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Abstract

WedescribeXIRC, a tool and architecture that enables
to define queries over a uniform representation of all arti-
facts of a software project. These queries can be used for
general cross-artifact information retrieval or for more
special applications like checking implementation restric-
tions or conformance to style guides. XIRC is also a good
basis to implement a broad range of tools for refactor-
ing, generators, aspect-oriented programming and many
other domains on top of it.

1. Introduction

The size and complexity of today’s software sys-
tems, the ever present need to accelerate the turnover
of developers and the constantly changing require-
ments of software systems make their development,
testing, maintenance, re-engineering, and evolution in-
creasingly challenging. In this context, reverse engi-
neering, which we understand in this paper as the pro-
cess of analyzing a system to identify the system’s com-
ponents and their relations, and to create representa-
tions of the system in various forms supporting differ-
ent levels of abstraction [8], becomes more important.
We use the term information engineering (IE) to de-
note the interconnected processes of information re-
trieval and information processing needed to support
the identification of a system’s elements of interest and
their relations, the creation of different representations
of these elements and their relations, respectively.

Many “proprietary” tools for retrieving information
from particular types of artifacts have been developed
in the past. For example, the Eclipse IDE [12] or the
Squeak development environment [39] support different
search tasks in source code, such as finding all callers of
a method or displaying the subclasses of a given class.

Other tools, such as Lint [24] try to find potentially er-
roneous places in the code. Preprocessors, or documen-
tation generators such as Javadoc integrate search en-
gines to find preprocessor statements or documentation
comments. Yet other tools are geared towards discov-
ering bug patterns in code [13,20,21,37].

In this paper we make a case for replacing these
special-purpose tools by an open, cross-artifact infor-
mation engineering platform as an integral part of soft-
ware development environments. In the following, we
will explain what we mean by open and cross-artifact
and outline the advantages of such a platform over a
plethora of proprietary tools.

The term open has three facets. First, such a plat-
form should be open with respect to the kinds of in-
formation that can be searched for. A tool for finding
bugs in the code, for example, is typically not open to
also find, say, all callers of a method. More open tools
like a text search tool, on the other hand, are not pow-
erful enough to find information that depends on the
logical structure of the artifacts, because the artifacts
are only treated as flat text. Secondly, open means that
an IE platform should be easily configurable with spe-
cific, predefined IE tasks such that the functionality
of the aforementioned special-purpose tools becomes a
matter of configuring the platform accordingly. For ex-
ample, the platform should be easily configurable such
that it enforces the coding guidelines of a company.
Thirdly, such a platform should support a variety of
processing techniques. The techniques used for the rep-
resentation or processing of the retrieved information
may be very different depending on the activity to be
supported. For example, the visualization techniques
needed for detecting patterns that indicate the pres-
ence of bugs or violations of best practices differ from
those needed to generate documentation or to visual-
ize the structure of a program to help with program
understanding.

The term cross-artifact refers to information re-



trieval and processing across several heterogeneous
software development artifacts. Cross-artifact informa-
tion engineering is crucial, since the types of the source
documents of a software project are very different, in-
cluding source and binary code, XML deployment de-
scriptors, scripting and configuration files, etc., and
the information stored in the documents is tightly re-
lated. For example, information about a software devel-
oped with Sun’s Enterprise JavaBeans (EJB) technol-
ogy is spread around several different artifacts, such as
XML deployment descriptors and their referenced Java
classes.

Given the preceding requirements, a key point to
make is that a uniform approach to all kinds of cross-
artifact information retrieval should be provided. That
is, the platform should have a built-in generic mecha-
nism by means of which the developers can specify new
arbitrary kinds of artifact types such that the search
engine and search requests can uniformly work over all
different types of artifacts.

None of the aforementioned tools is open and al-
lows for cross-artifact information retrieval. Generally,
they only find information in one kind of artifact, and it
is not possible to aggregate information that is spread
around different types of source artifacts. Furthermore,
most of the tools are not open for user-defined re-
trievals, or do not support information processing in
an appropriate way. None of them employ a uniform
approach to information retrieval, they are rather spe-
cialized on specific kinds of information retrieval.

