Propositions as Types Curry-Howard Isomorphism

Klaus Ostermann Aarhus University

Curry-Howard Isomorphism

- There is a deep connection between type systems and (intuitionstic/constructive) logic
- A proof of a proposition in constructive logic is a construction of an object that witnesses the proposition
- The Curry-Howard isomorphism says that proofs are the same as terms/programs

Constructive vs classical proofs

 Not every proof in classical logic is also valid in intuitionistic logic

Theorem There exist irrational numbers a and b such that a^b is rational.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or not. If it is, take $a = b = \sqrt{2}$ and we are done. If it is not, take $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$; then $a^b = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$, and again we are done.

• Law of excluded middle is not valid in intuitionistic logic: It is not constructive!

Intuitionistic logic

• Syntax of formulas:

 $\phi ::= \top \mid \perp \mid P \mid \phi_1 \Rightarrow \phi_2 \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \neg \phi.$

• With second-order quantification:

$$\phi ::= \cdots \mid \forall P.\phi.$$

Natural Deduction

- Calculus developed by Gentzen to define proof rules of a logic
- Operators (so-called connectives) typically have introduction and elimination rules
- We will see that the deduction rules in natural deduction style correspond exactly to the typing rules of System F with sums and products

– Terms are a linear notation of proofs!

Proof- and Typing Rules Side-by-Side

	intuitionistic logic	λ^{\rightarrow} or System F type system
(axiom)	$\Gamma,\phi\vdash\phi$	$\Gamma,x:\tau\vdash x:\tau$
$(\rightarrow -intro)$	$\frac{\Gamma, \ \phi \vdash \psi}{\Gamma \vdash \phi \Rightarrow \psi}$	$\frac{\Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash (\lambda x: \sigma. e): \sigma \rightarrow \tau}$
$(\rightarrow -\text{elim})$	$\frac{\Gamma \vdash \phi_1 \Rightarrow \phi_2 \Gamma \vdash \phi_1}{\Gamma \vdash \phi_2}$	$\frac{\Gamma \vdash e_0 : \sigma \to \tau \Gamma \vdash e_1 : \sigma}{\Gamma \vdash (e_0 \ e_1) : \tau}$
$(\wedge -intro)$	$rac{\Gammadash \phi \Gammadash \psi}{\Gammadash \phi \wedge \psi}$	$rac{\Gammadasherman e_1:\sigma \Gammadasherma e_2: au}{\Gammadash(e_1,e_2):\sigma* au}$
(∧-elim)	$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi}$	$\frac{\Gamma \vdash e : \sigma * \tau}{\Gamma \vdash \#1e : \sigma} \frac{\Gamma \vdash e : \sigma * \tau}{\Gamma \vdash \#2e : \tau}$

Proof- and Typing Rules Side-by-Side

	intuitionistic logic	λ^{\rightarrow} or System F type system		
(∨-intro)	$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi}$	$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash \mathbf{inl}_{\sigma + \tau} : e\sigma + \tau} \frac{\Gamma \vdash e : \tau}{\Gamma \vdash \mathbf{inr}_{\sigma + \tau} : e\sigma + \tau}$		
$(\lor$ -elim)	$\frac{\Gamma \vdash \phi \lor \psi \Gamma \vdash \phi \to \chi \Gamma \vdash \psi \to \chi}{\Gamma \vdash \chi}$	$\frac{\Gamma \vdash e : \sigma + \tau \Gamma \vdash e_1 : \sigma \to \rho \Gamma \vdash e_2 : \tau \to \rho}{\Gamma \vdash \mathbf{case} \ e_0 \ \mathbf{of} \ e_1 \mid e_2 : \rho}$		
$(\forall \text{-intro})$	$\frac{\Gamma, \ P \vdash \phi}{\Gamma \vdash \forall P . \phi}$	$\frac{\Delta, \alpha; \Gamma \vdash e : \tau \alpha \notin FV(\Gamma)}{\Delta; \Gamma \vdash (\Lambda \alpha. e) : \forall \alpha. \tau}$		
$(\forall \text{-elim})$	$\frac{\Gamma \vdash \forall P . \phi}{\Gamma \vdash \phi\{\psi/P\}}$	$\frac{\Delta; \Gamma \vdash e : \forall \alpha . \tau \Delta \vdash \sigma}{\Delta; \Gamma \vdash (e \ \sigma) : \tau \{\sigma / \alpha\}}$		

The Curry-Howard Isomorphism

• A.k.a as "Propositions as Types"

	type theory		logic
au	type	ϕ	proposition
au	inhabited type	ϕ	theorem
e	well-typed program	π	proof
\rightarrow	function space	\rightarrow	implication
*	product	\wedge	conjunction
+	sum	\vee	disjunction
\forall	type quantifier	\forall	2nd order quantifier
В	inhabited type	Т	truth
void	uninhabited type	\perp	falsity

Logical Interpretation of Program Transformations

- Reduction = Proof Normalization
 - Existence of normal form can be formalized as *Cut Elimination Theorem* (Gentzen's "Hauptsatz")
 - Typically presented using sequent calculus rather than natural deduction
- Curry and uncurry are proofs of $\forall P, Q, R \colon (P \land Q \rightarrow R) \leftrightarrow (P \rightarrow Q \rightarrow R)$
- CPS Transformation relates intuitionistic to classical logic

Inconsistent type systems

- Many practical type systems are inconsistent when viewed as a logic
- For example, a fixed-point operator fix : ∀a. (a->a) -> a makes the type system inconsistent, because (fix id) has type ∀a.a, i.e., every type is inhabited
- In Haskell/ML-like languages, the CH-Isomorphism holds "modulo termination"
- Hard to apply to object-oriented type systems (nominal type systems, null pointers etc. all make it more difficult to view them through the lense of CH)

Towards theorem proving

- Quantification in System F is over propositions
- To quantify over objects dependent types are needed
- Dependent types are types that are parameterized by values. The binder is often called ∀ or Π

$$\frac{\Gamma \vdash S :: * \quad \Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x : S . t : \Pi x : S . T}$$
(T-ABS)
$$\frac{\Gamma \vdash t_1 : \Pi x : S . T \quad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 : t_2 : [x \mapsto t_2]T}$$
(T-APP)

- Many theorem provers are based on dependent type theory
 Coq, Twelf, ...
- [You don't need to understand dependent types the exam]