
Programming Languages and Types

Klaus Ostermann

based on slides by Benjamin C. Pierce

November 26, 2009

Where we're going

Type Systems...

Type systems are one of the most fascinating and powerful aspects

of programming languages.

I could take for hours about why type systems are important etc.,

but instead we will skip directly to our �rst type system (after

discussing some preliminaries).

Going Meta...

In this part of the course we will be more mathematical than in the

�rst part.

We will de�ne languages in terms of formal syntax, operational

semantics, and type system.

We treat programs as mathematical objects | i.e., we will be

building mathematical theories whose basic objects of study are

programs (and whole programming languages).

Jargon: We will be studying the metatheory of programming

languages.

Basics of Induction (Review)

Induction

Principle of ordinary induction on natural numbers:

Suppose that P is a predicate on the natural numbers.

Then:

If P(0)

and, for all i , P(i) implies P(i + 1),

then P(n) holds for all n.

Example

Theorem: 20 + 21 + :::+ 2n = 2n+1 � 1, for every n.

Proof: Let P(i) be \20 + 21 + :::+ 2i = 2i+1 � 1."

I Show P(0):

20 = 1 = 21 � 1

I Show that P(i) implies P(i + 1):

20 + 21 + :::+ 2i+1 = (20 + 21 + :::+ 2i) + 2i+1

= (2i+1 � 1) + 2i+1 by IH

= 2 � (2i+1)� 1

= 2i+2 � 1

I The result (P(n) for all n) follows by the principle of

(ordinary) induction.

Shorthand form

Theorem: 20 + 21 + :::+ 2n = 2n+1 � 1, for every n.

Proof: By induction on n.

I Base case (n = 0):

20 = 1 = 21 � 1

I Inductive case (n = i + 1):

20 + 21 + :::+ 2i+1 = (20 + 21 + :::+ 2i) + 2i+1

= (2i+1 � 1) + 2i+1 IH

= 2 � (2i+1)� 1

= 2i+2 � 1

Complete Induction

Principle of complete induction on natural numbers:

Suppose that P is a predicate on the natural numbers.

Then:
If, for each natural number n,

given P(i) for all i < n

we can show P(n),

then P(n) holds for all n.

Complete versus ordinary induction

Ordinary and complete induction are interderivable | assuming

one, we can prove the other.

Thus, the choice of which to use for a particular proof is purely a

question of style.

We'll see some other (equivalent) styles as we go along.

Syntax

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic

expressions:

t ::= terms

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

Terminology:

I t here is a metavariable

Abstract vs. concrete syntax

Q: Does this grammar de�ne a set of character strings, a set of

token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in

abstract syntax trees.

For this reason, grammars like the one on the previous slide are

sometimes called abstract grammars. An abstract grammar de�nes

a set of abstract syntax trees and suggests a mapping from

character strings to trees.

We then write terms as linear character strings rather than trees

simply for convenience. If there is any potential confusion about

what tree is intended, we use parentheses to disambiguate.

Abstract vs. concrete syntax

Q: Does this grammar de�ne a set of character strings, a set of

token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in

abstract syntax trees.

For this reason, grammars like the one on the previous slide are

sometimes called abstract grammars. An abstract grammar de�nes

a set of abstract syntax trees and suggests a mapping from

character strings to trees.

We then write terms as linear character strings rather than trees

simply for convenience. If there is any potential confusion about

what tree is intended, we use parentheses to disambiguate.

Q: So, are

succ 0

succ (0)

(((succ (((((0))))))))

\the same term"?

What about

succ 0

pred (succ (succ 0))

?

A more explicit form of the de�nition

The set T of terms is the smallest set such that

1. ftrue; false; 0g � T ;

2. if t1 2 T , then fsucc t1; pred t1; iszero t1g � T ;

3. if t1 2 T , t2 2 T , and t3 2 T , then
if t1 then t2 else t3 2 T .

Inference rules

An alternate notation for the same de�nition:

true 2 T false 2 T 0 2 T

t1 2 T

succ t1 2 T

t1 2 T

pred t1 2 T

t1 2 T

iszero t1 2 T

t1 2 T t2 2 T t3 2 T

if t1 then t2 else t3 2 T

Note that \the smallest set closed under..." is implied (but often

not stated explicitly).

