaluated and sent

(lazy evaluation of fexpr and xarg) by parent process

When this process instantiation is evaluated, the process abstraction
fun2proc fexpr xarg

(including all data referenced by it) will be copied and sent to the processing
element where the new process will be evaluated. The parent process creates a
new thread for evaluating the argument expression yarg to normal form and a
corresponding outport (channel). Thus, the expressions fexpr and xarg will be
evaluated lazily if the child process demands their evaluation, while the expres-
sion yarg will immediately be evaluated by the parent process. /

If we want to evaluate the application of a function h :: a → b by a re-
mote process, there are two possibilities to produce a process abstraction and
instantiate it:

1. If we simply use the operator ($#), the argument of h will be evaluated by
the parent process and then passed to the remote process.

2. Alternatively, we can pass the argument of h within the process abstraction
and use instead the following remote function invocation.

rfi :: Trans b ⇒ (a → b) → a → Process () b

rfi h x = process (\ () → h x)

offline_farm :: Trans b ⇒
Int → -- ^ number of processes

([a] → [[a]]) → -- ^ input distribution

([[b]] → [b]) → -- ^ result combination

(a → b) → [a] → [b] -- ^ map interface

offline_farm np distribute combine f xs

= combine $ spawn (map (rfi (map f))

[select i xs | i ← [0..np -1]])

(repeat ())

where select i xs = (distribute xs ++ repeat []) !! i

Fig. 17. Definition of offline_farm skeleton

Now the argument of h will be evaluated on demand by the remote process
itself. The empty tuple () (unit) is used as a dummy argument in the process
abstraction. If the communication network is slow or if the result of the argument
evaluation is large, instantiation via rfi h x # () may be more efficient than
using (h $# x). We say that the child process runs offline.
The same technique has been used in Section 2 to define the offline_parMapRedr

skeleton. In a similar way, the previously defined farm can easily be transformed
into the offline farm defined in Figure 17, which can equally well be used to
parallelise map applications. In contrast to the farm skeleton, this skeleton needs
to know the number of processes that has to be created. Note that the offline farm
will definitely create as many processes as determined by the first parameter. If
input distribution does not create enough tasks, the selection function guarantees
that superfluous processes will get an empty task list.

Although the input is not explicitly communicated to an offline_farm, chunk-
ing may still be useful for the result stream.

Case Study (Raytracer continued 2): Using the offline farm instead of the farm in
our raytracer case study eliminates the explicit communication of all input rays
to the farm processes. The processes now evaluate their input by themselves.
Only the result values are communicated. Thus, we save 8 stream communica-
tions and 258 messages. Figure 18 shows that the farm processes are now active
during all their life time. The runtime could further be reduced by a factor of
almost 2. �

4.3 Tuning the Parallel Mergesort Program

The tuning techniques “offline processes” and “chunking” have also been used
to tune the parallel mergesort program presented in Section 2. Avoiding in-
put communication using the offline technique requires slightly more modifica-
tions which can however be defined as a stand-alone offline distributed-expansion
divide-and-conquer skeleton offline_disDC. The idea is to pass unique numbers
to the processes which identify its position in the divide-and-conquer call tree.
The processes use these numbers to compute the path from the root to their

input size 250
chunk size 250
runtime 0.119s
8 machines
9 processes
17 threads
40 conversations
290 messages

Fig. 18. Raytracer trace on 8 PEs, offline farm with 8 processes and chunking

0

31

64

2

7 95 8 121110

0

00 0

1

11 1

2

2 22

Fig. 19. Numbering of call tree nodes in offline divide-and-conquer skeleton

positions and to select the appropriate part of the input by subsequent applica-
tions of the split function starting from the original input. Figure 19 shows the
node numbering of a call tree with branching degree k = 3. Auxiliary functions
successors and path are used to compute the successor node numbers for a given
node number and the path from the root node to a given node:

successors :: Int → Int → [Int]

successors k n = [nk + i | let nk = n∗k, i ← [1..k]]

path :: Int → Int → [Int]

path k n | n == 0 = []

| otherwise = reverse (factors k n)

factors :: Int → Int → [Int]

factors k n

| n ≤ 0 = []

| otherwise = (n+k-1) ‘mod ‘ k : factors k ((n-1) ‘div ‘ k)

For the example tree in Figure 19 we observe that successors 3 2 = [7,8,9]

and path 3 9 = [1,2]. If we neglect the case that the problem size might not be

large enough to supply each process with work, the offline divide-and-conquer
skeleton can be defined as follows:

offline_disDC :: Trans b ⇒
Int → [Int] → DivideConquer a b

offline_disDC k ts triv solve split combine x

= disDC k ts newtriv newsolve newsplit newcombine 0

where

seqDC = dc triv solve split combine

newsplit = successors k

newtriv n = length ts ≤ k^(length (path k n))

newsolve n = seqDC (select split x (path k n))

newcombine n bs

= combine (select split x (path k n)) bs

select :: (a → [a]) → a → [Int] → a

select split x ys = go x ys

where go x [] = x

go x (y:ys) = go (split x !! y) ys

The skeleton will create as many processes as the length of the ticket list. The
successors function is used as split function for the offline divide-and-conquer
skeleton. The initial input is set to zero, the root node number of the call tree.
The predicate newtriv stops the parallel unfolding as soon as number of leaves in
the generated call tree is greater than the length of the ticket list, i.e. the num-
ber of processes that has to be generated. When the parallel unfolding stops, the
skeleton applies the normal sequential divide-and-conquer function dc to solve
the remaining subproblems. The auxiliary function select computes the sub-
problem to be solved by node with number n. It successively applies the original
split function and selects the appropriate subproblems with the Haskell list
index operator (!!) :: [a] → Int → a, thereby following the path path k n

from the root node to the current node. The combine function is also modified
to locally select the current subproblem. In most cases this simplified version
of the offline divide-and-conquer skeleton will work satisfactorily. However, the
skeleton will bounce whenever the problem size is not large enough to allow for
the series of split applications. Therefore, Figure 20 presents a modified version
of the skeleton definition which checks whether splitting is still possible or not.
If no more splitting is possible, the process has no real work to do, because one
of its predecessor processes has the same problem to solve. In principle, it need
not produce a result. Changing the internal result type of the skeleton to e.g. a
Maybe type is however not advisable because this would e.g. de-activate chunking
or streaming, if this is used for the result values in the original skeleton. Instead,
the skeleton in Figure 20 internally produces two results, a flag that indicates
whether the process created a valid subresult or whether it already the result
its parent process simply can pass. In fact, all superfluous processes compute
the result of a trivial problem which is assigned to one of its predecessor. The
corresponding predecessor can then simply overtake the first of the (identical)
results of its child processes. This offline divide-and-conquer skeleton has been
used to produce the trace file in Figure 7. In addition, chunking of the result

offline_disDC :: Trans b ⇒
Int → [Int] → DivideConquer a b

offline_disDC k ts triv solve split combine x

= snd (disDC k ts newtriv newsolve newsplit newcombine 0)

where

seqDC = dc triv solve split combine

newsplit = successors k

newtriv n = length ts ≤ k^(length (path k n))

newsolve n = (flag , seqDC localx)

where (flag , localx) = select triv split x (path k n)

newcombine n bs@((flag ,bs1):_)

= if flag then (True , combine localx (map snd bs))

else (lab , bs1)

where (lab , localx) = select triv split x (path k n)

select :: (a → Bool) → (a → [a]) -- ^ trivial / split

→ a → [Int] → (Bool ,a)

select trivial split x ys = go x ys

where go x [] = (True , x)

go x (y:ys) = if trivial x then (False , x)

else go (split x !! y) ys

Fig. 20. Offline version of the divide-and-conquer skeleton disDC

lists has been added by adapting the parameter functions of the offline_disDC

skeleton, i.e. composing the function chunk size with the result producing pa-
rameter functions solve and combine and unchunking parameter list elements
of combine as well as the overall result using concat. Note that the parameter
functions trivial, solve, split, and combine are the same as in the definition
of the function mergeSortDC (see Page 14, Section 2). Finally, the actual code of
the parallel mergesort implementation is as follows:

par_mergeSortDC :: (Ord a, Trans a) ⇒ Int → [a] → [a]

par_mergeSortDC size

= concat ◦
(offline_disDC 2 [2.. noPe] trivial

((chunk size) ◦ solve) split

(\ xs → (chunk size) ◦ (combine xs) ◦ (map concat)))

where

-- the same as in mergeSortDC

Exercise 5: Change the parallel mergesort implementation in such a way that
the branching degree of the recursive call tree can be given as an additional
parameter to the function par_mergeSortDC.

5 Defining Non-Hierarchical Communication Topologies

With the Eden constructs introduced up to now, communication channels are
only (implicitly) established during process creation between parent and child

processes. These are called static channels and they build purely hierarchical pro-
cess topologies. Eden provides additional mechanisms to define non-hierarchical
communication topologies.

5.1 The Remote Data Concept

A high-level, natural and easy-to-use way to define non-hierarchical process net-
works like e.g. rings in Eden is the remote data concept [1]. The main idea is to
replace the data to be communicated between processes by handles to it, called
remote data. These handles can then be used to transmit the real data directly
to the desired target. Thus, a remote data of type a is represented by a handle
of type RD a with interface functions release and fetch. The function release

produces a remote data handle that can be passed to other processes, which will
in turn use the function fetch to access the remote data. The data transmission
occurs automatically from the process that releases the data to the process which
uses the handle to fetch the remote data.

The remote data feature has the following interface in Eden [20]:

type RD a -- remote data

-- convert local data into remote data

release :: Trans a ⇒ a → RD a

-- convert remote data into local data

fetch :: Trans a ⇒ RD a → a

The following simple example illustrates how the remote data concept is used to
establish a direct channel connection between sibling processes.

