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Abstract. We suggest a simple model for a restricted form of dependent types in object
oriented languages, whereby classes belong to groups and dependency is introduced via intra-
group references using the MyGrp keyword. We introduce motivating and exploratory examples,
present the formal model and outline soundness of the type system.

1 Introduction and Motivation

Most commercial object oriented languages do not directly support code re-use combined with the
expression of dependencies between classes. Consider the familiar graph example: regular graphs
comprise edges connecting nodes while coloured graphs comprise edges connecting coloured nodes.
This can be expressed through classes Node, Edge and ColouredNode, with some form of code reuse
between Node and ColouredNode. A method Edge connect (Node x) in class Node creates an edge
between receiver and argument. In order to maintain consistent graphs (a design decision), we
restrict regular graphs to contain only regular nodes and coloured graphs to contain only coloured
nodes. Thus, a receiver of type Node should be forbidden from calling connect(..) with an
argument of type ColouredNode. A conventional encoding (perhaps in Java) would achieve code
reuse through subclassing, making ColouredNode a subclass of Node. However, in such languages
subclasses create subtypes. Thus, ColouredNode would be a subclass (and subtype) of Node: with
a receiver of type Node, a call of the form connect(ColouredNode) is type correct, a situation
that violates our original requirement.

Solutions to the above problem have already been suggested using family polymorphism [7],
in the programming language Scala [14] and in [4]. In this paper we present Concord, a simple
approach to the problem inspired by ideas from [4], less powerful than Scala. To our knowledge,
Concord is the first work that combines a simple solution, an imperative model, a decidable
system and a sketch–proof of soundness.

Concord is based on the following ideas:

• Groups contain classes, thus allowing the expression of related classes.
• We distinguish absolute and relative types: Absolute types consist of a group and a class

name, thereby expressing inter-group dependencies. Relative types consist of a reference to
the current group, MyGrp, and a class name, thereby expressing intra-group dependencies3.

• Groups may extend other groups; classes defined in a group g′ (the supergroup) are further
bound in any subgroup g.

• A class g . c may extend another class gr . c′ (gr is a group reference and is either a group
name or MyGrp), in which case it is a subclass of gr . c′.

• Subclasses and further binding induce inheritance: If g . c is a subclass of gr . c′, then it inherits
all members (fields and methods) from gr . c′, replacing occurrences of MyGrp in the member
definitions by gr in the process. If g . c further binds g′ . c, then it inherits all members from
g′ . c, but instead leaves occurrences of MyGrp in member definitions unmodified. Furthermore,
subclasses create subtypes (i.e. if g . c is a subclass of gr . c′ then g . c is a subtype of gr . c′),
while further binding does not4. Classes may both further bind and subclass other classes.

? This work is partly supported by DART, European Commission Research Directorates, IST-01-6-1A.
3 Thus, relative types support a restricted form of dependent types, whereby a type may depend on a

group — rather than on a value as in “full” dependent types.
4 Thus, subclasses correspond to inheritance in Java; further binding is as per suggestions in e.g. [20]



group Graph {

class Node { MyGrp.Edge connect (MyGrp.Node x){ ... } }

class Edge { MyGrp.Node end1 ; MyGrp.Node end2 }

}

group ColouredGraph << Graph {

class Node { Colour.Colour c } // further bind Graph.Node

// ColouredGraph .Edge further binds Graph.Edge

}

Listing 1 — Concord encoding of the graph example
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Fig. 1 — Graphical representation of the graph example encoded in Concord. Further binding arrows are
drawn only in the case where redefinition/extension of the further bound class occurs in the subgroup.