Terminology:

I axiom vs. rule

I concrete rule vs. rule scheme

Terms, concretely

De�ne an in�nite sequence of sets, S0, S1, S2, . . . , as follows:

S0 = ;
Si+1 = ftrue; false; 0g

[fsucc t1; pred t1; iszero t1 j t1 2 Sig
[fif t1 then t2 else t3 j t1; t2; t3 2 Sig

Now let

S =
[

i Si

Comparing the de�nitions

We have seen two di�erent presentations of terms:

1. as the smallest set that is closed under certain rules (T)
I explicit inductive de�nition
I BNF shorthand
I inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

What does it mean to assert that \these presentations are

equivalent"?

Comparing the de�nitions

We have seen two di�erent presentations of terms:

1. as the smallest set that is closed under certain rules (T)
I explicit inductive de�nition
I BNF shorthand
I inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

What does it mean to assert that \these presentations are

equivalent"?

Induction on Syntax

Why two de�nitions?

The two ways of de�ning the set of terms are both useful:

1. the de�nition of terms as the smallest set with a certain

closure property is compact and easy to read

2. the de�nition of the set of terms as the limit of a sequence

gives us an induction principle for proving things about

terms...

Induction on Terms

De�nition: The depth of a term t is the smallest i such that

t 2 Si .

From the de�nition of S, it is clear that, if a term t is in Si , then

all of its immediate subterms must be in Si�1, i.e., they must have

strictly smaller depths.

This observation justi�es the principle of induction on terms.

Let P be a predicate on terms.

If, for each term s,

given P(r) for all immediate subterms r of s

we can show P(s),

then P(t) holds for all t.

Inductive Function De�nitions

The set of constants appearing in a term t, written Consts(t), is

de�ned as follows:

Consts(true) = ftrueg
Consts(false) = ffalseg
Consts(0) = f0g
Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(t1)

Consts(iszero t1) = Consts(t1)

Consts(if t1 then t2 else t3) = Consts(t1) [Consts(t2)

[Consts(t3)

Simple, right?

First question:

Normally, a \de�nition" just assigns a convenient name to a

previously-known thing. But here, the \thing" on the

right-hand side involves the very name that we are \de�ning"!

So in what sense is this a de�nition??

Second question:

Suppose we had written this instead...

The set of constants appearing in a term t, written BadConsts(t),

is de�ned as follows:

BadConsts(true) = ftrueg
BadConsts(false) = ffalseg
BadConsts(0) = f0g
BadConsts(0) = fg
BadConsts(succ t1) = BadConsts(t1)

BadConsts(pred t1) = BadConsts(t1)

BadConsts(iszero t1) = BadConsts(iszero (iszero t1))

What is the essential di�erence between these two de�nitions?

How do we tell the di�erence between well-formed inductive

de�nitions and ill-formed ones?

What, exactly, does a well-formed inductive de�nition mean?

What is a function?

Recall that a function f from A (its domain) to B (its co-domain)

can be viewed as a two-place relation (called the \graph" of the

function) with certain properties:

I It is total: Every element of its domain occurs at least once in

its graph. More precisely:

For every a 2 A, there exists some b 2 B such that

(a; b) 2 f .

I It is deterministic: every element of its domain occurs at most

once in its graph. More precisely:

If (a; b1) 2 f and (a; b2) 2 f , then b1 = b2.

We have seen how to de�ne relations inductively. E.g....

Let Consts be the smallest two-place relation closed under the

following rules:

(true; ftrueg) 2 Consts

(false; ffalseg) 2 Consts

(0; f0g) 2 Consts

(t1; C) 2 Consts

(succ t1; C) 2 Consts

(t1; C) 2 Consts

(pred t1; C) 2 Consts

(t1; C) 2 Consts

(iszero t1; C) 2 Consts

(t1; C1) 2 Consts (t2; C2) 2 Consts (t3; C3) 2 Consts

(if t1 then t2 else t3; (C1 [C2 [C3)) 2 Consts

This de�nition certainly de�nes a relation (i.e., the smallest one

with a certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!

This de�nition certainly de�nes a relation (i.e., the smallest one

with a certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!

Theorem:

The relation Consts de�ned by the inference rules a couple of

slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that

(t;C) 2 Consts.

Proof:

By induction on t.

To apply the induction principle for terms, we must show, for an

arbitrary term t, that if

for each immediate subterm s of t, there is exactly one set of

terms Cs such that (s;Cs) 2 Consts

then

there is exactly one set of terms C such that (t;C) 2 Consts.

