
Programming Languages and Types

Klaus Ostermann

based on slides by Benjamin C. Pierce

On to Objects

A Change of Pace

We've spent the semester developing tools for de�ning and
reasoning about a variety of programming language features.
Now it's time to use these tools for something more ambitious.

Case study: object-oriented programming

Plan:

1. Identify some characteristic \core features" of object-oriented
programming

2. Develop two di�erent analyses of these features:

2.1 A translation into a lower-level language
2.2 A direct, high-level formalization of a simple object-oriented

language (\Featherweight Java")

The Translational Analysis

Our �rst goal will be to show how many of the basic features of
object-oriented languages

dynamic dispatch

encapsulation of state

inheritance

late binding (this)

super

can be understood as \derived forms" in a lower-level language
with a rich collection of primitive features:

(higher-order) functions

records

references

recursion

subtyping

The Translational Analysis

For simple objects and classes, this translational analysis works
very well.

When we come to more complex features (in particular, classes
with this), it becomes less satisfactory, leading us to the more
direct treatment in the following chapter.

Concepts

The Essence of Objects

What \is" object-oriented programming?

A precise de�nition has been the subject of debate for decades.
Such arguments are always inconclusive and seldom interesting.

However, it is easy to identify some core features that are shared
by most OO languages and that, together, support a distinctive
and useful programming style.

The Essence of Objects

What \is" object-oriented programming?

A precise de�nition has been the subject of debate for decades.
Such arguments are always inconclusive and seldom interesting.

However, it is easy to identify some core features that are shared
by most OO languages and that, together, support a distinctive
and useful programming style.

The Essence of Objects

What \is" object-oriented programming?

A precise de�nition has been the subject of debate for decades.
Such arguments are always inconclusive and seldom interesting.

However, it is easy to identify some core features that are shared
by most OO languages and that, together, support a distinctive
and useful programming style.

Dynamic dispatch

Perhaps the most basic characteristic of object-oriented
programming is dynamic dispatch: when an operation is invoked on
an object, the ensuing behavior depends on the object itself, rather
than being �xed (as when we apply a function to an argument).

Two objects of the same type (i.e., responding to the same set of
operations) may be implemented internally in completely di�erent

ways.

Example (in Java)

class A {

int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return x; }

}

class B extends A {

int m() { x = x+5; return x; }

}

class C extends A {

int m() { x = x-10; return x; }

}

Note that (new B()).m() and (new C()).m() invoke completely
di�erent code!

Encapsulation

In most OO languages, each object consists of some internal state
encapsulated with a collection of method implementations
operating on that state.

I state directly accessible to methods

I state inaccessible from outside the object

Encapsulation

In Java, encapsulation of internal state is optional. For full
encapsulation, �elds must be marked protected:

class A {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return x; }

}

class B extends A {

int m() { x = x+5; return x; }

}

class C extends A {

int m() { x = x-10; return x; }

}

The code (new B()).x is not allowed.

Side note: Objects vs. ADTs

The encapsulation of state with methods o�ered by objects is a
form of information hiding.

A somewhat di�erent form of information hiding is embodied in
the notion of an abstract data type (ADT).

Side note: Objects vs. ADTs

An ADT comprises:

I A hidden representation type X

I A collection of operations for creating and manipulating
elements of type X.

Similar to OO encapsulation in that only the operations provided
by the ADT are allowed to directly manipulate elements of the
abstract type.

But di�erent in that there is just one (hidden) representation type
and just one implementation of the operations | no dynamic
dispatch.

Both styles have advantages.

Caveat: In the OO community, the term \abstract data type" is
often used as more or less a synonym for \object type." This is
unfortunate, since it confuses two rather di�erent concepts.

Subtyping and Encapsulation

The \type" (or \interface" in Smalltalk terminology) of an object
is just the set of operations that can be performed on it (and the
types of their parameters and results); it does not include the
internal representation.

Object interfaces �t naturally into a subtype relation.

An interface listing more operations is \better" than one

listing fewer operations.

This gives rise to a natural and useful form of polymorphism: we
can write one piece of code that operates uniformly on any object
whose interface is \at least as good as I" (i.e., any object that
supports at least the operations in I).

Example

// ... class A and subclasses B and C as above...

class D {

int p (A myA) { return myA.m(); }

}

...

D d = new D();

int z = d.p (new B());

int w = d.p (new C());

Inheritance

Objects that share parts of their interfaces will typically (though
not always) share parts of their behaviors.