A Concord encoding of the graph example is presented in Listing 1 (a graphical representation
can be seen in Fig. 1(a)). The group Graph contains definitions for two classes, Edge and Node; the
latter defines a method MyGrp . Edge connect (MyGrp . Node x). The group ColouredGraph extends
Graph; hence, classes ColouredGraph.Node and ColouredGraph.Edge further bind Graph.Node

and Graph.Edge respectively. In addition, ColouredGraph.Node extends inherited definitions
by defining the field c, of type Colour.Colour. Therefore, ColouredGraph.Node inherits the
method MyGrp.Edge connect(MyGrp.Node); for n1, n2 of type Graph.Node and cn1, cn2 of
type ColouredGraph.Node, the terms n1.connect(n2) and cn1.connect(cn2), which return
objects of types Graph.Edge and ColouredGraph.Edge respectively, are type correct, whereas
n1.connect(cn1) and cn1.connect(n1) are type incorrect.

Concord classes differ from Java inner classes: firstly, inner classes cannot express intra-
group relations and secondly, objects of Concord classes do not hold references to objects of the
enclosing group [21].

Furthermore, Concord’s relative types are more powerful than simply distinguishing inher-
itance from subtypes. In the latter case, for example, the expression cn1.connect(cn2) would
have type Node.Edge (rather than the more precise ColouredGraph.Edge).

Finally, Concord’s relative types are more powerful than references to the type of self (e.g. in
Sather [15], Eiffel [16, 17], and in [4]); the former may refer to any class within the receiver’s
group, whereas the latter references are restricted to the same class as the receiver.

In this paper, we cite the graph example as motivation for Concord. In [12] we present more
examples and compare our approach to others in the literature through familiar problems, i.e.
two- and three-dimensional points, the cow and food example, and the expression problem.

The development of Concord posed the following challenges: the exact meaning of relative
types, the difference between absolute and relative superclasses, the use of relative types as the type
of this, and also in typing expressions whose subexpressions have relative types. The remainder



prog F group?

group F group g << g { class? }
class F class c <: type { field? meth? }
field F type f

meth F type m (type x) { exp }
exp F null | new type | this | exp . f | exp . m ( exp ) | exp . f = exp

type F gr . c

gr F g | MyGrp

ta F g . c

Fig. 2 — Concord syntax

of this paper is mainly dedicated to clarifying how we tackled these issues. As requested by our
reviewers, we added some intuition as to the reasons behind our solutions; however, a fully intuitive
explanation, although very worthwhile, was impossible to achieve within the time constraints.

The rest of this paper is organised as follows: In Section 2 we present the syntax of Concord

and detail a running example, in Section 3 we define inheritance, in Section 4 we define the
operational semantics, in Section 5 we define the type system, in Section 6 we outline a proof of
soundness and in Section 7 we conclude. The appendix contains more straightforward definitions.

In [12] we present complete formal details, more examples and explanations. A smaller version
is available in [11].

2 Syntax

Fig. 2 introduces Concord syntax where g, c, f and m represent group, class, field and method
identifiers respectively.

A Concord program comprises group definitions which, in turn, comprise class definitions.
Classes are similar to those in Java or C] with the difference that Concord types comprise a
group reference (gr) and a class identifier (c). The group reference may be a group name (e.g. g1)
or the keyword MyGrp. The former introduces an absolute type, anchored to the named class defined
within the named group. The latter introduces a relative type, the target of which changes when
inherited. Every group extends another group and every class extends another class; GlobalGroup
and GlobalGroup . c are therefore at the top of the hierarchy.

The Concord program in Listing 2 (visualised in Fig. 3) will serve as our running example5.
In class g2.A, notice that field f1 has an absolute type, whereas field f2 has a relative type.

Similarly, method m1 has relative argument and result types, while method m2 has absolute argu-
ment and result types. Furthermore, the superclass of g2.B is relative, whereas the superclass of
g2.C is absolute. In Section 3, we shall see how the relative types are inherited.

3 Inheritance

As we said earlier, both further binding and subclasses induce inheritance but in slightly different
ways: Further binding preserves intra-group dependencies (i.e. preserves relative types), whereas
subclassing sometimes (we shall see an exception later) replaces intra-group dependencies by inter-
group dependencies (i.e. replaces relative types by absolute types). Therefore, in our example, the
type of f2 in g3.A is MyGrp.A and the type of f2 in g2.C is g2.A. However, the type of f2 in g2.B

is MyGrp.A, because although g2.B is a subclass, it has a relative superclass.

