
Modular Domain-Specific Language Components in Scala

Christian Hofer
Aarhus University, Denmark

chmh@cs.au.dk

Klaus Ostermann
University of Marburg, Germany
kos@informatik.uni-marburg.de

Abstract
Programs in domain-specific embedded languages (DSELs) can be
represented in the host language in different ways, for instance im-
plicitly as libraries, or explicitly in the form of abstract syntax trees.
Each of these representations has its own strengths and weaknesses.
The implicit approach has good composability properties, whereas
the explicit approach allows more freedom in making syntactic pro-
gram transformations.

Traditional designs for DSELs fix the form of representation,
which means that it is not possible to choose the best representation
for a particular interpretation or transformation. We propose a new
design for implementing DSELs in Scala which makes it easy to
use different program representations at the same time. It enables
the DSL implementor to define modular language components and
to compose transformations and interpretations for them.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.2.13 [Software Engi-
neering]: Reusable Software—Reusable Libraries; D.3.2 [Pro-
gramming Languages]: Language Classifications—Extensible Lan-
guages, Specialized Application Languages

General Terms Languages, Design

Keywords Embedded Languages, Domain-Specific Languages,
Term Representation, Visitor Pattern, Scala

1. Introduction
The methodology of domain-specific embedded languages, where
a domain-specific language (DSL) is embedded as a library into
a typed host language, instead of creating a stand-alone DSL, is
nowadays well-known. It goes back to Reynolds [26] and has been
systematically described by Hudak [12]. It is ideal for prototyping a
language for two reasons. Firstly, simple interpreters can be quickly
derived and implemented from the denotational semantics of the
DSL. Secondly, many parts of the host language can be directly
reused: not only its syntax, but also some semantic features like
its libraries and even its type system. Furthermore, it is easy to
extend the DSL or compose and integrate several DSLs into the
same host language, since DSL composition is the same as library
composition.

Assume for example that we have three different DSLs: a lan-
guage of regions, one of vectors, and a lambda calculus. We can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

simply compose these languages, if the concrete representations of
their types in the host language match. Assuming Scala as our host
language, we can then write a term like:

app(lam((x: Region) ⇒union(vr(x),univ)),
scale(circle(3),

add(vec(1,2),vec(3,4))))

This term applies a function which maps a region to its union with
the universal region to a circle that is scaled by a vector.

However, the main advantage of this method is also its main dis-
advantage. It restricts the implementation to a fixed interpretation
which has to be compositional, i. e., the meaning of an expression
may depend only on the meaning of its sub-expressions, not on their
syntactic form or some context. In the above example, we could
perform two optimizations. First, the union of any region with the
universal region is itself the universal region, allowing us to replace
the body of the lambda abstraction with univ. And second, we see
that the parameter x is not used (or without the first optimization:
only used once) in the body, allowing us to inline the application
[1], reducing the whole term to univ. Optimizations like these are
hard to implement using compositional interpretations [2, 11].

In order to perform analyses on the code or write a more ef-
ficient implementation (or even a compiler) of the language, the
DSL backend can be replaced by an explicit representation of the
abstract syntax tree (AST) [8]. Then, arbitrary traversals over the
AST can be implemented for analysis and interpretation. However,
this flexibility comes at a price: extending the DSL with new oper-
ations, or even composing it with other languages, requires adapta-
tion of both the data structure and the tree traversals.

Recently, variants of the DSEL approach have been proposed
that introduce a separation between language interface and imple-
mentation [2, 6, 11]. In this way, it is possible to define several
(compositional) interpretations for the same language, e. g., partial
evaluators or transformations to continuation-passing style [6]. Fur-
thermore, the languages can still be extended and even composed
with other languages in the sense of extending and composing the
interpretations [11].

However, two challenges remain. Firstly, can we express pro-
gram transformations as independent modular components? This
requires a program representation that is itself extensible and com-
posable and can serve as the target domain of the transformation.
Secondly, can we express non-compositional interpretations like
the optimization mentioned above?

We believe that a scalable approach to embedding DSLs should
address these problems. We propose a design that extends tech-
niques developed in recent studies of the visitor pattern [5, 21] and
the expression problem [34], and builds on our own work on poly-
morphic embedding [11]. More specifically, the design goals set
forth in this paper are:

• The design should enable the composition of independently
developed languages and their representations.

• Embedded languages are statically typed (uni-typed in the sim-
ple case such as the region DSL). A composed language should
preserve the types of the individual languages.

• It should be possible to apply different (kinds of) interpretations
on the same language representation.

The target domain of the interpretation should be allowed
to be the term representation (program transformation). It
should be possible to compose several program transforma-
tions in this way before interpreting to another domain.

It should be possible to define compositional as well as non-
compositional interpretations.

• The language representations and their interpretations should be
independent. That is, it should be possible to add new interpre-
tations without having to change the language representation.

We choose Scala as the implementation language, as its combi-
nation of language features both allows for solving the expression
problem and makes DSL embedding smooth [11, 34]. In partic-
ular, we make use of Scala’s support for nested traits and mixin
composition, abstract type members, higher-kinded types, self-type
annotations, implicit conversions, type inference, and the flexible
import statement. We will only show incomplete code examples
for space reasons. Furthermore, we will not discuss infix opera-
tions in the paper. The complete source code with further examples
can be downloaded at: http://www.cs.au.dk/~chmh/mdslcs/.

The central contributions of this paper are:

1. We show how to integrate extensible term representations into
a DSEL approach in Scala. These term representations can be
used as the target domain of program transformations on DSL
terms.

2. We show that those term representations are composable in the
same way as the languages that they represent. In particular, this
composition also reflects the types of the DSL expressions.

3. Our representation accommodates for three kinds of interpre-
tations: compositional interpretations, interpretations based on
explicit AST traversal, and interpretations based on AST in-
spection. We motivate and compare these three options for writ-
ing interpretations.

4. We discuss name-binding on DSELs by means of composing
with a lambda calculus language. In particular, we present an
extensible term representation for the simply-typed lambda cal-
culus using higher-order abstract syntax. This representation al-
lows all three kinds of interpretations.

5. We present DSEL development as an application domain for
advanced visitor techniques.

We will introduce the core of the representation for a single,
uni-typed language in Sec. 2. In Sec. 3 we show how different lan-
guages (and their type representations) can be composed. In Sec. 4
we present language composition for a more challenging type sys-
tem: the simply-typed lambda calculus. At the same time, we con-
sider the issue of name-binding and its representation. In Sec. 5 we
discuss the design goals and the different kinds of interpretations
that our representation allows. Related work is discussed in Sec. 6.
Section 7 concludes.

2. Presentation of the Core Design
In this section, we present the core design for a simple, uni-typed
embedded language. We will first show how to define the lan-
guage interface and compositional interpretations. Then we will in-
troduce the term representation and an interpretation to create it.
We demonstrate how the representations can be used to apply both

trait RegionLI {
type Region
def univ : Region
def circle(radius : Double) : Region
def union(reg1 : Region, reg2 : Region) : Region

}
trait Example {

val regionInterpretation: RegionLI
import regionInterpretation.