Example: Given functions f and g, the expression ((g ◦ f) a) can be calculated
in parallel by creating a process for each function. One just replaces the function
calls by process instantiations

(g $# (f $# inp)).

This leads to the process network in Figure 21 (a) where the process evaluat-
ing the above expression is called main. Process main instantiates a first process
for calculating g. In order to transmit the corresponding input to this new pro-
cess, main instantiates a second process for calculating f, passes its input to this
process and receives the remotely calculated result, which is passed to the first
process. The output of the first process is also sent back to main. The drawback
of this approach is that the result of the process calculating f is not sent directly
to the process calculating g, thus causing unnecessary communication costs.

In the second implementation, we use remote data to establish a direct chan-
nel connection between the child processes (see Figure 21 (b)):

(g ◦ fetch) $# ((release ◦ f) $# inp)

The output produced by the process calculating f is now encapsulated in
a remote handle that is passed to the process calculating g, and fetched there.
Notice that the remote data handle is treated like the original data in the first

main

f g

inp

(a) indirect connection

main

release.f g.fetch

inp

(b) direct connection

Fig. 21. A simple process graph

ring :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) --^ ring process function

→ [i] → [o] --^ input - output mapping

ring f is = os

where

(os,ringOuts) = unzip (parMap f (lazyzip is ringIns))

ringIns = rightRotate ringOuts

lazyzip :: [a] → [b] → [(a,b)]

lazyzip [] _ = []

lazyzip (x:xs) ~(y:ys) = (x,y) : lazyzip xs ys

rightRotate :: [a] → [a]

rightRotate [] = []

rightRotate xs = last xs : init xs

Fig. 22. Definition of ring skeleton

version, i.e. it is passed via the main process from the process computing f to
the one computing g. /

5.2 A Ring Skeleton

Consider the definition of a process ring in Eden given in Figure 22. The number
of processes in the ring is determined by the length of the input list. The ring
processes are created using the parMap skeleton.

The auxiliary function lazyzip corresponds to the Haskell prelude function
zip but is lazy in its second argument (because of using the lazy pattern ~(y:ys)).
This is crucial because the second parameter ringIns will not be available when
the parMap function creates the ring processes. Note that the list of ring inputs
ringIns is the same as the list of ring outputs ringOuts rotated by one element
to the right using the auxiliary function rightRotate. Thus, the program would
get stuck without the lazy pattern, because the ring input will only be produced
after process creation and process creation will not occur without the first input.

Fig. 23. Topology of process ring (left: intended topology, right: actual topology)

ringRD :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) --^ ring process function

→ [i] → [o] --^ input - output mapping

ringRD f is = os

where

(os,ringOuts) = unzip (parMap (toRD f)

(lazyzip is ringIns))

ringIns = rightRotate ringOuts

toRD :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function

→ ((i, RD r) → (o, RD r)) -- ^ -- with remote data

toRD f (i, ringIn) = (o, release ringOut)

where (o, ringOut) = f (i, fetch ringIn)

Fig. 24. Ring skeleton definition with remote data

Unfortunately, this elegant and compact ring definition will not produce a
ring topology but a star (see Figure 23). The reason is that the channels for
communication between the ring processes are not established in a direct way,
but only indirectly via the parent process. One could produce the ring as a chain
of processes where each ring process creates its successor but this approach would
cause the input from and output to the parent process to run through the chain
of predecessor processes. Moreover it is not possible to close this chain to form
a ring.

Fortunately, the process ring can easily be re-defined using the remote data
concept as shown in Figure 24. The original ring function is embedded using the
auxiliary function toRD into a function which replaces the ring data by remote
data and introducing calls to fetch and release at appropriate places. Thus,
the worker functions of the parallel processes have a different type. In fact,
the star topology is still used but only to propagate remote data handles. The
proper data is passed directly from one process to its successor in the ring.

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:2

P1:1

19.079864s
(a) without demand control

0.5 1.0 1.5 2.0 2.5

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:2

P1:1

2.922803s
(b) with demand

Runtimes are shown above. The other statistics are the same for both versions:
input size 500, 8 machines, 9 processes, 41 threads, 72 conversations, 4572 messages

Fig. 25. Warshall trace on 8 PEs, ring with 8 processes and chunking

This transfer occurs via additional so-called dynamic channels, which are not
reflected in the worker function type. This is the mechanism used to implement
the remote data concept in Eden. We will introduce Eden’s dynamic channels
and the implementation of remote data using dynamic channels in Section 7.
Before we present a case study with the ring skeleton ringRD.

Case Study (Warshall’s algorithm): Warshall’s algorithm for computing shortest
paths in a graph given by an adjacency matrix can be implemented using the
ring skeleton. Each ring process is responsible for the update of a subset of rows.
The whole adjacency matrix is rotated once around the process ring. Thus,
each process sees each row of the whole adjacency matrix. The kernel of the
implementation is the iteration function executed by the ring processes for each
row assigned to them. Note that the final argument of this function is the one
communicated via the ring.

ring_iterate :: Int → Int → Int →
[Int] → [[Int]] → ([Int], [[Int]])

ring_iterate size k i rowk (rowi:xs)

| i > size = (rowk , []) -- Finish Iteration

| i == k = (rowR , rowk:restoutput) - send own row

| otherwise = (rowR , rowi:restoutput) - update row

where

(rowR , restoutput) = ring_iterate size k (i+1) nextrowk xs

nextrowk | i == k = rowk -- no update , if own row

| otherwise = updaterow rowk rowi (rowk !!(i-1))

In the kth iteration the process with row k sends this row into the ring. During
the other iterations each process updates its own row with the information of
the row received from its ring predecessor.

Unfortunately, a trace analysis reveals (see Figure 25(a)) that this program
has a demand problem. In a first part, an increasing phase of activity runs
along the ring processes, until the final row is sent into the ring. Then all pro-
cesses start to do their update computations. By forcing the immediate eval-
uation of nextrowk, i.e. the update computation, the sequential start-up phase

…

…

…

…

…

…

… … … …

Fig. 26. Torus topology

of the ring can be compressed. The additional demand can be expressed by
rdeepseq nextrowk ‘pseq‘ which has to be included before the recursive call to
ring iterate:

(rowR , restoutput) = rdeepseq nextrowk ‘pseq ‘

ring_iterate size k (i+1) nextrowk xs

This forces the evaluation of nextrowk to normal form before the second argument
of pseq is evaluated. The effect of this small code change is enormous as shown
in Figure 25(b). Note the different scaling on the x-axes in both pictures. The
improved program version needs only a sixth of the runtime of the first version.

�

Exercise 6: Define a ring skeleton in such a way that each process creates its
successor processor. Use remote data to close the ring and to establish the
communication with the process which executes the ring skeleton.

5.3 A Torus Skeleton

A torus is a two-dimensional topology in which each process is connected to
its four neighbours. The first and last processes in each row and column are
considered neighbours, i.e. the processes per row and per column form process
rings (see Figure 26). In addition, each process has two extra connections to send
and receive values to/from the parent. These are not shown in Figure 26. The
torus topology can be used to implement systolic computations, where processes
alternate parallel computation and global synchronisation steps. At each round,
every node receives messages from its left and upper neighbours, computes, and
then sends messages to its right and lower neighbours.

The implementation that we propose in Eden uses lists instead of synchro-
nization barriers to simulate rounds. The remote data approach is used to es-
tablish direct connections between the torus nodes. The torus function defined

in Figure 27 creates the desired toroidal topology of Figure 26 by properly con-
necting the inputs and outputs of the different ptorus processes. Each process
receives an input from the parent, and two remote handles to be used to fetch
the values from its predecessors. It produces an output to the parent and two
remote handles to release outputs to its successors. The shape of the torus is
determined by the shape of the input.

The size of the torus will usually depend on the number of available processors
(noPe). A typical value is e.g. b

√
noPec. In this case each torus node can be placed

on a different PE. The first parameter of the skeleton is the worker function,
which receives an initial value of type c from the parent, a stream [a] from the
left predecessor and a stream [b] from its upper predecessor, and produces a
final result d for its parent as well as result streams of type [a] and [b] for its
right and lower successors, respectively. Functions lazyzip3 and lazyzipWith3

are lazy versions of functions of the zip family, the difference being that these
functions use irrefutable patterns for parameters, corresponding to the torus
interconnections.