The goal of the work presented in this paper is to ad-
vance the state of the art in this area by making two
main contributions: an architecture for information en-
gineering platforms and the design and implementation
of an information engineering platform based on this
architecture.

In our architecture, all sources of information (ar-
tifacts involved in the software development process)
are mapped to equivalent representations expressed in
a common language: the Extensible Markup Language
(XML) [7]. We have chosen XML as our lingua franca
because it is well suited to represent hierarchical data
as found in most documents related to software de-
velopment projects. For instance, the representation of
source code as an XML document is equivalent to the
representation of the abstract syntax tree (AST) as an
XML document [4]. Furthermore, there is wide sup-
port for mapping different types of formats to XML.

Search capabilities over XML documents are needed
as the means for information retrieval. We propose the
use of the query language XQuery [6] for this pur-
pose, because XQuery is extremely powerful, and sev-
eral ready-to-use query engines exist for it. This ap-

proach enables us to use a single query language on doc-
uments as diverse as binary files, source files and XML
documents, such that the user is not confronted with
many different special purpose query languages [23].

Our implementation of this platform, called XIRC
(the acronym stands for XML-based Information Re-
trieval and Conversion), is an open framework that can
be extended with new artifact types by registering re-
spective converters to XML, new queries, and new tools
for processing the information retrieved by queries. We
will outline the design of XIRC and demonstrate its
benefits by means of search tasks and checking of im-
plementation restrictions and best practices in the con-
text of the Eclipse IDE. However, it is important to
note that the XIRC platform is not restricted to these
applications; it is a kernel for supporting a range of
reverse engineering tasks such as constructing differ-
ent views on the program structure, including poly-
metric views as proposed in [28], refactoring, mining
or construction of aspect-oriented language processors.
We will outline this view of XIRC as a kernel for re-
verse engineering and aspect-oriented programming af-
ter having presented its architecture and demonstrated
its usage by simple examples.

The remainder of this paper is structured as follows.
In Sec. 2, we will shortly present XML and XQuery to
establish the needed background for understanding the
rest of the paper. In Sec. 3, we will present the basic
concepts of our approach and show different applica-
tions of it. Sec. 4 elaborates on the architecture, imple-
mentation, and extensibility of XIRC. Sec. 5 discusses
related work. Sec. 6 concludes and outlines areas of fu-
ture work.

2. XML and XQuery

2.1. XML - Extensible Markup Language

Since it became a recommendation of the World
Wide Web Consortium (W3C) in 1998 XML has been
successful as a format for data interchange. As opposed
to other markup languages like HTML XML allows the
specification of user-defined markup tags, thus, it is
able to represent arbitrary data. An XML document
consists of plain text marked up with tags enclosed in
angle braces, which together form so-called elements.
The content of an XML element can itself contain other
elements, making the structure of an XML document
inherently hierarchical. An XML document is called
well-formed if it conforms to the syntax requirements
of the W3C’s XML 1.0 Recommendation. A more strin-
gent property is validity. A document is valid if and
only if it is well-formed and adheres to its specified



schema. In the following, we only consider valid XML
documents.

2.2. XQuery

XQuery [6] is a query language for XML data
sources. While XQuery is a functional language com-
prised of several kinds of expressions that can be nested
and composed with full generality, we will only elabo-
rate on the features relevant to this paper. The most
important among them is the notion of path expres-
sions1. In a nutshell, a path expression selects nodes in
a (XML-)tree.

For illustration, consider the XML document in List-
ing 1 representing a simple session bean class named
TestBean with a default constructor (the method
named init in line 7).
1 <class name="de.tud.xirc.playground.TestBean"
2 visibility="public">
3 <inherits>
4 <class name="java.lang.Object"/>
5 <interface name="javax.ejb.SessionBean"/>
6 </inherits>
7 <method name="<init>" visibility="public">
8 <signature>
9 <returns type="void"/>

10 </signature>
11 <code>
12 <load index="0" />
13 <invoke
14 declaringClassName="java.lang.Object"
15 methodName="<init>">
16 <signature>
17 <returns type="void"/>
18 </signature>
19 </invoke>
20 <return />
21 </code>
22 </method>
23 ...
24 </class>

Listing 1: XML representation of a Java class file

We can parse this document by accessing
the top-level document node (class) of the
corresponding tree. Then the path expression
/class/method/code/invoke selects the invoke
nodes, resulting in the node spanning line 13 to line
19 in Listing 1.