Theorem:

The relation Consts de�ned by the inference rules a couple of

slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that

(t;C) 2 Consts.

Proof: By induction on t.

To apply the induction principle for terms, we must show, for an

arbitrary term t, that if

for each immediate subterm s of t, there is exactly one set of

terms Cs such that (s;Cs) 2 Consts

then

there is exactly one set of terms C such that (t;C) 2 Consts.

Theorem:

The relation Consts de�ned by the inference rules a couple of

slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that

(t;C) 2 Consts.

Proof: By induction on t.

To apply the induction principle for terms, we must show, for an

arbitrary term t, that if

for each immediate subterm s of t, there is exactly one set of

terms Cs such that (s;Cs) 2 Consts

then

there is exactly one set of terms C such that (t;C) 2 Consts.

Proceed by cases on the form of t.

I If t is 0, true, or false, then we can immediately see from

the de�nition of Consts that there is exactly one set of terms

C (namely ftg) such that (t;C) 2 Consts.

I If t is succ t1, then the induction hypothesis tells us that

there is exactly one set of terms C1 such that

(t1;C1) 2 Consts. But then it is clear from the de�nition of

Consts that there is exactly one set C (namely C1) such that

(t;C) 2 Consts.

Similarly when t is pred t1 or iszero t1.

Proceed by cases on the form of t.

I If t is 0, true, or false, then we can immediately see from

the de�nition of Consts that there is exactly one set of terms

C (namely ftg) such that (t;C) 2 Consts.

I If t is succ t1, then the induction hypothesis tells us that

there is exactly one set of terms C1 such that

(t1;C1) 2 Consts. But then it is clear from the de�nition of

Consts that there is exactly one set C (namely C1) such that

(t;C) 2 Consts.

Similarly when t is pred t1 or iszero t1.

Proceed by cases on the form of t.

I If t is 0, true, or false, then we can immediately see from

the de�nition of Consts that there is exactly one set of terms

C (namely ftg) such that (t;C) 2 Consts.

I If t is succ t1, then the induction hypothesis tells us that

there is exactly one set of terms C1 such that

(t1;C1) 2 Consts. But then it is clear from the de�nition of

Consts that there is exactly one set C (namely C1) such that

(t;C) 2 Consts.

Similarly when t is pred t1 or iszero t1.

I If t is if s1 then s2 else s3, then the induction
hypothesis tells us

I there is exactly one set of terms C1 such that (t1;C1) 2 Consts
I there is exactly one set of terms C2 such that (t2;C2) 2 Consts
I there is exactly one set of terms C3 such that (t3;C3) 2 Consts

But then it is clear from the de�nition of Consts that there is

exactly one set C (namely C1 [C2 [C3) such that

(t;C) 2 Consts.

How about the bad de�nition?

(true; ftrueg) 2 BadConsts

(false; ffalseg) 2 BadConsts

(0; f0g) 2 BadConsts

(0; fg) 2 BadConsts

(t1; C) 2 BadConsts

(succ t1; C) 2 BadConsts

(t1; C) 2 BadConsts

(pred t1; C) 2 BadConsts

(iszero (iszero t1); C) 2 BadConsts

(iszero t1; C) 2 BadConsts

This set of rules de�nes a perfectly good relation | it's just that

this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...

I For what values of C do we have (false;C) 2 BadConsts?

I For what values of C do we have (succ 0;C) 2 BadConsts?

I For what values of C do we have

(if false then 0 else 0;C) 2 BadConsts?

I For what values of C do we have

(iszero 0;C) 2 BadConsts?

This set of rules de�nes a perfectly good relation | it's just that

this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...

I For what values of C do we have (false;C) 2 BadConsts?

I For what values of C do we have (succ 0;C) 2 BadConsts?

I For what values of C do we have

(if false then 0 else 0;C) 2 BadConsts?

I For what values of C do we have

(iszero 0;C) 2 BadConsts?

This set of rules de�nes a perfectly good relation | it's just that

this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...

I For what values of C do we have (false;C) 2 BadConsts?

I For what values of C do we have (succ 0;C) 2 BadConsts?

I For what values of C do we have

(if false then 0 else 0;C) 2 BadConsts?

I For what values of C do we have

(iszero 0;C) 2 BadConsts?

This set of rules de�nes a perfectly good relation | it's just that

this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...

I For what values of C do we have (false;C) 2 BadConsts?

