Propositions as Types
Curry-Howard Isomorphism

Klaus Ostermann
Aarhus University

Curry-Howard Isomorphism

* There is a deep connection between type
systems and (intuitionstic/constructive)
logic

* A proof of a proposition in constructive

logic is a construction of an object that
witnesses the proposition

» The Curry-Howard isomorphism says that
proofs are the same as terms/programs

Constructive vs classical proofs

* Not every proof in classical logic is also
valid in intuitionistic logic
Theorem There exist irrational numbers a and b such that o is rational.

—

R =V 2, . o = . =
Proof. Either +/2 is rational or not. If it is, take o = b = +/2 and we are done. If it is not, take a = /2
= 1 =vZ, . 5 =2 .
and b = v2: then o = (2" 7)V2=+/2 =2, and again we are done.

» Law of excluded middle is not valid in
intuitionistic logic: It is not constructive!

1

(]

L]

Intuitionistic logic

« Syntax of formulas:

o = 1 P (0 = (9 NV O AR =,

» With second-order quantification:

G = ... VP.o.

Natural Deduction

» Calculus developed by Gentzen to define
proof rules of a logic

» Operators (so-called connectives) typically
have introduction and elimination rules

» We will see that the deduction rules in
natural deduction style correspond exactly
to the typing rules of System F with sums
and products

— Terms are a linear notation of proofs!

Proof- and Typing Rules Side-by-
Side

intuitionistic logic A7 or System F type system

(axiom) otk o F: B i-ias
fs-ixites) ' ok vy L i@ .8l §
—-intro
o= It e oo
: . I'Fo1 =02 I'Fo; Fegia—=3F UVBE8 1o
(—-elim) —
'+ s I'F(eger):T
g I'Feo TI'F4Y I'Fej:0 1I'Fe:T
(A-intro) _ .
CHoAY 'k (e,e2):0%T
. I'FoAYy T FoAY Ur-E s+ 8 gl
(A-elim) : .
TFo TF TF+#le:o0 T[F#2e:7

Proof- and Typing Rules Side-by-
Side

intuitionistic logic AT or System F' type system
_ I'Fo I'-9 i B8 gty
(V-intro) — — . :
I'Fovy T'FoVy I'Finl,4;:ec4+7 I'Finrgi;:ec4+7
. . I'Fevy I'F¢p—x I'FYp—x TI'Fe:o+7 I'Fer:o—p I'Fe:7—p
(V-elim)
'y I'Fcaseegof e; |er:p
. L, Pl A, al'Fe: ¢ FV (I
(V-intro) o Bl i €7 i ()
'FVP.¢o A;TF(Aa.e) :Va.T
L5 g A s e Ao

(V-elim) T+ o{v/P) A;TF(eo):m{o/a}

The Curry-Howard Isomorphism

» Ak.a as “Propositions as Types”

type theory logic
T tvpe ¢ proposition
T inhabited type ¢ theorem
i well-typed program 7 proof
- function space — implication
* product /A conjunction
— sum vV disjunction
v type quantifier Y 2nd order quantifier
B inhabited type T truth
void uninhabited type 1 falsity

Logical Interpretation of Program
Transformations

 Reduction = Proof Normalization

— Existence of normal form can be formalized
as Cut Elimination Theorem (Gentzen’s
“Hauptsatz”)

— Typically presented using sequent calculus
rather than natural deduction

« Curry and uncurry are proofs of
YPO.R. (P NQ—R) « (P—Q —R)

« CPS Transformation relates intuitionistic to
classical logic

Inconsistent type systems

Many practical type systems are inconsistent when viewed as a
logic

For example, a fixed-point operator £ix : Va. (a->a) -> a
makes the type system inconsistent, because (fix id) has type Va.a,
l.e., every type is inhabited

In Haskell/ML-like languages, the CH-Isomorphism holds ,modulo
termination®

Hard to apply to object-oriented type systems (nominal type
systems, null pointers etc. all make it more difficult to view them
through the lense of CH)

Towards theorem proving

Quantification in System F is over propositions
To quantify over objects dependent types are needed

Dependent types are types that are parameterized by values. The
binder is often called V or I

=5 :: % [x:S+—=t:T (T-ABS)
-ARS
- Ax:5.t : IIx:5.T
=ty 2 [Mx:5.T [t2:5S .
—_— (T-APP)

'ty tz & [x— t2]T

Many theorem provers are based on dependent type theory
— Coq, Twelf, ...

[You don‘t need to understand dependent types the exam]

