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Curry-Howard Isomorphism

* There is a deep connection between type
systems and (intuitionstic/constructive)
logic

* A proof of a proposition in constructive

logic is a construction of an object that
witnesses the proposition

» The Curry-Howard isomorphism says that
proofs are the same as terms/programs



Constructive vs classical proofs

* Not every proof in classical logic is also
valid in intuitionistic logic
Theorem There exist irrational numbers a and b such that o is rational.

—

R =V 2, . o = . =
Proof. Either +/2  is rational or not. If it is, take o = b = +/2 and we are done. If it is not, take a = /2
= 1 =vZ, . 5 =2 .
and b = v2: then o = (2" 7 )V2=+/2 =2, and again we are done.

» Law of excluded middle is not valid in
intuitionistic logic: It is not constructive!
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Intuitionistic logic

« Syntax of formulas:

o = 1 P (0 = (9 NV O AR =,

» With second-order quantification:

G = ... VP.o.



Natural Deduction

» Calculus developed by Gentzen to define
proof rules of a logic

» Operators (so-called connectives) typically
have introduction and elimination rules

» We will see that the deduction rules in
natural deduction style correspond exactly
to the typing rules of System F with sums
and products

— Terms are a linear notation of proofs!



Proof- and Typing Rules Side-by-
Side

intuitionistic logic A7 or System F type system
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Proof- and Typing Rules Side-by-
Side

intuitionistic logic AT or System F' type system
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The Curry-Howard Isomorphism

» Ak.a as “Propositions as Types”

type theory logic
T tvpe ¢  proposition
T inhabited type ¢  theorem
i well-typed program 7 proof
- function space — implication
* product /A conjunction
— sum vV disjunction
v type quantifier Y  2nd order quantifier
B inhabited type T  truth
void uninhabited type 1 falsity



Logical Interpretation of Program
Transformations

 Reduction = Proof Normalization

— Existence of normal form can be formalized
as Cut Elimination Theorem (Gentzen’s
“Hauptsatz”)

— Typically presented using sequent calculus
rather than natural deduction

« Curry and uncurry are proofs of
YPO.R. (P NQ—R) « (P—Q —R)

« CPS Transformation relates intuitionistic to
classical logic



Inconsistent type systems

Many practical type systems are inconsistent when viewed as a
logic

For example, a fixed-point operator £ix : Va. (a->a) -> a
makes the type system inconsistent, because (fix id) has type Va.a,
l.e., every type is inhabited

In Haskell/ML-like languages, the CH-Isomorphism holds ,modulo
termination®

Hard to apply to object-oriented type systems (nominal type
systems, null pointers etc. all make it more difficult to view them
through the lense of CH)



Towards theorem proving

Quantification in System F is over propositions
To quantify over objects dependent types are needed

Dependent types are types that are parameterized by values. The
binder is often called V or I
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Many theorem provers are based on dependent type theory
— Coq, Twelf, ...

[You don‘t need to understand dependent types the exam]