... union(circle(2.0), univ) ...
}
object ExampleInstance extends Module {

val regionInterpretation = new EvalRegion {}
}

Figure 1. The region language interface and its usage

compositional and non-compositional interpretations. We will use
a language of regions [12] as the running example.

2.1 Defining the Language Interface

Each language specifies the language interface as the signature
of an algebra: abstract type members declare the sorts (domains)
of the algebra, methods its constants and operations [11]. The
language interface of the regions language is shown in the trait
RegionLI in Fig. 1. Region is the only sort in this algebra. univ
is the universal region, circle is a circle around the origin and
union is a binary operation to construct the union of two regions.
More operations could be defined in the same way. We could also
add them later by defining an extended language interface that
inherits from RegionLI: The language interface is extensible.

To create a term of a language, we need an object that im-
plements the language interface. However, it is easy to abstract
over the actual interpretation such that the same DSL program
can be interpreted in multiple ways. One way to do that is shown
in the trait Example. Here, we specify a dependency of the ex-
ample on some interpretation of the region language. The object
ExampleInstance then fixes a specific interpretation. Note that
the import construct in Scala can appear anywhere in the code and
can refer to arbitrary values. We use it here to import the operations
of the interpretation so we can use them without prefixing them by
the name regionInterpretation.

2.2 Defining Compositional Interpretations

Each interpretation is an algebra of the corresponding signature.
It is implemented by defining the domains and the operations that
are declared in the language interface [11]. As a consequence of
the algebraic method, each interpretation is guaranteed – under
the assumption that we do not use side-effects – to be composi-
tional in the following sense: The interpretation of an expression
is only dependent on the interpretation of its sub-expressions, not
on their syntactic structure or some context. This can be seen in
the declaration of the union method: its parameters are of type
Region, which is the domain of the algebra, and not of some ex-
pression type that represents region expressions. If we look at it as
a traversal of the AST, each interpretation is a primitive recursion
(fold) over the tree, applying the interpretation recursively on all
sub-expressions. Compositionality of interpretations is the selling
point of denotational semantics. It enables compositional reasoning
about programs and it eases language extension.

To give an example of how an interpretation looks like, we
define an evaluating interpretation of the region language in Fig. 2.
The domain of regions is represented by a predicate on points in the
coordinate space. The universal region is the region that contains all
points, the union of a region is calculated by evaluating whether a
point is contained in one of the united regions, etc.

trait EvalRegion extends RegionLI {
type Region = (Double,Double)⇒Boolean
def univ = (,) ⇒true
def circle(rad: Double) = (x,y) ⇒x∗x + y∗y <= rad ∗ rad
def union(r1: Region, r2: Region) = (x,y) ⇒r1(x,y) || r2(x,y)

}
Figure 2. A region evaluator written as a compositional interpre-
tation

trait RegionAST {
trait RExp {

def acceptI[R](v : IVisitor[R]) : R
def acceptE[R](v : EVisitor[R]) : R

}
case class Univ() extends RExp {

def acceptI[R](v : IVisitor[R]) : R = v.univ
def acceptE[R](v : EVisitor[R]) : R = v.univ

}
case class Circle(radius : Double) extends RExp {

def acceptI[R](v : IVisitor[R]) : R = v.circle(radius)
def acceptE[R](v : EVisitor[R]) : R = v.circle(radius)

}
case class Union(reg1: RExp, reg2: RExp) extends RExp {

def acceptI[R](v : IVisitor[R]) : R =
v.union(reg1.acceptI(v), reg2.acceptI(v))

def acceptE[R](v : EVisitor[R]) : R = v.union(reg1, reg2)
}
type IVisitor[R] <:RegionLI { type Region = R }
type EVisitor[R] <:RegionEVisitor[RExp,R]

}
trait RegionEVisitor[RExp,Region] {

def univ : Region
def circle(radius : Double) : Region
def union(reg1 : RExp, reg2 : RExp) : Region

}
object RegionASTSealed extends RegionAST {

type IVisitor[R] = RegionLI { type Region = R }
type EVisitor[R] = RegionEVisitor[RExp, R]

}
Figure 3. A term representation for the region language

2.3 The Term Representation

In the next step, we define the explicit term representation. Its
basic design is adapted with some minor modifications from the
functional decomposition approach described in Zenger / Odersky
[34], but implementing both the internal and the external visitor
pattern [5, 19]. The representation of region terms is shown in Fig. 3
in the trait RegionAST.

For each sort in the signature of the algebra, we define an
abstract syntax tree (AST) representation. In the example, the only
sort is Region. For each operation that maps to a value of that
domain, we implement an AST node as a case class1 inheriting
from a common super-node (RExp). That super-node declares the
acceptI and the acceptE methods of the internal and external
visitor pattern, respectively.

We declare higher-kinded abstract type members [16] for both
the internal and the external visitor interface (IVisitor[R] and
EVisitor[R]). Each sort of the algebra is a type parameter of
this type member. To be able to extend the language with new
operators, we do not fix these types [34]. Only in the object
RegionASTSealedwe create a concrete instance of the AST repre-
sentation, where the visitor interface types are fixed. In RegionAST
we only constrain them: The visitor interface of the internal visi-
tor has to extend the language interface of the region language
(see Fig. 1), with the type Region corresponding to the type pa-

1 Scala case classes are basically classes suitable for pattern matching.

rameter of the visitor. The visitor interface for the external visitor
is shown in RegionEVisitor. There are two differences to the
internal visitor interface: Firstly, we define the sorts (Region) as
type parameters and not any more as an abstract type members, as
we do not want to use the external visitor as a language interface.
Secondly, and more importantly, the visitor takes another type pa-
rameter (or set of type parameters) that represents the expression
types (RExp). This type parameter is used in the operations that
take elements of the domains as parameters (here: union). In the
external visitor interface, those operations take these expressions
as parameters and not the domain elements.

This reflects the difference between internal and external visitor
pattern. The internal visitor is applied to the sub-expressions be-
fore they are passed to the visitor of the expression (see the method
acceptI in the class Union). This enforces compositional inter-
pretations. The acceptE method of the external visitor, in con-
trast, does not perform a recursive call on the sub-expressions, but
passes them directly to the visitor. In that way, the visitor has ac-
cess to the syntactic structure of the sub-expressions. This makes
non-compositional interpretations possible.

2.4 Program Transformations with Internal Visitors

Having defined the term representation, we can now define program
transformations, i. e., interpretations that map to this term repre-
sentation. These interpretations can then be composed with other
interpretations by applying the accept method to the latter. For
example, we can write an optimization interpretation (a program
transformation) and compose it with the evaluator by supplying the
latter as a visitor to the result of the former.

