
Domain-Specific Languages

Klaus Ostermann

University of Marburg, Germany



Outline

1 Introduction

2 Methods of DSL implementation

3 Does it scale?

4 Summary



Outline

1 Introduction

2 Methods of DSL implementation

3 Does it scale?

4 Summary



A new chapter in the PLT course

So far we have mainly studied general-purpose PL
mechanisms.
We have learned a lot about language design.
For the remainder of the course we will take a look at the
related area of domain-specific languages.
We will start with some hands-on practical stuff.
Later we will see how several of the techniques you
learned are useful for DSL development.



What is a DSL?

Typical definition: “Languages tailored to a specific
application domain”.
This is quite vague, hard to specify precisely.
Typical examples: HTML, Make, LATEX, SQL, BNF.
Borderline examples: Cobol, Perl, Fortran, ...
Once a language is sufficiently rich, one can encode
everything into it (somehow).
My own (equally vague) take: A language whose words
describe concepts in a specific domain.
Domain-specificity is a matter of degree.
DSLs can also be seen as software product lines.



Why DSLs?

Common wisdom holds that DSLs...

“are an order of magnitude productivity improvement over
GPLs”
“can use domain-specific notation, possibly visual”
“are easier to learn/read/write by non-programmers”
“lead to programs (models) that are more ‘high-level’ than
GPL programs”
“can be compiled to different ‘platforms’ (MDD)”

Many of these wisdoms implicitly assume a certain style of
DSL development and implementation.
We will look at DSLs from a broader point of view.



Programming is Language Design

When we program we define new names and give them a
meaning.
Every defined name enriches the language that is
available.
A programming language is in this sense not a fixed
language but a meta-language to design languages.
A library is a DSL, and a program using that library is a
program written in that DSL.

The program could use multiple libraries - we’ll talk about
that later.

“We should think of language design as a pattern for language design, a tool
for making more tools of the same kind” - Guy Steele, ‘Growing a Language’



What is a language, anyway?

Language theory says a language is a set of words or
sentences over an alphabet.
In programming, it is typically understood to be a language
and a corresponding semantics.
Languages are often infinitely big and contain (are
supersets of) other languages.

For example, there is an infinite set of different Java
programs.
The language denoted by the regular expression
[a-zA-Z0-9_\n]∗ contains Java, SQL, Make, English
and pretty much every other written language.

The infinity of PLs is the foundation of their ability to grow.
A PL contains an infinite number of languages.



What is a language, anyway?

A more general form of containment is if a language can
be represented in another language.

meaning a structure-preserving embedding, i.e., a
compositional injection function.
That’s often good enough – the remaining differences are
not essential (to a programmer).

Almost any GPL has a universal, tree-like syntax
(s-expressions in Lisp/Scheme, method calls in Java/C#/...)
Any (context-free) DSL can be syntactically embedded into
a GPL with universal syntax.
A GPL even contains itself as a sublanguage.
A PL is typically not defined by a context-free syntax,
however.

e.g., static type checking

.



From syntax to semantics

Why don’t we write all DSLs as libraries, then?
The question is whether these programs can be given the
right meaning!
We come back to this question later.



“Typical” DSL scenarios

Programming is (domain-specific) language design, hence
there are no more “typical” use cases for DSLs than
“typical” use cases for programming.
The library is the most common and successful form of
DSL.
There are typical scenarios where people develop DSLs
with specific (non-library) DSL implementation techniques,
though.
We’ll talk about those in the following slides.



“Typical” DSL scenarios

Scenario: Predefined Notation
Requirement: Support a notation as close to the notation
common in a domain.
Maybe preexisting code in that notation is available and
must be understood by the DSL implementation.
Examples: BNF, VHDL, XML

Scenario: Restricted Expressiveness
Requirement: Tight control over what DSL programs can do
to, say,

make the programs more amendable to (domain-specific)
optimization and static analysis, model checking, ...
guarantee invariants such as termination, security,
side-effect-freeness
ease learning and understanding the DSL

Examples: Finite automata, regexps, CFGs, SQL, XPath



“Typical” DSL scenarios

Scenario: Repetitive Code
The code contains patterns, but these patterns cannot
(easily) be abstracted over within the language.
Small-scale examples: Swapping two variables in Java,
infrastructure for Visitor pattern.
Large-scale examples: Preparing code for persistence,
distribution, synchronization, integration with legacy
code/apps.