To avoid duplication of code, want to write the implementations of
these behaviors in just one place.
=) inheritance

Inheritance

Basic mechanism of inheritance: classes

A class is a data structure that can be

I instantiated to create new objects (\instances")

I re�ned to create new classes (\subclasses")

N.b.: some OO languages o�er an alternative mechanism, called
delegation, which allows new objects to be derived by re�ning the
behavior of existing objects.

Example

class A {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return x; }

}

class B extends A {

int o() { x = x*10; return x; }

}

An instance of B has methods m, n, and o. The �rst two are
inherited from A.

Late binding

Most OO languages o�er an extension of the basic mechanism of
classes and inheritance called late binding or open recursion.

Late binding allows a method within a class to call another method
via a special \pseudo-variable" this. If the second method is
overridden by some subclass, then the behavior of the �rst method
automatically changes as well.

Though quite useful in many situations, late binding is rather
tricky, both to de�ne (as we will see) and to use appropriately. For
this reason, it is sometimes deprecated in practice.

Examples

class E {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return this.m(); }

}

class F extends E {

int m() { x = x+100; return x; }

}

Quick check:

I What does (new E()).n() return?

I What does (new F()).n() return?

Calling \super"

It is sometimes convenient to \re-use" the functionality of an
overridden method.

Java provides a mechanism called super for this purpose.

Example

class E {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return this.m(); }

}

class G extends E {

int m() { x = x+100; return super.m(); }

}

What does (new G()).n() return?

Getting down to details
(in the lambda-calculus)...

Simple objects with encapsulated state

class Counter {

protected int x = 1; // Hidden state

int get() { return x; }

void inc() { x++; }

}

void inc3(Counter c) {

c.inc(); c.inc(); c.inc();

}

Counter c = new Counter();

inc3(c);

inc3(c);

c.get();

How do we encode objects in the lambda-calculus?

Objects

c = let x = ref 1 in

{get = �_:Unit. !x,

inc = �_:Unit. x:=succ(!x)};

=) c : Counter

where
Counter = {get:Unit!Nat, inc:Unit!Unit}

Objects

inc3 = �c:Counter. (c.inc unit; c.inc unit; c.inc unit);

=) inc3 : Counter ! Unit

(inc3 c; inc3 c; c.get unit);

=) 7

Object Generators

newCounter =

�_:Unit. let x = ref 1 in

{get = �_:Unit. !x,

inc = �_:Unit. x:=succ(!x)};

=) newCounter : Unit ! Counter

Grouping Instance Variables

Rather than a single reference cell, the states of most objects
consist of a number of instance variables or �elds.

It will be convenient (later) to group these into a single record.

newCounter =

�_:Unit. let r = {x=ref 1} in

{get = �_:Unit. !(r.x),

inc = �_:Unit. r.x:=succ(!(r.x))};

The local variable r has type CounterRep = {x: Ref Nat}

Subtyping and Inheritance

class Counter {

protected int x = 1;

int get() { return x; }

void inc() { x++; }

}

class ResetCounter extends Counter {

void reset() { x = 1; }

}

ResetCounter rc = new ResetCounter();

inc3(rc);

rc.reset();

inc3(rc);

rc.get();

Subtyping

ResetCounter = {get:Unit!Nat,

inc:Unit!Unit,

reset:Unit!Unit};

newResetCounter =

�_:Unit. let r = {x = ref 1} in

{get = �_:Unit. !(r.x),

inc = �_:Unit. r.x:=succ(!(r.x)),

reset = �_:Unit. r.x:=1};

=) newResetCounter : Unit ! ResetCounter

Subtyping

rc = newResetCounter unit;

(inc3 rc; rc.reset unit; inc3 rc; rc.get unit);

=) 4

Simple Classes

The de�nitions of newCounter and newResetCounter are
identical except for the reset method.

This violates a basic principle of software engineering:

Each piece of behavior should be implemented in just one

place in the code.

Reusing Methods

Idea: could we just re-use the methods of some existing object to
build a new object?

resetCounterFromCounter =

�c:Counter. let r = {x = ref 1} in

{get = c.get,

inc = c.inc,

reset = �_:Unit. r.x:=1};

No: This doesn't work properly because the reset method does
not have access to the local variable r of the original counter.