In the rest of this section, we describe the mechanisms behind these issues in more detail.

5 Much like Java, we omit supergroup and superclass references in group and class definitions when those
references are GlobalGroup or GlobalGroup . c respectively.



group g1 { class D { MyGrp.D f3 } }

group g2 {

class A {

g2.A f1

MyGrp.A f2

MyGrp.A m1( MyGrp.A x) {

new MyGrp.A

}

g2.A m2(g2.A x) { x }

}

class B <: MyGrp.A { ... } // relative subclass

class C <: g2.A { ... } // absolute subclass

}

group g3 << g2 {

class C <: g1.D {

g2.A m3(g3.B x) {

this .f2 = new g2.A // type correct

this .f2 = new MyGrp.A // type error!

}

}

}

Listing 2 — Our running example
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Fig. 3 — Graphical representation of our running example. Refer to legend in Fig. 1(b).

All classes from a certain group are further bound in a subgroup. For example, classes g3.A and
g3.B further bind g2.A and g2.B respectively. Furthermore, not only does g3.C further bind g2.C,
it is also a subclass of g1.D.

Thus, in Concord a class c, defined via group g << g′ { . . .class c <: gr . c′ { . . . } . . . },
further binds g′ . c (if such a class exists), and is a subclass of gr . c′. Therefore, g . c inherits from
both g′ . c and gr . c′. The exact process is described via the definitions of functions F and M in
Fig. 4; the operator ⊕ is defined in Appendix B.

Through further binding, g . c inherits all members from g′ . c unmodified, i.e. F(g . c, f) =
. . . ⊕ . . . ⊕ F(g′ . c, f). Inheritance though subclassing is more intricate: First the superclass is
determined by replacing any intra-group reference in gr . c′ by the current group, g. Then, any
intra-group references in the member definition are replaced by the reference to the supergroup,
gr: F(g . c, f) = . . . ⊕F(gr[g] . c′, f)[gr] ⊕ . . ..

In our example, g3.A further binds g2.A, therefore inheriting the fields f1 and f2 with un-
modified types. On the other hand, g2.C is a subclass of g2.A and so inherits the fields f1 and
f2 after substitution of intra-group references in their type by g2. Finally, g2.B is a subclass of
MyGrp.A and therefore inherits the fields f1 and f2 from g2.A with unmodified types, i.e. after
replacing MyGrp by MyGrp.



CW(g . c) = class c <: . . . { . . . t m (t1 x) { e } . . . }

MW(g . c, m) = t m (t1 x) { e }

MW(GlobalGroup . c, m) = Udf

G(g) = group g << g′ { . . . }
C(g . c) = class c <: gr . c′ { . . . }

M(g . c, m) = MW(g . c, m) ⊕M(gr[g] . c′, m)[gr] ⊕M(g′ . c, m)

CW(g . c) = class c <: . . . { . . . t f . . . }

FW(g . c, f) = t FW(GlobalGroup . c, f) = Udf

G(g) = group g << g′ { . . . }
C(g . c) = class c <: gr . c′ { . . . }

F(g . c, f) = FW(g . c, f) ⊕F(gr[g] . c′, f)[gr] ⊕F(g′ . c, f)

Fs(g . c) = {f | F(g . c, f) 6= Udf}

Fig. 4 — Method and field lookup functions

The following table demonstrates field and method inheritance in our example:

subclassing — fields
F(g2 . A, f1) = F(g2 . B, f1) = F(g2 . C, f1) = g2 . A
F(g2 . A, f2) = F(g2 . B, f2) = MyGrp . A
F(g2 . C, f2) = g2 . A
F(g3 . C, f3) = g1 . D

further binding — fields
F(g3 . A, f1) = F(g3 . B, f1) = F(g3 . C, f1) = g2 . A
F(g3 . A, f2) = F(g3 . B, f2) = MyGrp . A
F(g3 . C, f2) = g2 . A

subclassing — methods
M(g2 . A, m1) = M(g2 . B, m1) = MyGrp . A m1 (MyGrp . A x) { new MyGrp . A }
M(g2 . C, m1) = g2 . A m1 (g2 . A x) { new g2 . A }

4 Execution

We define execution in terms of large step semantics whereby an expression and store are mapped
onto a value and store. The store, σ, represents the stack and heap. It maps this and the method
parameter x onto addresses and addresses onto objects. Objects J g . c ‖ fl : vl K contain their
runtime type (or absolute type, ta) and the values of their fields. This can be seen in Fig. 5.