A trivial program transformation is the reification of the pro-
gram. It takes a term and maps it to its representation. It is the
identity element with respect to the composition of interpreta-
tions. The reification for the region language is shown in the trait
ReifyRegion in Fig. 4. Being a compositional interpretation it
implements the region language interface and can be used as an
internal visitor. The trait is parametrized by a value regAST that
references the exact instantiation of the AST representation. This
parametrization is needed to accommodate for extensions of the re-
gion language with further operators. If we instantiate this value
with an extended AST representation, reification operates as an in-
jection into this richer structure. The type Region, which specifies
the domain of the interpretation, is defined as the expression super-
type in the chosen representation, making the interpretation a map-
ping into the term representation. The operations simply construct
the corresponding AST nodes.

A more interesting program transformation is optimization. In
our case, we define a simple optimization that makes use of an alge-
braic law on regions: that the union of some region with the univer-
sal region is equivalent to the universal region. The interpretation
is shown in the trait OptimizeRegion and again is just a compo-
sitional interpretation (i. e. inheriting from the language interface).
Again, the term representation it produces is parametrized by the
value regAST. The interesting case is the implementation of union.
Here, we use pattern-matching on the sub-expressions, i. e., we in-
spect the explicit AST representation. Note that the optimization
has already been applied recursively to the parameters reg1 and
reg2. In that way, the optimization is propagated through the AST.

2.5 Program Transformations with External Visitors

We can define an alternative optimization using an external visitor,
shown in Fig. 5. All interpretations using an external visitor depend
on the language module, i. e., they have to be nested in another trait.
Here, the trait Optimize is nested in OptimizeRegionExternal.
The reason is that acceptE has to be called recursively on the opti-
mization visitor. To be able to call acceptE, we have to make sure

trait ReifyRegion extends RegionLI {
val regAST : RegionAST
import regAST.
type Region = RExp
def univ = Univ()
...
def union(reg1 : Region, reg2 : Region) = Union(reg1, reg2)

}
trait OptimizeRegion extends RegionLI {

val regAST: RegionAST
import regAST.
type Region = RExp
def univ: Region = Univ()
...
def union(reg1: Region,reg2: Region) : Region =

(reg1, reg2) match {
case (Univ(),) ⇒Univ()
case (, Univ()) ⇒Univ()
case ⇒Union(reg1, reg2)

}
}

Figure 4. Two compositional program transformations

trait OptimizeRegionExternal {
val regAST : RegionAST
import regAST.
trait Optimize extends RegionEVisitor[RExp, RExp] {

this: EVisitor[RExp] ⇒
type Region = RExp
def univ : Region = Univ()
...
def union(reg1: RExp, reg2: RExp): Region = {

val r1 = reg1.acceptE(this)
r1 match {

case Univ() ⇒Univ()
case ⇒{

val r2 = reg2.acceptE(this)
r2 match {

case Univ() ⇒Univ()
case ⇒Union(r1, r2)

}}}}}}
Figure 5. An optimizer as an external visitor

that Optimize is in fact a valid visitor of type EVisitor[RExp].
We cannot guarantee this at this point, as the value of regAST and
therefore the visitor interface is not yet fixed. But we can make
the compiler ensure that each concrete instance of it has to be a
valid visitor. This is done by declaring the type of this to be
EVisitor[RExp] using Scala’s self-type annotations in the first
line of the body of Optimize. The visitor is defined in regAST. If
we had declared this value inside of the Optimize trait instead, we
would not be able to refer to it in the self-type annotation.

In the union case, we get the two sub-expressions as unevalu-
ated expressions of type RExp as parameters. In that way, we can
implement a more efficient version of the optimizer than before: We
at first only optimize the first sub-expression recursively by calling
acceptE on it. Only if this is not the universal region, we optimize
the other sub-expression, too. We will discuss the respective advan-
tages of compositional interpretations and explicit tree traversals in
Sec. 5.

3. Composing Domain-Specific Languages
In this section, we will discuss how to compose the representations
of the embedded languages. If we only ever want to compose
several languages that share the same sort (i. e., in an untyped
setting), this is similar to extending a language with new operations.

trait VectorLI {
type Vector
def vec(x : Double, y : Double) : Vector
def add(v1 : Vector, v2 : Vector) : Vector

}
trait ExtRegionLI extends RegionLI {

type Vector
def scale(reg : Region, vec : Vector) : Region

}
Figure 6. Language interface for vector and extended region lan-
guages

As the term representations we are using have been written with this
extensibility in mind [34], this is easy.

On the other hand, if we only want to introduce new sorts within
a single language, we could make the different expression types
share the same visitor, with the accept methods taking several
type parameters (to reflect the different sorts) instead of one. The
difficulty arises when we want to compose independent languages
that each define their own sorts, as the accept methods cannot be
extended by type parameters through inheritance.

In the following, we will discuss how the term representation
can be made to work with language and sort composition. At the
same time, this will show how individual languages can be ex-
tended with new operators. As a running example we will compose
the region language with a simple language of vectors. Its language
interface is defined in Fig. 6. We restrict ourselves to two opera-
tors: vec constructs a two-dimensional vector, add is the common
vector addition. Again, we can implement different compositional
interpretations for this language interface, e. g., an interpreter or a
pretty-printer. Furthermore, we assume to have a term representa-
tion of the vector language defined.

The need to integrate region and vector language arises if we
want to extend our region language with a new operator: scale,
that scales a region by a vector. An example term of the composed
language could be:

scale(circle(2.0), add(vec(1,2), vec(0,.5)))

We extend the language interface of the region language by in-
heriting from RegionLI, as shown in trait ExtRegionLI. Besides
declaring the method scale, we declare an abstract type member
Vector in addition to the inherited type member Region. We have
shown how to compose language interfaces and their interpreta-
tions in this setting in earlier work [11]. Here, we focus on the
corresponding composition of term representations.

3.1 Composing Term Representations

To compose the different term representations in a modular way,
we create an interface between them. The term representation for
the vector language is not modified. The representation for the ex-
tended region language is shown in the trait ExtRegionAST in
Fig. 7. It abstracts over the vector representation VectorRep: We
do not necessarily have to compose with an explicit term represen-
tation of vectors, but can alternatively use a direct representation.
For example, we could choose to represent vectors as pairs of num-
bers, which could be the result of an evaluating interpretation using
the VectorLI language interface.