In general, a path expression consists of a series of
steps, separated by the slash character. The previous
path expression has three steps, namely the child steps
method, code, and invoke. The result of each path ex-
pression is a sequence of nodes. XQuery supports dif-
ferent directions in navigating through a tree, called
axes. In the path expression above, we have seen the

1 This subset of XQuery is a separate standard called XPath [10]

child axis. Other axes that are relevant for this paper
are the descendant axis (denoted by “//”), the par-
ent axis (denoted by “..”), the ancestor axis (denoted
by “ancestor::”) and the attribute axis (denoted by
“@”). Using the descendants/ancestor axis rather than
the child/parent axis means that one step may tra-
verse multiple levels of the hierarchy. For example, the
above query could be rewritten as: //invoke.

The attribute axis selects an attribute of the
given node, whereas the parent axis selects the par-
ent of a given node. For example, the path expres-
sion //code/../@name selects all name attributes
of all method nodes that have a code child, i. e.,
which are not abstract methods. Another impor-
tant feature of XQuery is its notion of predicates –
(boolean) expressions, enclosed in square brack-
ets, used to filter a sequence of values. For instance,
the query //method[@name="main"] selects all meth-
ods with the name main. One can bind query re-
sults to variables, which in XQuery are marked with
the $ character, by means of a let expression, as il-
lustrated below.
1 let $concreteMethods := //code/..
2 return $concreteMethods/[@name = "main"]

The for construct has the same syntax as let but it
iterates over all values of the sequence returned by the
query.

XQuery also offers a number of operators to com-
bine sequences of nodes, namely union, intersect,
and except, with the usual set-theoretic denotation,
except that the result is again a sequence with a specific
order. The last relevant feature of XQuery is its notion
of a function definition. For illustration, the function
diff is shown below which, being passed two sets $m1
and $m2 of method elements (the * in as element()*
stands for “zero to many”), returns the result of the
set subtraction operation applied to them.
1 declare function diff
2 ( $m1 as element()*, $m2 as element()* )
3 as element()* {
4 $m1/.. except $m2/..
5 }

3. Cross-Artifact Information Retrieval

Fig. 1 gives an overview of our approach to infor-
mation engineering platforms which we envisage to
be integrated into software development environments.
There are three main building blocks of the proposal.

The building block shown on the left-hand side of
Fig. 1 consists of the XML converters for different kinds
of software development artifacts. The resulting docu-
ments are stored in a repository. The second impor-
tant building block is the query engine, shown in the



Figure 1. Overview

center of Fig. 1. As already mentioned, the current im-
plementation is based on XQuery, which can be used
in two different modes: (a) selection mode queries se-
lect nodes in existing documents, while (b) construc-
tionmode queries construct new documents by using in-
formation from existing documents. The third building
block of the approach consists of various tools, shown
on the right-hand side of Fig. 1, which build on top
of the query engine and support retrieval and process-
ing of the retrieved information in various ways.

The current instantiation of the approach has only
limited support for the last building block. The shad-
owed area in Fig. 1 shows tools that could be added in
the future but are not currently supported. Currently
available tools support (a) searching for artifact ele-
ments that share some properties, e. g., all persistent
fields of a set of classes, and (b) discovering patterns
in various artifacts that indicate violations of imple-
mentation restrictions, best practices, or design rules
(also called “bad smells” in the following). In the re-
mainder of this section we will present the uniform ap-
proach for information retrieval underlying XIRC by
means of these two kinds of information retrieval tasks,
which use selection mode queries only.

For selection mode queries, we provide support to
put the resulting elements in relation to the original
source documents in order to give direct feedback on
the selected elements. Queries in construction mode of-
fer exciting new possibilities, e. g., generation of docu-
mentation or support for refactoring tools, and come
very handy for the construction of processing tools.
The exploration of construction mode queries remains
for future work.

3.1. Browsing Through Software

In this subsection, we will introduce XIRC by the
role it would play in modern integrated development
environments (IDEs) for supporting common search-

related tasks that are usually provided by proprietary
tools. We first show how two basic search queries as
provided by the Eclipse IDE [12] are implemented in
XIRC.