I For what values of C do we have (succ 0;C) 2 BadConsts?

I For what values of C do we have

(if false then 0 else 0;C) 2 BadConsts?

I For what values of C do we have

(iszero 0;C) 2 BadConsts?

Another Inductive De�nition

size(true) = 1

size(false) = 1

size(0) = 1

size(succ t1) = size(t1) + 1

size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1

size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

Another proof by induction

Theorem: The number of distinct constants in a term is at most

the size of the term. I.e., jConsts(t)j � size(t).

Proof:

By induction on t.

Assuming the desired property for immediate subterms of t, we

must prove it for t itself.

There are \three" cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, jConsts(t1)j � size(t1). We now

calculate as follows:

jConsts(t)j = jConsts(t1)j � size(t1) < size(t).

Another proof by induction

Theorem: The number of distinct constants in a term is at most

the size of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we

must prove it for t itself.

There are \three" cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, jConsts(t1)j � size(t1). We now

calculate as follows:

jConsts(t)j = jConsts(t1)j � size(t1) < size(t).

Another proof by induction

Theorem: The number of distinct constants in a term is at most

the size of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we

must prove it for t itself.

There are \three" cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, jConsts(t1)j � size(t1). We now

calculate as follows:

jConsts(t)j = jConsts(t1)j � size(t1) < size(t).

Another proof by induction

Theorem: The number of distinct constants in a term is at most

the size of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we

must prove it for t itself.

There are \three" cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, jConsts(t1)j � size(t1). We now

calculate as follows:

jConsts(t)j = jConsts(t1)j � size(t1) < size(t).

Another proof by induction

Theorem: The number of distinct constants in a term is at most

the size of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we

must prove it for t itself.

There are \three" cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, jConsts(t1)j � size(t1). We now

calculate as follows:

jConsts(t)j = jConsts(t1)j � size(t1) < size(t).

Case: t = if t1 then t2 else t3

By the induction hypothesis, jConsts(t1)j � size(t1),

jConsts(t2)j � size(t2), and jConsts(t3)j � size(t3). We now

calculate as follows:

jConsts(t)j = jConsts(t1) [Consts(t2) [Consts(t3)j
� jConsts(t1)j+ jConsts(t2)j+ jConsts(t3)j
� size(t1) + size(t2) + size(t3)

< size(t):

Structural Operational
Semantics (SOS)

Abstract Machines

An abstract machine consists of:

I a set of states

I a transition relation on states, written �!

We read \t �! t0" as \t evaluates to t0 in one step".

A state records all the information in the machine at a given

moment. For example, an abstract-machine-style description of a

conventional microprocessor would include the program counter,

the contents of the registers, the contents of main memory, and

the machine code program being executed.

Abstract Machines

For the very simple languages we are considering at the moment,

however, the term being evaluated is the whole state of the

abstract machine.

Nb. Often, the transition relation is actually a partial function:

i.e., from a given state, there is at most one possible next state.

But in general there may be many.

Operational semantics for Booleans

Syntax of terms and values

t ::= terms

true constant true

false constant false

if t then t else t conditional

v ::= values

true true value

false false value

Evaluation relation for Booleans

The evaluation relation t �! t0 is the smallest relation closed

under the following rules:

if true then t2 else t3 �! t2 (E-IfTrue)

if false then t2 else t3 �! t3 (E-IfFalse)

t1 �! t01

if t1 then t2 else t3 �! if t01 then t2 else t3
(E-If)

Terminology

Computation rules:

if true then t2 else t3 �! t2 (E-IfTrue)

if false then t2 else t3 �! t3 (E-IfFalse)

Congruence rule:

t1 �! t01

if t1 then t2 else t3 �! if t01 then t2 else t3
(E-If)

Computation rules perform \real" computation steps.

Congruence rules determine where computation rules can be

applied next.

Evaluation, more explicitly

�! is the smallest two-place relation closed under the following

rules:

((if true then t2 else t3); t2) 2 �!

((if false then t2 else t3); t3) 2 �!

(t1; t
0

1) 2 �!

((if t1 then t2 else t3); (if t01 then t2 else t3)) 2 �!

The notation t �! t0 is short-hand for (t; t0) 2 �!.

Digression

Suppose we wanted to change our evaluation strategy so that the

then and else branches of an if get evaluated (in that order)

before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else

branches leads to the same value, we want to immediately produce

that value (\short-circuiting" the evaluation of the guard). How

would we need to change the rules?

