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ABSTRACT
Generalized algebraic data types (GADTs) allow embedding
extensible typed ASTs and transformations on them. Such
transformations on typed ASTs are useful for code opti-
mization in deeply embedded DSLs, for instance when using
Lightweight Modular Staging (LMS). However, in Scala it
is hard to make transformations for typed ASTs type-safe.
Therefore, AST transformations in LMS are often not fully
typechecked, preventing bugs from being caught early and
without extensive testing.

We show that writing type-safe transformations in such
embeddings is in fact not just hard, but impossible without
using unsafe casts or significantly restricting extensibility:
Declaration-site variance opens GADTs representing typed
ASTs not only to desirable extensions, but also to extensions
that introduce exotic terms. We make the problem concrete
on an embedding of λ<: through covariant GADTs. We
discuss solution approaches, and sketch a Scala extension to
address this problem without either introducing unsafe casts
or restricting extensibility.

We believe a complete solution would significantly ease
writing transformations by allowing type-checking to verify
them, and thus would ease their development.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs—
Inheritance, polymorphism, patterns
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1. INTRODUCTION
Type-preserving AST transformations have multiple appli-

cations. In particular, implementations of deeply embedded
domain-specific languages (EDSLs) typically optimize pro-
grams written in these DSLs automatically, to achieve high
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performance with little manual effort. Such optimizations
are implemented as part of the EDSLs; in particular, many
optimizations are rewrite rules, which can be expressed as
type-preserving transformations.

Since these optimizations are part of an EDSL, that is of
a library, they can easily be extended with domain-specific
optimizations; hence writing optimizers becomes possible not
only for compiler authors but also for authors of libraries,
making this task accessible to a wider audience, and making
support for it more important.

In Scala, type-preserving transformations are used for
instance in SQuOpt [3] or Lightweight Modular Staging
(LMS) [8]. Such systems define a GADT named Exp[T],
such that ASTs of type Exp[T] encode well-typed object-level
terms of type T. Type-preserving transformations should then
have type ∀ T. Exp[T] ⇒ Exp[T]; the typechecker should
report when such a transformation is not type-preserving.

Writing type-preserving transformations is currently hin-
dered by several problems. On the one hand, typechecker
bugs or limitations in type inference prevent the compiler
from recognizing type-preserving transformations. On the
other hand, and more fundamentally, writing such transfor-
mations is impossible, unless we significantly restrict extensi-
bility or use unsafe casts, as we explain in this paper.

To clarify problems with type-preserving transformations,
we focus on an even simpler application of GADTs: writing
typed embeddings of λ-calculi with interpreters. We choose
this task because similar embeddings arise naturally in deeply
embedded DSLs [8, 3], are for our purposes comparable to the
one by Emir et al. [2], and represent a rather lightweight and
natural encoding. Moreover, the problem with we demon-
strate extends to type-preserving transformations (as shown
in Sec. 3.1). Finally, interpreters are a standard application
of GADTs in the literature (e.g. [2, 4]).

Our contributions are the following:

• We analyze a widely used embedding of λ<: with co-
variant GADTs and show that it admits exotic terms
that make interpreters not type-safe.

• We demonstrate disadvantages of apparent solutions.

• We minimally sketch an extension to Scala and argue
why it addresses the problem accurately while preserv-
ing extensibility.

• We sketch the relation between the problem and decla-
ration-site variance.

All code examples have been compiled with Scala 2.10.2 and
are available at http://www.informatik.uni-marburg.de/

http://www.informatik.uni-marburg.de/~pgiarrusso/research/gadts/


~pgiarrusso/research/gadts/, together with more exten-
sive examples.