Case Study (Matrix Multiplication): A typical application of the torus skeleton is
the implementation of a block-wise parallel matrix multiplication [23]. Each node
of the torus gets two blocks of the input matrices to be multiplied sequentially.
It passes its blocks to the successor processes in the torus, the block of the
first matrix to the successor in the row and the block of the second matrix to
the successor in the column. It receives corresponding blocks from its neighbour
processes and proceeds as before. If each process has seen each block of the input
matrices which are assigned to its row or column, the computation finishes. The
torus can be instantiated with the following node function:

nodefunction :: Int --^ torus dimension

→ ((Matrix ,Matrix), [Matrix], [Matrix]) --^ process input

→ ([Matrix], [Matrix], [Matrix]) --^ process output

nodefunction n ((bA ,bB), rows , cols)

= ([bSum], bA:nextAs , bB:nextBs)

where bSum = foldl ’ matAdd (matMult bA bB)

(zipWith matMult nextAs nextBs)

nextAs = take (n-1) rows

nextBs = take (n-1) cols

The result matrix block is embedded in a singleton list to avoid its streaming
when being returned to the main process. Figure 28 shows a trace of the torus
parallelisation of matrix multiplication created on the Beowulf cluster II for
input matrices with dimension 1000. Messages are overlayed. In total, 638 mes-
sages have been exchanged. It can be seen that all communication takes place
in the beginning of the computation. This is due to Eden’s push policy. Data is
communicated as soon as it has been evaluated to normal form. As the processes
simply pass matrix blocks without manipulating them, communication occurs
immediately. Afterwards, the actual computations are performed. Finally the
processes return their local result blocks to the main process on PE 1 (bottom
bar). �

torus :: (Trans a, Trans b, Trans c, Trans d) ⇒
((c,[a],[b]) → (d,[a],[b])) --^ node function

→ [[c]] → [[d]] --^ input -output mapping

torus f inss = outss

where

t_outss = zipWith spawn (repeat (repeat (ptorus f))) t_inss

(outss ,outssA ,outssB) = unzip3 (map unzip3 t_outss)

inssA = map rightRotate outssA

inssB = rightRotate outssB

t_inss = lazyzipWith3 lazyzip3 inss inssA inssB

-- each individual process of the torus

ptorus :: (Trans a, Trans b, Trans c, Trans d) ⇒
((c,[a],[b]) → (d,[a],[b])) →
Process (c,RD [a],RD [b])

(d,RD [a],RD [b])

ptorus f

= process (\ (fromParent , inA , inB) →
let (toParent , outA , outB)

= f (fromParent , fetch inA , fetch inB)

in (toParent , release outA , release outB))

lazyzipWith3 :: (a → b → c → d)

→ [a] → [b] → [c] → [d]

lazyzipWith3 f (x:xs) ~(y:ys) ~(z:zs)

= f x y z : lazyzipWith3 f xs ys zs

lazyzipWith3 _ _ _ _ = []

lazyzip3 :: [a] → [b] → [c] → [(a,b,c)]

lazyzip3 = lazyzipWith3 (\ x y z → (x,y,z))

Fig. 27. Definition of torus skeleton

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

P26:1

P25:1

P24:1

P23:1

P22:1

P21:1

P20:1

P19:1

P18:1

P17:1

P16:1

P15:1

P14:1

P13:1

P12:1

P11:1

P10:1

P9:1

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:1

Fig. 28. Trace of parallel matrix multiplication with torus skeleton

6 Workpool Skeletons

Workpool skeletons provide a powerful and general way to implement problems
with irregular parallelism, which are decomposed into tasks of varying complex-
ity. For such problems it is feasible to implement a task or work pool which is
processed by a set of worker processes. The tasks are dynamically distributed
among the workers to balance the work load. Often a master process manages the
task pool, distributes the tasks to the worker processes, and collects the results.
Then the work pool is organised as a master-worker system. In such systems it
is important that the master reacts immediately on the reception of a worker
result by sending a new task to the respective worker, i.e. the master must re-
ceive worker results as soon as they arrive. Thus, many-to-one communication
is necessary for the communication from the workers to the master.

6.1 Many-to-one Communication: Merging Communication
Streams

Many-to-one communication is an essential feature for many parallel applica-
tions, but, unfortunately, it introduces non-determinism and, in consequence,
spoils the purity of functional languages. In Eden, the predefined function

merge :: [[a]] → [a]

merges (in a non-deterministic way) a list of streams into a single stream. In fact,
merging several incoming streams guarantees that incoming values are passed
to the single output stream as soon as they arrive. Thus, merging the results
streams of the worker processes allows the master in a master-worker system
to react quickly on the worker results which are also interpreted as requests
for new tasks. As the incoming values arrive in an unpredictable order, merge

introduces non-determinism. Nevertheless functional purity can be preserved in
most portions of an Eden program. It is e.g. possible to use sorting in order
to force a particular order of the results returned by a merge application and
thus to encapsulate merge within a skeleton and save the deterministic context.
In the next subsection we show how a determinstic master-worker skeleton is
defined although the merge function is internally used for the worker-to-master
communication.

6.2 A Simple Master-Worker Skeleton

The merge function is the key to enable dynamic load balancing in a master-
worker scheme as shown in Figure 29. The master process distributes tasks to
worker processes, which solve the tasks and return the results to the master.

The Eden function masterWorker (evaluated by the “master” process) (see
Figure 30) takes four parameters: np specifies the number of worker processes
that will be spawned, prefetch determines how many tasks will initially be
sent by the master to each worker process, the function f describes how tasks

�
�

�
�

master

masterWorker np pf f

6results

?

tasks

�
�

�
�

�
�

�
�tag_map f tag_map f

worker 1 worker np

. . .

��
�
��

�
��
�*

fromWs

@
@
@

@@I�
�

�
��	

toWs
HH

HHH
HHHHj

Fig. 29. Master-worker process topology

masterWorker :: (Trans a, Trans b) ⇒
Int → Int → (a→ b) → [a] → [b]

masterWorker np prefetch f tasks

= orderBy fromWs reqs

where

fromWs = spawn workers toWs

workers = [process (map f) | n ← [1..np]]

toWs = distribute np tasks reqs

newReqs = merge [[i | r ← rs]

| (i,rs) ← zip [1..np] fromWs]

reqs = initReqs ++ newReqs

initReqs = concat (replicate prefetch [1..np])

Fig. 30. Definition of a simple master worker skeleton

have to be solved by the workers, and the final parameter tasks is the list of
tasks that have to be solved by the whole system. The auxiliary pure Haskell
function distribute :: Int → [a] → [Int] → [[a]] is used to distribute the
tasks to the workers. Its first parameter determines the number of output lists,
which become the input streams for the worker processes. The third param-
eter is the request list reqs which guides the task distribution. The request
list is also used to sort the results according to the original task order (func-
tion orderBy :: [[b]] → [Int] → [b]). Note that the functions distribute and
orderBy can be imported from Eden’s Auxiliary library. Their definitions are also
given in Appendix B.
Initially, the master sends as many tasks as specified by the parameter prefetch

in a round-robin manner to the workers (see definition of initReqs in Figure 30).
The prefetch parameter determines the behaviour of the skeleton, between
a completely dynamic (prefetch 1) and a completely static task distribution
(prefetch ≥ # tasks

workers). Further tasks are sent to workers which have deliv-
ered a result. The list newReqs is extracted from the worker results which are
tagged with the corresponding worker id. The requests are merged according

Fig. 31. Mandelbrot traces on 25 PEs, offline farm (left) vs master-worker (right)

to the arrival of the worker results. This simple master worker definition has
the advantage that the tasks need not be numbered to re-establish the original
task order on the results. Moreover, worker processes need not send explicit re-
quests for new work together with the result values. Note that we have assumed
a statically fixed task pool, which, in essence, results in another parallel map
implementation with dynamic assignment.

Case Study (Mandelbrot): The kernel function of a program to compute a two-
dimensional image of the Mandelbrot set for given complex coordinates ul (upper
left) and lr (lower right) and the number of pixels in the horizontal dimension
dimx as a string can be written as follows in Haskell:

image :: Double -- ^ threshold for iterations

→ Complex Double → Complex Double

-- ^ coordinates

→ Integer -- ^ size

→ String

image threshold ul lr dimx

= header ++ (concat $ map xy2col lines)

where

xy2col :: [Complex Double] → String

xy2col line

= concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line

(dimy , lines) = coord ul lr dimx

The first parameter is a threshold for the number of iterations that should be
done to compute the color of a pixel.

The program can easily be parallelised by replacing map in the expression
map xy2col lines with a parallel map implementation. Figure 31 shows two
traces that have been produced on the Beowulf cluster I at Heriot-Watt Univer-
sity in Edinburgh. The Mandelbrot program was evaluated with an input size of
2000 lines with 2000 pixels each using 25 PEs.

The program that produced the trace on the left hand side replaced map by
(offline_farm noPe (splitInto noPe) concat). The program yielding the trace
on the right hand side replaced map by masterWorker noPe 8, where in both cases
noPe = 25. In the offline farm, all worker processes are busy during their life
time, but we observe an unbalanced workload which reflects the shape of the
mandelbrot set. To be honest, the uneven workload has been enforced by using

version number of processes task transfer task distribution

parMap number of tasks communication one per process
mapFarm{S/B} noPe communication static

offline farm mostly noPe local selection static
masterWorker mostly noPe communication dynamic

Fig. 32. Classification of parallel map implementations

splitInto noPe for a block-wise task distribution instead of unshuffle 25. The
latter would lead to a well-balanced workload with the farm which is however
a special property of this example problem. In general, general irregular par-
allelism cannot easily be balanced. The master-worker system uses a dynamic
task distribution. In our example a prefetch value of 8 has been used to initially
provide 8 tasks to each PE. The trace on the right hand side in Figure 31 reveals
that the workload is better balanced, but worker processes are often blocked
waiting for new tasks. Unfortunately, the master process on machine 1 (lowest
bar) is not able to keep all worker processes busy. In fact, the master-worker par-
allelisation needs more time than the badly balanced offline farm. In addition,
both versions suffer from a long end phase in which the main or master process
collects the results. �

Exercise 7: Define a master-worker skeleton mwMapRedr which implements a
map-reduce scheme.

mwMapRedr :: Int -- ^ number of processes

→ Int -- ^ prefetch

→ (b → b → b) -- ^ reduce function

→ b -- ^ neutral element

→ (a → b) -- ^ map function

→ [a] → b -- ^ input - output mapping

The worker processes locally reduce their results using foldr and return
requests to the master process to ask for new input values (tasks). When
all tasks have been solved (how can this be detected?), the worker processes
return their reduction result to the master who performs the final reduction
of the received values.