=) classes

Reusing Methods

Idea: could we just re-use the methods of some existing object to
build a new object?

resetCounterFromCounter =

�c:Counter. let r = {x = ref 1} in

{get = c.get,

inc = c.inc,

reset = �_:Unit. r.x:=1};

No: This doesn't work properly because the reset method does
not have access to the local variable r of the original counter.

=) classes

Classes

A class is a run-time data structure that can be

1. instantiated to yield new objects

2. extended to yield new classes

Classes

To avoid the problem we observed before, what we need to do is to
separate the de�nition of the methods

counterClass =

�r:CounterRep.

{get = �_:Unit. !(r.x),

inc = �_:Unit. r.x:=succ(!(r.x))};

=) counterClass : CounterRep ! Counter

from the act of binding these methods to a particular set of
instance variables:

newCounter =

�_:Unit. let r = {x=ref 1} in

counterClass r;

=) newCounter : Unit ! Counter

De�ning a Subclass

resetCounterClass =

�r:CounterRep.

let super = counterClass r in

{get = super.get,

inc = super.inc,

reset = �_:Unit. r.x:=1};

=) resetCounterClass : CounterRep ! ResetCounter

newResetCounter =

�_:Unit. let r = {x=ref 1} in resetCounterClass r;

=) newResetCounter : Unit ! ResetCounter

Overriding and adding instance variables

class Counter {

protected int x = 1;

int get() { return x; }

void inc() { x++; }

}

class ResetCounter extends Counter {

void reset() { x = 1; }

}

class BackupCounter extends ResetCounter {

protected int b = 1;

void backup() { b = x; }

void reset() { x = b; }

}

Adding instance variables

In general, when we de�ne a subclass we will want to add new
instances variables to its representation.

BackupCounter = {get:Unit!Nat, inc:Unit!Unit,

reset:Unit!Unit, backup: Unit!Unit};

BackupCounterRep = {x: Ref Nat, b: Ref Nat};

backupCounterClass =

�r:BackupCounterRep.

let super = resetCounterClass r in

{get = super.get,

inc = super.inc,

reset = �_:Unit. r.x:=!(r.b),

backup = �_:Unit. r.b:=!(r.x)};

=)
backupCounterClass : BackupCounterRep ! BackupCounter

Notes:

I backupCounterClass both extends (with backup) and
overrides (with a new reset) the de�nition of counterClass

I subtyping is essential here (in the de�nition of super)

backupCounterClass =

�r:BackupCounterRep.

let super = resetCounterClass r in

{get = super.get,

inc = super.inc,

reset = �_:Unit. r.x:=!(r.b),

backup = �_:Unit. r.b:=!(r.x)};

Calling super

Suppose (for the sake of the example) that we wanted every call to
inc to �rst back up the current state. We can avoid copying the
code for backup by making inc use the backup and inc methods
from super.

funnyBackupCounterClass =

�r:BackupCounterRep.

let super = backupCounterClass r in

{get = super.get,

inc = �_:Unit. (super.backup unit; super.inc unit),

reset = super.reset,

backup = super.backup};

=)
funnyBackupCounterClass : BackupCounterRep ! BackupCounter

Calling between methods

What if counters have set, get, and inc methods:

SetCounter = {get:Unit!Nat, set:Nat!Unit, inc:Unit!Unit};

setCounterClass =

�r:CounterRep.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. r.x:=(succ r.x) });

Bad style: The functionality of inc could be expressed in terms of
the functionality of get and set.

Can we rewrite this class so that the get/set functionality appears
just once?

Calling between methods

What if counters have set, get, and inc methods:

SetCounter = {get:Unit!Nat, set:Nat!Unit, inc:Unit!Unit};

setCounterClass =

�r:CounterRep.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. r.x:=(succ r.x) });

Bad style: The functionality of inc could be expressed in terms of
the functionality of get and set.

Can we rewrite this class so that the get/set functionality appears
just once?

Calling between methods

In Java we would write:
class SetCounter {

protected int x = 0;

int get () { return x; }

void set (int i) { x = i; }

void inc () { this.set(this.get() + 1); }

}

Better...

setCounterClass =

�r:CounterRep.

fix

(�this: SetCounter.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. this.set (succ (this.get unit))});

Check: the type of the inner �-abstraction is
SetCounter!SetCounter, so the type of the fix expression is
SetCounter.

This is just a de�nition of a group of mutually recursive functions.