The first query retrieves all field declarations in Java
files which have a specific type. For this purpose, we de-
clare the function fieldsByType below, which selects
all field declaration nodes and applies a predicate to
their type attribute.
1 declare function fieldsByType($type as xs:string) {
2 /class/field[@type=$type]
3 };

For instance, calling this function with the parameter
java.lang.String selects all field nodes that have this
type. This set can be displayed as it is or used for fur-
ther processing. For example, it is possible to retrieve
the declaring classes of the selected field nodes by nav-
igating to their respective parent node.

As a second example, consider the following query
which works over a completely different artifact, the
Eclipse plug-in descriptors, to show all available exten-
sions to a given extension point.
1 declare function eclipseExtensions($point) {
2 /plugin/extension[@point=$point]
3 };

One of the most important features of XIRC is that
a single query can span multiple artifacts of different
types. For illustration, we show a query that selects
all fields of a Java class that are persisted by means
of the Hibernate persistence framework [19]. In Hiber-
nate, meta-data required for the object/relational map-
ping are specified in XML files, as illustrated by the fol-
lowing extract from such a file. This file maps the class
User to a database table with the same name (line 2).
The fields id, username, password, and email (lines 3
to 8) are declared persistent, of which the field id acts
as a primary key.
1 <hibernate-mapping>
2 <class name="de.tud.xirc.User" table="User">
3 <id name="id" column="id">
4 <generator class="native"/>
5 </id>
6 <property name="userName" column="name"/>
7 <property name="password" column="password"/>
8 <property name="email" column="mail"/>
9 </class>

10 </hibernate-mapping>

The descriptor only states that the User class con-
tains these four fields without making explicit whether
they have been declared in this class or in one of
its super-classes. A developer might be interested to
browse over the declarations of the persistent fields of
User. While the information about the declared fields
of User is contained in the XML representation of the
corresponding Java class file and its super-classes, the



information about which fields are persistent resides in
the hibernate mapping file. Hence, in order to deter-
mine the declarations of persistent fields, one has to
query over both kinds of artifacts, as shown below.

1 for $pf in /hibernate-mapping//(property|id)
2 return /class/field[
3 @name=$pf/@name
4 and @class=supertypes($pf/../@name)
5 ]

In the above query, supertypes is a simple recur-
sive function that selects all super-types of a given set
of types; this functionality is general enough to be pro-
vided as a function in a library that can be imported
in other arbitrary higher-level queries. We consider the
ability to make queries reusable in the form of func-
tions that can be organized in libraries an important
feature for creating powerful queries.

The simple introductory examples discussed so far
have illustrated three features of XIRC. The first two
examples demonstrated XIRC’s ability to uniformly
retrieve information from different kinds of artifacts.
Although the artifacts over which the second query
works – Eclipse plug-in descriptors – are structurally
organized in a completely different way as compared
to Java class files used in the first example, we can
uniformely express our retrieval semantics in the same
query language in both cases. A query developer just
has to know XQuery and the schema of the XML rep-
resentations of the artifacts used in the queries; (s)he
does not need to learn several proprietary query mech-
anisms for specific kinds of artifacts.

Such an uniform approach is not supported even by
modern IDEs such as Eclipse. The latter indeed offers
support for finding diverse structures in different kinds
of artifacts. For example, there is support for finding in-
formation in the help documentation by a simple text
search, a Java search offers support for finding Java el-
ements such as types, fields, or methods, and a plug-in
search module retrieves information in plug-in descrip-
tors. However, each search module is implemented in
a proprietary way; the help search uses the text search
engine Lucene [2], while the Java and the plug-in search
delegate the queries to the Java, respectively the plug-
in model.

The third example illustrated how a single query
can obtain information from several different artifacts,
and how XIRC would enable IDEs to provide a generic
search functionality enabling users to specify their own
queries instead of exposing a fixed set of predefined
queries for common search tasks. Whenever, using a
specific framework such as e. g., Hibernate, a developer
could be interested in information that cannot be re-
trieved with the provided search functionality.