6.3 Classification of Parallel Map Implementations

In Section 2 we have defined several parallel implementations of map, a simple
form of data parallelism. A given function has to be applied to each element of
a list. The list elements can be seen as tasks, to which a worker function has to
be applied. The parallel map skeletons we developed up to now can be classified
as shown in Figure 32. The simple parMap is mainly used to create a series of
processes evaluating the same function. The static task distribution implemented
in the farm variants is especially appropriate for regular parallelism, i.e. when
all tasks have same complexity or can be distributed in such a way that the

workload of the processes is well-balanced. The master worker approach with
dynamic task distribution is suitable for irregular tasks.

Exercise 8: Write parallel versions of the Julia-Set program provided on the
Eden web pages using the various parallel map skeletons. Use EdenTV to
analyse and compare the runtime behavior of the different versions.

6.4 A Nested Master-Worker Skeleton

The master worker skeleton defined above is a very simple version of a workpool
skeleton. It has a single master process with a central workpool, the worker
processes have no local state and cannot produce and return new tasks to be
entered into the workpool. Several more sophisticated workpool skeletons are
provided in the Eden skeleton library. We will here exemplarily show how a
hierarchical master worker skeleton can elegantly be defined in Eden. For details
see [7, 50]. As a matter of principle, a nested master-worker system can be defined
by using the simple master worker skeleton defined above as the worker function
for the upper levels. The simple master worker skeleton must only be modified in
such a way that the worker function has type [a] → [b] instead of a → b. The
nested scheme is then simply achieved by folding the zipped list of branching
degrees and prefetches per level. This produces a regular scheme. The proper
worker function is used as the starting value for the folding. Thus it is used
at the lowest level of worker processes. Figure 33 shows the definition of the
corresponding skeleton mwNested.

mwNested :: (Trans a, Trans b) ⇒
[Int] -- ^ branching degrees per level

→ [Int] -- ^ prefetches per level

→ ([a] → [b]) -- ^ worker function

→ [a] → [b] -- ^ tasks , results

mwNested ns pfs wf = foldr fld wf (zip ns pfs)

where

fld :: (Trans a, Trans b) ⇒
(Int ,Int) → ([a] → [b]) → ([a] → [b])

fld (n,pf) wf = masterWorker ’ n pf wf

Fig. 33. Definition of nested workpool skeleton

Case Study (Mandelbrot continued): Using a nested master-worker system helps
to improve the computation of Mandelbrot sets on a large number of processor
elements. Figure 34 shows an example trace produced for input size 2000 on 25
PEs with a two-level master worker system comprising four submasters serving
five worker processes each. Thus, the function mwNested has been called with
parameters [4,5] and [64,8]. The trace clearly shows that the work is well-
balanced among the 20 worker processes. Even the post-processing phase in

branching degrees [4,5]:
1 master, 4 submasters, 5 workers per
submaster
prefetches [64,8]:
64 tasks per submaster, 8 tasks per
worker

Fig. 34. Mandelbrot trace on 25 PEs with hierarchical master-worker skeleton (hier-
archy shown on the right)

the main process (top-level master) could be reduced, because the results are
now collected level-wise. The overall runtime could substantially be reduced in
comparison to the simple parallelisations discussed previously (see Figure 31).

�

7 Explicit Channel Management

In Eden, process communication occurs via unidirectional one-to-one channels.
In most cases, these channels are implicitly created on process creation. This
mechanism is sufficient for the generation of hierarchical communication topolo-
gies. In Section 5, we have seen how non-hierarchical process topologies and
corresponding skeletons like rings can easily be defined using the remote data
concept. This concept is based on the lower-level mechanism of dynamically
creating channels by receiver processes.

7.1 Dynamic Channels

Eden provides functions to explicitly create and use dynamic channel connections
between arbitrary processes:

new :: Trans a ⇒ (ChanName a → a → b) → b

parfill :: Trans a ⇒ ChanName a → a → b → b

By evaluating new (name val → e) a process creates a dynamic channel name

of type ChanName a in order to receive a value val of type a. After creation, the
channel should be passed to another process (just like normal data) inside the
result expression e, which will as well use the eventually received value val. The
evaluation of (parfill name e1 e2) in the other process has the side-effect that
a new thread is forked to concurrently evaluate and send the value e1 via the
channel. The overall result of the expression is e2.

ringDC :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function

→ [i] → [r] -- ^ input -output mapping

ringDC f is = os

where

(os,ringOuts) = unzip (parMap (plink f)

(lazyzip is ringIns))

ringIns = leftRotate ringOuts

leftRotate :: [a] → [a]

leftRotate [] = []

leftRotate (x:xs) = xs ++ [x]

plink :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function

→ ((i, ChanName r) → (o, ChanName r))

-- ^ -- with dynamic channels

plink f (i, outChan)

= new (\ inChan ringIn →
parfill outChan ringOut (o, inChan))

where (o, ringOut) = f (i, ringIn)

Fig. 35. Definition of ring skeleton with dynamic channels

These functions are rather low-level and it is not easy to use them appropri-
ately. Let us suppose that process A wants to send data directly to some process
B by means of a dynamic channel. This channel must first be generated by the
process B and sent to A before the proper data transfer from A to B can take
place. Hence, the dynamic channel is communicated in the direction opposite to
the desired data transfer.

Example: It is of course also possible to define the ring skeleton directly using
dynamic channels. Again, the ring function f is replaced with a modified version
plink f which introduces dynamic channels to transfer the ring input. Instead
of passing the ring data via the parent process, only the channel names are now
passed via the parent process from successor to predecessor processes in the ring.
The ring data is afterwards directly passed from predecessors to successors in
the ring. Note the the orientation of the ring must now be changed which is done
by using leftrotate instead of rightrotate in the definition of ringDC given in
Figure 35.

Each ring process creates an input channel which is immediately returned to
the parent process and passed to the predecessor process. It receives from the
parent a channel to send data to the successor in the ring and uses this channel to
send the ring output ringOut to its successor process using a concurrent thread
created by the parfill function. The original ring function f is applied to the
parent’s input and the ring input received via the dynamic ring input channel.
It produces the output for the parent process and the ring output ringOut for
the successor process in the ring.

type RD a = ChanName (ChanName a) -- remote data

-- convert local data into remote data

release :: Trans a ⇒ a → RD a

release x = new (\ cc c → parfill c x cc)

-- convert remote data into local data

fetch :: Trans a ⇒ RD a → a

fetch cc = new (\ c x → parfill cc c x)

Fig. 36. Definition of remote data with dynamic channels

Although this definition also leads to the intended topology, the correct and
effective use of dynamic channels is not as obvious as the use of the remote data
concept. /

7.2 Implementing Remote Data with Dynamic Channels

Remote data can be implemented in Eden using dynamic channels [20] as shown
in Figure 36.

Notice how the remote data approach preserves the direction of the commu-
nication (from process A to process B) by introducing another channel transfer
from A to B. This channel will be used by B to send its (dynamic) channel name
to A, and thus to establish the direct data communication. More exactly, to
release local data x of type a, a dynamic channel cc of type RD a, i.e. a channel
to transfer a channel name, is created and passed to process B. When process
A receives a channel c (of type ChanName a) from B via cc, it sends the local
data x via c to B. Conversely, in order to fetch remote data, represented by the
remote data handle cc, process B creates a new (dynamic) channel c and sends
the channel name via cc to A. The proper data will then be received via the
channel c.

8 Behind the Scenes: Eden’s Implementation

Eden has been implemented by extending the runtime system (RTS) of the
Glasgow Haskell compiler (GHC) with mechanisms for process management and
communication. In principle, it shares its parallel runtime system (PRTS) with
Glasgow parallel Haskell [58] but due to the disjoint address spaces of its pro-
cesses does not need to implement a virtual shared memory and global garbage
collection in contrast to GpH. In the following, we abstract from low-level im-
plementation details like graph reduction and thread management which are
explained elsewhere [47, 58, 14, 34] and describe Eden’s implementation on top
of the module

Control.Parallel.Eden.ParPrim.
This module provides primitive monadic operations which are used to implement
the Eden constructs on a higher-level of abstraction [10].

Eden Programs

Skeleton Library

Eden Module

Primitive Operations

Parallel Runtime System (PRTS)

Fig. 37. Layer structure of the Eden system

8.1 Layered Parallel Runtime Environment

Eden’s implementation has been organised in layers (see Figure 37) to achieve
more flexibility and to improve the maintainability of this highly complex system.
The main idea has been to lift aspects of the runtime system (RTS) to the
level of the functional language, i.e. defining basic workflows on a high level of
abstraction in the Eden module and concentrating low-level RTS capabilities in
a couple of primitive operations. In this way, part of the complexity has been
eliminated from the imperative RTS level.

Every Eden program must import the Eden module, which contains Haskell
definitions of Eden’s language constructs. These Haskell definitions use primitive
operations which are functions implemented in C that can be accessed from
Haskell. The extension of GHC for Eden is mainly based on the implementation
of these primitive operations, which provide the elementary functionality for
Eden and form a low-level coordination language by themselves.

The Eden module contains Haskell definitions of the high-level Eden con-
structs, thereby making use of the primitive operations shown in Figure 38.
The primitive operations implement basic actions which have to be performed
directly in the runtime system of the underlying sequential compiler GHC2.

Each Eden channel connects an outport of the sender process to an inport of
the receiver process. There is a one-to-one correspondence between the threads of
a process and its outports. Each thread of a process evaluates some expression
to normal form and sends the result via its outport. The primitive channels
within the parallel runtime system are identified by three primitive integer values
identifying the receiver side, i.e. the inport connecting a channel with a process.

2 Note that, in GHC, primitive operations and types are distinguished from common
functions and types by # as the last sign in their names.