In order to describe execution, we need a way to obtain the group to which the current receiver
belongs. We define the function:

MyGrp(σ) = g where σ(σ(this)) = J g . c ‖ . . . K

In Fig. 6 we define the operational semantics. All rules are straightforward and similar to those
in [6], with the exception of the rule for object creation. The runtime type of the object being



store =

stack
z }| {

({this} 7→ addr ) ∪ ({x} 7→ addr )∪

heap
z }| {

(addr 7→ object )
val = {null} ∪ addr

dev = {nullPtrExc}
object = {J g . c ‖ fi : vi∈1...n

i
K | fi, g, c identifiers, vi ∈ val}

addr = {ιi | i ∈ Z
?}

o(f) =


vl if f = fl | l ∈ 1, . . . , r

Udf otherwise
o[f 7→ v] = J g . c ‖ f1 : v1 . . . fl : v . . . fr : vr K if ∃l ∈ 1, . . . , r | f = fl

σ[z 7→ v](z) = v

σ[z 7→ v](z′) = σ(z′) if z′ 6= z

Fig. 5 — Stores of and operations on objects o; store σ and identifier or address z .

created may depend on the runtime type of the current receiver. For example, with a receiver of
runtime type g3.A, execution of new MyGrp.C will create an object of dynamic type g3.C.

5 Types

We roughly follow the Java approach, whereby subclasses introduce subtypes. However, further
binding does not introduce subtypes. Therefore, in our example, g2.C is a subtype of g2.A, but
g3.A is not a subtype of g2.A. With relative types things become more complex, as their meaning
(and thus also the meaning of the subtype relationship) is context dependent. For example, g2.B
is a subtype of MyGrp.A in the context of g2, whereas g2.B is not a subtype of MyGrp.A in the
context of g1 (in fact, MyGrp.A is not even a type in the context of g1).

Typing of expressions takes place in the context of a method body, in a given class within a
given group, say g . c. The question arises as to what the type of this should be. Since the method
may be inherited by any class which further binds the current class, it makes sense to consider
this to have a type MyGrp.c, and the context to be g. Therefore, in our example, within class
g3.A, the receiver, this has type MyGrp.A.

The next issue concerns the type of member access. A member may have an absolute or relative
type; equally, the receiver may have an absolute or relative type. If the member has an absolute
type ta, then member access has type ta (irrespective of the receiver type): e.g. in class g3.A, the
receiver, this, has type MyGrp.A and this.f1 has type g2.A. If the member has a relative type,
then intra-group dependencies are replaced by the group reference gr in the receiver’s type: e.g.
(new g3.A).f2 has type g3.A, whereas this.f2 (in the context of g3.A) has type MyGrp.A.

In the rest of this section, we describe the mechanisms behind the above issues in more detail.
Expressions are typed in the context of an environment, Γ, which assigns types to the receiver,
this, and the method parameter, x. Γ(id) returns the type of id in Γ. For Γ = t x, g . c this, we
define Γ(id) to be t if id = x, g if id = MyGrp, MyGrp . c if id = this and Udf otherwise. Γ(this)
always has the form MyGrp . c.

The functions MyGrp(t) and MyGrp(Γ) extract the group of the type t and the receiver
of Γ respectively. The operations e[g] and t[t′ ] replace any occurrence of MyGrp in an expression
and type respectively.