2. EMBEDDING λ→ WITH GADTS
As a background for our discussion, in this section we

review a typed embedding of the simply-typed λ-calculus
λ→:

1 trait Lambda {
2 trait Exp[T]
3 case class Const[T](t: T) extends Exp[T]
4 case class App[S, T](fun: Exp[S⇒ T], arg: Exp[S]) extends
5 Exp[T]
6 case class Fun[S, T](body: Exp[S]⇒ Exp[T]) extends Exp[S⇒ T]
7 }

Fun and App represent respectively abstraction and appli-
cation using higher-order abstract syntax (HOAS) [6]. In
addition, to allow easily embedding some terms, we allow
arbitrary constants of the metalanguage to be used as terms
in the object language, thanks to the constructor Const.

We define a few small example terms using this language:

8 trait LamExamples extends Lambda {
9 val term1 = App(Fun((x: Exp[Int])⇒ x), Const(1))

10 //val termWrong = Fun((x: Exp[Int])⇒ App(x, Const(1)))
11 //termWrong gives a type error
12 }

Our encoding is typed, thus, as observed in line 10, we
cannot represent ill-typed terms.

We now use pattern matching [2] to define a type-safe
interpreter, which is well-typed with type Exp[T] ⇒ T:

13 trait Interp extends Lambda {
14 def eval[T](term: Exp[T]): T =
15 term match {
16 case Const(t)⇒ t
17 case App(fun, arg)⇒
18 eval(fun) apply eval(arg)
19 case f: Fun[s, t]⇒
20 (x: s)⇒ eval(f.body(Const(x)))
21 }
22 }

When matching a Const node on line 16, the compiler can
infer that t has type T and that the branch returns a value of
type T. Similarly, on line 17 the compiler infers that fun has
type Exp[s ⇒ T] and arg has type Exp[s], where s is an
unspecified type variable, so that the branch returns again a
value of type T.

Note that in line 19, we need a type pattern to bind type
variables s and t (with T = s ⇒ t), because we need s in
the type annotation on the next line.

This language is in fact richer than the λ→, because we
are freely reusing Scala types. However, here and in our
applications our goal is not to model accurately a λ-calculus,
but to implement a core for EDSLs with low effort, so reusing
the host language by writing a metainterpreter is appropriate.

2.1 Extensibility
In Scala, (generalized) algebraic data types are naturally

open to extension. Hence, we can easily extend this language,
for instance to support summing numbers:

23 trait Nums extends Lambda with Interp {
24 case class Plus(a: Exp[Int], b: Exp[Int]) extends Exp[Int]
25

26 override def eval[T](term: Exp[T]): T =
27 term match {
28 case p @ Plus(a, b)⇒
29 eval(a) + eval(b)
30 case _⇒

31 super.eval(term)
32 }
33 }

All the examples we have seen up to now can be imple-
mented without GADTs. We could have made eval a method
of type Exp [4]; then we would decompose the eval methods
shown above into implementations of eval in each subclass
of Exp.

However, using GADTs allows easily adding new oper-
ations without modifying existing code, as shown in the
following fragment:

34 trait BetaReduce extends Lambda {
35 def betaReduce[T](term: Exp[T]): Exp[T] =
36 term match {
37 case App(Fun(f), arg)⇒ f(arg)
38 case e⇒ e
39 }
40 }

This snippet implements method betaReduce, which beta-
reduces its argument if it is a redex (but not if it just contains
a redex). Notably, we needed no change to existing modules.

To sum up, we can easily add new subtypes of Exp[T]
and new operations on this type. Hence, what we have
shown is a partial solution to the expression problem with
defaults [8, 5]. In this encoding we cannot check exhaus-
tiveness, that is whether we handle all possible node types,
unless the transformation can handle unknown nodes using a
default case. This is a problem for an interpreter, but we can
ignore this problem since we focus on AST transformations:
For typical type-preserving transformations, checking exhaus-
tiveness is superfluous, since returning the input argument
unchanged, as in betaReduce, is a valid default. Moreover,
safer solutions are significantly heavier-weight.

3. EMBEDDING λ<:

As we have seen, using GADTs we can embed the λ→
in Scala with high extensibility, because we can easily and
modularly extend both the language and the set of operations.

