
Type Reconstruction

Klaus Ostermann
Uni Marburg

Based on lecture notes by Andrew Myers

Type Reconstruction

• A.k.a. type inference

• Advantage of type annotations:
– Type checker is simple

• Disadvantage:
– Writing type annotations all the time can be

tiresome, since many annotations are obvious

Places where we required type annotations

Typing rules are easy to specify
w/o type annotations

• But how can they be implemented?
– Problem: Need to guess τ

Infering types by hand…

Since + is an operation on ints, z: Int

Hence d: Int -> Int

Hence x : Int

Hence f : Int -> ??? -> ???

Since (f x y) is used as condition
f: Int -> ??? -> Bool

Hence (see else branch)
f: Int -> Bool -> Bool and y : Bool

Hence the type of the expression is
(Int -> Bool -> Bool) -> Int -> Bool -> Bool

Type equality constraints

f:T2, x:T5 ⊦ f : int →T6 f:T2, x:T5 ⊦ 1 : int

f:T2, x:T5 ⊦ f 1 : T6

f:T2 ⊦ λx. f 1 : T1 (=T5→T6) y:T3⊦ y : T4

⊦ λf. λx. f 1 : T2→T1 ⊦(λy.y) : T2 (T2=T3→T4)

⊦(λf.λx. (f 1)) (λy.y) : T1

T2 = T3→T4, T3 = T4, T1 =T5→T6, T2 = int→T6

(T3=T4)

Type equality constraints

Cornell University CS 611 Fall'04 -- Andrew
Myers

8

Unification
• How to solve equations?

• Idea: given equation τ1 = τ2, unify type
expressions to solve for variables in both

• Example: Τ1→int = (bool→Τ2)→Τ3

• Result: substitution Τ1:= bool→Τ2, Τ3int
→

Τ1 int
= →

→

bool Τ2

Τ3

Substitution and Unifier

• A substitution S maps type variables T to types τ

• We write S(τ) for the result of applying all
substitutions in S on τ

• A substitution S is a unifier of τ and τ‘, if S(τ) = S(τ‘)

• To preserve maximal polymorphism we want the
weakest unifier

• S1 is weaker than S2, if there is a non-trivial
substitution S3 such that S2 = S3 . S1
whereby S3 . S1 (τ) = S3 (S1 (τ))

Robinson’s Algorithm

Often called “Occurs Check”

This definition is well-founded, but this is not obvious.
Either the number of variables in the equations becomes smaller, or it stays equal.
In the latter case, the total size of the equations or the number of arrows
becomes smaller.

Complexity of Unification

If fn : τn, then τ0 = Int Int and τn+1 = τn τ n

Hence type inference can take exponential time

With a better representations of types (DAGs instead of trees) the
complexity can be improved to approximately O(n²)

Curry-Howard Isomorphism

• There is a deep connection between type
systems and (intuitionstic/constructive) logic

• A proof of a proposition in constructive logic is
a construction of an object that witnesses the
proposition

• The Curry-Howard isomorphism says that
proofs are the same as terms/programs

τ

Constructive vs classical proofs

• Not every proof in classical logic is also valid in
intuitionistic logic

• Law of excluded middle is not valid in
intuitionistic logic: It is not constructive!

Intuitionistic logic

• Syntax of formulas:

• With second-order quantification:

Natural Deduction

• Calculus developed by Gentzen to define
proof rules of a logic

• Operators (so-called connectives) typically
have introduction and elimination rules

• We will see that the deduction rules in natural
deduction style correspond exactly to the
typing rules of System F with sums and
products
– Terms are a linear notation of proofs!

Proof- and Typing Rules Side-by-Side

Proof- and Typing Rules Side-by-Side

The Curry-Howard Isomorphism

• A.k.a as “Propositions as Types”

Logical Interpretation of Program
Transformations

• Reduction = Proof Normalization
– Existence of normal form can be formalized as Cut

Elimination Theorem (Gentzen’s “Hauptsatz”)

– Typically presented using sequent calculus rather
than natural deduction

• CPS Transformation = Double Negation

	Type Reconstruction
	Type Reconstruction
	Places where we required type annotations
	Typing rules are easy to specify �w/o type annotations
	Infering types by hand…
	Type equality constraints
	Type equality constraints
	Unification
	Substitution and Unifier
	Robinson’s Algorithm
	Complexity of Unification
	Curry-Howard Isomorphism
	Constructive vs classical proofs
	Intuitionistic logic
	Natural Deduction
	Proof- and Typing Rules Side-by-Side
	Proof- and Typing Rules Side-by-Side
	The Curry-Howard Isomorphism
	Logical Interpretation of Program Transformations