MyGrp(Γ) = Γ(MyGrp)
MyGrp(t) = gr where t = gr . c
e[g] = e [ g / MyGrp ]
t[Γ] = t [MyGrp(Γ) / MyGrp ]
t[σ ] = t [MyGrp(σ) / MyGrp ]
t[t′ ] = t [MyGrp(t′) / MyGrp ]
(t m (t′ x) { e })[g] = t[g] m (t′[g] x) { e[g] }



(val)
v, σ ; v, σ

(var)
x, σ ; σ(x), σ

this, σ ; σ(this), σ

e, σ ; ι, σ′′

e′, σ′′
; v, σ′′′

σ′′′(ι)(f) 6= Udf
σ′ = σ′′′[ ι 7→ σ′′′(ι)[f 7→ v] ]

(fldAss)
e . f = e′, σ ; v, σ′

e, σ ; ι, σ′

σ′(ι)(f) 6= Udf
(fld)

e . f, σ ; σ(ι)(f), σ′

g = gr[MyGrp (σ)]
Fs(g . c) = {f1, . . . , fr}
ι is new

(new)
new gr . c, σ ; ι, σ[ ι 7→ J g . c ‖ f1 : null, . . . , fr : null K ]

e0, σ ; ι, σ0

e1, σ0 ; v1, σ1

σ1(ι) = J ta ‖ . . . K
M(ta, m) = t m (t1 x) { e }
σ′′ = σ1[ this 7→ ι ][ x 7→ v1 ]
e, σ′′

; v, σ′

(methCall)
e0 . m ( e1 ), σ ; v, σ′[ this 7→ σ(this), x 7→ σ(x) ]

Fig. 6 — Operational semantics. We omit rules for throwing and propagation of exceptions; they are standard

Fig. 7 defines the subtype relationship g ` t <: t′, whereby a type t is a subtype of another
type t′ in the context of a specific group g. The group context is necessary when t or t′ reference
MyGrp. For example:

g2 ` MyGrp . B <: MyGrp . A g2 ` MyGrp . C <: g2 . A
g3 ` MyGrp . B <: MyGrp . A g3 ` MyGrp . C <: g1 . D
g1 ` MyGrp . A <: MyGrp . A g3 ` MyGrp . C <: g2 . A
` g2 . B <: g2 . A ` g3 . B <: g3 . A
` g3 . B <: g2 . B

We can prove that any subtype relationship satisfied in the context of a group is also satisfied
in the context of its subgroups. More formally, for any g, g′ with ` g′ << g: g ` t′ <: t =⇒
g′ ` t′ <: t and ` g . c <: ta =⇒ ` g′ . c <: ta.

We can also prove that any absolute type, g′ . c′, inherits every member from its supertype g . c;
the members are inherited unmodified if the two groups g and g′ are equal, otherwise occurrences
of MyGrp are replaced by g.

Fig. 7 also defines the type rules Γ ` e : t, whereby an expression e has type t in the
context of an environment Γ. The rules (VarThis), (NewNull) and (Subsump) are standard. The
rule (Fld) is more interesting for two reasons. Firstly, it looks up the field f in t[Γ] (through
t′ = F(t[Γ], f)), the absolute type found by replacing occurrences of MyGrp in t by the group
containing the current method definition. Secondly, it replaces occurrences of MyGrp in t′ by the
group to which the receiver, e, belongs. For example:

Γ2 = g2 . A this, g2 . A x Γ2 ` x . f2 : g2 . A
Γ2 ` this . f2 : MyGrp . A

Γ4 = g3 . C this, g3 . B x Γ4 ` this . f2 : g2 . A
Γ4 ` x . f2 : g3 . A

Γ4 = g3 . B this . . . Γ4 ` this . f2 : MyGrp . A

We can prove that expressions preserve their types when typed in a subgroup. Therefore,
inheritance of methods through further binding preserves the method body type. We can also



C(g . c) = class c <: t { . . . }

g ` MyGrp . c <: t

g ` t <: t′

g′ ` t[g] <: t′[g]

g ` t <: t′

` g′ << g

g′ ` t <: t′

g ` t <: t′′

g ` t′′ <: t′

g ` t <: t′

g ` ta <: ta′

` ta <: ta′

Γ ` e : t

MyGrp (Γ) ` t <: t′
(Subsump)

