
Existential Types

Klaus Ostermann
Aarhus University

Existential Types

• Are „dual“ to universal types

• Foundation for data abstraction and information

hiding

• Two ways to look at an existential type {∃X,T}

– Logical intuition: a value of type T[X:=S] for some type

S

– Operational intuition: a pair {*S,t} of a type S and term

t of type T[X:=S]

• Other books use the (more standard) notation

 ∃X.T. We stick to Pierce‘s notation {∃X,T}

Building and using terms with

existential types

• Or, in the terminology of natural deduction,
introduction and elimination rules

• Idea: A term can be packed to hide a type
component, and unpacked (or: openend)
to use it

Example

Example

Existential Types

Encoding existential types by

universal types
• In logic we have

• We can simulate a existential types by a
universal type and a “continuation”

• Recall that, via Curry-Howard, CPS
transformation corresponds to double
negation!

Encoding existential types by

universal types
• Packing

• Unpacking

Forms of existential types: SML

signature INT_QUEUE = sig

type t

val empty : t

val insert : int * t -> t

val remove : t -> int * t

end

Forms of existential types: SML

structure IQ :> INT_QUEUE = struct
type t = int list
val empty = nil
val insert = op ::
fun remove q =
let val x::qr = rev q
in (x, rev qr) end

end

structure Client = struct
… IQ.insert … IQ.remove …

end

Open vs closed Scope

• Existentials via pack/unpack provide no
direct access to hidden type (closed

scope)

– If we open an existential package twice, we

get two different abstract types!

• If S is an SML module with hidden type t,
then each occurrence of S.t refers to the
same unknown type

– SML modules are not first-class whereas

pack/unpack terms are

Forms of existential types: Java

Wildcards

From: “Towards an Existential Types Model
for Java Wildcards”, FTFJP 2007

Forms of existential types:
Existentially quantified data constructors in Haskell

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