3.2. Detecting “Bad Smells”

Another application of XIRC’s information retrieval
functionality is to discover patterns in software arti-
facts which indicate that certain implementation re-
strictions, best practices and design guidelines are vio-
lated. E. g., the EJB specification [11] states that “The
class [an enterprise bean] must not define the finalize()
method” or that “An enterprise beanmust not use thread
synchronization primitives to synchronize execution of
multiple instances”, etc. Altogether, there are 17 such
restrictions in the specification and quite some others
not explicitly stated in the specification, the violation
causes more or less severe problems which are often
very hard to detect before runtime [13]. Other exam-
ples of “bad smell” patterns of Java programs are de-
fined in [5,43] and [44]. Such patterns can be naturally
expressed as queries in XIRC.

For instance, the following two queries can be used
to detect violations of the two exemplary EJB program-
ming restrictions mentioned above. The first query se-
lects all method nodes of all subclasses of the class
EnterpriseBean whose signature is void finalize().
A non-empty result set of this query indicates a vi-
olation of the first restriction above and delivers all
locations in the bean classes where finalize methods
are declared. The second query detects synchronized
methods and the usage of the synchronized state-
ment in Java source code of any class inheriting from
EnterpriseBean.
1 subtypes(/class[@name="javax.ejb.EnterpriseBean"])
2 /method[
3 @name = "finalize"
4 and .//returns/@type = "void"
5 and not(.//parameter)
6 ]

1 subtypes(/class[@name="javax.ejb.EnterpriseBean"])
2 //(monitorenter | method[@synchronized="true"])

A simple example of a Java best practice is: “Al-
ways implement public String toString()” [5]. The
following query expresses the semantics for retriev-
ing violations of this guideline by selecting all non-
abstract classes (/class[@abstract="false"] in line
8) not (except operator) in the set of classes that define
toString() (determined by toStringMethods()/..).
1 declare function toStringMethods() as element()*{
2 /class/method[
3 @name ="toString"
4 and .//returns/@type="java.lang.String"
5 and not(.//parameter)
6 ]
7 };
8 /class[@abstract="false"] except toStringMethods()/..

The sample “bad smells” presented so far can also
be detected by other tools such as [3, 13,20,37]. These



examples are characterized by the fact that the eval-
uation whether or not a restriction is violated can be
done by analyzing a single artifact - Java source code.
However, in general, checking for implementation re-
strictions requires the analysis of different types of ar-
tifacts. For example, the EJB specification also states
that: A session bean or a message-driven bean can be
designed with bean-managed transaction demarcation or
with container-managed transaction demarcation. (But
it cannot be both at the same time.) In order to de-
tect violations of this restriction it is necessary to ana-
lyze an EJB’s deployment descriptor to determine the
chosen transaction demarcation method - Container
(CMT) or Bean (BMT) - and only if it is Container
the bean’s implementation has to be searched for the
prohibited usage of programmatic transactions. Such
cross-artifact detection is not supported by the tools
mentioned above.

To illustrate how such cross-artifact detection of
the violations of implementation restrictions, respec-
tively design guidelines, is supported by our approach,
consider the following query which discovers beans
with declarative transaction demarcation that also use
transactions explicitly in their code.
1 declare function EJBsWithCMT() as element()*{
2 let $ejbname := /ejb-jar/enterprise-beans
3 /(session | message-driven)/transaction-type
4 [./text() = "Container"]/../ejb-class/text()
5 return /class[@name = $ejbname]
6 };
7 declare function methodsWithBMT() as element()*{
8 //invoke[@declaringClassName
9 = "javax.transaction.UserTransaction"]/

10 ancestor::method
11 };
12 methodsWithBMT() intersect EJBsWithCMT()//method

Listing 2: Detecting the co-existence of declarative and
programmatic transaction management

The first function (line 1) returns the set of all
classes for which declarative transactions are specified.
The second function (line 7) returns all methods that
call a method to begin or commit transactions. The
query itself (line 12) simply returns the intersection be-
tween the set of all methods of all classes with specified
container-managed transactions and the set of methods
using programmatic (bean-managed) transactions.