Outline

1 Introduction

2 Methods of DSL implementation

3 Does it scale?

4 Summary



Basic DSL implementation approaches

Interpreter
Extensible interpreter

Compiler
Stand-alone
Preprocessing, Macros
Extensible compiler

Embedding
Polymorphic Embedding

A mixture thereof
We call approaches that represent DSL programs as
abstract syntax trees syntactic (Interpreter, Compiler).
We call approaches that represent DSL programs as
semantic objects semantic (Embedding).



Talk is silver, code is golden!



Outline

1 Introduction

2 Methods of DSL implementation

3 Does it scale?

4 Summary



Scalability

Scalability denotes the degree to which the basic
architecture of a system remains stable when the system
grows.
There are many dimensions of architecture, growth, and
hence scalability.

Deployment architecture, Testing architecture, Software
architecture
“Transactions per second”, Complexity of the
requirements/source code, LoC

We will concentrate on the software architecture
dimension.



Requirements for Scalable DSLs

Composability
Hierarchical
Parallel
With GPL

Regularity
DSL is a proper abstraction

Traceability of errors
Static
Dynamic

Not necessary to understand DSL implementation
Compositional reasoning

Efficiency
Little interpretative overhead

Domain-specific optimizations

Polymorphism



Requirements for Scalable DSLs: Composability

The most basic strategy to deal with complexity is
divide&conquer.
Applied to DSLs, it means that it must be possible to
compose and decompose DSLs.
One man’s end-user application is another man’s
component in a bigger system.
We need a component-oriented style of DSL development
where

DSLs can be defined in terms of other DSLs (hierarchical).
Independent DSLs can be composed to form new DSLs
(parallel).
DSLs can be combined with GPL programs.



Evaluation: Composability

Composability in stand-alone DSL compilers or extensible
GPL compilers is effectively nil.

Hierarchical composition requires quite complex build
process.
Parallel composition does not work, because code
generators or metaprograms generally don’t compose.

Better composability if compiler architecture forces locality
(macros, preprocessing)

DSLs can be used together inside GPL as long as DSLs do
not need to interact directly.
Composability improved by notions such as macro hygiene.

The same remarks apply to interpreters.
Composability is where embedding shines!

All kinds of composition are trivially possible; we know how
to use libraries together.

All syntactic approaches share a common composability
limitation:



Inherent composability limitations of syntactic
abstraction

With syntactic abstraction, composability of DSLs is
inherently limited.
The “curse of syntax”: A composite expression in a DSL
must be assembled from syntactic objects in the DSL.

Let cA be a constructor for composite expressions in DSL
A. Let tB be an expression in DSL B.
Then something like cA(tB,t’B) is not possible because
cA expects syntactic A objects.

In contrast, with semantic abstractions, cA is a constructor
that expects semantic objects that might stem from
anywhere and are not necessarily constructed by A syntax.



Requirements for Scalable DSLs: Regularity

Regularity denotes the degree to which the “look-and-feel”
of a layer architecture is the same on each layer.

Example: Unix file/directory systems (regular)
Example: Nesting structure in a Java application - methods,
classes, packages (irregular)

A scalable architecture must be regular.
Irregular architectures need new technologies on each
layer.
Problems that have been solved on one layer must be
solved again on other layers.
Software comes in sizes of so vastly different orders of
magnitudes that irregular architectures are too expensive.

In the DSL context, regularity means regularity of a layer
architecture of DSLs.



Evaluation: Regularity

Interpreters can be stacked, but it makes things quite
complicated and slow (at run-time).
Compilers can be stacked, but it makes things quite
complicated and slow (at compile-time).
Difficult/impossible to achieve with extensible
interpreters/compilers.

But see more disciplined approaches such as Stratego or
ableJ

Embedding shines: A library using other libraries is a
library.
Regularity becomes more interesting in connection with
parallel composition.



Requirements for Scalable DSLs:
DSL is proper abstraction

Two facets:
Abstraction in terms of information hiding.
Abstraction in terms of DSL entities being first-class.

Both are important for scalability
because information hiding is the foundation of
components.
because otherwise the illusion of being an abstraction will
break sooner or later.



Requirements for Scalable DSLs:
DSL is proper abstraction

DSL that requires programmers to understand generated
code is not a proper abstraction.

e.g. having to fill in code templates destroys all abstraction

Can the code be understood compositionally? Does a
non-trivial notion of substitutability exist?
Are error messages (both static and dynamic) in terms of
the DSL?

