
Fachbereich Mathematik und Informatik

Prof. Dr. K. Ostermann

Sebastian Erdweg, seba@informatik

Tillmann Rendel, rendel@informatik

October 22, 2009

Programming Languages and Types

Homework Assignment H2

Please hand in your homework by email to mailto:pllecture@informatik.uni-marburg.
de until October 29. Please submit your solutions in appropriate file formats.

H2.1 If Zero

Solve Exercise 4.3.1 in the textbook, that is, add the if0 construct to all relevant de-
finitions of F1WAE including the parser. Furthermore, add a testcase (using the test
function) which includes a definition and usage of the factorial function. Feel free to add
more language primitives (such as multiplication) to the language, if you think this is
necessary.

H2.2 If Zero 2

It is unsatisfactory to have many language primitives (such as if0). It would be more
elegant if there would just be a number of “pre-installed” functions that are called using
normal function application.
Let’s say you define a function myif0 as a F1WAE-function of three parameters (igno-
re the problem that our functions can only have one parameter). The parameters are
if-part, then-part and else-part, and (myif0 if-part then-part else-part)
is just implemented as (if0 if-part then-part else-part).
Think about whether you could use myif0 rather than the builtin if0 in your factorial
function. Explain why or why not. If not, think about a possible fix that would let you
use myif0.

H2.3 Lazy Evaluation

Lazy evaluation can modularize backtracking algorithms in an elegant way. Here is a
solution to the 8-queens problem in Haskell using lazy evaluation:

please turn the page!

mailto:pllecture@informatik.uni-marburg.de
mailto:pllecture@informatik.uni-marburg.de

boardSize = 8

queens 0 = [[]]
queens n = [x : y | y <- queens (n-1),

x <- [1..boardSize], safe x y 1]

safe x [] n = True
safe x (c:y) n = x /= c &&

x /= c + n &&
x /= c - n &&
safe x y (n+1)

main = print (queens 8)

Understand how this program works. What happened to the usual backtracking? (you
don’t need to write this in your hand-in). If you don’t understand the syntax in the 4th
line, see http://www.haskell.org/haskellwiki/List_comprehension.
Compare the given program with a typical “eager” solution such as http://www.cs.
princeton.edu/introcs/23recursion/Queens.java.html. What would you
have to do in both version, respectively, to

a) compute only the first 5 solutions and then stop,

b) compute the number of solutions,

c) find all solutions where the queen in column 3 is at row 5?

You do not need to describe the actual changes or implementations of a), b) and c).
Instead outline briefly what you would have to do in both versions, and describe to what
extend the two versions differ.

http://www.haskell.org/haskellwiki/List_comprehension
http://www.cs.princeton.edu/introcs/23recursion/Queens.java.html
http://www.cs.princeton.edu/introcs/23recursion/Queens.java.html

	If Zero
	If Zero 2
	Lazy Evaluation

