
Propositions as Types

Curry-Howard Isomorphism

Klaus Ostermann
Aarhus University



Curry-Howard Isomorphism

• There is a deep connection between type 
systems and (intuitionstic/constructive) 
logic

• A proof of a proposition in constructive 
logic is a construction of an object that 
witnesses the proposition

• The Curry-Howard isomorphism says that 
proofs are the same as terms/programs

τ



Constructive vs classical proofs

• Not every proof in classical logic is also 
valid in intuitionistic logic

• Law of excluded middle is not valid in 
intuitionistic logic: It is not constructive!



Intuitionistic logic

• Syntax of formulas:

• With second-order quantification:



Natural Deduction

• Calculus developed by Gentzen to define 
proof rules of a logic

• Operators (so-called connectives) typically 
have introduction and elimination rules

• We will see that the deduction rules in 
natural deduction style correspond exactly 
to the typing rules of System F with sums 
and products
– Terms are a linear notation of proofs!



Proof- and Typing Rules Side-by-

Side



Proof- and Typing Rules Side-by-

Side



The Curry-Howard Isomorphism

• A.k.a as “Propositions as Types”



Logical Interpretation of Program 

Transformations

• Reduction = Proof Normalization

– Existence of normal form can be formalized 

as Cut Elimination Theorem (Gentzen’s

“Hauptsatz”)

– Typically presented using sequent calculus 

rather than natural deduction

• Curry and uncurry are proofs of

• CPS Transformation relates intuitionistic to 
classical logic



Inconsistent type systems

• Many practical type systems are inconsistent when viewed as a 
logic

• For example, a fixed-point operator fix : ∀∀∀∀a. (a->a) -> a

makes the type system inconsistent, because (fix id) has type ∀a.a, 
i.e., every type is inhabited

• In Haskell/ML-like languages, the CH-Isomorphism holds „modulo
termination“

• Hard to apply to object-oriented type systems (nominal type
systems, null pointers etc. all make it more difficult to view them
through the lense of CH)



Towards theorem proving

• Quantification in System F is over propositions

• To quantify over objects dependent types are needed

• Dependent types are types that are parameterized by values. The

binder is often called ∀ or П

• Many theorem provers are based on dependent type theory

– Coq, Twelf, …

• [You don‘t need to understand dependent types the exam]