In this section, we try to extend the embedded language
with subtyping, that is to embed λ<: [7], and keep the em-
bedding extensible. We will see that this is impossible.

To extend our embedding to λ<:, we need to implement
the rule of subsumption: if t: S and S <: T, then t: T. In
our embedding, if t: Exp[S] and S <: T, we need to ensure
t: Exp[T]. To this end, we can make Exp covariant, by
replacing its declaration trait Exp[T] with trait Exp[+T]:
then S <: T implies Exp[S] <: Exp[T]. In other words, we
encode subtyping in the object language by reusing subtyping
in the metalanguage. Beyond other advantages, this preserves
the extensibility of our embedding.

However, if we make Exp covariant, extensions become able
to introduce nonsensical or exotic terms, which have type
Exp[T] for some T but don’t correspond to object-language
terms. Our interpreter remains (dynamically) type-correct
on non-exotic terms, but fails to evaluate exotic terms with a
dynamic type error, as we now demonstrate. For simplicity,
we first reduce the language to the Const node:

41 trait Consts {
42 trait Exp[+T]
43 case class Const[T](t: T) extends Exp[T]
44 def eval[T](term: Exp[T]): T =
45 term match {
46 case Const(t)⇒ t
47 }
48 }
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This interpreter is correct on instances of Const itself, but
not on instances of its subclasses, such as unsoundTerm1 in
the following snippet:

49 object Unsound extends Consts {
50 class UnsoundConst(t: String) extends Const[Any](t) with
51 Exp[Boolean]
52 val unsoundTerm1 = new UnsoundConst("")
53 val unsound1 = eval(unsoundTerm1)
54 }

Executing line 53 produces a ClassCastException without
an explicit type cast, that is, a (dynamic) type error.

The problem arises because UnsoundConst is a subtype of
both Const[Any] (and thus Exp[Any]) and Exp[Boolean].
This is legal because Exp is covariant and Exp[U] is a sub-
type of Exp[Any] for any U, so we UnsoundConst can be
declared a subtype Exp[U] for any type U (in the example
we have U = Boolean, but only U != String is required):
it refines the generic instantiation of Exp (in Const) to
Exp[U]. So, UnsoundConst is a subtype of Exp[Boolean],
but its instances contain, instead of a Boolean, a String.
unsoundTerm1 has type UnsoundConst <: Exp[Boolean], so
from eval(unsoundTerm1) type inference will produce eval[
Boolean](unsoundTerm1), having static type Boolean. In
eval (line 46), t will be bound to "" (of type String) and
returned, whereas a value of type T = Boolean is expected,
leading to a type error.

To prevent this type error, a sound typechecker should re-
ject line 46 of our program. That line is accepted because the
typechecker deduces t: T, but in our example t = "" is not
an instance of T = Boolean. In general, when the pattern
Const(t) matches an instance of Exp[T], we can only deduce
that it matches an instance of Const[U](t) with Exp[T]
with U >: T and t: U; hence, we can’t infer t: T, and writ-
ing a type-safe interpreter is impossible. We did not need
to embed the full λ<: to show this impossibility. We simply
need polymorphic AST nodes like Const and subtyping.
UnsoundConst is a valid Scala definition, and we believe

this is reasonable in general—but it does not encode a valid
object-language term and cannot be handled by our inter-
preter; while our interpreter correctly interprets λ<:, it can-
not be given type Exp[T] ⇒ T. Hence we believe that pro-
grammers should be able to choose whether refining generic
instantiations (and so defining UnsoundConst) is allowed; our
solution allows this choice, as sketched in Sec. 4.3.

Scalac’s typechecker currently considers our interpreter
(statically) well-typed, demonstrating an unsoundness prob-
lem (due to bug https://issues.scala-lang.org/browse/
SI-6944). Many variations of this error are instead prevented
statically; it is enough to reintroduce the branch handling
Fun (lines 19–20) in the interpreter to observe a static type
error (as demonstrated in the companion source code). More-
over, our focus is on the expressivity limitation: whether our
interpreter is well-typed or not, it can trigger dynamic type
errors—it is not type-correct.