The external visitor interface for the extended region language
is shown in trait ExtRegionEVisitor. It takes the representation
of vectors as an additional type parameter. Each non-compositional
interpretation has the responsibility to deal with the respective rep-
resentation of the other domain (here: vectors), be it an explicit term
representation or a direct representation. The acceptE method in
the class Scale is straightforward: It forwards the region expres-
sion and the vector representation to the visitor.

trait ExtRegionAST extends RegionAST {
type VectorRep
case class Scale(region : RExp, vector : VectorRep) extends RExp {

def acceptE[R](v : EVisitor[R]) : R = v.scale(region, vector)
def acceptI[R](v : IVisitor[R]) : R =

v.scale(region.acceptI(v), v.interpretVector(vector))
}
type EVisitor[R] <:ExtRegionEVisitor[RExp, VectorRep, R]
type IVisitor[R] <:ExtRegionIVisitor {

type VRep = VectorRep
type Region = R

}
}
trait ExtRegionEVisitor[RExp, VRep, Region]

extends RegionEVisitor[RExp, Region] {
def scale(reg: RExp, vec: VRep): Region

}
trait ExtRegionIVisitor extends ExtRegionLI {

type VRep
def interpretVector(vec : VRep) : Vector

}
Figure 7. Extended language representation with visitor interfaces

For the internal visitor interface, we could take the same strategy
and simply require the interpretations to directly deal with the term
representations of the other domains. However, we believe that this
is in conflict with the spirit of compositional interpretations. Inter-
pretations should not operate on term representations, but only on
the results of their interpretation. On the other hand, each interpre-
tation has different constraints about the other domain. For exam-
ple, an evaluator of the region language might expect to find vec-
tors represented as pairs of Doubles, while a pretty printer might
expect strings. It is therefore not possible to define the translation
from a vector term representation to a vector domain representa-
tion outside of the visitor itself. That implies that the visitor has to
supply a method interpretVector that does this interpretation.
Otherwise, the internal visitor interface just extends the language
interface. The code is shown in the trait ExtRegionIVisitor.

Now, the acceptI method in Scale is responsible for translat-
ing between the vector term representation and the vector domain.
It delegates this to the extended visitor, and supplies the result to
the scale operation (and potentially all the other operations that
use the vector domain).

3.2 Defining Interpretations

In the following, we present how to implement interpretations using
internal and external visitors. We will show how to implement the
extension of the optimizer in both variants. We will also show
how to implement an evaluator on the extended language using an
internal visitor in order to demonstrate how distinct representations
of the different languages can be combined.

We will start with the external visitors, as their implementa-
tion is more straightforward. The extended optimizer is shown in
trait OptimizeExtRegionExternal in Fig. 8. It is independent
of the representation of vectors and just reuses the one specified
in the target domain regAST. The same holds also for the inter-
nal visitor which is shown in trait OptimizeExtRegion. It does
not touch the representation of the vector language and thus de-
fines interpretVector to be the identity function on the vector
representation.

Finally, it is worth looking at the implementation of an evaluator
for the extended region language, to see how interpretVector
operates on different representations, and thus: how different rep-
resentations of languages can be mixed. We present two variants
of an evaluator in Fig. 9. Both make use of the same base evalua-

trait OptimizeExtRegionExternal extends OptimizeRegionExternal {
val regAST: ExtRegionAST
import regAST.
trait Optimize extends super.Optimize with

ExtRegionEVisitor[RExp, VectorRep, RExp] {
this : EVisitor[RExp] ⇒
def scale(reg: RExp, vec: VectorRep) = {

val r = reg.acceptE(this)
r match {

case Univ() ⇒Univ()
case ⇒Scale(r, vec)

}}}}

trait OptimizeExtRegion extends OptimizeRegion with
ExtRegionIVisitor {

val regAST: ExtRegionAST
import regAST.
type VRep = VectorRep
type Vector = VRep
def interpretVector(v: VRep): Vector = v

def scale(reg: Region, vec: Vector): Region =
reg match {

case Univ() ⇒Univ()
case ⇒Scale(reg, vec)

}
}

Figure 8. Two extensions of the optimizer as internal and external
visitors, respectively

tor defined for the extended region language EvalExtRegion that
expects vectors to be represented as pairs of Doubles.

In the first version (EvalRegionWithVector), we do not use
a term representation of vectors. Accordingly, interpretVector
is implemented as the identity function on the vector domain.
In the second version (EvalRegionWithVecAST), vector terms
are represented. We can still reuse EvalExtRegion. The method
interpretVector will apply a corresponding visitor for the vec-
tor language to get a value in the right domain. As the evaluator
is now dependent on the specific term representation for vectors,
the corresponding module vecAST is a dependency on the evalua-
tion of regions. The object EvalRegionWithVecASTSealed is an
example instantiation.

To conclude, we note that while the composition of explicit term
representations increases the dependencies on the side of the inter-
pretations, the main task with respect to language composition is
the extension of the individual representations (here: the region rep-
resentation) to accommodate for the new language constructs that
bring together the two languages. As the chosen representations
are extensible, language extension itself is straightforward. We will
discuss a more advanced example of language composition in the
next section.

4. Embedding the Lambda Calculus
Both the region and vector languages are uni-typed, so combin-
ing them resulted in a language of two types. However, the de-
sign also scales to more complex types in the embedded language.
A prominent language with a more demanding type system is the
simply-typed lambda calculus with its inductive construction of ar-
row types. We will therefore briefly sketch how the lambda calculus
can be represented.2 Introducing the lambda calculus serves also
another purpose: as a showcase on how to handle name-binding in
the embedded language.

In this section we will first introduce a language interface for the
typed lambda calculus using higher-order abstract syntax (HOAS)

2 The full code is in the accompanying code of the paper.

trait EvalExtRegion extends EvalRegion with ExtRegionLI {
type Vector <:(Double,Double)
def scale(r : Region, v : Vector) : Region =

(x,y) ⇒r(x/v. 1, y/v. 2)
}
object EvalRegionWithVector extends EvalExtRegion with

ExtRegionIVisitor {
type Vector = (Double, Double)
type VRep = (Double, Double)
def interpretVector(v: VRep) = v

}
trait EvalRegionWithVecAST {

val vecAST : VectorAST
trait Eval extends EvalExtRegion with ExtRegionIVisitor {

type Vector = (Double, Double)
type VRep = vecAST.VectorExp
def interpretVector(v : VRep) = v.acceptI(evalVector)

}
def evalVector: vecAST.IVisitor[(Double,Double)]

}
object EvalRegionWithVecASTSealed extends EvalRegionWithVecAST

{
val vecAST = VectorASTSealed
object Eval extends super.Eval
val evalVector = new EvalVector {}

}
Figure 9. Two evaluators based on the internal visitor pattern

trait THoasLI {
type Rep[]
type VRep[]
def vr[T](x: VRep[T]): Rep[T]
def lam[S,T](f: VRep[S]⇒Rep[T]): Rep[S⇒T]
def app[S,T](fun: Rep[S⇒T], param: Rep[S]): Rep[T]

}
Figure 10. Language interface for the lambda calculus in higher-
order abstract syntax

[23]. We will then show how to integrate it with the region lan-
guage interface. Next, we will present an explicit term representa-
tion based on HOAS. Discussing the short-comings of this repre-
sentation, we will motivate a De Bruijn index representation for the
untyped lambda calculus, which we will briefly present.