Note that the �xed point in

setCounterClass =

�r:CounterRep.

fix

(�this: SetCounter.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. this.set (succ (this.get unit))});

is \closed" | we \tie the knot" when we build the record.

So this does not model the behavior of this (or self) in real OO
languages.

Idea: move the application of fix from the class de�nition...

setCounterClass =

�r:CounterRep.

�this: SetCounter.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. this.set (succ(this.get unit))};

...to the object creation function:

newSetCounter =

�_:Unit. let r = {x=ref 1} in

fix (setCounterClass r);

In essence, we are switching the order of fix and
�r:CounterRep...

Note that we have changed the types of classes from...
setCounterClass =

�r:CounterRep.

fix

(�this: SetCounter.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. this.set (succ (this.get unit))});

=) setCounterClass : CounterRep ! SetCounter

... to:
setCounterClass =

�r:CounterRep.

�this: SetCounter.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. this.set (succ(this.get unit))};

=)

setCounterClass : CounterRep ! SetCounter ! SetCounter

Using this

Let's continue the example by de�ning a new class of counter
objects (a subclass of set-counters) that keeps a record of the
number of times the set method has ever been called.

InstrCounter = {get:Unit!Nat, set:Nat!Unit,

inc:Unit!Unit, accesses:Unit!Nat};

InstrCounterRep = {x: Ref Nat, a: Ref Nat};

instrCounterClass =

�r:InstrCounterRep.

�this: InstrCounter.

let super = setCounterClass r this in

{get = super.get,

set = �i:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = �_:Unit. !(r.a)};

=) instrCounterClass :

InstrCounterRep ! InstrCounter ! InstrCounter

Notes:

I the methods use both this (which is passed as a parameter)
and super (which is constructed using this and the instance
variables)

I the inc in super will call the set de�ned here, which calls
the superclass set

I suptyping plays a crucial role (twice) in the call to
setCounterClass

One more re�nement...

A small
y in the ointment

The implementation we have given for instrumented counters is
not very useful because calling the object creation function

newInstrCounter =

�_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r);

will cause the evaluator to diverge!

Intuitively (see TAPL for details), the problem is the \unprotected"
use of this in the call to setCounterClass in
instrCounterClass:

instrCounterClass =

�r:InstrCounterRep.

�this: InstrCounter.

let super = setCounterClass r this in

...

To see why this diverges, consider a simpler example:
ff = �f:Nat!Nat.

let f0 = f in

�n:Nat. 0

=) ff : (Nat!Nat) ! (Nat!Nat)

Now:
fix ff �! let f0 = (fix ff) in �n:Nat. 0

�! let f0 = ff (fix ff) in �n:Nat. 0

�! uh oh...

One possible solution

Idea: \delay" this by putting a dummy abstraction in front of it...

setCounterClass =

�r:CounterRep.

�this: Unit!SetCounter.

�_:Unit.

{get = �_:Unit. !(r.x),

set = �i:Nat. r.x:=i,

inc = �_:Unit. (this unit).set

(succ((this unit).get unit))};

=) setCounterClass :

CounterRep ! (Unit!SetCounter) ! (Unit!SetCounter)

newSetCounter =

�_:Unit. let r = {x=ref 1} in

fix (setCounterClass r) unit;

Similarly:

instrCounterClass =

�r:InstrCounterRep.

�this: Unit!InstrCounter.

�_:Unit.

let super = setCounterClass r this unit in

{get = super.get,

set = �i:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = �_:Unit. !(r.a)};

newInstrCounter =

�_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r) unit;

Success

This works, in the sense that we can now instantiate
instrCounterClass (without diverging!), and its instances
behave in the way we intended.

However, all the \delaying" we added has an unfortunate side
e�ect: instead of computing the \method table" just once, when
an object is created, we will now re-compute it every time we
invoke a method!

Section 18.12 in TAPL shows how this can be repaired by using
references instead of fix to \tie the knot" in the method table.

Success (?)

This works, in the sense that we can now instantiate
instrCounterClass (without diverging!), and its instances
behave in the way we intended.

However, all the \delaying" we added has an unfortunate side
e�ect: instead of computing the \method table" just once, when
an object is created, we will now re-compute it every time we
invoke a method!

Section 18.12 in TAPL shows how this can be repaired by using
references instead of fix to \tie the knot" in the method table.

Recap

Multiple representations

All the objects we have built in this series of examples have type
Counter.

But their internal representations vary widely.

Encapsulation

An object is a record of functions, which maintain common
internal state via a shared reference to a record of mutable
instance variables.

