Programming Languages and Types

Klaus Ostermann

based on slides by Benjamin C. Pierce

Universal Types

Motivation

In the simply typed lambda-calculus, we often have to write several versions of the same code, differing only in type annotations.

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once and parameterize it on the details that vary from one instance to another.

Here, the details that vary are the types!

ldea

We'd like to be able to take a piece of code and "abstract out" some type annotations.

We've already got a mechanism for doing this with terms: λ -abstraction. So let's just re-use the notation.

```
Abstraction:
```

```
double = \lambda X. \lambda f: X \rightarrow X. \lambda x: X. f(f x)
```

Application:

```
double [Nat]
double [Bool]
```

Computation:

```
double [Nat] \longrightarrow \lambda f: Nat \longrightarrow Nat. \lambda x: Nat. f (f x)
```

(N.b.: Type application is commonly written t [T], though t T would be more consistent.)

ldea

What is the type of a term like

$$\lambda X. \lambda f: X \rightarrow X. \lambda x: X. f (f x)$$
?

This term is a function that, when applied to a type X, yields a term of type $(X \rightarrow X) \rightarrow X \rightarrow X$.

l.e., for all types X, it yields a result of type $(X \rightarrow X) \rightarrow X \rightarrow X$.

We'll write it like this: $\forall X$. $(X \rightarrow X) \rightarrow X \rightarrow X$

System F

System F (aka "the polymorphic lambda-calculus") formalizes this idea by extending the simply typed lambda-calculus with type abstraction and type application.

```
t ::=
                                                       terms
                                                          variable
         X
         \lambda x:T.t
                                                         abstraction
                                                         application
         t t
         \lambda X.t
                                                          type abstraction
         t [T]
                                                          type application
                                                       values
v ::=
          \lambda x : T \cdot t
                                                         abstraction value
          \lambda X . t
                                                          type abstraction value
```

System F: new evaluation rules

$$\begin{array}{c} \mathbf{t}_1 \longrightarrow \mathbf{t}_1' \\ \\ \mathbf{t}_1 \quad [\mathtt{T}_2] \longrightarrow \mathbf{t}_1' \quad [\mathtt{T}_2] \end{array} \qquad \text{(E-TAPP)} \\ \\ (\lambda \mathtt{X}.\, \mathbf{t}_{12}) \quad [\mathtt{T}_2] \longrightarrow [\mathtt{X} \mapsto \mathtt{T}_2] \mathbf{t}_{12} \quad \text{(E-TAPPTABS)} \end{array}$$

System F: Types

To talk about the types of "terms abstracted on types," we need to introduce a new form of types:

```
\begin{array}{ccc} T & ::= & & & \\ & X & & \\ & T {\rightarrow} T & & \\ & \forall X \,. \, T & & \end{array}
```

types
type variable
type of functions
universal type

System F: Typing Rules

$$\frac{\mathbf{x}: \mathsf{T} \in \mathsf{\Gamma}}{\mathsf{\Gamma} \vdash \mathbf{x}: \mathsf{T}} \qquad (\mathsf{T}\text{-}\mathsf{VAR})$$

$$\frac{\mathsf{\Gamma}, \ \mathbf{x}: \mathsf{T}_1 \vdash \mathsf{t}_2 : \mathsf{T}_2}{\mathsf{\Gamma} \vdash \lambda \mathbf{x}: \mathsf{T}_1 \cdot \mathsf{t}_2 : \mathsf{T}_1 \to \mathsf{T}_2} \qquad (\mathsf{T}\text{-}\mathsf{ABS})$$

$$\frac{\mathsf{\Gamma} \vdash \mathsf{t}_1 : \mathsf{T}_{11} \to \mathsf{T}_{12} \qquad \mathsf{\Gamma} \vdash \mathsf{t}_2 : \mathsf{T}_{11}}{\mathsf{\Gamma} \vdash \mathsf{t}_1 \ \mathsf{t}_2 : \mathsf{T}_{12}} \qquad (\mathsf{T}\text{-}\mathsf{APP})$$

$$\frac{\mathsf{\Gamma}, \ \mathsf{X} \vdash \mathsf{t}_2 : \mathsf{T}_2}{\mathsf{\Gamma} \vdash \lambda \mathsf{X}. \mathsf{t}_2 : \forall \mathsf{X}. \mathsf{T}_2} \qquad (\mathsf{T}\text{-}\mathsf{T}\mathsf{ABS})$$

$$\frac{\mathsf{\Gamma} \vdash \mathsf{t}_1 : \forall \mathsf{X}. \mathsf{t}_2 : \forall \mathsf{X}. \mathsf{T}_2}{\mathsf{\Gamma} \vdash \mathsf{t}_1 \ [\mathsf{T}_2] : [\mathsf{X} \mapsto \mathsf{T}_2] \mathsf{T}_{12}} \qquad (\mathsf{T}\text{-}\mathsf{T}\mathsf{APP})$$

History

Interestingly, System F was invented independently and almost simultaneously by a computer scientist (John Reynolds) and a logician (Jean-Yves Girard).