Of the rules we just invented, which are computation rules and

which are congruence rules?

Digression

Suppose we wanted to change our evaluation strategy so that the

then and else branches of an if get evaluated (in that order)

before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else

branches leads to the same value, we want to immediately produce

that value (\short-circuiting" the evaluation of the guard). How

would we need to change the rules?

Of the rules we just invented, which are computation rules and

which are congruence rules?

Digression

Suppose we wanted to change our evaluation strategy so that the

then and else branches of an if get evaluated (in that order)

before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else

branches leads to the same value, we want to immediately produce

that value (\short-circuiting" the evaluation of the guard). How

would we need to change the rules?

Of the rules we just invented, which are computation rules and

which are congruence rules?

Reasoning about Evaluation

Derivations

We can record the \justi�cation" for a particular pair of terms that

are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

I These trees are called derivation trees (or just derivations).

I The �nal statement in a derivation is its conclusion.

I We say that the derivation is a witness for its conclusion (or a

proof of its conclusion) | it records all the reasoning steps

that justify the conclusion.

Observation

Lemma: Suppose we are given a derivation tree D witnessing the

pair (t; t0) in the evaluation relation. Then either

1. the �nal rule used in D is E-IfTrue and we have

t = if true then t2 else t3 and t0 = t2, for some t2
and t3, or

2. the �nal rule used in D is E-IfFalse and we have

t = if false then t2 else t3 and t0 = t3, for some t2
and t3, or

3. the �nal rule used in D is E-If and we have

t = if t1 then t2 else t3 and

t0 = if t01 then t2 else t3, for some t1, t
0

1, t2, and t3;

moreover, the immediate subderivation of D witnesses

(t1; t
0

1) 2�!.

Induction on Derivations

We can now write proofs about evaluation \by induction on

derivation trees."

Given an arbitrary derivation D with conclusion t �! t0, we

assume the desired result for its immediate sub-derivation (if any)

and proceed by a case analysis (using the previous lemma) of the

�nal evaluation rule used in constructing the derivation tree.

E.g....

Induction on Derivations | Example

Theorem: If t �! t0, i.e., if (t; t0) 2�!, then size(t) > size(t0).

Proof: By induction on a derivation D of t �! t0.

1. Suppose the �nal rule used in D is E-IfTrue, with

t = if true then t2 else t3 and t0 = t2. Then the

result is immediate from the de�nition of size.

2. Suppose the �nal rule used in D is E-IfFalse, with

t = if false then t2 else t3 and t0 = t3. Then the

result is again immediate from the de�nition of size.

3. Suppose the �nal rule used in D is E-If, with

t = if t1 then t2 else t3 and

t0 = if t01 then t2 else t3, where (t1; t
0

1) 2�! is

witnessed by a derivation D1. By the induction hypothesis,

size(t1) > size(t01). But then, by the de�nition of size, we

have size(t) > size(t0).

Normal forms

A normal form is a term that cannot be evaluated any further |

i.e., a term t is a normal form (or \is in normal form") if there is

no t0 such that t �! t0.

A normal form is a state where the abstract machine is halted |

i.e., it can be regarded as a \result" of evaluation.

Recall that we intended the set of values (the boolean constants

true and false) to be exactly the possible \results of evaluation."

Did we get this de�nition right?

Normal forms

A normal form is a term that cannot be evaluated any further |

i.e., a term t is a normal form (or \is in normal form") if there is

no t0 such that t �! t0.

A normal form is a state where the abstract machine is halted |

i.e., it can be regarded as a \result" of evaluation.

Recall that we intended the set of values (the boolean constants

true and false) to be exactly the possible \results of evaluation."

Did we get this de�nition right?

Values = normal forms

Theorem: A term t is a value i� it is in normal form.

Proof:

The =) direction is immediate from the de�nition of the

evaluation relation.

For the (= direction, it is convenient to prove the contrapositive:

If t is not a value, then it is not a normal form. The argument

goes by induction on t.

Note, �rst, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule

E-IfTrue or E-IfFalse applies to t, and we are done.

Otherwise, t1 is not a value and so, by the induction hypothesis,

there is some t01 such that t1 �! t01. But then rule E-If yields

if t1 then t2 else t3 �! if t01 then t2 else t3

i.e., t is not in normal form.

Values = normal forms

Theorem: A term t is a value i� it is in normal form.