To see the query from Listing 2 “in action” con-
sider the example source documents in Listing 3 and
Listing 4, presenting the source code of a session bean
that creates and commits transactions in its code (class
TestBean) and an excerpt of the corresponding deploy-
ment descriptor, where the bean is declared with the
transaction type Container. The query from Listing 2
detects that the method calls in line 5 and 7 of List-
ing 3 violate an EJB implementation restriction, based

on the information found in the <transaction-type>
tag in the deployment descriptor in Listing 4 (line 7).

1 public class TestBean implements SessionBean {
2 public String getText() throws Exception {
3 UserTransaction utx = ...;
4 String s;
5 utx.begin();
6 ...
7 utx.commit();
8 return s;
9 }

10 ...
11 }

Listing 3: Excerpt of a SessionBean’s implementation
using programmatic transaction demarcation

1 <ejb-jar>
2 <enterprise-beans>
3 <session>
4 <ejb-name>HelloWorldTestBean</ejb-name>
5 <ejb-class>TestBean</ejb-class>
6 ...
7 <transaction-type>Container </transaction-type>
8 </session>
9 </enterprise-beans>

10 ...
11 </ejb-jar>

Listing 4: Excerpt of a deployment descriptor.

Another example again concerns declarative trans-
action demarcation. While being a powerful means
to facilitate the development of transactional func-
tionality, declarative transaction demarcation also im-
plies some subtle dependencies between the transac-
tion attributes of methods in a call chain, which are
not checked for statically. E. g., calling a method m
declared with the transaction attribute requiresNew
from within another method n which is running in a
transactional context will cause a runtime exception
to be thrown. In order to detect erroneous patterns
of transaction attributes, we need both information of
the call graph, which is available via static analysis of
Java classes, and information about the transactional
attributes of different methods involved in a call graph,
which is available from the deployment descriptors.

4. The XIRC Platform

In order to meet the requirements on a platform for
information engineering integrated in software develop-
ment environments, the architecture of XIRC is orga-
nized in three layers: application, framework, and data
layer, as shown in Fig. 2.

The application layer is responsible for initializing
and using the XIRC framework. As a first application



layer, we implemented an Eclipse [12] plug-in to in-
tegrate XIRC into the Eclipse development environ-
ment, which is fully functional and can be downloaded
from [14].

In order to be able to handle different kinds of arti-
facts, the application registers so-called processor map-
pings which aggregate a single input and output proces-
sor. An input processor is responsible for producing the
XML representation of a certain artifact type. Output
processors on the other hand are responsible for the fur-
ther processing of the results, i. e. to map the resulting
XML nodes of a query to elements of the original arti-
facts. To enable developers to extend the set of proces-
sors by custom implementations, we provide a so-called
extension point to which other plug-ins can contribute
processors. Input processors, while being specific for a
certain type of artifact, are application-independent.
On the contrary, output processors are written for a
specific application (e. g., for Eclipse) in most cases.
For instance, an output processor which is responsible
for the visualization of code locations is application-
specific, because every application has different capa-
bilities to present these locations of interest in a user-
friendly manner.

For using the XIRC framework, the application pro-
vides functionality for defining queries and for trigger-
ing their execution. The application layer notifies the
framework layer about changes of the artifacts. Eclipse
has built-in functionality – so-called builders – for
tracking such changes. Additionally, the application-
specific behavior, such as providing views of the query
results for source code in IDEs, is contained in this
layer.

The framework layer manages artifact updates,
query executions, and transformations of the arti-
facts. The central component of the framework layer
is the resource manager which acts as the inter-
face between the application and data layers. After
every change of an artifact, the framework is noti-
fied by the application layer and all queries in the
query manager get re-evaluated. The queries are per-
sisted as serialized objects in a special project folder by
the query manager. This enables the session-spanning
use of queries as well as the team-wide sharing of
queries via a version control system.

The data layer is responsible for storing the XML
documents representing involved artifacts and to eval-
uate the XQuery queries. For XIRC, we decided to use
Saxon [29], a collection of open source tools for process-
ing XML documents, as the backend. In addition to an
XSLT 2.0 and an XPath 2.0 processor, Saxon provides
an XQuery 1.0 processor which can be invoked from a
Java application by means of an API.

Figure 2. Overview of XIRC’s architecture.