Γ ` e : t′

` Γ 3

Γ ` t 3t

(NewNull)
Γ ` null : t

Γ ` new t : t

` Γ 3
(VarThis)

Γ ` x : Γ(x)
Γ ` this : Γ(this)

Γ ` e0 : t0

M(t0[Γ], m) = t m (t1 x) { . . . }
Γ ` e1 : t1[t0 ]

(Meth)
Γ ` e0 . m ( e1 ) : t[t0 ]

Γ ` e : t

F(t[Γ], f) = t′
(Fld)

Γ ` e . f : t′[t]

Γ ` e : t

F(t[Γ], f) = t′

Γ ` e′ : t′[t]
(FldAss)

Γ ` e . f = e′ : t′[t]

Fig. 7 — Subtypes and the type system

prove that, given Γ ` e : t, if we replace the type of the receiver in the environment Γ with a
subtype (to give Γ′), and substitute occurrences of MyGrp in an expression e by MyGrp(Γ) (to
give e[Γ]), then, in the context of the environment Γ′, the expression e[Γ] has type t[Γ], the type
obtained by replacing all occurrences of MyGrp with MyGrp(Γ) in t. Therefore, inheritance of
methods by subclasses preserves method body types, modulo the necessary substitutions of MyGrp.

Thus, we can prove that in a well formed program (well formed programs, ` P 3, are described
in Appendix A), the body of any method in an absolute type ta, whether inherited or defined in
ta itself, has a type in accordance with its type in ta:

Theorem 1 In a well formed program:

M(ta, m) = t1 m (t2 x) { e } =⇒ ta this, t2 x ` e : t1

6 Soundness and Decidability

In Fig. 8 we define agreement between addresses and types, σ ` ι : ta, whereby an address
agrees with the runtime type (or any supertype) of the corresponding object, and null agrees
with all types. An address ι corresponds to a well formed object, σ ` ι, if all the fields declared
in its runtime type g . c have values which agree with their types in g . c where MyGrp is replaced
by g. A store is well-formed, Γ ` σ 3, if all addresses correspond to well formed objects, and if
this and x contain addresses which agree with their types in Γ.

We can now prove soundness of our type system:



σ(ι) = J ta ‖ . . . K

σ ` ι : ta

σ ` ι : ta

` ta <: ta′

σ ` ι : ta′ σ ` null : ta

σ(ι) = J g . c ‖ . . . K
F(g . c, f) = t =⇒ σ ` σ(ι)(f) : t[g]

σ ` ι

σ(ι) 6= Udf =⇒ σ ` ι

σ ` σ(x) : Γ(x)[Γ]
σ ` σ(this) : Γ(this)[Γ]

Γ ` σ 3

Fig. 8 — Agreement between programs, stores and environments

Theorem 2 (Soundness)

` P 3

Γ ` σ 3

Γ ` e : t

e, σ ; ι, σ′

e[Γ] = e[σ ]























=⇒
Γ′ ` σ 3

σ′ ` ι : t[Γ]

We have a hand-written proof of theorem 2 by induction on the derivation of the type of e.
The requirement that e[Γ] = e[σ ] guarantees that either there are no occurrences of MyGrp in e, or
that σ(MyGrp) = Γ(MyGrp). This requirement is necessary when proving the step for new MyGrp . c
and it is guaranteed by the substitutions taking place when inheriting through subclassing. Also,
the type of x does not change.

It is easy to argue that typing in Concord is decidable: The lookup functions F and M depend
on a class’s supergroup and superclass, and these relationships are acyclic. The subtype relationship
is the transitive closure of the extensions defined in the program, with some substitution of groups.
The type system has the sub-formula property and the subexpressions are strictly smaller.

7 Related Work, Further Work and Conclusions

As mentioned earlier, there are many approaches to the expression of relationships between col-
lections of classes. TypeGroups were used in [4], combined with matching and MyType. The full
system has not yet been formalised and proven sound, while a subset, comprising MyType (in the
form of ThisClass) but not TypeGroups, is presented and proven sound for a Featherweight

Java extension in [3]. The main difference between MyGrp and ThisClass is that MyGrp refers to
the group enclosing the current class whereas ThisClass refers to the current class itself.