Channel Administration:
– createC# creates a placeholder and an inport for a new communication channel
– connectToPort# connects a communication channel in the proper way

Communication:
– sendData# sends data on a communication channel

Thread Creation:
– fork# forks a concurrent thread

General:
– noPE# determines number of processing elements in current setup
– selfPE# determines own processor identifier

Fig. 38. Primitive operations

The three integers are (1) the processor element number, (2) the process number
and (3) a specific port number:

data ChanName ’ a = Chan Int# Int# Int#

This type is only internally visible and used by the primitive channel adminis-
tration functions. The wrapper functions of the primitive operations have the
following types:

createC :: IO (ChanName ’ a, a)

connectToPort :: ChanName ’ a → IO ()

Note that the wrapper functions always yield a result in the IO monad. Func-
tion createC creates a primitive imput channel and a handle to access the data
received via this channel. Function connectToPort connects the outport of the
thread executing the function call to a given channel i.e. the corresponding in-
port.

There is only a primitive for sending data but no one for receiving data. Re-
ceiving is done automatically by the runtime system which writes data received
via an inport immediately into a placeholder in the heap. The wrapper function
of the primitive sendData# has the following type:

sendData :: Mode → a → IO ()

data Mode = Connect | Stream | Data | Instantiate Int

There are four send modi and corresponding message types. Note that the mes-
sages are always sent via the outport associated with the executing thread. A
Connect message is initially sent to connect the outport to the corresponding
inport. This makes it possible to inform a sender thread when its results are no
longer needed, e.g. when the placeholders associated with the inport are identi-
fied as garbage.

A Data message contains a data value which is sent in a single message. The
mode Stream is used to send the values of a data stream. The Instantiate i

message is sent to start a remote process on PE i.

class NFData a ⇒ Trans a where

write :: a → IO ()

write x = rnf x ‘pseq ‘ sendData Data x

createComm :: IO (ChanName a, a)

createComm = do (cx,x) ← createC

return (Comm (sendVia cx) , x)

-- Auxiliary send function

sendVia :: (NFData a, Trans a) ⇒
(ChanName ’ a) → a → IO()

sendVia c d = do connectToPort c

sendData Connect d

write d

Fig. 39. Type class Trans

8.2 The Type Class Trans

As explained in Section 3, the type class Trans comprises all types which can
be communicated via channels. It is mainly used to overload communication for
streams and tuples. Lists are transmitted in a stream-like fashion, i.e. element by
element. Each component of a tuple is communicated via a separate primitive
channel. This is especially important for recursive processes which depend on
part of their own output (which is re-fed as input).

On the level of the Eden module, a channel is represented by a communicator,
i.e. a function to write a value into the channel:

newtype ChanName a = Comm (a → IO())

This simplifies overloading of the communication function for tuple types. The
definition of the Trans class is given in Figure 39. The context NFData (normal
form data) is needed to ensure that transmissible data can be fully evaluated
(using the overloaded function rnf (reduce to normal form)) before sending it. An
overloaded operation write :: a → IO ()) is used for sending data. Its default
definition evaluates its argument using rnf and sends it in a single message using
sendData with mode Data.

The function createComm creates an Eden channel and a handle to access the
values communicated via this channel. The default definition creates a single
primitive channel. The default communicator function is defined using the aux-
iliary function sendVia which connects to the primitive channel before sending
data on it. Note that the communicator function will be used by the sender
process while the channel creation will take place in the receiver process. The
explicit connection of the sender outport to the inport in the receiver process
helps to guarantee that at most one sender process will use a channel.

For streams, write is specialized in such a way that it evaluates each list
element to normal form before transmitting it using sendData Stream. The cor-
responding instance declaration for lists is shown in Figure 40. For tuples (up to

instance Trans a ⇒ Trans [a] where

write list@[] = sendData Data list

write (x:xs) = do rnf x ‘pseq ‘ sendData Stream x

write xs

instance (Trans a, Trans b) ⇒ Trans (a,b) where

createComm = do (cx,x) ← createC

(cy ,y) ← createC

return (Comm (write2 (cx,cy)),(x,y))

-- auxiliary write function for pairs

write2 :: (Trans a, Trans b) ⇒
(ChanName ’ a, ChanName ’ b) → (a,b) → IO ()

write2 (c1 ,c2) (x1,x2) = do fork (sendVia c1 x1)

sendVia c2 x2

Fig. 40. Trans instance declarations for lists and pairs

9 components), channel creation is overloaded as shown exemplarily for pairs in
Figure 40. Two primitive channels are created. The communicator function cre-
ates two threads to allow the concurrent and independent transfer of the tuple
components via these primitive channels. For tuples with more than 9 compo-
nents, the Eden programmer has to provide a corresponding Trans instance by
himself or the default communicator will be used, i.e. a 10-tuple would be sent
in a single message via a single channel.

For self-defined data structures that are input or output of processes, the
Eden programmer must provide instance declarations for the classes NFData and
Trans. In most cases, it is sufficient to use the default definition for the Trans

class and to define a normal form evaluation function rnf.

Example: For binary trees the following declarations would be sufficient:

data Tree a = Leaf a | Node a (Tree a) (Tree a)

instance NFData a ⇒ NFData (Tree a) where

rnf (Leaf x) = rnf x

rnf (Node x l r) = rnf x ‘seq ‘ rnf l ‘seq ‘ rnf r

instance Trans a ⇒ Trans (Tree a)

With these declarations, trees will be completely evaluated before being sent in
a single message. /

8.3 The PA Monad: Improving Control over Parallel Activities

The Eden module provides a parallel action monad which can be used to improve
the control of series of parallel actions. The parallel action monad wraps the IO
monad. In particular, it is advantageous to define a sequence of side-effecting

newtype PA a = PA { fromPA :: IO a }

instance Monad PA where

return b = PA $ return b

(PA ioX) >>= f = PA $ do

x ← ioX

fromPA $ f x

runPA :: PA a → a

runPA = unsafePerformIO ◦ fromPA

Fig. 41. PA monad definition

operations within the PA monad and unwrap the parallel action only once. The
definition of the PA monad is given in Figure 41. Note that the data constructor
PA of the PA monad is not exported from the Eden module. Thus, the ordinary
programmer can only use return and bind to specify series of parallel actions.

In Section 7, the remote data concept has been implemented using Eden’s
dynamic channel operations. In fact, the implementation immediately uses the
primitive operations and provides definition variants in the PA monad as shown
in Figure 42. In the PA variants of fetch and release, a channel is created, a
thread is forked and in the release case the channel and in the fetch case the
value received via the channel is returned.

The PA monad is especially advantageous when defining series of parallel
activities like e.g. when each component of a data structure has to be released or
fetched. In particular, this keeps the compiler from applying optimising trans-
formations that are not safe for side-effecting operations.

Example: The following definitions transform a list of local data into a corre-
sponding remote data list and vice versa:

releaseAll :: Trans a

⇒ [a] -- ^ The original list

→ [RD a] -- ^ List of Remote Data handles ,

-- ^ one for each list element

releaseAll as = runPA $ mapM releasePA as

fetchAll :: Trans a

⇒ [RD a] -- ^ The Remote Data handles

→ [a] -- ^ The original data

fetchAll ras = runPA $ mapM fetchPA ras

Note that the predefined Haskell function
mapM :: (Monad m) ⇒ (a → m b) → [a] → m [b]

lifts a monadic function to lists. /

Exercise 9: Define functions releaseTree and fetchTree to release node-wise
the data elements in binary trees:

type RD a = ChanName (ChanName a)

releasePA :: Trans a

⇒ a -- ^ The original data

→ PA (RD a) -- ^ The Remote Data handle

releasePA val = PA $ do

(cc , Comm sendValC) ← createComm

fork (sendValC val)

return cc

release :: Trans a ⇒ a -- ^ The original data

→ RD a -- ^ The Remote Data handle

release = runPA ◦ releasePA

fetchPA :: Trans a ⇒ RD a → PA a

fetchPA (Comm sendValCC) = PA $ do

(c,val) ← createComm

fork (sendValCC c)

return val

fetch :: Trans a

⇒ RD a -- ^ The Remote Data handle

→ a -- ^ The original data

fetch = runPA ◦ fetchPA

Fig. 42. Implementation of Remote Data using the PA monad

data Tree a = Leaf a | Node a (Tree a) (Tree a)

releaseTree :: Trans a ⇒ Tree a → Tree (Rd a)

fetchTree :: Trans a ⇒ Tree (Rd a) → Tree a

8.4 Process Handling: Defining Process Abstraction and
Instantiation

Process abstraction with process and process instantiation with (#) are imple-
mented in the Eden module. While process abstractions define process creation
on the side of the newly created process, process instantiation defines the ac-
tivities necessary on the side of the parent process. Communication channels
are explicitly created and installed to connect processes using the primitives
provided for handling Eden’s dynamic input channels.

A process abstraction of type Process a b is implemented by a function
f_remote (see Figure 43) which will be evaluated remotely by a corresponding
child process. It takes two arguments: the first is an Eden channel (comprising a
communicator function sendResult) via which the result of the process should be
returned to the parent process. The second argument is a primitive channel inCC
(of type ChanName’ (ChanName a)) to return its input channels (communicator
function) to the parent process. The exact number of channels between parent

data (Trans a, Trans b) ⇒
Process a b =

Proc (ChanName b → ChanName ’ (ChanName a) → ())

process :: (Trans a, Trans b) ⇒
(a → b) → Process a b

process f = Proc f_remote

where

f_remote (Comm sendResult) inCC

= do (sendInput , invals) = createComm

connectToPort inCC

sendData Data sendInput

sendResult (f invals)

Fig. 43. Implementation of process abstraction

(#) :: (Trans a, Trans b) ⇒ Process a b → a → b

pabs # inps

= runPA $ instantiateAt 0 pabs inps

instantiateAt :: (Trans a, Trans b) ⇒
Int → Process a b → a → PA b

instantiateAt pe (Proc f_remote) inps

= PA $

do (sendresult , result) ← createComm

(inCC , Comm sendInput) ← createC

sendData (Instantiate pe) (f_remote sendresult inCC)

fork (sendInput inps)

return result

Fig. 44. Implementation of process instantiation

and child process does not matter in this context, because the operations on
dynamic channels are overloaded. The definition of process shows that the re-
motely evaluated function, f_remote, creates its input channels via the function
createComm. Moreover, it connects to the primitive input channel of its parent
process and sends the communicator function of its input channels to the par-
ent. Finally the process output, i.e. the result of evaluating the function within
the process abstraction f to the inputs received via its input channels invals.
The communicator function sendResult will trigger the evaluation of the process
result to normal form before sending it.