We consider some basic usage scenarios of XIRC to
understand the interaction between these layers in the
following. First, let us see what happens when new arti-
facts are defined. Assume that we have two input files,
e. g., a Java class file and an XML descriptor. The ap-
plication keeps track of each artifact and calls the re-
source manager (step 1.1 in Fig. 2) in case of an artifact
change. In response to this call, the resource manager
searches for input processors that can handle this arti-
fact and delegates the call to the appropriate input pro-
cessors (step 1.2), which in turn creates an XML rep-
resentation of the artifact. Finally, the resource man-
ager stores the resulting XML documents in the data
store (step 1.3).

New queries are defined using the XIRC GUI. To
execute them, the application sends a corresponding
request to the resource manager (step 2.1) which ob-
tains the list of all active (selected) queries from the
query manager (step 2.2) and forwards each query to
the data store (step 2.3). The result of the query is ana-
lyzed by the resource manager to determine the correct
output processor to use for its further processing (step
2.4). Finally, the selected output processor transforms
the results, e. g., it generates new artifacts or maps the
elements retrieved by the query execution into corre-
sponding elements in the original artifacts and calls the
application to visualize them (step 2.5).

For illustration, Fig. 3 shows the result of evaluat-
ing the cross-artifact query discussed in Sec. 3.2. Recall
that the purpose of this query was to retrieve locations
in the code of EJB components where transactions are
used in a programmatic way although the bean is de-
fined with declarative transaction demarcation in the
corresponding deployment descriptor. Fig. 3 also illus-
trates how the result of multiple queries is shown in
the current implementation of XIRC.

These queries will be automatically executed when-



ever a source document changes. As soon as a new vi-
olation occurs, the text specified along with the query
is shown in the problems view and a marker is added
to the source code. The other way around, changing
the “erroneous” artifact such as to address the viola-
tion, will cause the information and error icons to dis-
appear.

Figure3.Presenting the result ofmultiplequeries

5. Related Work

The related work can be categorized according to
the three architectural layers of XIRC. We first discuss
work on XML representations of software development
artifacts. Next, we discuss related work on query capa-
bilities over XML documents. Finally, work related to
XIRC applications will be presented.

In software development projects the most impor-
tant artifact is the source code. Numerous papers de-
scribe means and advantages of representing source
code in XML [30, 38, 45]. There are also tools to rep-
resent source code of specific programming languages
such as Java [1,15], ANSI C [17], or C++ [31] in XML.

Apart from source code, many other artifacts are
generated during the different phases of a software de-

velopment project. Examples of such artifacts include
UML diagrams, stored mostly in the XMI [35] format,
or documentation artifacts, which are also often saved
in an XML dialect [33,34,40]. These XML files can be
saved directly in the data store or can be previously
transformed using, e. g., XSLT [9].

These approaches show that XML is supported as
a lingua franca for different artifacts and the availabil-
ity of tools to create XML representations of those ar-
tifacts facilitates the development of input transform-
ers for XIRC.

To retrieve information from the different artifacts,
we use the query language XQuery [6] that incorpo-
rates XPath [10]. XIRQL [16] is a new XML query lan-
guage which incorporates imprecision and vagueness
for structural and content-oriented query conditions.
These features could be used, e. g., to mine possible
aspects out of legacy applications. A similar proposal
based on XPath is described in [18].

The third field of research we discuss is related to
applications of the XIRC platform. In Sec. 3.2 we dis-
cussed the use of XIRC for detecting “bad smells” in
software. Several tools like JiveLint [41], J2EE Code
Validation Tool [21], CodePro Advisor [22], or Assent
[42] can be successfully used to find a fixed set of inter-
esting locations in the source code. However, they can
not be used to retrieve information in a generic way
like XIRC.

There are other tools which are extensible due to
more powerful query capabilities, which we discuss in
the following. The approach proposed in [27] and ap-
plied in [36] uses AspectJ to find interesting locations
in code. PMD [37] is a static source code analysis tool
which uses lexical analysis to find violations of pro-
gramming rules. Currently PMD supports more than
80 rule specifications and can be extended by user-
defined rules. Such rules can be specified via XPath
expressions over the abstract syntax tree or by writ-
ing a new Java rule class using the visitor pattern.
FindBugs [20] is a similar tool which enables devel-
opers to implement restriction checks using the visitor
pattern in Java. In contrast to PMD, FindBugs works
on the bytecode instead of the source code. IRC [13]
is a static analysis tool which uses a bytecode point-
cut framework. This enables developers to express fil-
ters on class-, method-, and instruction-level proper-
ties of code elements. These filters can be applied to
all project classes resulting in all elements which match
the given filters. This enables an efficient description of
interesting patterns in bytecode. MJ [3] is an approach
in which checking routines are compiled into compiler
extensions. Unlike the tools presented before, MJ pro-
vides language support to define checkers.