The language interface is shown in Fig. 10. We use the type con-
structor Rep[T] to represent lambda calculus expressions of type
T, and VRep[T] for variables of type T. Lambda calculus terms are
either variables (constructed with vr), lambda abstractions (lam) or
applications (app). Lambda abstractions make use of HOAS, i. e.,
we use function literals in Scala to represent lambda abstraction.
An example term is: lam((x: VRep[Int]) => vr(x)), which
represents the identity function on integers. The Scala type checker
is not able to infer the type of the parameter x. Therefore, we have
to specify it explicitly.

Some related works have proposed another representation that
omits the vr constructor and the separate representation for vari-
able types [2, 6]. That representation, however, does not give rise
to a term representation [24]. Our representation can be regarded as
a generalization of [33] for a typed representation.

4.1 A Term Representation for the Lambda Calculus

A term representation for the lambda calculus is shown in Fig. 11.
Only the constructor for lambda abstractions is shown, the others
are straightforward. The main point to note is that we need a differ-
ent representation for each type of variable representation. There-
fore, the latter has to be supplied as a type parameter to THoasExp.
The second type parameter T is a type index for the correspond-
ing lambda calculus expression. The represented domain type for

trait THoasAST {
trait THoasExp[VR[],T] {

def acceptI[R[]](v: IVisitor[R, VR]): R[T]
}
case class Lam[VR[],S,T](f: VR[S]⇒THoasExp[VR,T])

extends THoasExp[VR,S⇒T]
{

def acceptI[R[]](v: IVisitor[R, VR]): R[S⇒T] =
v.lam(x ⇒f(x).acceptI(v))

def acceptE[R[]](v: EVisitor[R, VR]): R[S⇒T] = v.lam(x ⇒f(x))
}
...
type IVisitor[R[], VR[]] <:THoas {

type Rep[T] = R[T]; type VRep[T] = VR[T]
}
type EVisitor[R[], VR[]] <:THoasEVisitor[THoasExp, R, VR]

}
trait THoasEVisitor[THExp[VR[],], R[], VR[]] {

def vr[T](x: VR[T]): R[T]
def lam[S,T](f: VR[S]⇒THExp[VR,T]): R[S⇒T]
def app[S,T](fun: THExp[VR,S⇒T], param: THExp[VR,S]): R[T]

}
trait ReifyToTHoas[VR[]] extends THoasLI {

val hoasRep: THoasAST
import hoasRep.
type Rep[T] = THoasExp[VR,T]
type VRep[T] = VR[T]
...

}
Figure 11. A term representation for the typed lambda calculus

an interpretation is R[T]. That means that R[] is the type oper-
ator that describes the interpretation of a type and is therefore the
higher-kinded type parameter of the accept methods. Note that
reification (see trait ReifyToTHoas) is also always bound to a spe-
cific representation type for variables.

4.2 Integrating the Lambda Calculus with Other Languages

We can compose the lambda calculus with the region language and
get regions as a base type in the lambda calculus and, on the other
hand, the capability to use name binding in the region language.
To this end, we extend both the region and the lambda calculus
language interface, as shown in Fig. 12. We define implicit con-
versions (i. e., type conversions that will be inserted by the type-
checker of Scala automatically) toRegion and fromRegion to
translate between the different representations of region language
and lambda calculus. The extended interface of the region lan-
guage needs to know how a lambda calculus type is represented
(FunRep[T]). In the same way, the lambda calculus interface needs
knowledge about the representation of regions. The main restric-
tion compared to the integration with the vector language is that
we need an index type (i. e., a type parameter to Rep) to refer to
the atomic region type in the lambda calculus representation. This
cannot be Region, as the representation of functions has to be
independent of a concrete interpretation domain of regions. That,
however, requires that a region representation is not touched when
it is transformed to a HOAS term: the parameter in fromRegion
is not of type Region and we do not extend the visitor interface
with a method interpretRegion. For symmetry, we also left out
interpretFunction, making the interpretations themselves re-
sponsible for the interpretation step in the other domain. The cor-
responding extension of the term representation is straightforward
and presented in the accompanying source code.

4.3 A Term Representation Based on De Bruijn Indices

Unfortunately, HOAS is not a good choice for programming inter-
pretations that need to interpret recursively the body of a lambda

trait RegionForFunLI extends RegionLI {
type FunRep[]
type RegionRep
implicit def toRegion(r: FunRep[RegionRep]): Region

}
trait THoasForRegionLI extends THoasLI {

type RegionRep
implicit def fromRegion(r: RegionRep): Rep[RegionRep]

}
Figure 12. Composing lambda calculus and region language

trait LCLI {
type Rep
def vr(m: Int): Rep
def lam(body: Rep): Rep
def app(fun: Rep, param: Rep): Rep

}
trait LCEVisitor[LCExp, Rep] {

def vr(m: Int): Rep
def lam(body: LCExp): Rep
def app(fun: LCExp, param: LCExp): Rep

}
trait LCAST {

trait LCExp {
def acceptI[T](v: IVisitor[T]): T
def acceptE[T](v: EVisitor[T]): T

}
case class Vr(m: Int) ...
case class Lam(body: LCExp) extends LCExp {

def acceptI[T](v: IVisitor[T]): T = v.lam(body.acceptI(v))
def acceptE[T](v: EVisitor[T]): T = v.lam(body)

}
case class App(fun: LCExp, param: LCExp) ...
type IVisitor[T] <:LCLI { type Rep = T }
type EVisitor[T] <:LCEVisitor[LCExp, T]

}
Figure 13. An untyped De Bruijn representation

abstraction, which is the case for many program transformations
[29]. For this case, we propose a representation based on De Bruijn
indices [7]. In this representation, variables do not have names,
but are represented by an index that specifies in which binding it
was defined. For example, the lambda expression λx.λy.y is writ-
ten as λ(λ0), with the variable index 0 referring to the variable of
the innermost binding (y). On the other hand, λx.λy.x is written
as λ(λ1), where the 1 refers to the variable of the next-innermost
binding (x).

Unfortunately, a typed De Bruijn index representation still has
limitations. Atkey et al. [2] argue that the translation from HOAS to
De Bruijn indices cannot be done fully type-safe, if the type-system
of the language does not incorporate parametricity principles. What
is worse: It is not obvious how to express relevant interpretations,
e. g., substitutions, in a type-safe way. We will therefore represent
only an untyped lambda calculus in the De Bruijn index representa-
tion, and it is up to the implementor to ensure type-safety of transla-
tions and interpretations. Still, the type-safety of embedded lambda
calculus terms is preserved, if the THoasLI language interface is
used.

The De Bruijn interface LCLI and its term representation are
shown in Fig. 13. The reification of HOAS terms to De Bruijn index
terms can be derived from [2] and is defined in the accompanying
source code. For a demonstration that this representation allows
for interesting program transformations we refer the reader to [2],
where a shrinking reduction [1] is defined by an explicit traversal
of the syntax tree. It is an interesting question, how much of it can
be implemented using a compositional interpretation and we will
come back to this in Sec. 5.