3.1 Type-preserving transformations
We have shown that an interpreter for (a subset of) λ<:

is not type-correct on exotic terms. As we mentioned, simi-
lar issues affect type-preserving transformations, as in the
following minimal example:

55 def rebuild[T](term: Exp[T]): Exp[T] =
56 term match {
57 case Const(t)⇒ Const(t)
58 }

The function rebuild takes apart a term in the language
with only Const nodes and reconstructs a new but equal
term. This typed transformation is clearly trivial but, sim-
ilarly to eval, it is not type-safe if term is an instance of
UnsoundConst.

The problem extends to useful transformations: We often
faced such errors in our work on SQuOpt, for instance
when trying to write a type-preserving code transformation
implementing map fusion, as shown in the companion source.

Moreover, we conjecture the lack of a type-safe rebuild
affects type-preserving transformations of covariant GADTs
also in applications unrelated to language embeddings.

4. SOLUTION APPROACHES
In this section we survey possible solution approaches.

4.1 Ignoring the problem and using casts
Since we do not mean to write classes like UnsoundConst,

we might just ignore the problem and use typecasts wherever
type errors are detected, as in both LMS and SQuOpt.

However, in this way we give up some benefits of type-
checking: one cannot ensure that transformations are type-
preserving statically.

4.2 Reifying upcasts
Instead of making Exp covariant and cause the issues we

discussed, we can encode subsumption as an explicit oper-
ation in ASTs (line 60). This approach does produce an
adequate encoding, but it is rather inconvenient to use. An
implicit conversion can reduce the need to apply this conver-
sion explicitly (line 61):

59 trait LambdaUpcast extends Lambda {
60 case class Upcast[U, T <: U](e: Exp[T]) extends Exp[U]
61 implicit def upcast[U, T <: U](e: Exp[T]): Exp[U] = Upcast(e)
62 }

However, Scala type inference is too fragile and unpre-
dictable for handling such implicit conversions (as shown in
the companion code) or a robust variant.

Moreover, with this solution the input to transformations
can contain Upcast at arbitrary locations, and we need to du-
plicate transformation code to transform such trees correctly.
For instance, betaReduce becomes now:

63 trait BetaReduceSub extends LambdaUpcast {
64 def betaReduce[T](term: Exp[T]): Exp[T] =
65 term match {
66 case App(Fun(f), arg)⇒ f(arg)
67 case App(Upcast(Fun(f)), arg)⇒ f(arg)
68 case e⇒ e
69 }
70 }

4.3 Restricting refinement
In our example, nodes like UnsoundConst should be for-

bidden. All extensions to AST classes such as Const can
be prevented, by making them final. Since no class like
UnsoundConst can be defined, our basic interpreter becomes
type-safe and well-typed again:

71 trait LambdaInterpFinal {
72 trait Exp[+T]
73

74 final case class Const[T](t: T) extends Exp[T]
75 final case class App[S, T](fun: Exp[S⇒ T], arg: Exp[S])
76 extends Exp[T]
77 final case class Fun[S, T](body: Exp[S]⇒ Exp[T])
78 extends Exp[S⇒ T]
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79

80 def eval[T](term: Exp[T]): T =
81 term match {
82 case Const(t)⇒ t
83 case App(fun, arg)⇒
84 eval(fun) apply eval(arg)
85 case f: Fun[s, t]⇒
86 (x: s)⇒ eval(f.body(Const(x)))
87 }
88 }

This interpreter for λ<: is almost identical to the one for
λ→, except for the covariance annotation to Exp and for
marking the case classes as final.