Process instantiation by the operator (#) defines process creation on the
parent side. The auxiliary function instantiateAt implements process instan-
tiation with explicit placement on a given PE which are numbered from 1 to
noPe. Passing 0 as a process number leads to the default round robin placement
policy for processes. Process creation on the parent side works somehow dually
to the process creation on the child side, at least with respect to channel man-
agement. First a new input channel for receiving the child process’ results is

spawnAt :: [Int] → [Process a b] → [a] → [b]

spawnAt pos ps is

= runPA $ sequence

[instantiateAt st p i |
(st ,p,i) ← zip3 (cycle pos) ps is]

spawn = spawnAt [0]

Fig. 45. Definition of spawn

generated. Then a primitive channel for receiving the child process’ input chan-
nel(s) is created. The process instantiation message sends the application of the
process abstraction function f_remote applied to the created input channels to
the processor element where the new child process should be evaluated. Finally
a concurrent thread is forked which sends the input for the child process using
the communicator function received from the child process. The result of the
child process is returned to the environment.

The functions spawnAt and spawn can easily be defined using the PA monad
and the primitive function instantiateAt, see Figure 45. Note that it is not
necessary to provide a processor number for each process abstraction. The list
with PE numbers is cycled to guarantee sufficient PE numbers.

Exercise 10: Define a function spawnTree to instantiate process abstractions
given in a binary tree structure together with their inputs:

data Tree a = Leaf a | Node a (Tree a) (Tree a)

spawnTree :: (Trans a, Trans b) ⇒
Tree (Process a b, a) → Tree b

9 Further Reading

Comprehensive and up-to-date information on Eden is provided on its web site
http://www.mathematik.uni-marburg.de/~eden.

Basic information on its design, semantics, and implementation as well as the
underlying programming methodology can be found in [39, 13]. Details on the
parallel runtime system and Eden’s concept of implementation can best be found
in [8, 10, 4]. The technique of layered parallel runtime environments has been fur-
ther developed and generalised by Berthold, Loidl and Al Zain [3, 12]. The Eden
trace viewer tool EdenTV is available on Eden’s web site. A short introductory
description is given in [11]. Another tool for analysing the behaviour of Eden
programs has been developed by de la Encina, Llana, Rubio and Hidalgo-Herreo
[21, 22, 17] by extending the tool Hood (Haskell Object Observation Debugger)
for Eden. Extensive work has been done on skeletal programming in Eden. An
overview on various skeleton types (specification, implementation, and cost mod-
els) have been presented as a chapter in the book by Gorlatch and Rabhi [38,

54]. Several parallel map implementations have been discussed and analysed
in [33]. An Eden implementation of the large-scale map-and-reduce program-
ming model proposed by Google [18] has been investigated in [6, 4]. Hierarchical
master-worker schemes with several layers of masters and submasters have been
presented in [7]. A sophisticated distributed workpool has been presented in [19].
Definitions and applications of further specific skeletons can be found in the fol-
lowing papers: topology skeletons [9], adaptive skeletons [25], divide-and-conquer
schemes [5, 36]. Special skeletons for computer algebra algorithms are developed
with the goal to define the kernel of a computer algebra system in Eden [37, 35].
Meta-programming techniques have been investigated in [51]. An operational
and a denotational semantics for Eden have been defined by Ortega-Mallén and
Hidalgo-Herrero [28, 29, 27]. These semantics have been used to analyze Eden
skeletons [31, 30]. A non-determinism analysis has been presented by Segura and
Peña [44, 55].

10 Other Parallel Haskells (Related Work)

Several extensions of the non-strict functional language Haskell [26] for parallel
programming are available. These approaches differ in the degree of explicitness
when specifying parallelism and the control of parallel evaluations. The spec-
trum reaches from explicit low-level approaches where the programmer has to
specify and to control parallel evaluations on a low level of abstraction to im-
plicit high-level approaches where in the extreme the programmer does not have
to bother about parallelism at all. Between the extremes there are approaches
where the programmer has to specify parallelism explicitly but parallel execu-
tion is managed by sophisticated parallel runtime systems. It is a challenge to
find the right balance between control and abstraction in parallel functional
programming. The following enumeration sketches some parallel extensions of
Haskell from explicit to implicit approaches:

Haskell plus MPI uses the foreign function interface (FFI) of Haskell to pro-
vide the MPI [43] functionality in Haskell [49]. It supports an SPMD style, i.e.
the same program is started on several processing elements (PEs). The differ-
ent instances can be distinguished using their MPI rank and may exchange
serializable Haskell data structures via MPI send and receive routines.

The Par Monad [56] is a monad to express deterministic parallelism in Haskell.
It provides a fork to create parallel processes and write-once mutable ref-
erence cells called IVars for exchanging data between processes. A skeleton-
based programming style is advocated to abstract from the low-level basic
constructs. It is notable that the Par monad is completely implemented as
a Haskell library including a work-stealing scheduler written in Haskell.

Eden (the subject of these lecture notes) abstracts from low-level sending and
receiving of messages. Communication via channels is automatically provided
by the parallel runtime system. It allows, however, to define processes and
communication channels explicitly and thus to control parallel activity and

data distribution. Eden has been designed for distributed memory systems
but can equally well be used on multicore systems.

Glasgow parallel Haskell (GpH) [58] and Multicore Haskell [42] share
the same language definition (basic combinators par and pseq and evaluation
strategies) but differ in their implementations. While GpH with its paral-
lel runtime system GUM can be executed on distributed memory systems,
Multicore Haskell with its threaded runtime system is tailored to shared-
memory multicore architectures. The language allows to mark expressions
using the simple combinator par for parallel evaluation. These expressions
are collected as sparks in a spark pool. The runtime system decides which
sparks will be evaluated in parallel. This is out of control of the program-
mer. Moreover, access to local and remote data is automatically managed
by the runtime system. Evaluation strategies [57, 41] abstract from low-level
expression marking and allow to describe patterns for parallel behaviour on
a higher level of abstraction.

Data Parallel Haskell [46] Data Parallel Haskell extends Haskell with support
for nested data parallelism with a focus to utilise multicore CPUs. It adds
parallel arrays and implicitly parallel operations on those to Haskell. This
is the most implicit and easy-to-use approach, but restricted to the special
case of data parallelism.

Note that we excluded from this overview approaches to concurrent programming
like Concurrent Haskell [45] and distributed programming like Cloud Haskell [32]
or HdpH [40]. Although not dedicated to parallel programming these languages
can also be used for that purpose but on a rather low level of abstraction.

11 Conclusions

These lecture notes have given a comprehensive overview of the achievements and
the current status of the Eden project with a focus on Eden’s skeleton-based pro-
gramming methodology. Eden extends Haskell with constructs for the explicit
definition and creation of processes. Communication between these processes
occurs via uni-directional one-to-one channels which will be established auto-
matically on process creation between parent and child processes, but can also
be explicitly created for direct data exchange between arbitrary processes. Eden
provides an elaborated skeleton library with various parallel implementations of
common computation schemes like map, map-reduce, or divide-and-conquer, as
well as skeletons defining communication topologies and master-worker systems.
Communication costs are crucial in distributed systems. Techniques like chunk-
ing, running processes offline and establishing direct communication channels
using remote data or dynamic channels can be used to reduce communication
costs substantially. Application programmers will typically find appropriate pre-
defined skeletons for parallelising their Haskell programs, but also have the pos-
sibility to modify and adapt skeletons for their special requirements. The Eden
project is ongoing. Current activities comprise the further development of the

Eden skeleton library as well as the investigation of further high-level parallel
programming constructs.

Acknowledgements

The author thanks the co-developers of Eden Yolanda Ortega-Mallén and Ri-
cardo Peña from Universidad Complutense de Madrid for their friendship and
continuing support. It is thanks to Jost Berthold that we have an efficient im-
plementation of Eden in the Glasgow Haskell compiler. I am grateful to all
other actual and former members of the Eden project for their manifold con-
tributions: Alberto de la Encina, Mercedes Hildalgo Herrero, Christóbal Pareja,
Fernando Rubio, Lidia Sánchez-Gil, Clara Segura, Pablo Roldan Gomez (Uni-
versidad Complutense de Madrid) and Silvia Breitinger, Mischa Dieterle, Ralf
Freitag, Thomas Horstmeyer, Ulrike Klusik, Dominik Krappel, Oleg Lobachev,
Johannes May, Bernhard Pickenbrock, Steffen Priebe, Björn Struckmeier, Nils
Weskamp (Philipps-Universität Marburg). Last but not least, thanks go to Hans-
Wolfgang Loidl, Phil Trinder, Kevin Hammond, and Greg Michaelson for many
fruitful discussions, successful cooperations, and for giving us access to their
Beowulf clusters.

Special thanks go to Yolanda Ortega-Mallén, Oleg Lobachev, Mischa Dieterle,
Thomas Horstmeyer, and the anonymous reviewer for their valuable comments
on a preliminary version of this tutorial.