To conclude, it is possible to represent a typed lambda calculus
using HOAS and compose it with other languages. However, for
many program transformations it is not obvious how to implement
them in this representation. Therefore, we follow [2] in performing
these operations on an untyped representation based on De Bruijn
indices.

5. Discussion
In this section, we will first review that the presented design indeed
meets our design goals. In the second part, we will compare the
different representations that are part of our encodings. Finally, we
will briefly discuss alternative encodings for the visitor pattern.

5.1 Reviewing the Design Goals

First of all, the design allows for the composition of independently
developed languages and their representations. We have demon-
strated, how the representations of several languages can be com-
posed in Sec. 3 and Sec. 4. We have furthermore demonstrated, how
the interpretations compose even for distinct representations of the
different languages in the evaluator example of Fig. 9.

We have seen that the composed language preserves the types
of the individual languages. For example, the scale operation
requires a region in the first parameter and a vector in the second.
The implicit conversions between regions and lambda expressions
ensure that only representations of regions can be converted.

Furthermore, we have demonstrated that different interpreta-
tions can be applied on the same language representation. We have
shown, how we can define program transformations like the region
optimization that transform to the same representation of the terms
and can be composed with other interpretations. The representa-
tion can be used for defining compositional interpretations (using
the internal visitor pattern) and non-compositional interpretations
(using the external visitor pattern).

Finally, we have kept language representations and interpreta-
tions independent. This is a major difference to the Zenger/Oder-
sky design [34]. We can seal a language representation as demon-
strated, e. g., in RegionASTSealed in Fig. 3, and define interpreta-
tions like those in Fig. 4 independently from it, using dependency
injection in the interpretations.

5.2 Comparing the Representations

So far, we have focussed the discussion on two different represen-
tations, namely external versus internal visitors. However, we are
in fact dealing with four different representations.

1. The implicit term representation defined by the language inter-
face.

2. The Church encoding expressed by the acceptI method of the
internal visitor

3. The Scott encoding expressed by the acceptE method of the
external visitor

4. The explicit AST representation that is part of both the external
and the internal visitor pattern

In the following, we discuss each of these representations.

5.2.1 The Implicit Term Representation

The implicit term representation is defined by the language inter-
face: Each operator of the DSL is represented by a method dec-
laration in the language interface and each term is at some point
mapped to a concrete interpretation to a target domain. However,
this representation cannot be used as a target domain of an interpre-
tation by itself. If we want to define a program transformation, we
immediately have to compose it with an interpretation to another

object UsesOf extends LCLI {
type Rep = Int ⇒Int
def vr(m: Int): Rep = n ⇒if (n == m) 1 else 0
def lam(body: Int⇒Int): Int⇒Int = n ⇒body(n+1)
def app(fun: Int⇒Int, param: Int⇒Int): Int⇒Int =

n ⇒fun(n)+param(n)
}

Figure 14. Counting the occurrences of a lambda expression

target domain. As a consequence, the transformation of an expres-
sion has no access to the transformation of its sub-expressions, but
only to the results of their final interpretation. To overcome this, we
can define the target domain to be a pair, where the first component
is the intended interpretation and the second component is some in-
formation that we need for performing the program transformation.
We have demonstrated this for the optimization of regions in [11],
where the second component was a Boolean flag that informed us,
if a region was the universal region. We then could shortcut the in-
tended interpretation in the first component, whenever the Boolean
flag was true.

5.2.2 The Church Encoding

It is known that the internal visitor pattern corresponds to a Church
encoding [5]. The Church encoding, as well as the standard visitor
pattern, are not by themselves extensible. An extensible solution
has to allow for adding domains and operations to the language
interface. The presented design does exactly that.

Defining an interpretation using the Church encoding makes it
compositional. While compositionality is certainly beneficial for
reasoning about a DSL term, not every interpretation can directly
be encoded in this style. However, for many non-compositional in-
terpretations to a domain we can find a compositional interpretation
to a computation of that domain. This is the core idea behind using
monads to define modular denotational semantics [15].

For example, the optimization interpretation in Fig. 4 is not op-
timal: in the union case, if the first region is the universal region,
then we could short-circuit the interpretation of the second region,
as the result will be the universal region. However, as we defined
the parameters call-by-value, the interpretation of the second re-
gion has already taken place. To avoid this, we could redefine the
language interface to take the parameters of union as call-by-need
parameters. However, if we do not want to change the language
interface, we could redefine the domain of the optimization inter-
pretation to be a function from the unit type to the AST represen-
tation. In that way, we can manually control the triggering of the
optimization in the sub-expressions.

Another example would be a language of arithmetics, where
we cannot implement a compositional evaluator to a domain of
numbers that handles division-by-zero, but we could implement a
compositional evaluator to a domain of computations that can fail
(described by the error monad).

And finally, there are many interpretations that depend on a con-
text. One example is the interpretation that counts the occurrences
of a free variable in a De Bruijn index representation of a lambda
expression. Atkey et al. [2] define this interpretation as a recursion
on an explicit AST representation. But we can also express it as a
fold, as shown in Fig. 14. We represent the domain as a function
that maps a De Bruijn index to the number of occurrences of the
variable with this index. The De Bruijn index is the context that
is passed through the interpretation of the sub-expressions and is
increased inside a lambda body.

Another limitation of the Church encoding is that it is hard to
define accessor functions to the sub-expressions of an expression.
We encounter this problem, if we translate the shrinking reduction
implementation from [2] to one based on internal visitors, as shown

object Shrink extends LCLI {
import LCIASTSealed.
type Rep = LCExp
def vr(n: Int): Rep = Vr(n)
def lam(body: Rep): Rep = Lam(body)
def app(fun: Rep, param: Rep): Rep = fun match {

case Lam(u) ⇒if (u.accept(UsesOf)(0) <= 1)
u.accept(Subst)(0, param).accept(this)

else App(fun,param)
case ⇒App(fun, param)

}
}

Figure 15. Shrinking reduction

in Fig. 15. The shrinking reduction [1] is an inlining operation that
performs a beta-reduction in cases where a bound variable is used
at most once.

For simplicity, this interpretation is hard-wired to some sealed
version of the AST representation for internal visitors.3 Further-
more, it assumes a substitution interpretation (Subst). It also does
not claim to be an efficient implementation.

The interesting part is the interpretation of app: It does a
pattern-matching on the interpretation of the first parameter. If it
is a lambda expression, it might perform a substitution to inline
the application. If we wanted to avoid using pattern-matching, we
would need an accessor to the body of the lambda abstraction.

The solution to this problem was discovered by Kleene, who
defined the predecessor function on Church numerals by a triple
construction [13] together with a projection to the first component
of the triple. This trick can be generalized to arbitrary accessors
on inductive data structures. However, using this method, the sub-
expression has to be fully reconstructed from bottom up, making
accessors a linear-time instead of a constant-time operation. It is
also not obvious how to adapt Kleene’s trick to access the body of a
lambda expression in a higher-order abstract syntax representation.