This state is inaccessible outside of the object because there is no
way to name it. (Instance variables can only be named from inside
the methods.)

Subtyping

Subtyping between object types is just ordinary subtyping between
types of records of functions.

Functions like inc3 that expect Counter objects as parameters
can (safely) be called with objects belonging to any subtype of
Counter.

Inheritance

Classes are data structures that can be both extended and
instantiated.

We modeled inheritance by copying implementations of methods
from superclasses to subclasses.

Each class

I waits to be told a record r of instance variables and an object
this (which should have the same interface and be based on
the same record of instance variables)

I uses r and this to instantiate its superclass

I constructs a record of method implementations, copying some
directly from super and implementing others in terms of
this and super.

The this parameter is \resolved" at object creation time using
fix.

Where we are...

The essence of objects

I Dynamic dispatch

I Encapsulation of state with behavior

I Behavior-based subtyping

I Inheritance (incremental de�nition of behaviors)

I Access of super class

I \Open recursion" through this

What's missing (wrt. Java, say)

We haven't really captured the peculiar status of classes (which are
both run-time and compile-time things) | we've captured the
run-time aspect, but not the way in which classes get used as types
in Java.

Also not named types with declared subtyping

Nor recursive types

Nor run-time type analysis (casting, etc.)

(... nor lots of other stu�)

Modeling Java

About models (of things in general)

No such thing as a \perfect model" | The nature of a model is to
abstract away from details!

So models are never just \good" [or \bad"]: they are always \good
[or bad] for some speci�c set of purposes."

Models of Java

Lots of di�erent purposes �! lots of di�erent kinds of models

I Source-level vs. bytecode level

I Large (inclusive) vs. small (simple) models

I Models of type system vs. models of run-time features (not
entirely separate issues)

I Models of speci�c features (exceptions, concurrency,
re
ection, class loading, ...)

I Models designed for extension

Featherweight Java

Purpose: model \core OO features" and their types and nothing

else.

History:

I Originally proposed by a Penn PhD student (Atsushi Igarashi)
as a tool for analyzing GJ (\Java plus generics"), which later
became Java 1.5

I Since used by many others for studying a wide variety of Java
features and proposed extensions

Things left out

I Re
ection, concurrency, class loading, inner classes, ...

I Exceptions, loops, ...

I Interfaces, overloading, ...

I Assignment (!!)

Things left in

I Classes and objects

I Methods and method invocation

I Fields and �eld access

I Inheritance (including open recursion through this)

I Casting

Example

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}

Conventions

For syntactic regularity...

I Always include superclass (even when it is Object)

I Always write out constructor (even when trivial)

I Always call super from constructor (even when no arguments
are passed)

I Always explicitly name receiver object in method invocation or
�eld access (even when it is this)

I Methods always consist of a single return expression

I Constructors always
I Take same number (and types) of parameters as �elds of the

class
I Assign constructor parameters to \local �elds"
I Call super constructor to assign remaining �elds
I Do nothing else

Formalizing FJ

Nominal type systems

Big dichotomy in the world of programming languages:

I Structural type systems:
I What matters about a type (for typing, subtyping, etc.) is just

its structure.
I Names are just convenient (but inessential) abbreviations.

I Nominal type systems:
I Types are always named.
I Typechecker mostly manipulates names, not structures.
I Subtyping is declared explicitly by programmer (and checked

for consistency by compiler).

Advantages of Structural Systems

Somewhat simpler, cleaner, and more elegant (no need to always
work wrt. a set of \name de�nitions")

Easier to extend (e.g. with parametric polymorphism)

(Caveat: when recursive types are considered, some of this
simplicity and elegance slips away...)

Advantages of Nominal Systems

Recursive types fall out easily

Using names everywhere makes typechecking (and subtyping, etc.)
easy and e�cient

Type names are also useful at run-time (for casting, type testing,
re
ection, ...).

Clear (and compiler-checked) documentation of design intent; no
accidential subtype relations.

Blame can be assigned properly if a subtype test fails.

Java (like most other mainstream languages) is a nominal system.

Representing objects

Our decision to omit assignment has a nice side e�ect...

The only ways in which two objects can di�er are (1) their classes
and (2) the parameters passed to their constructor when they were
created.

All this information is available in the new expression that creates
an object. So we can identify the created object with the new
expression.