All these tools but PMD require the checking rou-
tines to be implemented programmatically. PMD al-
lows to specify rules declaratively, but only for checks
that do not span several classes. XIRC has a declar-
ative approach for defining checks, which can span a
single as well as several classes. Developers can pro-
vide definitions of new checks via XQuery expressions,
using the power of a fully functional programming lan-
guage. More importantly, to the best of our knowledge,
none of the other approaches support cross-artifact in-
formation retrieval.

6. Conclusions and Future Work

This section is organized in two subsections. The
first part summarizes XIRC features by evaluating
them against the requirements we posed in the intro-
duction. The second part gives an outlook into possible
further developments of XIRC in the future.

6.1. Summary and Evaluation

This paper made two main contributions. We pre-
sented a uniform approach to cross-artifact information
retrieval to support information engineering in soft-
ware development projects and especially reverse en-
gineering based on XML as a common language for
representing various artifacts involved in the software
development process, and query capabilities on XML
documents as the language for specifying arbitrary
semantics for retrieving information across the XML
representations of different artifacts. In addition, we
presented an implementation of this approach, called
XIRC, that enables to define queries over a uniform
representation of all artifacts of a software project. We
have discussed an Eclipse-based instantiation of XIRC
and have shown how it can be used for general informa-
tion retrieval on development artifacts and for check-
ing of implementation restrictions, or best-practice pat-
terns.

While selected individual search-related tasks on
which we focused so far might be well supported by in-
dividual existing tools, the power of XIRC is that it
provides a generic information retrieval kernel across
artifact boundaries for a uniform treatment of any re-
trieval task.

As such, XIRC fulfills the requirements from the in-
troduction. It supports cross-artifact information re-
trieval and is open for user-defined custom retrievals.
In doing so, it provides a single uniform means for spec-
ifying such retrievals over multiple heterogeneous arti-
facts, avoiding the need for the developer to get ac-
quainted with a plethora of diverse tools. Due to its

modular architecture, XIRC is customizable to project-
specific needs, allowing to select from the available
tools and to be incrementally extended with new in-
formation processing tools.

6.2. Outlook

Due to its modular architecture, XIRC serves as a
good basis to implement a whole chain of processing
tools on top of it. Many tasks in the context of software
development and reverse engineering require not only
to retrieve information of interest, but also to process
it in some meaningful way. Tasks like pre-processing,
generation of documentation (e. g., Javadoc), refactor-
ing, generating metrics etc., all require sophisticated
(cross-artifact) search tools. For example, in the per-
sistence example from Sec. 3.1, we might want to trig-
ger some kind of action after an access to any of the
persistent fields happens. An XIRC-aware refactoring
tool could process the information gained by a query
and do the appropriate modifications in all places se-
lected by the query.

This example indicates that XIRC is a good basis
for implementing aspect-oriented tools and languages
on top of it. The whole notion of a pointcut [26] can be
seen as an abstraction to find information in a source-
(static pointcuts) or dynamic call-tree (dynamic point-
cuts). We belive that all static pointcuts available in
AspectJ [25] can be expressed with XIRC. In order to
show the feasibility of this approach we plan to use
XIRC as the basis to implement the pointcut model of
the aspect-oriented language Caesar [32].

From the discussion above several areas of future
work naturally derive. First of all, the aforementioned
workbench of tools is a part of our future work. We
are currently considering the implementation of two
specific tools, namely an aspect-oriented weaver and a
refactoring tool that can modify code at search result
places. The possibility to let queries return completely
new documents instead of selecting existing nodes is
also a possibility that has not yet been fully explored.
Finally, we plan to explore the benefits of using other
XML-related technologies like XSLT in the context of
XIRC.
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