Families of classes are suggested in [7, 8] primarily through extensions to the language gbeta;
a formalisation is planned.

Scala [14] combines functional and object oriented programming and contains several features
supporting code reuse. It is more powerful than Concord; types may contain both intra-group
references and references to an object’s identity. The latter, not supported by Concord, allows
distinct types graph1.Edge and graph2.Edge, where graph1 and graph2 are variables of a Graph

type, thus forbidding mixing components from two different graph objects even if those objects
have the same type. [14] offers an implementation of Scala with extensive accompanying docu-
mentation: a formalisation via the νObj calculus, including a proof of type system soundness, is
presented in [19]. The correspondence between νObj and Scala is, however, not immediate. It
is unclear whether subtyping is decidable, not necessarily due to Scala’s treatment of dependent
types.



The problem of relationships across collections of classes can also be addressed through virtual
types [22] and its connection with generics has been explored in [23].

The connection between virtual types and dependent types is explored in [10]; soundness
has not yet been demonstrated. The expression problem, posed originally by Reynolds and later
suggested by Wadler in the Java-genericity mailing list [25], is an example of such dependence
between classes. Solutions using virtual types and generics are explored in [24], and using dependent
types in Scala [26].

Eiffel [16, 17] and Sather [15] support references to the current class but do not combine
these references with nested classes, and thus do not solve the graph example.

Powerful versions of dependent types have been suggested in [1]; decidability has not yet been
proven.

Thus, we believe that Concord is the first work that combines a simple solution, an imperative
model, a decidable system and a sketch of the proof of soundness.

In further work we will compare Scala’s treatment of issues addressed by Concord, explore
the relationship between Concord and [4], write up proofs and consider mapping Concord onto
GJ [2]. We also want to work on an implementation and explore several extensions to Concord:
arbitrary nesting of groups, groups as method parameters, the amalgamation of groups and classes
and allowing MyGrp to refer to an object’s identity.

Acknowledgements — We are grateful to our anonymous referees for their careful reading,
feedback and justified requests for more intuitive explanations, which kept us on our toes.
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A Description of auxiliary definitions

In the interests of providing a short paper, we present verbal descriptions of auxiliary definitions
required by our formal system.

` g << g′ — subgroups Given group g << g′ { . . . }, we define ` g << g′ and ` g << g. The
transitive closure of this relationship completes our definition of subgroups.

` P 3u — unique definitions The judgement requiring unique definitions demands that: (a)
group names are unique, (b) class names within a group are unique (hence there can be no
naming clash) and (c) that field and method names are unique within classes (even where
subclassing and further binding are involved).

` P 3ag and ` P 3at — acyclic groups and types Judgements that require there to be no
cycles in the extension of groups or types.

G(g) and C(g . c) — group and class lookup functions The group lookup function G(g) re-
turns the definition group g<<g′{ . . .} if such a definition exists within a Concord program.
The class lookup function C(g . c) returns the definition class c<:t{ . . .} if such a definition
exists within g or else if such a definition exists in a supergroup g′ of g.

` Γ 3, ` g . c 3, ` g 3 and ` P 3 — well formedness Well formed programs comprise well
formed groups which themselves comprise well formed classes. Well formed classes comprise
method and field definitions of well formed types. Fields of a class may not be redefined in
subclasses or further bound classes; method bodies may be redefined under an identical method
signature. Classes that inherit members do so uniquely, i.e. given group g << g′ { . . . } and
class c <: gr . c′ { . . . }, then F(g′ . c, f) 6= Udf =⇒ F(gr[g] . c′, f) = Udf (similarly for
methods).

B Definition of ⊕

Given two functions f, g : A → B for any sets A and B we define f ⊕ g : A → B as follows:

f ⊕ g(a) =

{

f(a) if f(a) 6= Udf
g(a) otherwise