Formally: object values have the form new C(v)

FJ Syntax

Syntax (terms and values)

t ::= terms

x variable

t.f �eld access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

Syntax (methods and classes)

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

CL ::= class declarations

class C extends C {C f; K M}

Subtyping

Subtyping

As in Java, subtyping in FJ is declared.

Assume we have a (global, �xed) class table CT mapping class
names to de�nitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E

More auxiliary de�nitions

From the class table, we can read o� a number of other useful
properties of the de�nitions (which we will need later for
typechecking and operational semantics)...

Field(s) lookup

�elds(Object) = ;

CT(C) = class C extends D {C f; K M}

�elds(D) = D g

�elds(C) = D g; C f

Method type lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mtype(m; C) = B!B

CT(C) = class C extends D {C f; K M}

m is not de�ned in M

mtype(m; C) = mtype(m; D)

Method body lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mbody(m; C) = (x; t)

CT(C) = class C extends D {C f; K M}

m is not de�ned in M

mbody(m; C) = mbody(m; D)

Valid method overriding

mtype(m; D) = D!D0 implies C = D and C0 = D0

override(m; D; C!C0)

Evaluation

The example again

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}

Evaluation

Projection:

new Pair(new A(), new B()).snd �! new B()

Evaluation

Casting:

(Pair)new Pair(new A(), new B())

�! new Pair(new A(), new B())

Evaluation

Method invocation:

new Pair(new A(), new B()).setfst(new B())

�!

�
newfst 7! new B();

this 7! new Pair(new A(),new B())

�

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

((Pair) (new Pair(new Pair(new A(),new B()), new A())

.fst).snd

�! ((Pair)new Pair(new A(),new B())).snd

�! new Pair(new A(), new B()).snd

�! new B()

Evaluation rules

�elds(C) = C f

(new C(v)).fi �! vi
(E-ProjNew)

mbody(m; C) = (x; t0)

(new C(v)).m(u)

�! [x 7! u; this 7! new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) �! new C(v)
(E-CastNew)

plus some congruence rules...

t0 �! t00

t0.f �! t00.f
(E-Field)

t0 �! t00

t0.m(t) �! t00.m(t)
(E-Invk-Recv)

ti �! t0
i

v0.m(v, ti, t) �! v0.m(v, t0
i
, t)

(E-Invk-Arg)

ti �! t0
i

new C(v, ti, t) �! new C(v, t0
i
, t)

(E-New-Arg)

t0 �! t00

(C)t0 �! (C)t00
(E-Cast)

Typing

Typing rules

x:C 2 �

� ` x : C
(T-Var)

Typing rules

� ` t0 : C0 �elds(C0) = C f

� ` t0.fi : Ci
(T-Field)

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C
(T-UCast)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C
(T-DCast)

Why two cast rules?

Because that's how Java does it!

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C
(T-UCast)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C
(T-DCast)

Why two cast rules? Because that's how Java does it!

Typing rules

� ` t0 : C0
mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule \has subsumption built in" | i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

� ` t0 : C0
mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule \has subsumption built in" | i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

� ` t0 : C0
mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule \has subsumption built in" | i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Java typing is algorithmic

The Java typing relation is de�ned in the algorithmic style, for (at
least) two reasons:

1. In order to perform static overloading resolution, we need to
be able to speak of \the type" of an expression

2. We would otherwise run into trouble with typing of
conditional expressions

Let's look at the second in more detail...

Java typing must be algorithmic

We haven't included them in FJ, but full Java has both interfaces

and conditional expressions.

The two together actually make the declarative style of typing rules
unworkable!

Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

Actual Java rule (algorithmic):

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 min(T2; T3)

Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

Actual Java rule (algorithmic):

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 min(T2; T3)

Java conditionals

More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

Algorithmic version:

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 T2 _ T3

Requires joins!

Java conditionals

More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

Algorithmic version:

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 T2 _ T3

Requires joins!

Java has no joins

But, in full Java (with interfaces), there are types that have no
join!

E.g.:

interface I {...}

interface J {...}

interface K extends I,J {...}

interface L extends I,J {...}

K and L have no join (least upper bound) | both I and J are
common upper bounds, but neither of these is less than the other.

So: algorithmic typing rules are really our only option.