5.2.3 The Scott Encoding

Like the internal visitor pattern corresponds to a Church encoding,
Oliveira et al. [21] have pointed out that the external visitor pattern
corresponds to a Parigot encoding [22], which is a typed version of
the Scott encoding. Like the Church encoding, the Scott encoding
itself is not extensible.

The Scott encoding makes it easy to define an accessor opera-
tion on inductive data structures. In effect, that means that we can
implement everything with the Scott encoding that we can imple-
ment by pattern matching. The interpretations are not guaranteed
to be compositional. Using the presented version of the external
visitor pattern has one core advantage over directly accessing the
AST representation via pattern-matching: The interpretation stays
extensible. If we extend a language by a new operation, we sim-
ply have to define the interpretation for this operation. If we had
used pattern-matching instead, the interpretation for the extended
language version would have to override the original interpretation
in order to take the extended cases into consideration.

5.2.4 The Explicit AST Representation

After this discussion, there seems to be no place where the explicit
AST representation is really needed. We used it in many examples,
nevertheless, however not as an alternative encoding, but inside the
internal and external visitors. The representation is useful, when
we want to analyze the structure of the sub-expressions, typically
after applying a code transformation on them. Writing another
interpretation that does this analysis is in many cases cumbersome,

3 This could of course include the conversion from region language terms.

when a pattern matching is so much easier. However, it should be
kept in mind that this could conflict with the extensibility of the
interpretation which has to rely on correct defaults (see also [35]).

5.3 Alternative Encodings for the Visitor Pattern

While the visitor pattern in its basic version does not accommodate
well for extending data types, there are several approaches to make
the visitor pattern extensible and in that way give a solution to the
expression problem [19, 30, 34]. We have adapted the solution pre-
sented in [34] to get an extensible visitor pattern as the basis of our
design. We have modified it to separate representation from visitors
and to make use of higher-kinded type members [16]. Furthermore,
we have implemented an internal visitor pattern variant for it.

In Sec. 5.5 of [18], Oliveira presents a very similar design for
an extensible visitor pattern in the context of data type generic
programming. Instead of defining two different accept methods
for external and internal visitors, this design merges both by using
an additional type parameter and an additional implicit parameter.
In that sense, it trades simplicity for genericity, but that choice is
orthogonal to our design goals.

Oliveira’s design is most similar to our representation of the
lambda calculus in that it represents types uniformly by applying an
abstract type constructor to them as we apply Rep to the types in the
lambda calculus language. As a consequence, each interpretation
instantiates this type constructor which is then uniformly applied
to all represented types. This uniform representation, however,
prevents mapping different domains like regions and vectors to
different representation types.

Common to both designs is the problem that combining several
extensions of a language requires combining the visitors explicitly
[34]. An interesting alternative encoding of visitors [19] overcomes
this limitation and allows constructing internal and external visitors
in a very customizable way. This gives the user fine-grained control
over which language operators to include. A core advantage of this
approach is that it renders the dependency injections that inform
each interpretation about the exact language used (see, e. g., value
regAST in Fig. 4) unnecessary. Instead, an interpretation of an
extended language can always be used as an interpretation for a
more restricted language.

However, if we want to avoid dependency injection even when
composing languages, the visitors and the constructors of the over-
arching language constructs have to take more type parameters. To
integrate these visitors with the original language components, we
had to curry the type parameters of the visitors by using Scala’s
encoding of anonymous type functions [16]. As a result, the type
parameters got very cluttered and Scala’s type checker was clearly
pushed to its limits. However, if anonymous type functions get di-
rect support in Scala, this might be the preferable approach.

Finally, it would be interesting to see if an analogous design
can be expressed in a functional programming language. Oliveira
et al. [20] describe a solution to the expression problem in the field
of generic programming which may be a promising starting point
for a design using Haskell.

6. Related Work
Espinosa [9] presented an (untyped) design for denotational seman-
tics where the language interface is decoupled from the (composi-
tional) interpretations. The interpretations Espinosa uses are im-
plemented using monads and monad transformers, making them
extensible with respect to different kinds of computational capabil-
ities. Term representations as the domain of an interpretation are
not considered.

Carette et al. [6] have been using a Church-like encoding for the
lambda calculus based on a typed version of [14]. They mainly fo-
cus on a MetaOCaml implementation. In this implementation, the

terms themselves are not written in an explicit Church encoding in
the sense of lambda abstracting over the interpretation of the lam
and app terms, but instead they are encapsulated in functors that
provide this abstraction. This prevents using a Church encoding
as the target domain of an interpretation, although in their type-
class-based Haskell implementation this would be possible. How-
ever, the encoding allows applying different interpretations with
different target domains. For defining program transformations like
partial evaluation, they use quoted MetaOCaml terms. In Haskell,
they use an explicit AST representation. They do not discuss ex-
tension or composition of languages, but restrict themselves to the
presentation of a lambda calculus with a fixed set of arithmetics and
Boolean operations.

In our own previous work [11], we have used an approach simi-
lar to [6] to representing terms in Scala that allows for easy compo-
sition of languages and interpretations. The definition of language
interfaces as traits that declare the signature of an algebra was de-
veloped there. However, we only used the implicit term representa-
tion and did not consider the possibility to use a Church encoding
of the target domain. As a consequence, program transformations
like the optimization of regions could only be expressed by cou-
pling them with an interpretation to another target domain, as has
been discussed in Sec. 5.

Atkey et al. [2] adapt the type-class based representation of [6]
written in Haskell and present a typed and an untyped variant of it.
They show that this representation is extensible and composable.
On the other hand, they argue that an unembedding to an explicit
data structure representation of ASTs using De Bruijn indices is
necessary for some interpretations. This AST representation, how-
ever, is – in contrast to our representation – neither extensible nor
composable.

There is plenty of literature on using higher-order abstract syn-
tax to represent the lambda calculus in a host language beyond the
one already mentioned (recent articles are [10, 17, 25, 27, 29, 33]).
Many of them use HOAS on an explicit data structure representa-
tion and discuss issues like adequacy of the representation that are
beyond of the scope of this paper. Our encoding of HOAS has been
inspired by the untyped variant discussed in [33].

Stump [29] introduces a new meta-programming language, Ar-
chon, based on the untyped lambda calculus, but extended with
direct support for structural reflection, using HOAS to represent
lambda abstraction. In contrast to approaches built on top of ex-
plicit encodings of the object language, Archon introduces explicit
language constructs for opening of lambda expressions along with
other language constructs for working on variables and overcomes
in this way the restrictions of HOAS representations.