Proof:

The =) direction is immediate from the de�nition of the

evaluation relation.

For the (= direction,

it is convenient to prove the contrapositive:

If t is not a value, then it is not a normal form. The argument

goes by induction on t.

Note, �rst, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule

E-IfTrue or E-IfFalse applies to t, and we are done.

Otherwise, t1 is not a value and so, by the induction hypothesis,

there is some t01 such that t1 �! t01. But then rule E-If yields

if t1 then t2 else t3 �! if t01 then t2 else t3

i.e., t is not in normal form.

Values = normal forms

Theorem: A term t is a value i� it is in normal form.

Proof:

The =) direction is immediate from the de�nition of the

evaluation relation.

For the (= direction, it is convenient to prove the contrapositive:

If t is not a value, then it is not a normal form.

The argument

goes by induction on t.

Note, �rst, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule

E-IfTrue or E-IfFalse applies to t, and we are done.

Otherwise, t1 is not a value and so, by the induction hypothesis,

there is some t01 such that t1 �! t01. But then rule E-If yields

if t1 then t2 else t3 �! if t01 then t2 else t3

i.e., t is not in normal form.

Values = normal forms

Theorem: A term t is a value i� it is in normal form.

Proof:

The =) direction is immediate from the de�nition of the

evaluation relation.

For the (= direction, it is convenient to prove the contrapositive:

If t is not a value, then it is not a normal form. The argument

goes by induction on t.

Note, �rst, that t must have the form if t1 then t2 else t3
(otherwise it would be a value). If t1 is true or false, then rule

E-IfTrue or E-IfFalse applies to t, and we are done.

Otherwise, t1 is not a value and so, by the induction hypothesis,

there is some t01 such that t1 �! t01. But then rule E-If yields

if t1 then t2 else t3 �! if t01 then t2 else t3

i.e., t is not in normal form.

Numbers

New syntactic forms

t ::= ... terms

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= ... values

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

New evaluation rules t �! t0

t1 �! t01

succ t1 �! succ t01
(E-Succ)

pred 0 �! 0 (E-PredZero)

pred (succ nv1) �! nv1 (E-PredSucc)

t1 �! t01

pred t1 �! pred t01
(E-Pred)

iszero 0 �! true (E-IszeroZero)

iszero (succ nv1) �! false (E-IszeroSucc)

t1 �! t01

iszero t1 �! iszero t01
(E-IsZero)

Values are normal forms

Our observation a few slides ago that all values are in normal form

still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.

What are some examples?

Stuck terms model run-time errors.

Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form

still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.

What are some examples?

Stuck terms model run-time errors.

Multi-step evaluation.

The multi-step evaluation relation, �!�, is the re
exive, transitive

closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t �! t0

t �!� t0

t �!� t

t �!� t0 t0 �!� t00

t �!� t00

Termination of evaluation

Theorem: For every t there is some normal form t0 such that

t �!� t0.

Proof:

I First, recall that single-step evaluation strictly reduces the size

of the term:

if t �! t
0, then size(t) > size(t0)

I Now, assume (for a contradiction) that

t0; t1; t2; t3; t4; : : :

is an in�nite-length sequence such that

t0 �! t1 �! t2 �! t3 �! t4 �! � � � .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > : : :

I But such a sequence cannot exist | contradiction!

Termination of evaluation

Theorem: For every t there is some normal form t0 such that

t �!� t0.

Proof:

I First, recall that single-step evaluation strictly reduces the size

of the term:

if t �! t
0, then size(t) > size(t0)

I Now, assume (for a contradiction) that

t0; t1; t2; t3; t4; : : :

is an in�nite-length sequence such that

t0 �! t1 �! t2 �! t3 �! t4 �! � � � .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > : : :

I But such a sequence cannot exist | contradiction!

Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R � X � X is terminating |

i.e., there are no in�nite sequences x0, x1, x2, etc. such

that (xi ; xi+1) 2 R for each i .

Proof:

1. Choose
I a well-founded set (W ; <) | i.e., a set W with a

partial order < such that there are no in�nite

descending chains w0 > w1 > w2 > : : : in W
I a function f from X to W

2. Show f (x) > f (y) for all (x ; y) 2 R

3. Conclude that there are no in�nite sequences x0, x1,

x2, etc. such that (xi ; xi+1) 2 R for each i , since, if

there were, we could construct an in�nite descending

chain in W .