References

1. M. Alt and S. Gorlatch. Adapting Java RMI for grid computing. Future Generation
Computer Systems, 21(5):699–707, 2004.

2. K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring
Joint Computer Conference, Vol. 32, pages 307–314, 1968.

3. J. Berthold. Towards a Generalised Runtime Environment for Parallel Haskells.
In Computational Science — ICCS’04, LNCS 3038. Springer, 2004. (Workshop on
Practical Aspects of High-level Parallel Programming — PAPP 2004).

4. J. Berthold. Explicit and Implicit Parallel Functional Programming: Concepts and
Implementation. PhD thesis, Philipps-Universität Marburg, Germany, 2008.

5. J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Distributed Memory Pro-
gramming on Many-Cores A Case Study Using Eden Divide-&-Conquer Skeletons.
In ARCS 2009, Workshop on Many-Cores. VDE Verlag, 2009.

6. J. Berthold, M. Dieterle, and R. Loogen. Implementing Parallel Google Map-
Reduce in Eden. In Europar’09, LNCS 5704, pages 990–1002. Springer, 2009.

7. J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical Master-Worker
Skeletons. In Practical Aspects of Declarative Languages (PADL 2008), LNCS
4902, pages 248 – 264. Springer, 2008.

8. J. Berthold, U. Klusik, R. Loogen, S. Priebe, and N. Weskamp. High-level Process
Control in Eden. In EuroPar 2003 – Parallel Processing, LNCS 2790, pages 732–
741. Springer, 2003.

9. J. Berthold and R. Loogen. Skeletons for Recursively Unfolding Process Topologies.
In Parallel Computing: Current & Future Issues of High-End Computing, ParCo
2005, pages 835–842. NIC Series, Vol. 33, 2006.

10. J. Berthold and R. Loogen. Parallel Coordination Made Explicit in a Functional
Setting. In Implementation and Application of Functional Languages (IFL 2006),
Selected Papers, LNCS 4449, pages 73–90. Springer, 2007. (awarded best paper of
IFL’06).

11. J. Berthold and R. Loogen. Visualizing Parallel Functional Program Runs – Case
Studies with the Eden Trace Viewer –. In Parallel Computing: Architectures, Al-
gorithms and Applications, ParCo 2007, pages 121–128. NIC Series, Vol. 38, 2007.

12. J. Berthold, A. A. Zain, and H.-W. Loidl. Scheduling light-weight parallelism in
ArtCoP. In Practical Aspects of Declarative Languages (PADL 2008), LNCS 4902,
pages 214 – 229. Springer, 2008.

13. S. Breitinger. Design and Implementation of the Parallel Functional Language
Eden. PhD thesis, Philipps-Universität Marburg, Germany, 1998.

14. S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Parallel)
Eden: An Implementation Point of View. In PLILP’98, LNCS 1490, pages 318–334.
Springer, 1998.

15. J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965.

16. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1989.

17. A. de la Encina. Formalizando el proceso de depuración en programación funcional
paralela y perezosa. PhD thesis, Universidad Complutense de Madrid (Spain), 2008.
In Spanish.

18. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.

19. M. Dieterle, J. Berthold, and R. Loogen. A Skeleton for Distributed Work Pools
in Eden. In M. Blume and G. Vidal, editors, 10th Fuji International Symposium
on Functional and Logic Programming (FLOPS) 2010, LNCS 6009, pages 337–353,
Springer, 2010.

20. M. Dieterle, T. Horstmeyer, and R. Loogen. Skeleton Composition Using Remote
Data. In Practical Aspects of Declarative Programming 2010 (PADL 2010), LNCS
5937, pages 73–87. Springer, 2010.

21. A. Encina, L. Llana, F. Rubio, and M. Hidalgo-Herrero. Observing Intermediate
Structures in a Parallel Lazy Functional Language. In Principles and Practice of
Declarative Programming (PPDP 2007), pages 109–120. ACM, 2007.

22. A. Encina, I. Rodŕıguez, and F. Rubio. pHood: A Tool to Analyze Parallel Func-
tional Programs. In Implementation of Functional Languages (IFL’09), pages 85–
99. Seton Hall University, New York, USA, 2009. Technical Report, SHU-TR-CS-
2009-09-1.

23. W. M. Gentleman. Some complexity results for matrix computations on parallel
computers. Journal of the ACM, 25(1):112–115, 1978.

24. GHC: The Glasgow Haskell Compiler. Website http://www.haskell.org/ghc.

25. K. Hammond, J. Berthold, and R. Loogen. Automatic Skeletons in Template
Haskell. Parallel Processing Letters, 13(3):413–424, 2003.

26. Haskell: A non-strict functional programming language. Website.
http://www.haskell.org/.

27. M. Hidalgo Herrero. Semánticas Formales para un Lenguaje Funcional Paralelo.
PhD thesis, Universidad Complutense de Madrid (Spain), 2004. In Spanish.

28. M. Hidalgo-Herrero and Y. Ortega-Mallén. An Operational Semantics for the
Parallel Language Eden. Parallel Processing Letters, 12(2):211–228, 2002.

29. M. Hidalgo-Herrero and Y. Ortega-Mallén. Continuation Semantics for Parallel
Haskell Dialects. In Asian Symposium on Programming Languages and Systems
(APLAS 2003), pages 303–321. LNCS 2895, Springer, 2003.

30. M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio. Analyzing the Influence
of Mixed Evaluation on the Performance of Eden Skeletons. Parallel Computing,
32(7–8):523–538, 2006.

31. M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio. Comparing Alternative
Evaluation Strategies for Stream-Based Parallel Functional Languages. In Imple-
mentation and Application of Functional Languages (IFL 2006), Selected Papers,
LNCS 4449, pages 55–72. Springer, 2007.

32. S. P. Jeff Epstein, Andrew P. Black. Towards Haskell in the cloud. In Haskell ’11:
Proceedings of the 4th ACM symposium on Haskell, pages 118–129. ACM, 2011.

33. U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation Skeletons in Eden
— Low-Effort Parallel Programming. In Implementation of Functional Languages
(IFL 2000), Selected Papers, LNCS 2011, pages 71–88. Springer, 2001.

34. U. Klusik, Y. Ortega-Mallén, and R. Peña Maŕı. Implementing Eden – or: Dreams
Become Reality. In IFL’98, LNCS 1595, pages 103–119. Springer, 1999.

35. O. Lobachev. Implementation and Evaluation of Algorithmic Skeletons: Paralleli-
sation of Computer Algebra Algorithms. PhD thesis, Philipps-Universität Marburg,
Germany, 2011.

36. O. Lobachev, J. Berthold, M. Dieterle, and R. Loogen. Parallel FFT using Eden
Skeletons. In PaCT 2009: 10th International Conference on Parallel Computing
Technologies, LNCS 5698, pages 73–83, Springer, 2009.

37. O. Lobachev and R. Loogen. Towards an Implementation of a Computer Algebra
System in a Functional Language. In AISC/Calculemus/MKM 2008, LNAI 5144,
pages 141–174, 2008.

38. R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Ab-
stractions in Eden. In [53], chapter 4, pages 95–128. Springer, 2003.

39. R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Programming
in Eden. Journal of Functional Programming, 15(3):431–475, 2005.

40. P. Maier, P. Trinder, and H.-W. Loidl. Implementing a High-level Distributed-
Memory parallel Haskell in Haskell. In IFL’11: 23rd Int. Workshop on the Imple-
mentation of Functional Languages, LNCS. Springer, 2011. to appear.

41. S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. W. Trinder. Seq no more:
Better strategies for parallel Haskell. In Haskell Symposium 2010. ACM Press,
2010.

42. S. Marlow, S. L. Peyton-Jones, and S. Singh. Runtime support for multicore
Haskell. In ICFP 2009 — Intl. Conf. on Functional Programming, pages 65–78.
ACM Press, 2009.

43. MPI: The Message-Passing Interface. Website. http://www.open-mpi.org/.
44. R. Peña and C. Segura. Non-determinism Analysis in a Parallel-Functional Lan-

guage. In Implementation of Functional Languages (IFL 2000), LNCS 1268.
Springer, 2001.

45. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proceedings of
POPL ’96, pages 295–308. ACM Press, 1996.

46. S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. Chakravarty. Harnessing
the Multicores: Nested Data Parallelism in Haskell. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’08), 2008.

47. S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–202,
1992.

48. B. Pickenbrock. Developing a Multicore Implementation of Eden. Bachelor thesis,
Philipps-Universität Marburg, 2011. in german.

49. B. Pope and D. Astapov. Haskell-mpi, Haskell bindings to the MPI library.
https://github.com/bjpop/haskell-mpi, 2010.

50. S. Priebe. Dynamic Task Generation and Transformation within a Nestable
Workpool Skeleton. In European Conference on Parallel Computing (Euro-Par)
2006, LNCS 4128, 2006.

51. S. Priebe. Structured Generic Programming in Eden. PhD thesis, Philipps-
Universität Marburg, Germany, 2007.

52. PVM: Parallel Virtual Machine. Website. http://www.epm.ornl.gov/pvm/.

53. F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer, 2003.

54. F. Rubio. Programación Funcional Paralela Eficiente en Eden. PhD thesis, Uni-
versidad Complutense de Madrid (Spain), 2001. In Spanish.

55. C. Segura. Análisis de programas en lenguajes funcionales paralelos. PhD thesis,
Universidad Complutense de Madrid (Spain), 2001. In Spanish.

56. S. P. Simon Marlow, Ryan Newton. A monad for deterministic parallelism. In
Haskell ’11: Proceedings of the 4th ACM symposium on Haskell, pages 71–82. ACM,
2011.

57. P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algorithm + Strategy
= Parallelism. Journal of Functional Programming, 8(1):23–60, 1998.