However, this solution prevents legitimate inheritance from
AST classes, which at least was often useful when we imple-
mented SQuOpt. Moreover, the restriction is too draconian.
Compare the two definitions:

89 trait Compared extends Consts {
90 class UnsoundConst(t: String) extends Const[Any](t) with
91 Exp[Boolean]
92 class SoundConst(t: String) extends Const[Any](t)
93 }

SoundConst does not cause any problem, and can also be de-
fined when Exp is invariant. UnsoundConst causes problems
because it is a subtype of Const[Any], thus of Exp[Any]; at
the same time, it refines the generic instantiation of Exp to
Exp[Boolean]. In our scenario, such a refinement should be
forbidden. To forbid that, we propose to allow writing:

94 case class Const[T](t: T) extends Exp[=T]

Note that the only difference is the = in Exp[=T]. The type
Const[T] with Exp[U] where U <: T and U != T would re-
main valid, but templates (classes, traits and objects) ex-
tending it (like UnsoundConst) would be forbidden. In other
words, writing Exp[=T] forbids refining the instantiation of
Exp in classes extending Const. The Scala specification (Sec.
5.1) already forbids creating such a template if Exp is not
covariant, and we propose to extend this check.

Of course, this is just a sketch of the extension; its power-to-
weight ratio in particular is yet unclear, and a formalization
and proof of soundness (especially for typechecking pattern
matching) are left as future work.

4.3.1 Declaration-site variance
We now explain why problematic classes like UnsoundConst

can only be defined with declaration-site variance. With use-
site variance one can encode covariant types, for instance
Exp and Const, but not UnsoundConst.

A type Base, declared with declaration-site variance as
trait Base[+T], is conceptually equivalent to type BaseVar,
declared with use-site variance as:

95 trait Base[T]; type BaseVar[T] = Base[_ <: T]

However, consider now:

96 class Derived[T] extends Base[T]

This fragment is valid with both use-site variance and dec-
laration-site variance, but means different things. With
use-site variance, it forbids writing DerivedAgain as in line
97; with declaration-site variance, it instead allows writing
DerivedAgain:

97 class DerivedAgain[T] extends Derived[Any] with Base[Boolean]

With use-site variance and our extension, we can replace
line 96 with class Derived[T] extends Base[=T] to for-
bid, if appropriate, writing DerivedAgain (or, in our original

example, UnsoundConst). Hence, our extension allows again
expressing a restriction that use-site variance already allowed.

5. RELATED WORK
Kennedy and Russo [4] first considered GADTs in object-

oriented programming. They survey GADTs in functional
languages (and related work in the area) and how to encode
GADTs in OO languages, highlight cases where extra casts
are needed and propose a language extension for C], which
allows implementing methods on parameterized classes (such
as Exp[T]) which can only be called when T satisfies some
constraints. Emir et al. [1] formalizes covariance in C]. Their
system forbids refining generic instantiations, which restricts
expressivity but would forbid UnsoundConst. We propose
to control refinement of generic instantiations, not forbid it.
Emir et al. [2] discusses GADTs in Scala and embeds λ→,
but his encoding doesn’t extend safely to λ<:. Also their
formalization forbids refining generic instantiations.

6. CONCLUSIONS
We have demonstrated that for sufficiently expressive ED-

SLs with subtyping, writing type-preserving AST transfor-
mations in Scala is impossible without reducing extensibility
of the embedding or using type-unsafe casts, due to the inter-
action of GADTs and declaration-site variance. We have also
analyzed a few alternatives and their limitations, and showed
a minimal sketch of a language extension for Scala which
we believe would solve the problem. We believe complet-
ing such a language extension would be a first step toward
type-checked and thus safer type-preserving transformations.

Acknowledgments We thank Tillmann Rendel, Sebas-
tian Erdweg, Eugene Burmako and the anonymous reviewers
for their helpful comments. This work is supported by the
European Research Council, grant #203099 “ScalPL”.

References
[1] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance

and generalized constraints for C] generics. In ECOOP,
pages 279–303. Springer-Verlag, 2006.

[2] B. Emir, M. Odersky, and J. Williams. Matching objects
with patterns. In ECOOP, pages 273–298. Springer-
Verlag, 2007.

[3] P. G. Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke,
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