Buchlovsky / Thieleke [5] have analyzed the type theory of
the visitor pattern. They observed the difference between the in-
ternal visitor pattern and the external visitor pattern and elabo-
rated the correspondence of the former to the Böhm-Berarducci
encoding [3]. Oliveira et al. [21] observed that the external visitors
correspond to the Parigot encoding [22]. These correspondences
make the visitor pattern an ideal candidate to define compositional
and non-compositional interpretations on an AST representation in
object-oriented languages.

Keeping language representations and their interpretations as
extensible components has been the eponymous example for the
discussion of the expression problem [32], i.e., the problem of ex-
tending data types and operations on them independently. We have
adapted and extended the design from [34]. Our work has a dif-
ferent focus, though. The expression problem is about incremen-
tally extending individual languages, not about composing inde-
pendently developed languages and their representations. More im-
portantly, while the expression problem has been described for un-

typed expressions, our design had to accommodate for a typed set-
ting.

Finally, there are other approaches to implement embedded
languages that use external tools to integrate the embedded lan-
guage into the host language. Examples are the attribute grammar
based approach of ableJ [31] and the term rewriting approach of
MetaBorg using Stratego/XT [4]. On the other hand, Kiama [28]
is a project to integrate those language processing tools as Scala
DSELs for code generation from external DSLs. It may be worth-
while inquiring whether the ideas of Kiama can be merged with our
design in order to get language tools as modular DSEL components
to process DSELs.

7. Conclusion
We have presented a design for integrating extensible term repre-
sentations into a typed DSEL approach. We showed how to use
these term representations as target domains for program trans-
formations on DSL terms and as starting points for writing non-
compositional interpretations. Furthermore, we demonstrated how
several DSELs can be composed in a type-preserving way. We
discussed name-binding by introducing the lambda calculus as a
DSEL, together with two representations: a typed HOAS-based
and an untyped De-Bruijn-index-based representation. Finally we
have discussed, how the presented design accommodates for three
kinds of interpretations: compositional interpretations, interpreta-
tions based on explicit AST traversal and interpretations based on
AST inspection. We have compared the advantages and disadvan-
tages of these three styles of interpretation. In the future, we want
to further investigate typed lambda calculus representations and the
limits of representability in a DSEL approach.

Acknowledgments
The authors would like to thank Adriaan Moors, Michael Achen-
bach, and the anonymous reviewers for their insightful comments
and suggestions that helped improve the presentation of the paper.

References
[1] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time.

Journal of Functional Programming, 7(5):515–540, 1997.

[2] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific
languages. In Haskell Symposium, pages 37–48, 2009. ACM.

[3] C. Böhm and A. Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Theor. Comput. Sci., 39:135–154, 1985.

[4] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In
OOPSLA ’04, pages 365–383, 2004. ACM.

[5] P. Buchlovsky and H. Thielecke. A type-theoretic reconstruction
of the visitor pattern. In 21st Annual Conference on Mathematical
Foundations of Programming Semantics, ENTCS 155, pages 309–329,
2006.

[6] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages.
Journal of Functional Programming, 19(5):509–543, 2009.

[7] N. G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae, 34(5):381–392,
1972.

[8] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(3):455–481, 2003.

[9] D. A. Espinosa. Semantic Lego. PhD thesis, Columbia University,
New York, NY, 1995.

[10] L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes
with embedded functions. In POPL ’96, pages 284–294, 1996. ACM.

[11] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic
embedding of DSLs. In GPCE ’08, pages 137–148, 2008. ACM.

[12] P. Hudak. Modular domain specific languages and tools. In ICSR ’98,
pages 134–142. IEEE Computer Society, 1998.

[13] S. C. Kleene. A theory of positive integers in formal logic. part i.
American Journal of Mathematics, 57(1):153–173, 1935.

[14] T. Æ. Mogensen. Self-applicable online partial evaluation of the pure
lambda calculus. In Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 39–44, 1995. ACM.

[15] E. Moggi. A modular approach to denotational semantics. In Category
Theory and Computer Science ’91, LNCS 530, pages 138–139, 1991.
Springer.

[16] A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In
OOPSLA ’08, pages 423–438, 2008. ACM.

[17] A. Nanevski. Meta-programming with names and necessity. In ICFP
’02, pages 206–217, 2002. ACM.

[18] B. C. d. S. Oliveira. Genericity, extensibility and type-safety in the
Visitor pattern. PhD thesis, Oxford University Computing Laboratory,
Oxford, England, 2007.

[19] B. C. d. S. Oliveira. Modular visitor components. In ECOOP ’09,
LNCS 5653, pages 269–293, 2009. Springer.

[20] B. C. d. S. Oliveira, R. Hinze, and A. Löh. Extensible and modular
generics for the masses. In Trends in Functional Programming, Vol-
ume 7, pages 199–216, 2006. Intellect Books.

[21] B. C. d. S. Oliveira, M. Wang, and J. Gibbons. The visitor pattern
as a reusable, generic, type-safe component. In OOPSLA ’08, pages
439–456, 2008. ACM.

[22] M. Parigot. Recursive programming with proofs. Theor. Comput. Sci.,
94(2):335–336, 1992.

[23] F. Pfenning and C. Elliott. Higher-order abstract syntax. In PLDI ’88,
pages 199–208, 1988. ACM.

[24] F. Pfenning and P. Lee. Metacircularity in the polymorphic lambda-
calculus. Theor. Comput. Sci., 89(1):137–159, 1991.

[25] T. Rendel, K. Ostermann, and C. Hofer. Typed self-representation. In
PLDI ’09, pages 293–303, 2009. ACM.

[26] J. C. Reynolds. User-defined types and procedural data as complemen-
tary approaches to data abstraction. In New Directions in Algorithmic
Languages, IFIP Working Group 2.1 on Algol. INRIA, 1975.

[27] C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive recursion
for higher-order abstract syntax. Theor. Comput. Sci., 266(1-2):1–57,
2001.

[28] A. M. Sloane. Experiences with domain-specific language embedding
in scala. In 2nd International Workshop on Domain-Specific Program
Development, Oct. 2008.

[29] A. Stump. Directly reflective meta-programming. Higher-Order and
Symbolic Computation, 2010. To appear.

[30] M. Torgersen. The expression problem revisited. In ECOOP ’04,
LNCS 3086, pages 123–143, 2004. Springer.

[31] E. Van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute
grammar-based language extensions for Java. In ECOOP ’07, LNCS
4609, pages 575–599, 2007. Springer.

[32] P. Wadler. Expression problem, Java Genericity Mailing List, 12
November 1998. http://homepages.inf.ed.ac.uk/wadler/
papers/expression/expression.txt.

[33] G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-
order abstract syntax with parametric polymorphism. Journal of Func-
tional Programming, 18(1):87–140, 2008.

[34] M. Zenger and M. Odersky. Independently extensible solutions to the
expression problem. In 12th International Workshop on Foundations
of Object-Oriented Languages, 2005.

[35] M. Zenger and M. Odersky. Extensible algebraic datatypes with
defaults. In ICFP’01, pages 241–252, 2001. ACM.