FJ Typing rules

�elds(C) = D f

� ` t : C C <: D

� ` new C(t) : C
(T-New)

Typing rules (methods, classes)

x : C; this : C ` t0 : E0 E0 <: C0
CT(C) = class C extends D {...}

override(m; D; C!C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}

�elds(D) = D g M OK in C

class C extends D {C f; K M} OK

Properties

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Formalizing Progress

Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one

step or is stuck at a failing cast.

Formalizing this takes a little more work...

Evaluation Contexts

E ::= evaluation contexts

[] hole

E.f �eld access

E.m(t) method invocation (rcv)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

Evaluation contexts capture the notion of the \next subterm to be
reduced," in the sense that, if t �! t0, then we can express t and
t0 as t = E [r] and t0 = E [r0] for a unique E , r, and r0, with
r �! r0 by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

Progress

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either (1) t is a value, or (2) t �! t0 for some t0, or
(3) for some evaluation context E , we can express t as
t = E [(C)(new D(v))], with D 6<: C.

Preservation

Theorem [Preservation]: If � ` t : C and t �! t0, then � ` t0 : C0

for some C0 <: C.

Proof: Straightforward induction.

???

Preservation

Theorem [Preservation]: If � ` t : C and t �! t0, then � ` t0 : C0

for some C0 <: C.

Proof: Straightforward induction. ???

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Solution: \Stupid Cast" typing rule

Add another typing rule, marked \stupid" to indicate that an
implementation should generate a warning if this rule is used.

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we're going to claim that the
model is an accurate representation of (this fragment of) Java.

Solution: \Stupid Cast" typing rule

Add another typing rule, marked \stupid" to indicate that an
implementation should generate a warning if this rule is used.

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we're going to claim that the
model is an accurate representation of (this fragment of) Java.

Correspondence with Java

Let's try to state precisely what we mean by \FJ corresponds to
Java":

Claim:

1. Every syntactically well-formed FJ program is also a
syntactically well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ
(without using the T-SCast rule.) i� it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java.
(E.g., evaluating it in FJ diverges i� compiling and running it
in Java diverges.)

Of course, without a formalization of full Java, we cannot prove
this claim. But it's still very useful to say precisely what we are
trying to accomplish|e.g., it provides a rigorous way of judging
counterexamples.

Alternative approaches to casting

I Loosen preservation theorem

I Use big-step semantics

More on Evaluation Contexts

Progress for FJ

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either

1. t is a value, or

2. t �! t0 for some t0, or

3. for some evaluation context E , we can express t as

t = E [(C)(new D(v))]

with D 6<: C.

Evaluation Contexts

E ::= evaluation contexts

[] hole

E.f �eld access

E.m(t) method invocation (rcv)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

E.g.,
[].fst

[].fst.snd

new C(new D(), [].fst.snd, new E())

Evaluation Contexts

E [t] denotes \the term obtained by �lling the hole in E with t."

E.g., if E = (A)[], then

E [(new Pair(new A(), new B())).fst]
=

(A)((new Pair(new A(), new B())).fst)

Evaluation Contexts

Evaluation contexts capture the notion of the \next subterm to be
reduced":

I By ordinary evaluation relation:

(A)((new Pair(new A(), new B())).fst) �! (A)(new A())

by E-Cast with subderivation E-ProjNew.

I By evaluation contexts:

E = (A)[]

r = (new Pair(new A(), new B())).fst

r0 = new A()

r �! r0 by E-ProjNew
E [r] = (A)((new Pair(new A(), new B())).fst)

E [r0] = (A)(new A())

Precisely...

Claim 1: If r �! r0 by one of the computation rules
E-ProjNew, E-InvkNew, or E-CastNew and E is an
arbitrary evaluation context, then E [r] �! E [r0] by the ordinary
evaluation relation.

Claim 2: If t �! t0 by the ordinary evaluation relation, then there
are unique E , r, and r0 such that

1. t = E [r],

2. t0 = E [r0], and

3. r �! r0 by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

Hence...

Evaluation contexts are an alternative to congruence rules: Just
add the rule r�!r

0

E [r]�!E [r0] .

Evaluation contexts are also quite useful for formalizing advanced
control operators - the evaluation context is a representation of the
current continuation.

They are also useful to formulate contextual/observational
equivalence of terms.

	On to Objects
	Concepts
	Getting down to details (in the lambda-calculus)...
	Continuing with Objects
	One more refinement...
	Recap
	Where we are...
	Modeling Java
	Formalizing FJ
	FJ Syntax
	Subtyping
	Evaluation
	Typing
	Properties
	More on Evaluation Contexts