Or does one have to understand the implementation
instead?
If no, then the abstraction breaks down again.



Evaluation: Abstraction

Whenever DSL abstractions are “compiled away”, the
abstraction barrier will break at some point.

Dynamic error messages will invariably break it, difficult to
trace error messages to their cause.
The situation is even worse if the DSL compiler may
generate code that does not pass the GPL compiler.

Interpreters shine regarding domain-specific error
messages.
The situation is better with embedding because the error
messages will at least be modular.

Difficult to generate domain-specific error messages,
though

When generated code must even be extended (such as
generation of code templates), the last illusion of
abstraction breaks

regardless of whether the extension is invasive or not.



Abstraction: The Meta-Indirection

Scenario 1: You tell your friend Joe how to cook your
favorite meal: “First, take the rice. Cook for 20min...”
Scenario 2: You can’t tell Joe directly. You have to tell Jack,
and he’ll tell Joe.

However, Jack is stupid. He cannot understand the
meaning of recipes.
Instead you have to explain to him how he should tell Joe
about it. “First you say, ‘First, take the rice’. Then make a
little break and lower your voice. Continue by saying ‘Cook
for 10min’ ...”

Note the nested quotes
Maybe Jack is so stupid that you have to give the phonetic
spelling ‘First, take the rice’ instead.
...or its wave form...



Abstraction: The Meta-Indirection

Obviously, scenario 2 makes the situation much more
complicated.

We want to describe the thing, and not describe a
description of the thing!
Imagine what happens when you say “mice” instead of
“rice”.

Jack won’t notice the error, but when he tells Joe you are
gone.

But this is essentially what happens when you express the
meaning of things via code to be generated rather than
saying directly what they mean.



Requirements for Scalable DSLs: Efficiency

Obviously the efficiency of a DSL can hinder the scalability
of an application.
In particular, what about interpretative overhead and
domain-specific optimizations?



Evaluation: Efficiency

Compilers shine: No interpretative overhead,
domain-specific optimizations possible, direct generation of
efficient code.
Domain-specific optimizations also possible with
interpreters, but suffer from interpretation overhead.
Embedded DSLs do not have interpretation overhead and
makes them more amendable for the optimizations of the
underlying host language compiler, but compositionality
makes domain-specific optimizations difficult.



Requirements for Scalable DSLs: Polymorphism

A component-oriented approach to DSLs requires flexible
binding of DSL programs to their meaning
...such that DSL definitions can also be componentized.
Example: DSLs defined as libraries or macros are typically
not polymorphic.
Example: DSLs approaches that work on ASTs are
typically polymorphic.



Evaluation: Polymorphism

AST-based approaches can easily support polymorphism
through multiple interpreters/compilers.
Usually not supported by macros or other forms of
preprocessing.
Embedded DSLs are typically not polymorphic.
Polymorphic DSLs are (surprise, surprise) polymorphic.



Scalability Evaluation

Interpreter Compiler Embedding Polym. Emb.
Composability O –/O + +
Regularity – – + +
Abstraction O –/O + +
Efficiency –/O + O O
Polymorphism + + – +



Polymorphic Embedding for the win?

This looks pretty good for (polymorphic) embedding. Why
doesn’t everybody use it, then?
Embedding depends heavily on the expressiveness of the
host language.



Reasons why embedding may not work in some host
language

Language entities not being first-class, not (easily)
possible to abstract over patterns

Example: Classes in Java
Semantic abstraction mechanisms not powerful enough

Example: Cross-cutting concerns such as persistence or
logging

Wrong argument evaluation/transfer regime
Example: Measure time it takes to evaluate an expression

Too verbose
Example: Java

Too inefficient
Cf. automata example

Type system too weak
E.g. zipN



Outline

1 Introduction

2 Methods of DSL implementation

3 Does it scale?

4 Summary



Conclusions

Programming is language design, hence DSLs are every
programmer’s ’bread and butter’ business.
DSLs can be realized in many ways, each with its own set
of advantages/disadvantages.
When assessing a technology, think about composability,
regularity, polymorphism etc.
Distrust technologies that require large tool chains
because the underlying ’abstractions’ are rarely real
abstractions.
My theological agenda: Software development is about the
design of good abstractions and not about ’using tools’.
The engineering metaphor is wrong!


	Introduction
	Methods of DSL implementation
	Does it scale?
	Summary