58. P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. L. Peyton
Jones. GUM: a portable implementation of Haskell. In Proceedings of Programming
Language Design and Implementation, 1996.

A Compiling, Running, Analysing Eden Programs

The Eden compiler, an extension of the Glasgow Haskell compiler (GHC), is
available from the Eden homepage under URL

http://www.mathematik.uni-marburg.de/~eden

Prerequisites and installation instructions are provided.
Typical command lines for compiling, running and analysing the simple pro-

gram for computing π shown in Figure 4 are e.g.

prompt> ghc -parmpi --make -O2 -eventlog pi.hs

prompt> pi 1000000 +RTS -N8 -ls

prompt> edentv loogen=pi_1000000_+RTS_-N8_-ls.parevents

Because of the option -parmpi code for the MPI version of the parallel runtime
system (PRTS) is produced. The option -eventlog enables the code to produce
traces at runtime. The code is then run with input parameter 1000000. The
runtime system options after +RTS have the effect that the runtime system is
started on 8 processing elements (option -N8) and that a trace file is produced
(option -ls). Finally the trace viewer EdenTV (see Section A.3) is started to
visualise and analyse the produced trace file.

A.1 Compile Time Options

To compile Eden programs with parallel support one has to use the options
-parpvm to use PVM [52] or -parmpi to use MPI [43] as middleware. The option
-eventlog allows for the production of trace files (event logs) when compiled
Eden programs are executed. All GHC options, e.g. optimisation flags like -O2,
can equally well be used with the Eden version of GHC.

A.2 Runtime Options

A compiled Eden program accepts in addition to its arguments runtime system
options enclosed in

+RTS <your options> -RTS

With these options one can control the program setup and behaviour, e.g. on
how many (virtual) processor elements (PEs) the program should be executed,
which process placement policy should be used etc. The following table shows
the most important Eden specific runtime options. All GHC RTS options can
also be used. By typing ./myprogram +RTS -? a complete list of available RTS
options is given.

RTS option effect default
-N<n> set number of PEs number of PVM/MPI nodes

-MPI@<file> specify MPI hostfile mpihosts

-qQ<n> set buffer size for messages 32K
-ls enable event logging3

-qrnd random process placement round-robin placement

A.3 EdenTV: The Eden Trace Viewer

The Eden trace viewer tool (EdenTV) [11] provides a post-mortem analysis of
program executions on the level of the computational units of the parallel run-
time system (PRTS). The latter is instrumented with special trace generation
commands activated by the compile-time option -eventlog and the run-time
option +RTS -ls. In the space-time diagrams generated by EdenTV, machines
(i.e. processor elements), processes or threads are represented by horizontal bars,
respectively, with time on the x-axis.

The machines diagrams correspond to the view of profiling tools observing
the parallel machine execution, if there is a one-to-one correspondence between
virtual and physical processor elements which will usually be the case. The
processes per machine diagrams show the activity of Eden processes and their
placement on the available machines. The threads diagrams show the activity
of all created threads, not only the threads of Eden processes but also internal
system threads.

The diagram bars have segments in different colours, which indicate the ac-
tivities of the respective logical unit (machine, process or thread) in a period
during the execution. Bars are

(a) Machines View (b) Processes View

(c) Thread View (d) Processes with Message Overlay

Fig. 46. Examples of EdenTV diagrams

– green when the logical unit is running,
– yellow when it is runnable but currently not running, and
– red when the unit is blocked.

If trace visualisations are shown in greyscale, the colors have the following cor-
respondences: light grey = yellow, grey = green, dark grey = red. In addition, a
machine can be idle which means that no processes are allocated on the machine.
Idleness is indicated by a small blue bar. The thread states are immediately de-
termined from the thread state events in the traces of processes. The states of
processes and machines are derived from the information about thread states.

Figure 46 shows examples of the machines, processes and threads diagrams
for a divide-and-conquer program implementing the bitonic-merge-sort algo-
rithm [2]. The trace has been generated on 8 Linux workstations connected
via fast Ethernet. The program sorted a list of 1024 numbers with a recursion
depth limit of 4.

The example diagrams in Figure 46 show that the program has been executed
on 8 machines (virtual processor elements). While there is some activity on
machine 1 (where the main program is started) during the whole execution,
machines 6 to 8 are idle most of the time (smaller blue bar). The corresponding
processes graphic (see Figure 46(b)) reveals that several Eden processes have
been allocated on each machine. The activities in Machine 2 have been caused
by different processes. The diagrams show that the workload on the parallel
machines was low — there were only small periods where threads were running.
The yellow-colored periods indicate system activity in the diagrams. The threads
view is not readable because too many threads are shown. It is possible to zoom

the diagrams to get a closer view on the activities at critical points during the
execution.

Messages between processes or machines are optionally shown by grey arrows
which start from the sending unit bar and point at the receiving unit bar (see
Figure 46(d)). Streams can be shown as shadowed areas. The representation of
messages is very important for programmers, since they can observe hot spots
and inefficiencies in the communication during the execution as well as control
communication topologies.

When extensive communication takes places, message arrows may cover the
whole activity profile. For this reason, EdenTV allows to show messages se-
lectively, i.e. between selectable (subsets of) processes. EdenTV provides many
additional information and features, e.g. the number of messages sent and re-
ceived by processes and machines is recorded. More information is provided on
the web pages of EdenTV:
http://www.mathematik.uni-marburg.de/~eden/?content=trace main&navi=trace

B Auxiliary Functions

This section contains the definitions of the auxiliary functions which have been
used in the examples of this tutorial. These pure Haskell functions are provided
in the Eden module Control.Parallel.Eden.EdenSkel.Auxiliary.

B.1 Unshuffle and Shuffle

The function unshuffle :: Int → [a] → [[a]] distributes the input list in a
round robin manner into as many sublists as the first parameter determines.

unshuffle :: Int -- ^ number of sublists

→ [a] -- ^ input list

→ [[a]] -- ^ distributed output

unshuffle n xs = [takeEach n (drop i xs) | i ← [0..n-1]]

takeEach :: Int → [a] → [a]

takeEach n [] = []

takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)

The inverse function shuffle :: [[a]] → [a] shuffles the given list of lists
into the output list.

shuffle :: [[a]] -- ^ sublists

→ [a] -- ^ shuffled sublists

shuffle = concat ◦ transpose

Note that the function transpose is predefined in the standard library Data.List.
The Haskell prelude function concat :: [[a]] → [a] simply concatenates all
lists of the given list of lists.

The function unshuffle has the advantage that the result lists grow uniformly.
Consequently, the function works incrementally in the sense that it produces

values on all output lists even if the input list is not completely available or an
infinite stream. In the same way, shuffle is able to produce output even if the
input lists are incomplete or infinite.

B.2 SplitIntoN and Chunk

The function splitIntoN :: Int → [a] → [[a]] distributes the input list block-
wise into as many sublists as the first parameter determines. The lengths of the
output lists differ by at most one. This property is achieved by using the fol-
lowing function bresenham which follows an idea from the Bresenham algorithm
from computer graphics [15]. The function bresenham computes takes two inte-
ger parameters n and p and computes [i1, ..., ip] such that i1 + ... + ip = n and
|ij − ik| ≤ 1 for all 1 ≤ j, k ≤ n.

bresenham :: Int -- ^n

→ Int -- ^p

→ [Int] -- ^[i1 ,...,ip]

bresenham n p = take p (bresenham1 n)

where

bresenham1 m = (m ‘div ‘ p) : bresenham1 ((m ‘mod ‘ p)+ n)

splitIntoN :: Int -- ^ number of blocks

→ [a] -- ^ list to be split

→ [[a]] -- ^ list of blocks

splitIntoN n xs = f bh xs

where bh = bresenham (length xs) n

f [] [] = []

f [] _ = error "some elements left over"

f (t:ts) xs = hs : (f ts rest)

where (hs ,rest) = splitAt t xs

The Haskell prelude function splitAt :: Int → [a] → ([a],[a]) splits a list
into a prefix of the length determined by its first parameter and the rest list.

Note that splitIntoN works only for finite lists. Moreover, it does not work
incrementally, i.e. the whole input list must be available before any output will
be produced.

While splitIntoN divides a list into the given number of sublists, the following
function chunk decomposes a list into sublists of the size given as first parameter.
All sublists except of the last one have the given size.

chunk :: Int → [a] → [[a]]

chunk k [] = []

chunk k xs = ys : chunk k zs

where (ys ,zs) = splitAt k xs

In contrast to splitIntoN, chunk works incrementally and can also be applied to
incomplete or infinite lists.

Note that the inverse function to splitIntoN and to chunk is the Haskell
prelude function concat :: [[a]] → [a].

B.3 Distribute and OrderBy

The functions distribute and orderBy are used in the definition of the master-
worker skeleton (see Section 6.2). The function distribute distributes a task
list into several task lists for the worker processes in the order determined by a
stream of worker id’s which are the workers’ requests for new tasks.

distribute :: Int -- ^ number of workers

→ [Int] -- ^ request stream with worker IDs

→ [t] -- ^ task list

→ [[t]] -- ^ each inner list for one worker

distribute np reqs tasks

= [taskList reqs tasks n | n← [1..np]]

where taskList (r:rs) (t:ts) pe

| pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe

taskList _ _ _ = []

The function orderBy combines the worker results in the order determined
by a stream of worker id’s.

orderBy :: [[r]] -- ^ nested input list

→ [Int] -- ^ request stream gives distribution

→ [r] -- ^ ordered result list

orderBy rss [] = []

orderBy rss (r:reqs)

= let (rss1 ,(rs2:rss2)) = splitAt r rss

in (head rs2): orderBy (rss1 ++ ((tail rs2):rss2)) reqs