Their results look very different at first sight — one is presented as a tiny programming language, the other as a variety of second-order logic.

The similarity (indeed, isomorphism!) between them is an example of the *Curry-Howard Correspondence*.

Examples

Lists

```
cons : \forall X. X \rightarrow List X \rightarrow List X
head : \forall X. List X \rightarrow X
tail : \forall X. List X \rightarrow List X
nil: \forall X. List X
isnil : \forall X. List X \rightarrow Bool
map =
  \lambda X. \lambda Y.
     \lambda f: X \rightarrow Y.
        (fix (\lambda m: (List X) \rightarrow (List Y).
                   \lambda1: List X.
                      if isnil [X] 1
                         then nil [Y]
                         else cons [Y] (f (head [X] 1))
                                             (m (tail [X] 1)));
1 = cons [Nat] 4 (cons [Nat] 3 (cons [Nat] 2 (nil [Nat])));
head [Nat] (map [Nat] [Nat] (\lambdax:Nat. succ x) 1);
```

Church Booleans

```
\begin{aligned} & \text{CBool} &= \forall \textbf{X}. \ \textbf{X} {\rightarrow} \textbf{X} {\rightarrow} \textbf{X}; \\ & \text{tru} &= \lambda \textbf{X}. \ \lambda \textbf{t} {:} \textbf{X}. \ \lambda \textbf{f} {:} \textbf{X}. \ \textbf{t}; \\ & \text{fls} &= \lambda \textbf{X}. \ \lambda \textbf{t} {:} \textbf{X}. \ \lambda \textbf{f} {:} \textbf{X}. \ \textbf{f}; \\ & \text{not} &= \lambda \textbf{b} {:} \text{CBool}. \ \lambda \textbf{X}. \ \lambda \textbf{t} {:} \textbf{X}. \ \lambda \textbf{f} {:} \textbf{X}. \ \textbf{b} \ [\textbf{X}] \ \textbf{f} \ \textbf{t}; \end{aligned}
```

Church Numerals

```
\begin{split} &\text{CNat} = \forall \texttt{X}. \ (\texttt{X} \rightarrow \texttt{X}) \ \rightarrow \ \texttt{X} \ \rightarrow \ \texttt{X}; \\ &\text{c}_0 = \lambda \texttt{X}. \ \lambda \texttt{s}: \texttt{X} \rightarrow \texttt{X}. \ \lambda \texttt{z}: \texttt{X}. \ \texttt{z}; \\ &\text{c}_1 = \lambda \texttt{X}. \ \lambda \texttt{s}: \texttt{X} \rightarrow \texttt{X}. \ \lambda \texttt{z}: \texttt{X}. \ \texttt{s} \ \texttt{z}; \\ &\text{c}_2 = \lambda \texttt{X}. \ \lambda \texttt{s}: \texttt{X} \rightarrow \texttt{X}. \ \lambda \texttt{z}: \texttt{X}. \ \texttt{s} \ (\texttt{s} \ \texttt{z}); \\ &\text{csucc} = \lambda \texttt{n}: \texttt{CNat}. \ \lambda \texttt{X}. \ \lambda \texttt{s}: \texttt{X} \rightarrow \texttt{X}. \ \lambda \texttt{z}: \texttt{X}. \ \texttt{s} \ (\texttt{n} \ [\texttt{X}] \ \texttt{s} \ \texttt{z}); \\ &\text{cplus} = \lambda \texttt{m}: \texttt{CNat}. \ \lambda \texttt{n}: \texttt{CNat}. \ \texttt{m} \ [\texttt{CNat}] \ \texttt{csucc} \ \texttt{n}; \end{split}
```

Properties of System F

Preservation and Progress: unchanged.

(Proofs similar to what we've seen.)

Strong normalization: every well-typed program halts. (Proof is challenging!)

Type reconstruction: undecidable (major open problem from 1972 until 1994, when Joe Wells solved it).

Parametricity

Observation: Polymorphic functions cannot do very much with their arguments.

- ▶ The type $\forall X$. $X \rightarrow X \rightarrow X$ has exactly two members (up to observational equivalence).
- \blacktriangleright $\forall X$. $X \rightarrow X$ has one.
- etc.

The concept of parametricity gives rise to some useful "free theorems..."